Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Welcome to pyBIS!
=================
pyBIS is a Python module for interacting with openBIS, designed to be
used in Jupyter. It offers a sort of IDE for openBIS, supporting TAB
completition and input checks, making the life of a researcher hopefully
easier.
SYNOPSIS
========
connecting to OpenBIS
---------------------
::
from pybis import Openbis
o = Openbis('https://example.com:8443', verify_certificates=False)
o.login('username', 'password', save_token=True) # saves the session token in ~/.pybis/example.com.token
o.token
o.is_session_active()
o.get_datastores()
o.logout()
Masterdata
----------
::
o.get_experiment_types()
o.get_sample_types()
o.get_sample_type('YEAST')
o.get_material_types()
o.get_dataset_types()
o.get_dataset_types()[0]
o.get_dataset_type('RAW_DATA')
o.get_terms()
o.get_terms('MATING_TYPE')
o.get_tags()
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
Users, Groups and RoleAssignments
---------------------------------
::
o.get_groups()
group = o.new_group(code='group_name', description='...')
group = o.get_group('group_name')
group.save()
group.assign_role(role='ADMIN', space='DEFAULT')
group.get_roles()
group.revoke_role(role='ADMIN', space='DEFAULT')
group.add_persons(['admin'])
group.get_persons()
group.del_persons(['admin'])
group.delete()
o.get_persons()
person = o.new_person(userId='username')
person.space = 'USER_SPACE'
person.save()
person.assign_role(role='ADMIN', space='MY_SPACE')
person.assign_role(role='OBSERVER')
person.get_roles()
person.revoke_role(role='ADMIN', space='MY_SPACE')
person.revoke_role(role='OBSERVER')
o.get_role_assignments()
o.get_role_assignments(space='MY_SPACE')
o.get_role_assignments(group='MY_GROUP')
ra = o.get_role_assignment(techId)
ra.delete()
space = o.new_space(code='space_name', description='')
space.save()
space.delete('reason for deletion')
o.get_spaces()
o.get_space('MY_SPACE')
Projects
--------
::
project = o.new_project(
space=space,
code='project_name',
description='some project description'
)
project = space.new_project( code='project_code', description='project description')
project.save()
o.get_projects()
o.get_projects(space='MY_SPACE')
space.get_projects()
project.get_experiments()
project.get_attachments()
p.add_attachment(fileName='testfile', description= 'another file', title= 'one more attachment')
project.download_attachments()
Samples
-------
Samples are nowadays called **Objects** in openBIS. pyBIS is not yet
thoroughly supporting this term in all methods where «sample» occurs.
::
sample = o.new_sample(
type='YEAST',
space='MY_SPACE',
parents=[parent_sample, '/MY_SPACE/YEA66'],
children=[child_sample]
)
sample = space.new_sample( type='YEAST' )
sample.save()
sample = o.get_sample('/MY_SPACE/MY_SAMPLE_CODE')
sample = o.get_sample('20170518112808649-52')
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
sample.space
sample.code
sample.permId
sample.identifier
sample.type # once the sample type is defined, you cannot modify it
sample.space
sample.space = 'MY_OTHER_SPACE'
sample.experiment # a sample can belong to one experiment only
sample.experiment = 'MY_SPACE/MY_PROJECT/MY_EXPERIMENT'
sample.tags
sample.tags = ['guten_tag', 'zahl_tag' ]
sample.get_parents()
sample.parents = ['/MY_SPACE/PARENT_SAMPLE_NAME']
sample.add_parents('/MY_SPACE/PARENT_SAMPLE_NAME')
sample.del_parents('/MY_SPACE/PARENT_SAMPLE_NAME')
sample.get_childeren()
sample.children = ['/MY_SPACE/CHILD_SAMPLE_NAME']
sample.add_children('/MY_SPACE/CHILD_SAMPLE_NAME')
sample.del_children('/MY_SPACE/CHILD_SAMPLE_NAME')
sample.get_childeren()
sample.props
sample.p # same thing as .props
sample.p.my_property = "some value" # set the value of a property (value is checked)
sample.p + TAB # in IPython or Jupyter: show list of available properties
sample.p.my_property_ + TAB # in IPython or Jupyter: show datatype or controlled vocabulary
sample.get_attachments()
sample.download_attachments()
sample.add_attachment('testfile.xls')
samples = o.get_samples(
space='MY_SPACE',
type='YEAST',
tags=['*'], # tags must be present
NAME = 'some name', # properties are always uppercase to distinguish them from attributes
**{ "SOME.WEIRD:PROPERTY": "value"} # in case your property name contains a dot or a colon which cannot be passed as an argument name
props=['NAME', 'MATING_TYPE','SHOW_IN_PROJECT_OVERVIEW'] # show these properties in the results
)
samples.df # returns a pandas dataframe object
samples.get_datasets(type='ANALYZED_DATA')
Note: Project samples are not implemented yet.
Experiments
-----------
::
o.new_experiment
type='DEFAULT_EXPERIMENT',
space='MY_SPACE',
project='YEASTS'
)
o.get_experiments(
project='YEASTS',
space='MY_SPACE',
type='DEFAULT_EXPERIMENT',
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
finished_flag=False,
props=['name', 'finished_flag']
)
exp = o.get_experiment('/MY_SPACE/MY_PROJECT/MY_EXPERIMENT')
exp.props
exp.p # same thing as .props
exp.p.finished_flag=True
exp.p.my_property = "some value" # set the value of a property (value is checked)
exp.p + TAB # in IPython or Jupyter: show list of available properties
exp.p.my_property_ + TAB # in IPython or Jupyter: show datatype or controlled vocabulary
exp.attrs
exp.a # same as exp.attrs
exp.attrs.tags = ['some', 'extra', 'tags']
exp.tags = ['some', 'extra', 'tags'] # same thing
exp.save()
Datasets
--------
::
sample.get_datasets()
ds = o.get_dataset('20160719143426517-259')
ds.get_parents()
ds.get_children()
sample = ds.sample
experiment = ds.experiment
ds.physicalData
ds.status # AVAILABLE LOCKED ARCHIVED UNARCHIVE_PENDING ARCHIVE_PENDING BACKUP_PENDING
ds.archive()
ds.unarchive()
ds.get_files(start_folder="/")
ds.file_list
ds.add_attachment()
ds.get_attachments()
ds.download_attachments()
ds.download(destination='/tmp', wait_until_finished=False)
ds_new = o.new_dataset(
type='ANALYZED_DATA',
experiment=exp,
files = ['my_analyzed_data.dat'],
props={'name': 'we give this dataset a name', 'notes': 'and we might need some notes, too'})
)
ds_new.save()
ds.props
ds.p # same thing as .props
ds.p.my_property = "some value" # set the value of a property (value is checked)
ds.p + TAB # in IPython or Jupyter: show list of available properties
ds.p.my_property_ + TAB # in IPython or Jupyter: show datatype or controlled vocabulary
# complex query with chaining. props adds a "name" column. To filter for some property, the name of the property must be in UPPERCASE
datasets = o.get_experiments(project='YEASTS').get_samples(type='FLY').get_datasets(type='ANALYZED_DATA', props=['MY_PROPERTY'],MY_PROPERTY='some analyzed data')
# another example
datasets = o.get_experiment('/MY_NEW_SPACE/VERMEUL_PROJECT/MY_EXPERIMENT4').get_samples(type='UNKNOWN').get_parents().get_datasets(type='RAW_DATA')
# get a pandas dataFrame object
datasets.df
# use it in a for-loop:
for dataset in datasets:
print(ds.permID)
piotr.kupczyk@id.ethz.ch
committed
Semantic Annotations
--------------------
::
piotr.kupczyk@id.ethz.ch
committed
# create semantic annotation for sample type (predicate and descriptor values omitted for brevity)
piotr.kupczyk@id.ethz.ch
committed
sa = o.new_semantic_annotation(entityType = 'UNKNOWN')
sa.save()
piotr.kupczyk@id.ethz.ch
committed
piotr.kupczyk@id.ethz.ch
committed
# create semantic annotation for property type (predicate and descriptor values omitted for brevity)
piotr.kupczyk@id.ethz.ch
committed
sa = o.new_semantic_annotation(propertyType = 'DESCRIPTION')
sa.save()
piotr.kupczyk@id.ethz.ch
committed
piotr.kupczyk@id.ethz.ch
committed
# create semantic annotation for sample property assignment (predicate and descriptor values omitted for brevity)
piotr.kupczyk@id.ethz.ch
committed
sa = o.new_semantic_annotation(entityType = 'UNKNOWN', propertyType = 'DESCRIPTION')
sa.save()
piotr.kupczyk@id.ethz.ch
committed
# create semantic annotation with additional fields
piotr.kupczyk@id.ethz.ch
committed
sa = o.new_semantic_annotation(entityType = 'UNKNOWN',
piotr.kupczyk@id.ethz.ch
committed
predicateOntologyId = 'po_id',
predicateOntologyVersion = 'po_version',
predicateAccessionId = 'pa_id',
descriptorOntologyId = 'do_id',
descriptorOntologyVersion = 'do_version',
descriptorAccessionId = 'da_id')
piotr.kupczyk@id.ethz.ch
committed
sa.save()
piotr.kupczyk@id.ethz.ch
committed
# get all semantic annotations
o.get_semantic_annotations()
# get semantic annotation by perm id
sa = o.get_semantic_annotation("20171015135637955-30")
# update semantic annotation
sa.predicateOntologyId = 'new_po_id'
sa.descriptorOntologyId = 'new_do_id'
sa.save()
# delete semantic annotation
sa.delete('reason')
Tags
----
::
new_tag = o.new_tag('my_tag', description='some descriptive text')
new_tag.save()
o.get_tags()
tag = o.get_tag('/username/TAG_Name')
tag.description = 'some new description'
tag.save()
tag.get_experiments()
tag.get_samples()
tag.delete()
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
Requirements and organization
=============================
Dependencies and Requirements
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- pyBIS relies the openBIS API v3; openBIS version 16.05.2 or newer
- pyBIS uses Python 3.3 and pandas
- pyBIS needs the jupyter-api to be installed, in order to register new
datasets
Installation
~~~~~~~~~~~~
- locate the ``jupyter-api`` folder found in ``pybis/src/coreplugins``
- copy this folder to ``openbis/servers/core-plugins`` in your openBIS
installation
- register the plugin by editing
``openbis/servers/core-plugins/core-plugins.properties`` :
- ``enabled-modules = jupyter-api`` (separate multiple plugins with
comma)
- restart your DSS to activate the plugin
Project Organization
~~~~~~~~~~~~~~~~~~~~
This project is devided in several parts:
- src/python/\ **PyBis** Python module which holds all the method to
interact with OpenBIS
- src/python/\ **OBis** a command-line tool to register large datasets
in OpenBIS without actually copying the data. Uses git annex for
version control and OpenBIS linkedDataSet objects to register the
metadata.
- src/python/\ **JupyterBis** a JupyterHub authenticator module which
uses pyBIS for authenticating against openBIS, validating and storing
the session token
- src/core-plugins/\ **jupyter-api**, an ingestion plug-in for openBIS,
allowing people to upload new datasets
- src/vagrant/\ **jupyter-bis/Vagrantfile** to set up JupyterHub on a
virtual machine (CentOS 7), which uses the JupyterBis authenticator
module
- src/vagrant/\ **obis/Vagrantfile** to set up a complete OpenBIS
instance on a virtual machine (CentOS 7)