Skip to content
Snippets Groups Projects
Commit 605487a7 authored by schmittu's avatar schmittu :beer:
Browse files

updated course layout after meeting

parent 78a5c606
No related branches found
No related tags found
No related merge requests found
......@@ -93,30 +93,6 @@ TBD: prepare coding session
- learn regressor for movie scores.
## Part 4: accuracy, F1, ROC, ...
Intention: accuracy is usefull but has pitfalls
- how to measure accuracy ?
- (TDB: skip ?) regression accuracy
-
- classifier accuracy:
- confusion matrix
- accurarcy
- pitfalls for unbalanced data sets~
e.g. diagnose HIV
- precision / recall
- ROC ?
### Coding session
- evaluate accuracy of linear beer classifier from latest section
- determine precision / recall
- fool them: give them other dataset where classifier fails.
## Part 3: underfitting/overfitting
needs: simple accuracy measure.
......@@ -148,20 +124,58 @@ classifiers / regressors have parameters / degrees of freedom.
- ? run crossvalidation on movie regression problem
## Part 6: pipelines / parameter tuning with scikit-learn
## Part 4: accuracy, F1, ROC, ...
Intention: accuracy is usefull but has pitfalls
- how to measure accuracy ?
- (TDB: skip ?) regression accuracy
-
- classifier accuracy:
- confusion matrix
- accurarcy
- pitfalls for unbalanced data sets~
e.g. diagnose HIV
- precision / recall
- ROC ?
- exercise: do cross val with other metrics
### Coding session
- evaluate accuracy of linear beer classifier from latest section
- determine precision / recall
- fool them: give them other dataset where classifier fails.
# Day 2
## Part 5: pipelines / parameter tuning with scikit-learn
- Scicit learn api: recall what we have seen up to now.
- pipelines, preprocessing (scaler, PCA)
- cross validatioon
- parameter tuning: grid search / random search.
### Coding session
- build SVM and Random forest crossval pipelines for previous examples
- use PCA in pipeline for (+) to improve performance
- find optimal SVM parameters
- find optimal pca components number
### Coding par
Planning: stop here, make time estimates.
# DAY 2
### Part 6:
## Part 6: classifiers overview
Intention: quick walk throught throug reliable classifiers, give some background
idea if suitable, let them play withs some incl. modification of parameters.
......@@ -175,28 +189,27 @@ diagram.
- Random forests
- Gradient Tree Boosting
### Part 7: Start with neural networks. .5 day
show decision surfaces of these classifiers on 2d examples.
### Coding session
- apply SVM, Random Forests, Gradient boosting to previous examples
- apply clustering to previous examples
- MNIST example
## Part 7: Start with neural networks. .5 day
### Coding session
- apply SVM, Random Forests, Gradient boosting to previous examples
- apply clustering to previous examples
- MNIST example
### Coding session
- build SVM and Random forest crossval pipelines for previous examples
- use PCA in pipeline for (+) to improve performance
- find optimal SVM parameters
- find optimal pca components number
## Part 7: Best practices
## Part 8: Best practices
- visualize features: pairwise scatter, tSNE
- PCA to undertand data
......@@ -204,7 +217,7 @@ diagram.
- start with baseline classifier / regressor
- augment data to introduce variance
## Part 8: neural networks
## Part 9: neural networks
- overview, history
- perceptron
......@@ -216,3 +229,8 @@ diagram.
### Coding Session
- keras reuse network and play with it.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment