Skip to content
Snippets Groups Projects
README.rst 15.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • Welcome to pyBIS!
    =================
    
    pyBIS is a Python module for interacting with openBIS, designed to be
    used in Jupyter. It offers a sort of IDE for openBIS, supporting TAB
    completition and input checks, making the life of a researcher hopefully
    easier.
    
    SYNOPSIS
    ========
    
    connecting to OpenBIS
    ---------------------
    
    ::
    
    
       from pybis import Openbis
       o = Openbis('https://example.com:8443', verify_certificates=False)
       o.login('username', 'password', save_token=True)   # saves the session token in ~/.pybis/example.com.token
       o.token
       o.is_session_active()
       o.get_datastores()
       o.logout()
    
       o.get_experiment_types()
       o.get_sample_types()
       o.get_sample_type('YEAST')
       o.get_material_types()
       o.get_dataset_types()
       o.get_dataset_types()[0]
       o.get_dataset_type('RAW_DATA')
       o.get_terms()
       o.get_terms('MATING_TYPE')
       o.get_tags()
    
    Users, Groups and RoleAssignments
    ---------------------------------
    
    ::
    
    
       o.get_groups()
       group = o.new_group(code='group_name', description='...')
       group = o.get_group('group_name')
       group.save()
       group.assign_role(role='ADMIN', space='DEFAULT')
       group.get_roles() 
       group.revoke_role(role='ADMIN', space='DEFAULT')
    
       group.add_persons(['admin'])
       group.get_persons()
       group.del_persons(['admin'])
       group.delete()
    
       o.get_persons()
       person = o.new_person(userId='username')
       person.space = 'USER_SPACE'
       person.save()
    
       person.assign_role(role='ADMIN', space='MY_SPACE')
       person.assign_role(role='OBSERVER')
       person.get_roles()
       person.revoke_role(role='ADMIN', space='MY_SPACE')
       person.revoke_role(role='OBSERVER')
    
       o.get_role_assignments()
       o.get_role_assignments(space='MY_SPACE')
       o.get_role_assignments(group='MY_GROUP')
       ra = o.get_role_assignment(techId)
       ra.delete()
    
       space = o.new_space(code='space_name', description='')
       space.save()
       space.delete('reason for deletion')
       o.get_spaces()
       o.get_space('MY_SPACE')
    
       project = o.new_project(
           space=space, 
           code='project_name',
           description='some project description'
       )
       project = space.new_project( code='project_code', description='project description')
       project.save()
    
       o.get_projects()
       o.get_projects(space='MY_SPACE')
       space.get_projects()
    
       project.get_experiments()
       project.get_attachments()
       p.add_attachment(fileName='testfile', description= 'another file', title= 'one more attachment')
       project.download_attachments()
    
    Samples are nowadays called **Objects** in openBIS. pyBIS is not yet
    thoroughly supporting this term in all methods where «sample» occurs.
    
    
       sample = o.new_sample(
           type     = 'YEAST', 
           space    = 'MY_SPACE', 
           parents  = [parent_sample, '/MY_SPACE/YEA66'], 
           children = [child_sample],
           props    = {"name": "some name", "description": "something interesting"}
       )
       sample = space.new_sample( type='YEAST' )
       sample.save()
    
       sample = o.get_sample('/MY_SPACE/MY_SAMPLE_CODE')
       sample = o.get_sample('20170518112808649-52')
    
       sample.space
       sample.code
       sample.permId
       sample.identifier
       sample.type  # once the sample type is defined, you cannot modify it
    
       sample.space
       sample.space = 'MY_OTHER_SPACE'
    
       sample.experiment    # a sample can belong to one experiment only
       sample.experiment = '/MY_SPACE/MY_PROJECT/MY_EXPERIMENT'
    
       sample.project
       sample.project = '/MY_SPACE/MY_PROJECT'  # only works if project samples are
       enabled
    
       sample.tags
       sample.tags = ['guten_tag', 'zahl_tag' ]
    
       sample.get_parents()
       sample.set_parents(['/MY_SPACE/PARENT_SAMPLE_NAME')
       sample.add_parents('/MY_SPACE/PARENT_SAMPLE_NAME')
       sample.del_parents('/MY_SPACE/PARENT_SAMPLE_NAME')
    
       sample.get_children()
       sample.set_children('/MY_SPACE/CHILD_SAMPLE_NAME')
       sample.add_children('/MY_SPACE/CHILD_SAMPLE_NAME')
       sample.del_children('/MY_SPACE/CHILD_SAMPLE_NAME')
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
       # A Sample may belong to another Sample, which acts as a container.
       # As opposed to DataSets, a Sample may only belong to one container.
    
       sample.container    # returns a sample object
       sample.container = '/MY_SPACE/CONTAINER_SAMPLE_NAME'   # watch out, this will change the identifier of the sample to:
                                                              # /MY_SPACE/CONTAINER_SAMPLE_NAME:SAMPLE_NAME
       sample.container = ''                                  # this will remove the container. 
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
       # A Sample may contain other Samples, in order to act like a container (see above)
       # The Sample-objects inside that Sample are called «components» or «contained Samples»
       # You may also use the xxx_contained() functions, which are just aliases.
    
       sample.get_components()
       sample.set_components('/MY_SPACE/COMPONENT_NAME')
       sample.add_components('/MY_SPACE/COMPONENT_NAME')
       sample.del_components('/MY_SPACE/COMPONENT_NAME')
    
       sample.get_tags()
       sample.set_tags('tag1')
       sample.add_tags(['tag2','tag3'])
       sample.del_tags('tag1')
    
       sample.set_props({ ... })
       sample.p                              # same thing as .props
       sample.p.my_property = "some value"   # set the value of a property (value is checked)
       sample.p + TAB                        # in IPython or Jupyter: show list of available properties
       sample.p.my_property_ + TAB           # in IPython or Jupyter: show datatype or controlled vocabulary
    
       sample.get_attachments()
       sample.download_attachments()
       sample.add_attachment('testfile.xls')
    
       samples = o.get_samples(
           space ='MY_SPACE',
           type  ='YEAST',
           tags  =['*'],                     # only sample with existing tags
           NAME  = 'some name',              # properties are always uppercase 
                                             # to distinguish them from attributes
           **{ "SOME.WEIRD:PROP": "value"}   # property name contains a dot or a
                                             # colon: cannot be passed as an argument 
           props=['NAME', 'MATING_TYPE']     # show these properties in the result
       )
       samples.df                            # returns a pandas dataframe object
       samples.get_datasets(type='ANALYZED_DATA')
    
       o.new_experiment
           type='DEFAULT_EXPERIMENT',
           space='MY_SPACE',
           project='YEASTS'
       )
       o.get_experiments(
           project='YEASTS',
           space='MY_SPACE', 
           type='DEFAULT_EXPERIMENT',
           tags='*', 
           finished_flag=False,
           props=['name', 'finished_flag']
       )
       exp = o.get_experiment('/MY_SPACE/MY_PROJECT/MY_EXPERIMENT')
    
       exp.props
       exp.p                              # same thing as .props
       exp.p.finished_flag=True
       exp.p.my_property = "some value"   # set the value of a property (value is checked)
       exp.p + TAB                        # in IPython or Jupyter: show list of available properties
       exp.p.my_property_ + TAB           # in IPython or Jupyter: show datatype or controlled vocabulary
    
       exp.attrs
       exp.a     # same as exp.attrs
       exp.attrs.tags = ['some', 'extra', 'tags']
       exp.tags = ['some', 'extra', 'tags']          # same thing
       exp.save()
    
       sample.get_datasets()
       ds = o.get_dataset('20160719143426517-259')
       ds.get_parents()
       ds.get_children()
       ds.sample
       ds.experiment
       ds.physicalData
       ds.status              # AVAILABLE LOCKED ARCHIVED 
                              # UNARCHIVE_PENDING ARCHIVE_PENDING BACKUP_PENDING
       ds.archive()
       ds.unarchive()
    
       ds.get_files(start_folder="/")
       ds.file_list
       ds.add_attachment()
       ds.get_attachments()
       ds.download_attachments()
       ds.download(destination='/tmp', wait_until_finished=False)
    
       ds_new = o.new_dataset(
           type       = 'ANALYZED_DATA', 
           experiment = '/SPACE/PROJECT/EXP1', 
           sample     = '/SPACE/SAMP1',
           files      = ['my_analyzed_data.dat'], 
           props      = {'name': 'some good name', 'description': '...' })
       )
    
    
       # DataSet CONTAINER (contains other DataSets, but no files)
       ds_new = o.new_dataset(
           type       = 'ANALYZED_DATA', 
           experiment = '/SPACE/PROJECT/EXP1', 
           sample     = '/SPACE/SAMP1',
           kind       = 'CONTAINER',
           props      = {'name': 'some good name', 'description': '...' })
       )
    
    
       ds_new.save()
    
       dataset.get_parents()
       dataset.set_parents(['20170115220259155-412'])
       dataset.add_parents(['20170115220259155-412'])
       dataset.del_parents(['20170115220259155-412'])
    
       dataset.get_children()
       dataset.set_children(['20170115220259155-412'])
       dataset.add_children(['20170115220259155-412'])
       dataset.del_children(['20170115220259155-412'])
    
    
       # A DataSet may belong to other DataSets, which must be of kind=CONTAINER
       # As opposed to Samples, DataSets may belong (contained) to more than one DataSet-container
    
    Swen Vermeul's avatar
    Swen Vermeul committed
       dataset.get_containers()
       dataset.set_containers(['20170115220259155-412'])
       dataset.add_containers(['20170115220259155-412'])
       dataset.del_containers(['20170115220259155-412'])
    
    
       # A DataSet of kind=CONTAINER may contain other DataSets, to act like a folder (see above)
    
    Swen Vermeul's avatar
    Swen Vermeul committed
       # The DataSet-objects inside that DataSet are called components or contained DataSets
       # You may also use the xxx_contained() functions, which are just aliases.
    
       dataset.get_components()
       dataset.set_components(['20170115220259155-412'])
       dataset.add_components(['20170115220259155-412'])
       dataset.del_components(['20170115220259155-412'])
    
       ds.set_properties({...})
       ds.props
       ds.p                              # same thing as .props
       ds.p.my_property = "some value"   # set the value of a property
       ds.p + TAB                        # show list of available properties
       ds.p.my_property_ + TAB           # show datatype or controlled vocabulary
    
       # complex query with chaining.
       # properties must be in UPPERCASE
       datasets = o.get_experiments(project='YEASTS').get_samples(type='FLY').get_datasets(type='ANALYZED_DATA', props=['MY_PROPERTY'],MY_PROPERTY='some analyzed data')
    
       # another example
       datasets = o.get_experiment('/MY_NEW_SPACE/VERMEUL_PROJECT/MY_EXPERIMENT4').get_samples(type='UNKNOWN').get_parents().get_datasets(type='RAW_DATA')
    
       datasets.df                       # get a pandas dataFrame object
    
       # use it in a for-loop:
       for dataset in datasets:
           print(ds.permID)
    
       # create semantic annotation for sample type 'UNKNOWN'
       sa = o.new_semantic_annotation(
           entityType = 'UNKNOWN',
           predicateOntologyId = 'po_id',
           predicateOntologyVersion = 'po_version',
           predicateAccessionId = 'pa_id',
           descriptorOntologyId = 'do_id',
           descriptorOntologyVersion = 'do_version',
           descriptorAccessionId = 'da_id'
       )
       sa.save()
    
       # create semantic annotation for property type 
       # (predicate and descriptor values omitted for brevity)
       sa = o.new_semantic_annotation(propertyType = 'DESCRIPTION', ...)
       sa.save()
    
       # create semantic annotation for sample property assignment (predicate and descriptor values omitted for brevity)
       sa = o.new_semantic_annotation(entityType = 'UNKNOWN', propertyType = 'DESCRIPTION', ...)
       sa.save()
    
       # create a semantic annotation directly from a sample type
       # will also create sample property assignment annotations when propertyType is given
       st = o.get_sample_type("ORDER")
       st.new_semantic_annotation(...)
    
       # get all semantic annotations
       o.get_semantic_annotations()
    
       # get semantic annotation by perm id
       sa = o.get_semantic_annotation("20171015135637955-30")
    
       # update semantic annotation
       sa.predicateOntologyId = 'new_po_id'
       sa.descriptorOntologyId = 'new_do_id'
       sa.save()
    
       # delete semantic annotation
       sa.delete('reason')
    
       new_tag = o.new_tag(
           code        = 'my_tag', 
           description = 'some descriptive text'
       )
       new_tag.description = 'some new description'
       new_tag.save()
       o.get_tags()
       o.get_tag('/username/TAG_Name')
       o.get_tag('TAG_Name')
    
       tag.get_experiments()
       tag.get_samples()
       tag.delete()
    
    Vocabualry and VocabularyTerms
    ------------------------------
    
    
    An entity such as Sample (Object), Experiment (Collection), Material or
    DataSet can be of a specific type:
    
    -  Sample Type
    -  Experiment Type
    -  DataSet Type
    -  Material Type
    
    Every type defines which Properties may be defined. Properties are like
    Attributes, but they are Type specific. Properties can contain all sorts
    of information, such as free text, XML, Hyperlink, Boolean and also
    *Controlled Vocabulary*. Such a Controlled Vocabulary consists of many
    VocabularyTerms. They are used to check the terms entered in a Property
    field.
    
    So for example, you want to add a property called **Animal** to a Sample
    and you want to control which terms are entered in this Property field.
    For this you need to do a couple of steps:
    
    
    1. create a new vocabulary *AnimalVocabulary*
    2. add terms to that vocabulary: *Cat, Dog, Mouse*
    3. create a new PropertyType (e.g. *Animal*) of DataType
       *CONTROLLEDVOCABULARY* and assign the *AnimalVocabulary* to it
    4. create a new SampleType (e.g. *Pet*) and *assign* the created
       PropertyType to that Sample type.
    5. If you now create a new Sample of type *Pet* you will be able to add
       a property *Animal* to it which only accepts the terms *Cat, Dog* or
       *Mouse*.
    
    **create new Vocabulary with three VocabularyTerms**
    
    ::
    
    
       voc = o.new_vocabulary(
           code = 'BBB',
           description = 'description of vocabulary aaa',
           urlTemplate = 'https://ethz.ch',
           terms = [
               { "code": 'term_code1', "label": "term_label1", "description": "term_description1"},
               { "code": 'term_code2', "label": "term_label2", "description": "term_description2"},
               { "code": 'term_code3', "label": "term_label3", "description": "term_description3"}
           ]   
       )
       voc.save()
    
    
    **create additional VocabularyTerms**
    
    ::
    
    
       term = o.new_term(
           code='TERM_CODE_XXX', 
           vocabularyCode='BBB', 
           label='here comes a label',
           description='here is a meandingful description'
       )
       term.save()
    
    
    **fetching Vocabulary and VocabularyTerms**
    
    
    Requirements and organization
    =============================
    
    Dependencies and Requirements
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    
    -  pyBIS relies the openBIS API v3; openBIS version 16.05.2 or newer
    -  pyBIS uses Python 3.3 and pandas
    -  pyBIS needs the jupyter-api to be installed, in order to register new
       datasets
    
    Installation
    ~~~~~~~~~~~~
    
    -  locate the ``jupyter-api`` folder found in ``pybis/src/coreplugins``
    -  copy this folder to ``openbis/servers/core-plugins`` in your openBIS
       installation
    -  register the plugin by editing
       ``openbis/servers/core-plugins/core-plugins.properties`` :
    -  ``enabled-modules = jupyter-api`` (separate multiple plugins with
       comma)
    -  restart your DSS to activate the plugin
    
    Project Organization
    ~~~~~~~~~~~~~~~~~~~~
    
    This project is devided in several parts:
    
    -  src/python/\ **PyBis** Python module which holds all the method to
       interact with OpenBIS
    -  src/python/\ **OBis** a command-line tool to register large datasets
       in OpenBIS without actually copying the data. Uses git annex for
       version control and OpenBIS linkedDataSet objects to register the
       metadata.
    -  src/python/\ **JupyterBis** a JupyterHub authenticator module which
       uses pyBIS for authenticating against openBIS, validating and storing
       the session token
    -  src/core-plugins/\ **jupyter-api**, an ingestion plug-in for openBIS,
       allowing people to upload new datasets
    -  src/vagrant/\ **jupyter-bis/Vagrantfile** to set up JupyterHub on a
       virtual machine (CentOS 7), which uses the JupyterBis authenticator
       module
    -  src/vagrant/\ **obis/Vagrantfile** to set up a complete OpenBIS
       instance on a virtual machine (CentOS 7)