Newer
Older
Welcome to pyBIS!
=================
pyBIS is a Python module for interacting with openBIS, designed to be
used in Jupyter. It offers some sort of IDE for openBIS, supporting TAB
completition and input checks, making the life of a researcher hopefully
easier.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
Dependencies and Requirements
-----------------------------
- pyBIS relies the openBIS API v3
- openBIS version 16.05.2 or newer is required
- 18.06.2 or later is recommended
- pyBIS uses Python 3.3 and pandas
Installation
------------
::
pip install pybis
That command will download install pybis and all its dependencies.
If you haven't done yet, install Jupyter Notebook:
::
pip install jupyter
Usage
=====
Tab completition and other hints
--------------------------------
Used in a Jupyter Notebook environment, pybis helps you to enter the
commands. After every dot ``.`` you might hit the ``TAB`` key in order
to look at the available commands.
If you are unsure what parameters to add to a , add a question mark
right after the method and hit ``SHIFT+ENTER``. Jupyter will then look
up the signature of the method and show some helpful docstring.
When working with properties of entities, they might use a **controlled
vocabulary** or are of a specific **property type**. Add an underscore
``_`` character right after the property and hit ``SHIFT+ENTER`` to show
the valid values. When a property only acceps a controlled vocabulary,
you will be shown the valid terms in a nicely formatted table.
connect to from OpenBIS
-----------------------
::
from pybis import Openbis
o = Openbis('https://example.com', verify_certificates=False)
import getpass
password = getpass.getpass()
o.login('username', password, save_token=True) # save the session token in ~/.pybis/example.com.token
Check whether the session token is still valid and log out:
o.token
o.is_session_active()
o.logout()
browsing masterdata
-------------------
o.get_experiment_types()
et = o.get_experiment_type('TEST')
et.get_propertyAssignments()
o.get_sample_types()
st = o.get_sample_type('YEAST')
st.get_propertyAssignments()
o.get_material_types()
mt = o.get_material_type('GENE')
mt.get_propertyAssignments()
o.get_dataset_types()
dst = o.get_dataset_types()[0]
dst = o.get_dataset_type('RAW_DATA')
dst.get_propertyAssignments()
dst.get_propertyAssignments(with_vocabulary=True)
o.get_vocabularies()
o.get_vocabulary('BACTERIAL_ANTIBIOTIC_RESISTANCE')
o.get_terms(vocabulary='STORAGE')
o.get_tags()
Users, Groups and RoleAssignments
---------------------------------
::
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
o.get_groups()
group = o.new_group(code='group_name', description='...')
group = o.get_group('group_name')
group.save()
group.assign_role(role='ADMIN', space='DEFAULT')
group.get_roles()
group.revoke_role(role='ADMIN', space='DEFAULT')
group.add_persons(['admin'])
group.get_persons()
group.del_persons(['admin'])
group.delete()
o.get_persons()
person = o.new_person(userId='username')
person.space = 'USER_SPACE'
person.save()
person.assign_role(role='ADMIN', space='MY_SPACE')
person.assign_role(role='OBSERVER')
person.get_roles()
person.revoke_role(role='ADMIN', space='MY_SPACE')
person.revoke_role(role='OBSERVER')
o.get_role_assignments()
o.get_role_assignments(space='MY_SPACE')
o.get_role_assignments(group='MY_GROUP')
ra = o.get_role_assignment(techId)
ra.delete()
Spaces
------
space = o.new_space(code='space_name', description='')
space.save()
space.delete('reason for deletion')
o.get_spaces(
start_with = 1, # start_with and count
count = 7, # enable paging
)
Swen Vermeul
committed
space = o.get_space('MY_SPACE')
space.code
space.description
space.registrator
space.registrationDate
space.modifier
space.modificationDate
space.attrs.all() # returns a dict containing all attributes
Projects
--------
::
project = o.new_project(
space=space,
code='project_name',
description='some project description'
)
project = space.new_project( code='project_code', description='project description')
project.save()
o.get_projects(
space = 'MY_SPACE', # show only projects in MY_SPACE
start_with = 1, # start_with and count
count = 7, # enable paging
)
o.get_projects(space='MY_SPACE')
space.get_projects()
project.get_experiments()
project.get_attachments()
p.add_attachment(fileName='testfile', description= 'another file', title= 'one more attachment')
project.download_attachments()
Swen Vermeul
committed
project.code
project.description
project.registrator
project.registrationDate
project.modifier
project.modificationDate
project.attrs.all() # returns a dict containing all attributes
Samples are nowadays called **Objects** in openBIS. pyBIS is not yet
thoroughly supporting this term in all methods where «sample» occurs.
NOTE: In openBIS, ``samples`` entities have recently been renamed to
``objects``. All methods have synonyms using the term ``object``, e.g.
``get_object``, ``new_object``, ``get_object_types``.
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
sample = o.new_sample(
type = 'YEAST',
space = 'MY_SPACE',
experiment = '/MY_SPACE/MY_PROJECT/EXPERIMENT_1',
parents = [parent_sample, '/MY_SPACE/YEA66'],
children = [child_sample],
props = {"name": "some name", "description": "something interesting"}
)
sample = space.new_sample( type='YEAST' )
sample.save()
sample = o.get_sample('/MY_SPACE/MY_SAMPLE_CODE')
sample = o.get_sample('20170518112808649-52')
sample.space
sample.code
sample.permId
sample.identifier
sample.type # once the sample type is defined, you cannot modify it
sample.space
sample.space = 'MY_OTHER_SPACE'
sample.experiment # a sample can belong to one experiment only
sample.experiment = '/MY_SPACE/MY_PROJECT/MY_EXPERIMENT'
sample.project
sample.project = '/MY_SPACE/MY_PROJECT' # only works if project samples are
enabled
sample.tags
sample.tags = ['guten_tag', 'zahl_tag' ]
Swen Vermeul
committed
sample.attrs.all() # returns a dict of all attributes
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
sample.get_parents()
sample.set_parents(['/MY_SPACE/PARENT_SAMPLE_NAME')
sample.add_parents('/MY_SPACE/PARENT_SAMPLE_NAME')
sample.del_parents('/MY_SPACE/PARENT_SAMPLE_NAME')
sample.get_children()
sample.set_children('/MY_SPACE/CHILD_SAMPLE_NAME')
sample.add_children('/MY_SPACE/CHILD_SAMPLE_NAME')
sample.del_children('/MY_SPACE/CHILD_SAMPLE_NAME')
# A Sample may belong to another Sample, which acts as a container.
# As opposed to DataSets, a Sample may only belong to one container.
sample.container # returns a sample object
sample.container = '/MY_SPACE/CONTAINER_SAMPLE_NAME' # watch out, this will change the identifier of the sample to:
# /MY_SPACE/CONTAINER_SAMPLE_NAME:SAMPLE_NAME
sample.container = '' # this will remove the container.
# A Sample may contain other Samples, in order to act like a container (see above)
# The Sample-objects inside that Sample are called «components» or «contained Samples»
# You may also use the xxx_contained() functions, which are just aliases.
sample.get_components()
sample.set_components('/MY_SPACE/COMPONENT_NAME')
sample.add_components('/MY_SPACE/COMPONENT_NAME')
sample.del_components('/MY_SPACE/COMPONENT_NAME')
sample.get_tags()
sample.set_tags('tag1')
sample.add_tags(['tag2','tag3'])
sample.del_tags('tag1')
sample.set_props({ ... })
sample.p # same thing as .props
sample.p.my_property = "some value" # set the value of a property (value is checked)
sample.p + TAB # in IPython or Jupyter: show list of available properties
sample.p.my_property_ + TAB # in IPython or Jupyter: show datatype or controlled vocabulary
sample.p['my-weird.property-name'] # accessing properties containing a dash or a dot
Swen Vermeul
committed
sample.attrs.all() # returns all attributes as a dict
sample.props.all() # returns all properties as a dict
sample.get_attachments()
sample.download_attachments()
sample.add_attachment('testfile.xls')
samples = o.get_samples(
space ='MY_SPACE',
type ='YEAST',
tags =['*'], # only sample with existing tags
start_with = 1, # start_with and count
count = 7, # enable paging
NAME = 'some name', # properties are always uppercase
# to distinguish them from attributes
**{ "SOME.WEIRD:PROP": "value"} # property name contains a dot or a
# colon: cannot be passed as an argument
props=['NAME', 'MATING_TYPE'] # show these properties in the result
)
samples.df # returns a pandas DataFrame object
samples.get_datasets(type='ANALYZED_DATA')
Experiments
-----------
NOTE: In openBIS, ``experiment`` entities have recently been renamed to
``collection``. All methods have synonyms using the term ``collection``,
e.g. ``get_collections``, ``new_collection``, ``get_collection_types``.
o.new_experiment
type='DEFAULT_EXPERIMENT',
space='MY_SPACE',
project='YEASTS'
)
o.get_experiments(
project='YEASTS',
space='MY_SPACE',
type='DEFAULT_EXPERIMENT',
tags='*',
finished_flag=False,
props=['name', 'finished_flag']
)
project.get_experiments()
exp = o.get_experiment('/MY_SPACE/MY_PROJECT/MY_EXPERIMENT')
exp.set_props({ key: value})
exp.props
exp.p # same thing as .props
exp.p.finished_flag=True
exp.p.my_property = "some value" # set the value of a property (value is checked)
exp.p + TAB # in IPython or Jupyter: show list of available properties
exp.p.my_property_ + TAB # in IPython or Jupyter: show datatype or controlled vocabulary
exp.p['my-weird.property-name'] # accessing properties containing a dash or a dot
Swen Vermeul
committed
exp.attrs.all() # returns all attributes as a dict
exp.props.all() # returns all properties as a dict
exp.attrs.tags = ['some', 'tags']
exp.tags = ['some', 'tags'] # same thing
exp.save()
Swen Vermeul
committed
exp.code
exp.description
exp.registrator
exp.registrationDate
exp.modifier
exp.modificationDate
Datasets
--------
::
sample.get_datasets()
ds = o.get_dataset('20160719143426517-259')
ds.get_parents()
ds.get_children()
ds.sample
ds.experiment
ds.physicalData
ds.status # AVAILABLE LOCKED ARCHIVED
# UNARCHIVE_PENDING ARCHIVE_PENDING BACKUP_PENDING
ds.archive()
ds.unarchive()
Swen Vermeul
committed
ds.attrs.all() # returns all attributes as a dict
ds.props.all() # returns all properties as a dict
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
ds.get_files(start_folder="/")
ds.file_list
ds.add_attachment()
ds.get_attachments()
ds.download_attachments()
ds.download(destination='/tmp', wait_until_finished=False)
ds_new = o.new_dataset(
type = 'ANALYZED_DATA',
experiment = '/SPACE/PROJECT/EXP1',
sample = '/SPACE/SAMP1',
files = ['my_analyzed_data.dat'],
props = {'name': 'some good name', 'description': '...' }
)
# DataSet CONTAINER (contains other DataSets, but no files)
ds_new = o.new_dataset(
type = 'ANALYZED_DATA',
experiment = '/SPACE/PROJECT/EXP1',
sample = '/SPACE/SAMP1',
kind = 'CONTAINER',
props = {'name': 'some good name', 'description': '...' }
)
ds_new.save()
# get, set, add and remove parent datasets
dataset.get_parents()
dataset.set_parents(['20170115220259155-412'])
dataset.add_parents(['20170115220259155-412'])
dataset.del_parents(['20170115220259155-412'])
# get, set, add and remove child datasets
dataset.get_children()
dataset.set_children(['20170115220259155-412'])
dataset.add_children(['20170115220259155-412'])
dataset.del_children(['20170115220259155-412'])
# A DataSet may belong to other DataSets, which must be of kind=CONTAINER
# As opposed to Samples, DataSets may belong (contained) to more than one DataSet-container
dataset.get_containers()
dataset.set_containers(['20170115220259155-412'])
dataset.add_containers(['20170115220259155-412'])
dataset.del_containers(['20170115220259155-412'])
# A DataSet of kind=CONTAINER may contain other DataSets, to act like a folder (see above)
# The DataSet-objects inside that DataSet are called components or contained DataSets
# You may also use the xxx_contained() functions, which are just aliases.
dataset.get_components()
dataset.set_components(['20170115220259155-412'])
dataset.add_components(['20170115220259155-412'])
dataset.del_components(['20170115220259155-412'])
ds.set_props({ key: value})
ds.props
ds.p # same thing as .props
ds.p.my_property = "some value" # set the value of a property
ds.p + TAB # show list of available properties
ds.p.my_property_ + TAB # show datatype or controlled vocabulary
ds.p['my-weird.property-name'] # accessing properties containing a dash or a dot
Swen Vermeul
committed
ds.attrs.all() # returns all attributes as a dict
ds.props.all() # returns all properties as a dict
# complex query with chaining.
# properties must be in UPPERCASE
datasets = o.get_experiments(project='YEASTS').get_samples(type='FLY').get_datasets(type='ANALYZED_DATA', props=['MY_PROPERTY'],MY_PROPERTY='some analyzed data')
# another example
datasets = o.get_experiment('/MY_NEW_SPACE/VERMEUL_PROJECT/MY_EXPERIMENT4').get_samples(type='UNKNOWN').get_parents().get_datasets(type='RAW_DATA')
datasets.df # get a pandas dataFrame object
# use it in a for-loop:
for dataset in datasets:
print(dataset.permID)
dataset.delete('give me a reason')
piotr.kupczyk@id.ethz.ch
committed
Semantic Annotations
--------------------
::
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
# create semantic annotation for sample type 'UNKNOWN'
sa = o.new_semantic_annotation(
entityType = 'UNKNOWN',
predicateOntologyId = 'po_id',
predicateOntologyVersion = 'po_version',
predicateAccessionId = 'pa_id',
descriptorOntologyId = 'do_id',
descriptorOntologyVersion = 'do_version',
descriptorAccessionId = 'da_id'
)
sa.save()
# create semantic annotation for property type
# (predicate and descriptor values omitted for brevity)
sa = o.new_semantic_annotation(propertyType = 'DESCRIPTION', ...)
sa.save()
# create semantic annotation for sample property assignment (predicate and descriptor values omitted for brevity)
sa = o.new_semantic_annotation(entityType = 'UNKNOWN', propertyType = 'DESCRIPTION', ...)
sa.save()
# create a semantic annotation directly from a sample type
# will also create sample property assignment annotations when propertyType is given
st = o.get_sample_type("ORDER")
st.new_semantic_annotation(...)
# get all semantic annotations
o.get_semantic_annotations()
# get semantic annotation by perm id
sa = o.get_semantic_annotation("20171015135637955-30")
# update semantic annotation
sa.predicateOntologyId = 'new_po_id'
sa.descriptorOntologyId = 'new_do_id'
sa.save()
# delete semantic annotation
sa.delete('reason')
piotr.kupczyk@id.ethz.ch
committed
new_tag = o.new_tag(
code = 'my_tag',
description = 'some descriptive text'
)
new_tag.description = 'some new description'
new_tag.save()
o.get_tags()
o.get_tag('/username/TAG_Name')
o.get_tag('TAG_Name')
tag.get_experiments()
tag.get_samples()
tag.delete()
Vocabulary and VocabularyTerms
------------------------------
An entity such as Sample (Object), Experiment (Collection), Material or
DataSet can be of a specific *entity type*:
- Sample Type
- Experiment Type
- DataSet Type
- Material Type
Every type defines which **Properties** may be defined. Properties act
like **Attributes**, but they are type-specific. Properties can contain
all sorts of information, such as free text, XML, Hyperlink, Boolean and
also **Controlled Vocabulary**. Such a Controlled Vocabulary consists of
many **VocabularyTerms**. These terms are used to only allow certain
values entered in a Property field.
So for example, you want to add a property called **Animal** to a Sample
and you want to control which terms are entered in this Property field.
For this you need to do a couple of steps:
1. create a new vocabulary *AnimalVocabulary*
2. add terms to that vocabulary: *Cat, Dog, Mouse*
3. create a new PropertyType (e.g. *Animal*) of DataType
*CONTROLLEDVOCABULARY* and assign the *AnimalVocabulary* to it
4. create a new SampleType (e.g. *Pet*) and *assign* the created
PropertyType to that Sample type.
5. If you now create a new Sample of type *Pet* you will be able to add
a property *Animal* to it which only accepts the terms *Cat, Dog* or
*Mouse*.
**create new Vocabulary with three VocabularyTerms**
::
voc = o.new_vocabulary(
code = 'BBB',
description = 'description of vocabulary aaa',
urlTemplate = 'https://ethz.ch',
terms = [
{ "code": 'term_code1', "label": "term_label1", "description": "term_description1"},
{ "code": 'term_code2', "label": "term_label2", "description": "term_description2"},
{ "code": 'term_code3', "label": "term_label3", "description": "term_description3"}
]
)
voc.save()
**create additional VocabularyTerms**
::
term = o.new_term(
code='TERM_CODE_XXX',
vocabularyCode='BBB',
label='here comes a label',
description='here might appear a meaningful description'
)
term.save()