Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
machinelearning-introduction-workshop
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
sispub
courses
machinelearning-introduction-workshop
Commits
605487a7
Commit
605487a7
authored
6 years ago
by
schmittu
Browse files
Options
Downloads
Patches
Plain Diff
updated course layout after meeting
parent
78a5c606
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
course_layout.md
+57
-39
57 additions, 39 deletions
course_layout.md
with
57 additions
and
39 deletions
course_layout.md
+
57
−
39
View file @
605487a7
...
...
@@ -93,30 +93,6 @@ TBD: prepare coding session
-
learn regressor for movie scores.
## Part 4: accuracy, F1, ROC, ...
Intention: accuracy is usefull but has pitfalls
-
how to measure accuracy ?
-
(TDB: skip ?) regression accuracy
-
-
classifier accuracy:
-
confusion matrix
-
accurarcy
-
pitfalls for unbalanced data sets~
e.g. diagnose HIV
-
precision / recall
-
ROC ?
### Coding session
-
evaluate accuracy of linear beer classifier from latest section
-
determine precision / recall
-
fool them: give them other dataset where classifier fails.
## Part 3: underfitting/overfitting
needs: simple accuracy measure.
...
...
@@ -148,20 +124,58 @@ classifiers / regressors have parameters / degrees of freedom.
-
? run crossvalidation on movie regression problem
## Part 6: pipelines / parameter tuning with scikit-learn
## Part 4: accuracy, F1, ROC, ...
Intention: accuracy is usefull but has pitfalls
-
how to measure accuracy ?
-
(TDB: skip ?) regression accuracy
-
-
classifier accuracy:
-
confusion matrix
-
accurarcy
-
pitfalls for unbalanced data sets~
e.g. diagnose HIV
-
precision / recall
-
ROC ?
-
exercise: do cross val with other metrics
### Coding session
-
evaluate accuracy of linear beer classifier from latest section
-
determine precision / recall
-
fool them: give them other dataset where classifier fails.
# Day 2
## Part 5: pipelines / parameter tuning with scikit-learn
-
Scicit learn api: recall what we have seen up to now.
-
pipelines, preprocessing (scaler, PCA)
-
cross validatioon
-
parameter tuning: grid search / random search.
### Coding session
-
build SVM and Random forest crossval pipelines for previous examples
-
use PCA in pipeline for (+) to improve performance
-
find optimal SVM parameters
-
find optimal pca components number
### Coding par
Planning: stop here, make time estimates.
# DAY 2
### Part 6:
## Part 6: classifiers overview
Intention: quick walk throught throug reliable classifiers, give some background
idea if suitable, let them play withs some incl. modification of parameters.
...
...
@@ -175,28 +189,27 @@ diagram.
-
Random forests
-
Gradient Tree Boosting
### Part 7: Start with neural networks. .5 day
show decision surfaces of these classifiers on 2d examples.
### Coding session
-
apply SVM, Random Forests, Gradient boosting to previous examples
-
apply clustering to previous examples
-
MNIST example
## Part 7: Start with neural networks. .5 day
### Coding session
-
apply SVM, Random Forests, Gradient boosting to previous examples
-
apply clustering to previous examples
-
MNIST example
### Coding session
-
build SVM and Random forest crossval pipelines for previous examples
-
use PCA in pipeline for (+) to improve performance
-
find optimal SVM parameters
-
find optimal pca components number
## Part
7
: Best practices
## Part
8
: Best practices
-
visualize features: pairwise scatter, tSNE
-
PCA to undertand data
...
...
@@ -204,7 +217,7 @@ diagram.
-
start with baseline classifier / regressor
-
augment data to introduce variance
## Part
8
: neural networks
## Part
9
: neural networks
-
overview, history
-
perceptron
...
...
@@ -216,3 +229,8 @@ diagram.
### Coding Session
-
keras reuse network and play with it.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment