Skip to content
Snippets Groups Projects
README.rst 13.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • Welcome to pyBIS!
    =================
    
    pyBIS is a Python module for interacting with openBIS, designed to be
    used in Jupyter. It offers a sort of IDE for openBIS, supporting TAB
    completition and input checks, making the life of a researcher hopefully
    easier.
    
    SYNOPSIS
    ========
    
    connecting to OpenBIS
    ---------------------
    
    ::
    
        from pybis import Openbis
        o = Openbis('https://example.com:8443', verify_certificates=False)
        o.login('username', 'password', save_token=True)   # saves the session token in ~/.pybis/example.com.token
        o.token
        o.is_session_active()
        o.get_datastores()
        o.logout()
    
    Masterdata
    ----------
    
    ::
    
        o.get_experiment_types()
        o.get_sample_types()
        o.get_sample_type('YEAST')
        o.get_material_types()
        o.get_dataset_types()
        o.get_dataset_types()[0]
        o.get_dataset_type('RAW_DATA')
        o.get_terms()
        o.get_terms('MATING_TYPE')
        o.get_tags()
    
    
    Users, Groups and RoleAssignments
    ---------------------------------
    
    ::
    
        o.get_groups()
        group = o.new_group(code='group_name', description='...')
        group = o.get_group('group_name')
        group.save()
        group.assign_role(role='ADMIN', space='DEFAULT')
        group.get_roles() 
        group.revoke_role(role='ADMIN', space='DEFAULT')
    
        group.add_persons(['admin'])
        group.get_persons()
        group.del_persons(['admin'])
        group.delete()
    
        o.get_persons()
        person = o.new_person(userId='username')
        person.space = 'USER_SPACE'
        person.save()
    
        person.assign_role(role='ADMIN', space='MY_SPACE')
        person.assign_role(role='OBSERVER')
        person.get_roles()
        person.revoke_role(role='ADMIN', space='MY_SPACE')
        person.revoke_role(role='OBSERVER')
    
        o.get_role_assignments()
        o.get_role_assignments(space='MY_SPACE')
        o.get_role_assignments(group='MY_GROUP')
        ra = o.get_role_assignment(techId)
        ra.delete()
    
    
        space = o.new_space(code='space_name', description='')
        space.save()
        space.delete('reason for deletion')
    
        o.get_spaces()
        o.get_space('MY_SPACE')
    
    
    Projects
    --------
    
    ::
    
        project = o.new_project(
            space=space, 
            code='project_name',
            description='some project description'
        )
        project = space.new_project( code='project_code', description='project description')
        project.save()
    
        o.get_projects()
    
        o.get_projects(space='MY_SPACE')
        space.get_projects()
    
        project.get_experiments()
        project.get_attachments()
        p.add_attachment(fileName='testfile', description= 'another file', title= 'one more attachment')
    
        project.download_attachments()
    
    Samples are nowadays called **Objects** in openBIS. pyBIS is not yet
    thoroughly supporting this term in all methods where «sample» occurs.
    
    
            type='YEAST', 
            space='MY_SPACE', 
            parents=[parent_sample, '/MY_SPACE/YEA66'], 
    
            children=[child_sample]
        )
    
        sample = space.new_sample( type='YEAST' )
        sample.save()
    
        sample = o.get_sample('/MY_SPACE/MY_SAMPLE_CODE')
        sample = o.get_sample('20170518112808649-52')
    
    
        sample.space
        sample.code
        sample.permId
        sample.identifier
        sample.type  # once the sample type is defined, you cannot modify it
        sample.space
        sample.space = 'MY_OTHER_SPACE'
        sample.experiment    # a sample can belong to one experiment only
        sample.experiment = 'MY_SPACE/MY_PROJECT/MY_EXPERIMENT'
        sample.tags
        sample.tags = ['guten_tag', 'zahl_tag' ]
        sample.get_parents()
        sample.parents = ['/MY_SPACE/PARENT_SAMPLE_NAME']
        sample.add_parents('/MY_SPACE/PARENT_SAMPLE_NAME')
        sample.del_parents('/MY_SPACE/PARENT_SAMPLE_NAME')
    
        sample.get_childeren()
        sample.children = ['/MY_SPACE/CHILD_SAMPLE_NAME']
        sample.add_children('/MY_SPACE/CHILD_SAMPLE_NAME')
        sample.del_children('/MY_SPACE/CHILD_SAMPLE_NAME')
        sample.get_childeren()
    
        sample.props
        sample.p                              # same thing as .props
        sample.p.my_property = "some value"   # set the value of a property (value is checked)
        sample.p + TAB                        # in IPython or Jupyter: show list of available properties
        sample.p.my_property_ + TAB           # in IPython or Jupyter: show datatype or controlled vocabulary
    
        sample.get_attachments()
        sample.download_attachments()
        sample.add_attachment('testfile.xls')
    
        samples = o.get_samples(
            space='MY_SPACE',
    
            type='YEAST',
            tags=['*'],                          # tags must be present
            NAME = 'some name',                  # properties are always uppercase to distinguish them from attributes
            **{ "SOME.WEIRD:PROPERTY": "value"}  # in case your property name contains a dot or a colon which cannot be passed as an argument name 
    
            props=['NAME', 'MATING_TYPE','SHOW_IN_PROJECT_OVERVIEW'] # show these properties in the results
        )
        samples.df                            # returns a pandas dataframe object
        samples.get_datasets(type='ANALYZED_DATA')
    
    Note: Project samples are not implemented yet.
    
    Experiments
    -----------
    
    ::
    
        o.new_experiment
            type='DEFAULT_EXPERIMENT',
            space='MY_SPACE',
            project='YEASTS'
        )
        o.get_experiments(
            project='YEASTS',
    
            type='DEFAULT_EXPERIMENT',
    
            finished_flag=False,
            props=['name', 'finished_flag']
        )
        exp = o.get_experiment('/MY_SPACE/MY_PROJECT/MY_EXPERIMENT')
    
        exp.props
        exp.p                              # same thing as .props
        exp.p.finished_flag=True
        exp.p.my_property = "some value"   # set the value of a property (value is checked)
        exp.p + TAB                        # in IPython or Jupyter: show list of available properties
        exp.p.my_property_ + TAB           # in IPython or Jupyter: show datatype or controlled vocabulary
    
        exp.attrs
        exp.a     # same as exp.attrs
        exp.attrs.tags = ['some', 'extra', 'tags']
        exp.tags = ['some', 'extra', 'tags']          # same thing
        exp.save()
    
    Datasets
    --------
    
    ::
    
        sample.get_datasets()
        ds = o.get_dataset('20160719143426517-259')
        ds.get_parents()
        ds.get_children()
        sample = ds.sample
        experiment = ds.experiment
        ds.physicalData
        ds.status        # AVAILABLE LOCKED ARCHIVED UNARCHIVE_PENDING ARCHIVE_PENDING BACKUP_PENDING
        ds.archive()
        ds.unarchive()
        ds.get_files(start_folder="/")
        ds.file_list
        ds.add_attachment()
        ds.get_attachments()
        ds.download_attachments()
        ds.download(destination='/tmp', wait_until_finished=False)
    
        ds_new = o.new_dataset(
    
            type='ANALYZED_DATA', 
            experiment=exp, 
    
            files = ['my_analyzed_data.dat'], 
    
            props={'name': 'we give this dataset a name', 'notes': 'and we might need some notes, too'})
        )
        ds_new.save()
    
        ds.props
        ds.p                              # same thing as .props
        ds.p.my_property = "some value"   # set the value of a property (value is checked)
        ds.p + TAB                        # in IPython or Jupyter: show list of available properties
        ds.p.my_property_ + TAB           # in IPython or Jupyter: show datatype or controlled vocabulary
    
        # complex query with chaining. props adds a "name" column. To filter for some property, the name of the property must be in UPPERCASE
        datasets = o.get_experiments(project='YEASTS').get_samples(type='FLY').get_datasets(type='ANALYZED_DATA', props=['MY_PROPERTY'],MY_PROPERTY='some analyzed data')
    
        # another example
        datasets = o.get_experiment('/MY_NEW_SPACE/VERMEUL_PROJECT/MY_EXPERIMENT4').get_samples(type='UNKNOWN').get_parents().get_datasets(type='RAW_DATA')
    
        # get a pandas dataFrame object
        datasets.df
    
        # use it in a for-loop:
        for dataset in datasets:
            print(ds.permID)
    
    
        # create semantic annotation for sample type (predicate and descriptor values omitted for brevity)
    
        sa = o.new_semantic_annotation(entityType = 'UNKNOWN')
        sa.save()
    
        # create semantic annotation for property type (predicate and descriptor values omitted for brevity)
    
        sa = o.new_semantic_annotation(propertyType = 'DESCRIPTION')
        sa.save()
    
        # create semantic annotation for sample property assignment (predicate and descriptor values omitted for brevity)
    
        sa = o.new_semantic_annotation(entityType = 'UNKNOWN', propertyType = 'DESCRIPTION')
        sa.save()
    
    
        # create semantic annotation with additional fields
    
        sa = o.new_semantic_annotation(entityType = 'UNKNOWN',
    
                              predicateOntologyId = 'po_id',
                              predicateOntologyVersion = 'po_version',
                              predicateAccessionId = 'pa_id',
                              descriptorOntologyId = 'do_id',
                              descriptorOntologyVersion = 'do_version',
                              descriptorAccessionId = 'da_id')
    
    
        # get all semantic annotations
        o.get_semantic_annotations()
    
        # get semantic annotation by perm id
        sa = o.get_semantic_annotation("20171015135637955-30")
    
        # update semantic annotation
        sa.predicateOntologyId = 'new_po_id'
        sa.descriptorOntologyId = 'new_do_id'
        sa.save()
    
        # delete semantic annotation
        sa.delete('reason')
    
    
    Tags
    ----
    
    ::
    
        new_tag = o.new_tag('my_tag', description='some descriptive text')
        new_tag.save()
        o.get_tags()
        tag = o.get_tag('/username/TAG_Name')
        tag.description = 'some new description'
        tag.save()
        tag.get_experiments()
        tag.get_samples()
        tag.delete()
    
    
    Vocabualry and VocabularyTerms
    ------------------------------
    
    
    An entity such as Sample (Object), Experiment (Collection), Material or
    DataSet can be of a specific type:
    
    -  Sample Type
    -  Experiment Type
    -  DataSet Type
    -  Material Type
    
    Every type defines which Properties may be defined. Properties are like
    Attributes, but they are Type specific. Properties can contain all sorts
    of information, such as free text, XML, Hyperlink, Boolean and also
    *Controlled Vocabulary*. Such a Controlled Vocabulary consists of many
    VocabularyTerms. They are used to check the terms entered in a Property
    field.
    
    So for example, you want to add a property called **Animal** to a Sample
    and you want to control which terms are entered in this Property field.
    For this you need to do a couple of steps:
    
    
    1. create a new vocabulary *AnimalVocabulary*
    2. add terms to that vocabulary: *Cat, Dog, Mouse*
    3. create a new PropertyType (e.g. *Animal*) of DataType
       *CONTROLLEDVOCABULARY* and assign the *AnimalVocabulary* to it
    4. create a new SampleType (e.g. *Pet*) and *assign* the created
       PropertyType to that Sample type.
    5. If you now create a new Sample of type *Pet* you will be able to add
       a property *Animal* to it which only accepts the terms *Cat, Dog* or
       *Mouse*.
    
    **create new Vocabulary with three VocabularyTerms**
    
    ::
    
        voc = o.new_vocabulary(
            code = 'BBB',
            description = 'description of vocabulary aaa',
            urlTemplate = 'https://ethz.ch',
            terms = [
                { "code": 'term_code1', "label": "term_label1", "description": "term_description1"},
                { "code": 'term_code2', "label": "term_label2", "description": "term_description2"},
                { "code": 'term_code3', "label": "term_label3", "description": "term_description3"}
            ]   
        )
        voc.save()
    
    **create additional VocabularyTerms**
    
    ::
    
        term = o.new_term(
            code='TERM_CODE_XXX', 
            vocabularyCode='BBB', 
            label='here comes a label',
            description='here is a meandingful description'
        )
        term.save()
    
    **fetching Vocabulary and VocabularyTerms**
    
    
    Requirements and organization
    =============================
    
    Dependencies and Requirements
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    
    -  pyBIS relies the openBIS API v3; openBIS version 16.05.2 or newer
    -  pyBIS uses Python 3.3 and pandas
    -  pyBIS needs the jupyter-api to be installed, in order to register new
       datasets
    
    Installation
    ~~~~~~~~~~~~
    
    -  locate the ``jupyter-api`` folder found in ``pybis/src/coreplugins``
    -  copy this folder to ``openbis/servers/core-plugins`` in your openBIS
       installation
    -  register the plugin by editing
       ``openbis/servers/core-plugins/core-plugins.properties`` :
    -  ``enabled-modules = jupyter-api`` (separate multiple plugins with
       comma)
    -  restart your DSS to activate the plugin
    
    Project Organization
    ~~~~~~~~~~~~~~~~~~~~
    
    This project is devided in several parts:
    
    -  src/python/\ **PyBis** Python module which holds all the method to
       interact with OpenBIS
    -  src/python/\ **OBis** a command-line tool to register large datasets
       in OpenBIS without actually copying the data. Uses git annex for
       version control and OpenBIS linkedDataSet objects to register the
       metadata.
    -  src/python/\ **JupyterBis** a JupyterHub authenticator module which
       uses pyBIS for authenticating against openBIS, validating and storing
       the session token
    -  src/core-plugins/\ **jupyter-api**, an ingestion plug-in for openBIS,
       allowing people to upload new datasets
    -  src/vagrant/\ **jupyter-bis/Vagrantfile** to set up JupyterHub on a
       virtual machine (CentOS 7), which uses the JupyterBis authenticator
       module
    -  src/vagrant/\ **obis/Vagrantfile** to set up a complete OpenBIS
       instance on a virtual machine (CentOS 7)