Skip to content
Snippets Groups Projects
Commit 605487a7 authored by schmittu's avatar schmittu :beer:
Browse files

updated course layout after meeting

parent 78a5c606
No related branches found
No related tags found
No related merge requests found
...@@ -93,30 +93,6 @@ TBD: prepare coding session ...@@ -93,30 +93,6 @@ TBD: prepare coding session
- learn regressor for movie scores. - learn regressor for movie scores.
## Part 4: accuracy, F1, ROC, ...
Intention: accuracy is usefull but has pitfalls
- how to measure accuracy ?
- (TDB: skip ?) regression accuracy
-
- classifier accuracy:
- confusion matrix
- accurarcy
- pitfalls for unbalanced data sets~
e.g. diagnose HIV
- precision / recall
- ROC ?
### Coding session
- evaluate accuracy of linear beer classifier from latest section
- determine precision / recall
- fool them: give them other dataset where classifier fails.
## Part 3: underfitting/overfitting ## Part 3: underfitting/overfitting
needs: simple accuracy measure. needs: simple accuracy measure.
...@@ -148,20 +124,58 @@ classifiers / regressors have parameters / degrees of freedom. ...@@ -148,20 +124,58 @@ classifiers / regressors have parameters / degrees of freedom.
- ? run crossvalidation on movie regression problem - ? run crossvalidation on movie regression problem
## Part 6: pipelines / parameter tuning with scikit-learn ## Part 4: accuracy, F1, ROC, ...
Intention: accuracy is usefull but has pitfalls
- how to measure accuracy ?
- (TDB: skip ?) regression accuracy
-
- classifier accuracy:
- confusion matrix
- accurarcy
- pitfalls for unbalanced data sets~
e.g. diagnose HIV
- precision / recall
- ROC ?
- exercise: do cross val with other metrics
### Coding session
- evaluate accuracy of linear beer classifier from latest section
- determine precision / recall
- fool them: give them other dataset where classifier fails.
# Day 2
## Part 5: pipelines / parameter tuning with scikit-learn
- Scicit learn api: recall what we have seen up to now. - Scicit learn api: recall what we have seen up to now.
- pipelines, preprocessing (scaler, PCA) - pipelines, preprocessing (scaler, PCA)
- cross validatioon - cross validatioon
- parameter tuning: grid search / random search. - parameter tuning: grid search / random search.
### Coding session
- build SVM and Random forest crossval pipelines for previous examples
- use PCA in pipeline for (+) to improve performance
- find optimal SVM parameters
- find optimal pca components number
### Coding par ### Coding par
Planning: stop here, make time estimates. Planning: stop here, make time estimates.
# DAY 2
### Part 6:
## Part 6: classifiers overview
Intention: quick walk throught throug reliable classifiers, give some background Intention: quick walk throught throug reliable classifiers, give some background
idea if suitable, let them play withs some incl. modification of parameters. idea if suitable, let them play withs some incl. modification of parameters.
...@@ -175,28 +189,27 @@ diagram. ...@@ -175,28 +189,27 @@ diagram.
- Random forests - Random forests
- Gradient Tree Boosting - Gradient Tree Boosting
### Part 7: Start with neural networks. .5 day show decision surfaces of these classifiers on 2d examples.
### Coding session
- apply SVM, Random Forests, Gradient boosting to previous examples
- apply clustering to previous examples
- MNIST example
## Part 7: Start with neural networks. .5 day
### Coding session
- apply SVM, Random Forests, Gradient boosting to previous examples
- apply clustering to previous examples
- MNIST example
### Coding session
- build SVM and Random forest crossval pipelines for previous examples
- use PCA in pipeline for (+) to improve performance
- find optimal SVM parameters
- find optimal pca components number
## Part 7: Best practices ## Part 8: Best practices
- visualize features: pairwise scatter, tSNE - visualize features: pairwise scatter, tSNE
- PCA to undertand data - PCA to undertand data
...@@ -204,7 +217,7 @@ diagram. ...@@ -204,7 +217,7 @@ diagram.
- start with baseline classifier / regressor - start with baseline classifier / regressor
- augment data to introduce variance - augment data to introduce variance
## Part 8: neural networks ## Part 9: neural networks
- overview, history - overview, history
- perceptron - perceptron
...@@ -216,3 +229,8 @@ diagram. ...@@ -216,3 +229,8 @@ diagram.
### Coding Session ### Coding Session
- keras reuse network and play with it. - keras reuse network and play with it.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment