Newer
Older
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style>\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Source+Code+Pro');\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Kameron');\n",
" @import url('http://fonts.googleapis.com/css?family=Crimson+Text');\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Lato');\n",
" @import url('http://fonts.googleapis.com/css?family=Source+Sans+Pro');\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Lora'); \n",
"\n",
" \n",
" body {\n",
" font-family: 'Lora', Consolas, sans-serif;\n",
" \n",
" -webkit-print-color-adjust: exact important !;\n",
" \n",
" \n",
" \n",
" }\n",
" \n",
" .alert-block {\n",
" width: 95%;\n",
" margin: auto;\n",
" }\n",
" \n",
" .rendered_html code\n",
" {\n",
" color: black;\n",
" background: #eaf0ff;\n",
" background: #f5f5f5; \n",
" padding: 1pt;\n",
" font-family: 'Source Code Pro', Consolas, monocco, monospace;\n",
" }\n",
" \n",
" p {\n",
" line-height: 140%;\n",
" }\n",
" \n",
" strong code {\n",
" background: red;\n",
" }\n",
" \n",
" .rendered_html strong code\n",
" {\n",
" background: #f5f5f5;\n",
" }\n",
" \n",
" .CodeMirror pre {\n",
" font-family: 'Source Code Pro', monocco, Consolas, monocco, monospace;\n",
" }\n",
" \n",
" .cm-s-ipython span.cm-keyword {\n",
" font-weight: normal;\n",
" }\n",
" \n",
" strong {\n",
" background: #f5f5f5;\n",
" margin-top: 4pt;\n",
" margin-bottom: 4pt;\n",
" padding: 2pt;\n",
" border: 0.5px solid #a0a0a0;\n",
" font-weight: bold;\n",
" color: darkred;\n",
" }\n",
" \n",
" \n",
" div #notebook {\n",
" # font-size: 10pt; \n",
" line-height: 145%;\n",
" }\n",
" \n",
" li {\n",
" line-height: 145%;\n",
" }\n",
"\n",
" div.output_area pre {\n",
" background: #fff9d8 !important;\n",
" padding: 5pt;\n",
" \n",
" -webkit-print-color-adjust: exact; \n",
" \n",
" }\n",
" \n",
" \n",
" \n",
" h1, h2, h3, h4 {\n",
" font-family: Kameron, arial;\n",
"\n",
"\n",
" }\n",
" \n",
" div#maintoolbar {display: none !important;}\n",
"</style>\n",
" <script>\n",
"IPython.OutputArea.prototype._should_scroll = function(lines) {\n",
" return false;\n",
"}\n",
" </script>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# IGNORE THIS CELL WHICH CUSTOMIZES LAYOUT AND STYLING OF THE NOTEBOOK !\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"%config InlineBackend.figure_format = 'retina'\n",
"import warnings\n",
"warnings.filterwarnings('ignore', category=FutureWarning)\n",
"from IPython.core.display import HTML; HTML(open(\"custom.html\", \"r\").read())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 1: General Introduction to machine learning (ML)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A \"model\" allows us to explain observations and to answer questions. For example:\n",
"\n",
" 1. Where will my car at given velocity stop if I apply break now?\n",
" 2. Where on the night sky will I see the moon tonight?\n",
" 3. Is the email I received spam?\n",
"- The first two questions can be answered based on existing physical models (formulas). \n",
"\n",
"- For the questions 3 and 4 it is difficult to develop explicitly formulated models. \n",
"- We have a vague understanding of the problem domain, e.g. we know that some words are specific to spam emails and others are specific to my personal and work-related emails.\n",
"- We have enough example data, as my mailbox is full of both spam and non-spam emails.\n",
"\n",
"\n",
"We could handcraft a personal spam classifier by hard coding rules, like \"mail contains 'no prescription' and comes from russia or china\" plus some statistics which would be very tedious\n",
"\n",
"<div class=\"alert alert-block alert-info\">\n",
"<i class=\"fa fa-info-circle\"></i>\n",
" Systems with such hard coded rules are called <strong>expert systems</strong>\n",
"</div>\n",
"\n",
"**In such cases machine learning offers approaches to automatically build predictive models based on example data.**\n",
"<div class=\"alert alert-block alert-info\">\n",
"<i class=\"fa fa-info-circle\"></i>\n",
"The closely-related concept of <strong>data mining</strong> usually means use of predictive machine learning models to explicitly discover previously unknown knowledge from a specific data set, such as, for instance, association rules between customer and article types in the Problem 4 above.\n",
"\n",
"\n",
"\n",
"## ML: what is \"learning\" ?\n",
"\n",
"To create a predictive model, we must first **train** such a model on given data. \n",
"<div class=\"alert alert-block alert-info\">\n",
"<i class=\"fa fa-info-circle\"></i>\n",
"Alternative names for \"to train\" a model are \"to <strong>fit</strong>\" or \"to <strong>learn</strong>\" a model.\n",
"</div>\n",
"\n",
"All ML algorithms have in common that they rely on internal data structures and/or parameters. Learning then builds up such data structures or adjusts parameters based on the given data. After that such models can be used to explain observations or to answer questions.\n",
"\n",
"The important difference between explicit models and models learned from data:\n",
"\n",
"- Explicit models usually offer exact answers to questions\n",
"- Models we learn from data usually come with inherent uncertainty."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Some parts of ML are older than you might think. This is a rough time line with a few selected achievements from this field:\n",
" 1805: Least squares regression\n",
" 1812: Bayes' rule\n",
" 1957-65: \"k-means\" clustering algorithm\n",
" 1959: Term \"machine learning\" is coined by Arthur Samuel, an AI pioneer\n",
" 1969: Book \"Perceptrons\": Limitations of Neural Networks\n",
" 1974-86: Neural networks learning breakthrough: backpropagation method\n",
" 1984: Book \"Classification And Regression Trees\"\n",
" 1995: Randomized Forests and Support Vector Machines methods\n",
" 1998: Public appearance: first ML implementations of spam filtering methods; naive Bayes Classifier method\n",
" 2006-12: Neural networks learning breakthrough: deep learning\n",
" \n",
"So the field is not as new as one might think, but due to \n",
"\n",
"- more available data\n",
"- more processing power \n",
"- development of better algorithms \n",
"\n",
"more applications of machine learning appeared during the last 15 years."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Machine learning with Python\n",
"\n",
"Currently (as of 2019) `Python` is the dominant programming language for ML. Especially the advent of deep-learning pushed this forward. First versions of frameworks such as `TensorFlow` or `PyTorch` got early `Python` releases.\n",
"\n",
"The prevalent packages in the Python eco-system used for ML include:\n",
"\n",
"- `pandas` for handling tabular data\n",
"- `matplotlib` and `seaborn` for plotting\n",
"- `scikit-learn` for classical (non-deep-learning) ML\n",
"- `TensorFlow`, `PyTorch` and `Keras` for deep-learning.\n",
"\n",
"`scikit-learn` is very comprehensive and the online-documentation itself provides a good introducion into ML."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## ML lingo: What are \"features\" ?\n",
"A typical and very common situation is that our data is presented as a table, as in the following example:"
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>alcohol_content</th>\n",
" <th>bitterness</th>\n",
" <th>darkness</th>\n",
" <th>fruitiness</th>\n",
" <th>is_yummy</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>3.739295</td>\n",
" <td>0.422503</td>\n",
" <td>0.989463</td>\n",
" <td>0.215791</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4.207849</td>\n",
" <td>0.841668</td>\n",
" <td>0.928626</td>\n",
" <td>0.380420</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>4.709494</td>\n",
" <td>0.322037</td>\n",
" <td>5.374682</td>\n",
" <td>0.145231</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4.684743</td>\n",
" <td>0.434315</td>\n",
" <td>4.072805</td>\n",
" <td>0.191321</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4.148710</td>\n",
" <td>0.570586</td>\n",
" <td>1.461568</td>\n",
" <td>0.260218</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" alcohol_content bitterness darkness fruitiness is_yummy\n",
"0 3.739295 0.422503 0.989463 0.215791 0\n",
"1 4.207849 0.841668 0.928626 0.380420 0\n",
"2 4.709494 0.322037 5.374682 0.145231 1\n",
"3 4.684743 0.434315 4.072805 0.191321 1\n",
"4 4.148710 0.570586 1.461568 0.260218 0"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"\n",
"features = pd.read_csv(\"beers.csv\")\n",
"features.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<div class=\"alert alert-block alert-warning\">\n",
"<i class=\"fa fa-warning\"></i> <strong>Definitions</strong>\n",
"<ul>\n",
" <li>every row of such a matrix is called a <strong>sample</strong> or <strong>feature vector</strong>;</li>\n",
" <li>the cells in a row are <strong>feature values</strong>;</li>\n",
" <li>every column name is called a <strong>feature name</strong> or <strong>attribute</strong>.</li>\n",
"</ul>\n",
"\n",
"Features are also commonly called <strong>variables</strong>.\n",
"</div>"
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The feature names are `alcohol_content`, `bitterness`, `darkness`, `fruitiness` and `is_yummy`.\n",
"<div class=\"alert alert-block alert-warning\">\n",
"<i class=\"fa fa-warning\"></i> <strong>More definitions</strong>\n",
"<ul>\n",
" <li>The first four features have continuous numerical values within some ranges - these are called <strong>numerical features</strong>,</li>\n",
" <li>the <code>is_yummy</code> feature has only a finite set of values (\"categories\"): <code>0</code> (\"no\") and <code>1</code> (\"yes\") - this is called a <strong>categorical feature</strong>.</li>\n",
"</ul>\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A straight-forward application of machine-learning on the previous beer dataset is: **\"can we predict `is_yummy` from the other features\"** ?\n",
"<div class=\"alert alert-block alert-warning\">\n",
"<i class=\"fa fa-warning\"></i> <strong>Even more definitions</strong>\n",
"\n",
"In context of the question above we call:\n",
"<ul>\n",
" <li>the <code>alcohol_content</code>, <code>bitterness</code>, <code>darkness</code>, <code>fruitiness</code> features our <strong>input features</strong>, and</li>\n",
" <li>the <code>is_yummy</code> feature our <strong>target/output feature</strong> or a <strong>label</strong> of our data samples.\n",
" <ul>\n",
" <li>Values of categorical labels, such as <code>0</code> (\"no\") and <code>1</code> (\"yes\") here, are often called <strong>classes</strong>.</li>\n",
" </ul>\n",
" </li>\n",
"</ul>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Most of the machine learning algorithms require that every sample is represented as a vector containing numbers. \n",
"\n",
"Let's look now at two examples of how one can create feature vectors from data which is not naturally given as vectors:\n",
"\n",
"1. Feature vectors from images\n",
"2. Feature vectors from text.\n",
"### 1st Example: How to represent images as feature vectors ?\n",
"In order to simplify our explanations we only consider grayscale images in this section. \n",
"Computers represent images as matrices. Every cell in the matrix represents one pixel, and the numerical value in the matrix cell its gray value.\n",
"So how can we represent images as vectors?\n",
"To demonstrate this we will now load a sample dataset that is included in `scikit-learn`:"
"from sklearn.datasets import load_digits\n",
"\n",
"execution_count": 4,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Optical recognition of handwritten digits dataset\n",
"--------------------------------------------------\n",
"\n",
"**Data Set Characteristics:**\n",
"\n",
" :Number of Instances: 5620\n",
" :Number of Attributes: 64\n",
" :Attribute Information: 8x8 image of integer pixels in the range 0..16.\n",
" :Missing Attribute Values: None\n",
" :Creator: E. Alpaydin (alpaydin '@' boun.edu.tr)\n",
" :Date: July; 1998\n",
"\n",
"This is a copy of the test set of the UCI ML hand-written digits datasets\n",
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
"http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits\n",
"\n",
"The data set contains images of hand-written digits: 10 classes where\n",
"each class refers to a digit.\n",
"\n",
"Preprocessing programs made available by NIST were used to extract\n",
"normalized bitmaps of handwritten digits from a preprinted form. From a\n",
"total of 43 people, 30 contributed to the training set and different 13\n",
"to the test set. 32x32 bitmaps are divided into nonoverlapping blocks of\n",
"4x4 and the number of on pixels are counted in each block. This generates\n",
"an input matrix of 8x8 where each element is an integer in the range\n",
"0..16. This reduces dimensionality and gives invariance to small\n",
"distortions.\n",
"\n",
"For info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G.\n",
"T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C.\n",
"L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469,\n",
"1994.\n",
"\n",
".. topic:: References\n",
"\n",
" - C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their\n",
" Applications to Handwritten Digit Recognition, MSc Thesis, Institute of\n",
" Graduate Studies in Science and Engineering, Bogazici University.\n",
" - E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.\n",
" - Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin.\n",
" Linear dimensionalityreduction using relevance weighted LDA. School of\n",
" Electrical and Electronic Engineering Nanyang Technological University.\n",
" 2005.\n",
" - Claudio Gentile. A New Approximate Maximal Margin Classification\n",
" Algorithm. NIPS. 2000.\n"
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's plot the first ten digits from this data set:"
"image/png": "iVBORw0KGgoAAAANSUhEUgAACPMAAAEZCAYAAAD4nfIqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3X+UJGZd5/vPN4lIgJAJYAD5kU6yAlHWDASRq14zAcKiqAl60SvrboYVxbMqyR7wEnFdEj27BPdKhouuhlVIxNXdzXGdiKJAkOBVBNeYyV5+hIhDByH80JAZQgi/kuf+UTXShvQkpOvpeqrq9TpnTk13ld9+TPOerq7+dlW11gIAAAAAAAAAAMzfEfM+AAAAAAAAAAAAMGGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZhy9TVQ+rqldV1d9U1Wer6uNV9Yaqetq8zwaroKqOqarvqaqfr6o/rKq/r6o2/fO4eZ8PVkVVPbqqzpt+DfxQVX2uqm6pqmur6qKqevi8zwiroKqeNP2a+EdV9YGqOjjt8SNVdUVVnT3vM8IqqqoHVNXfbrifunveZ4JVUFW7N3S32Z9Pz/ucsEqq6rFV9eqqen9V3Tq9v/q+qnptVZ0+7/PBsroHXw83/tEidFZVR1TV86rqyqr6u6r6QlUdqKp3VdXPVNUx8z4jrIKa+MGqektV3TR9HHW9qn6tqh4z7/PxlanW2rzPwECq6huT/HGSB0/f9akkD8hk8asleWlr7aI5HQ9WwvSHkr+7ydWntNau287zwCqqqkcluSFJbXj3p5LcP8mR07dvTvJ9rbW3bfPxYKVU1a8mecGGd306yVFJ7rvhfb+T5Adba1/YzrPBKquqPUnO3fCu57XWLp3TcWBlTBfnXpfkC0k+ucnNbm2tnbxth4IVVlUvTPIfk9xn+q4731f99dba8+dxNlh2VfWxu7nJA5McneTzSb62tXZT/1PBaqqq+yV5Q5Knbnj3wUw6PPT46g1Jntpa27/Nx4OVUVX3SfLfkhz65ccvJrklyXHTt29L8n+21n5vDsfjXvDMPPyDqjo6ye9lsshzTZLHt9aOzSTwX8zkC+5/qKpnzO+UsDI+keSNSS5M8qNzPgusokMLO3+Q5DlJHjT9mni/JN+Z5IOZfH3cW1UPm88RYWX8eZJ/k+S0JMe01o5prR2d5NGZ/OAkSb4vyflzOh+snKp6YpKfSPKueZ8FVtg7WmsP2+SPRR7YBlX1giSvymR55xVJTthwX/XhSf5lknfM8Yiw1A7zdfBhrbWHJbl+etPft8gD3f1sJos8LclPJ9nRWtuRyXLrDyY5kOSEJL82txPCargok0WeL2byC1gPbK09KMmjMvllyKOT/Neq8j3jgvDMPPyDqjovycWZ/AbJ41prH7nT9b+byT8Af9VaO20OR4SVUFVHttZu3/D2WiaLA4ln5oFtUVXHJllrrV27yfWPy2Tx9b5JLmitXbid5wO+pKpen+SHkuz3w0vor6qOyGSJ5wlJvinJX02v8sw8sA02PDPP21tru+Z7Glhd08dq3pPJL3z8aGvtP8/1QMA/UlU7M3ncJknO8gwE0FdV3ZDJL129trX2w3dx/e5M7sMmk1+avHkbjwcroaqOT/K3mTxj5Mtbay+90/VHZXL/9TFJfqu19s+3/5R8pTwzDxsdiva37rzIM3XoN5+fWFWP3aYzwcrZuMgDzEdr7eBmizzT669L8s7pmxZcYb7+5/Tya+d6ClgdP5nkSUl+pbV2zd3dGACW1LmZLPK8yyIPDOmc6eWhZz8H+nro9HKz7xGv3vD3+3U+C6yqp+ZLL/26585Xtta+mOTV0ze/t6oesF0H496zzEOSpKqOyZd+GPmmTW72zkxe4zJJntb9UAAwtkNP0XzkYW8F9PYt08sPHvZWwJZV1SOS/HySjyf5t3M+DgDM03Onl78911MAX2b6zAOHGv2t6Q8vgb7Wp5dP2OT6Qz9//PgmTyYAbN0J08sDrbVPbHKbQ6/8cd8k39b/SGyVZR4OOSVJTf/+nru6QWvtjiTvn7759dtxKAAY0fSBoW+dvvnueZ4FVlFVPaCqvrGqfjnJD0zf/UvzPBOsiFcnOSbJi1trB+/uxkBX31BV76mq26rqlqp6d1VdXFUnzvtgsOyq6uQkx0/fvKaqnlJVb6iqm6ZNXldV/3H6UgfA9vuOfKnRy+Z5EFghh56l7nlVdX5VHZskVXWfqvqBJBcnaUlePK8Dwgpo08vD/fLxURv+/g0dz8KMWObhkIdv+PuNh7ndoesefpjbAMCy+/EkD0tyRzwwBNuiqh5ZVa2qWpJbklyb5F8n+WySn22t/ae5HhCWXFV9d5JnJ7mqtfab8z4PkIdk8otZn8nktyq/Icl5Sd5TVc893P8hsGVft+Hvu5L8aZLvSvJVmfwQ5bGZ/LByX1X5IQlsv93Ty2tba/vmeRBYIXuS/HImTxrw8iQHqupAktuS/NdMng3ke3wvCV3dML08pqoeucltNj5Zh5/1LwDLPBxy/w1/v+0wt/vM9NLr6AGwkqrqGzP5pjRJfqm19t55ngdWyO2ZvLTPx5N8fvq+L2bS4y/P61CwCqrq/pk8+9UXMlloBebnxiQvS/L4JPdtrT04k8donpXkvUmOTnJZVX37/I4IS2/Hhr+/LMn1SZ7SWntgJj1+Z5JPZPIDkt+ZPrMrsA2q6kGZLNclfvkKtk1r7fZMFstflMljNUlybL70c+hjknzNHI4Gq+SqTB63SZKfuvOVVXXfJC/c8K5jtuFMbJFlHgCAe6iqHp5kbyY/JLk6yUvmeyJYHa21j7bWHtZae1gmDT42yW8kuTB+6xl6+7kkj05ysSVWmK/W2ptbaz/XWntPa+3z0/d9rrX2xiTfkuQDmTx1+kXzPCcsuY2Pqbckz26tvStJWmt3tNb+MMm/ml7/2CTfu83ng1X2g0nuk8kywX+Z81lgZVTVw5L8WZJfzKS9UzNZcP26JD+d5KQkr62ql286BNiS1trHk1wyffMnq+rnq+oRVfVVVfXEJH+Q5IR8aeHujnmck6+MZR4OuXXD348+zO3uN738dMezAMBwpr/d9eYkJyb56yTPaq19dr6ngtU0/SHJ9a21H07yykyWDF5fVb6/gRmrqp1Jzk3yt5ks9QCDaq0dTPIfpm8+paoeMs/zwBLb+LjoH7XW3n/nG7TW/iCTZ+xJkqdty6mAJDlnevmHrbVPzPUksFp+I8mTk/x6a213a+1/tdZuba19oLV2UZIXTG/3f/llLOjqp5L8YSYvefdvk3w4k2c4vzrJU5P8bJKbp7c9MI8D8pXxYDeH3Ljh7197mNsduu6jHc8CAEOpqmOTvCmTlzP4UJKnTzfdgfl79fTyCdM/wGy9KsmRSX4mSVXVAzb+2XC7r56+7353PQbYJu+aXlYmS+jA7G18HPXLFnnu4rpHdTwLMFVVpyT5pumbXmILtklVfX2SM6dvXnxXt2mtvT7JTZn8XPq7t+losHKmv3z8XUmem+T3k/zN9M/vJflnSV6RL71k7F/P44x8ZbxeL4dcl8nTwlaSb8hdfCM6/U3nx07f9NTqAKyEqrp/kjcmeVKSj2WyyPOh+Z4K2OAjG/5+cia/aQLMzgnTy9+4m9v96vTPDUnWeh4IAObsvZm8LME9/UXZ1vEswJfsnl5+Mskb5ngOWDWnbPj7Bw9zu/1JHhzfL0JXrbU7kvz29M8/Mn25ra+avvnn23ku7h3PzEOSpLV2S5K/nL555iY3++Ykx07//tbuhwKAOauqozN5AOhbMvntkae31mysw1g2PuuAl4IFYNV984a/r8/rELDMWmufyZd++PHYw9z00HXrXQ8EpKqOTPJD0zd/u7X2+XmeB1bMHRv+/ujD3O7QL4rc0vEswOH94PRyX2vtfXM9CfeIZR42+q3p5T+vqoffxfUvnl5efVevBQ0Ay6Sq7pPkfyQ5I5PXj31Ga+098z0VrJaqOrKq6m5u9lPTyy/Gb5TAzLXW1lprtdmfDTd93vR9a/M6Kyy7u/uaWFUPTHL+9M2/aK39Xf9Twco69Ix1z6yqL1voqapnJXnM9M03btupYHU9PcnXTv/uJbZge1274e8/clc3qKrvTnL89M133dVtgL6q6tQkPzF98+XzPAv3nGUeNrokk6dEPybJ709f5zJVdUxV/UKS753e7qVzOh+sjKp6yKE/SY7bcNWOjddNX/4OmLHpb3T9VpJnZvLbIt/RWvur+Z4KVtKjkvxlVf2rqnrkoXdW1RFVtbOq/kuS50/f/erW2s1zOSUAbI8TquqdVfXDVfUPv/VcVfepqmcm+bNMlgfuSPLT8zokrIjXZvJyW0cm+R9V9eTkH+6nPjPJr09v985Y5oHtcM708r2ttf8515PAimmt7U/y5umb51XVy6vq+CSpqgdU1e4kl06vX0/ye9t9RlgVVXVGVb2oqv7J9Gccqapjq+oFSf44yX2T/PfW2n+f60G5x6o1L9nLl0y38t6ayetWJsmnkjwgk8WvluSlrbWL5nQ8WBlVdU//cT6xtbbe8yywiqrq25O8ffrmZ5McPMzN/7a19k39TwWrp6rW8o9fb/2zmbyU1jFJvnrD+y9N8iOttS9u19mAiQ33W5/XWrt0nmeBZbfJ18VbkzwwyVdN3/eZJD/WWnv9th4OVlBVnZTkqkwW0JPJL4IcmeR+07ffm8kzvH5k+08Hq2P6zHQfS3J0kpe01n5hzkeClTN9tY+3Jjllw7tvyeTxm0M+nskvTF6znWeDVTJdnnvd9M0vZtLhjiSHnuX1t5Oc01r7wvafjnvjqHkfgLG01q6tqsdn8htc35XkEUluSvIXSS5urb11nucDgG2y8Vmv7jv9s5nPdj4LrLIbk/xAkqcleXKSh2eydP7ZJH+Tyctqva619mdzOyEAbJ+PJ3lhkm9LcmqSr0lybCYLPX+dyQ9QfqW1dsPcTggrpLW2v6r+aSYv+/rsJCdm8sxYf5Xk8kyeOfLWOR4RVsX3Z7LIc0eS35zzWWAltdY+WlWnJfnRTF7l4/GZ3E/9VJIPJPmDTL4uehlY6OtPk+xJ8u1JTshkoe4jmTyG+uuttTfN8WzcC56ZBwAAAAAAAAAABnHE3d8EAAAAAAAAAADYDpZ5AAAAAAAAAABgEJZ5AAAAAAAAAABgEJZ5AAAAAAAAAABgEJZ5AAAAAAAAAABgEJZ5AAAAAAAAAABgEJZ5AAAAAAAAAABgEJZ5AAAAAAAAAABgEJZ5AAAAAAAAAABgEEfN+wB3p6o+mOSBSdbnfBTYLmtJPtVaO3HeB9lIi6ygtWgRRrAWLcII1qJFGMFatAgjWIsWYQRr0SKMYC1ahBGsRYswgrXMqMVqrW39OB1V1U1JHjTvc9xbO3bs6Dr/EY94RNf5t9xyS9f5H/nIR7rNvv3227vN3g6ttZr3GTZa9BZ7e8xjHtN1/pFHHtl1/o033tht9sGDB7vN3g5aXCwPeMADus4/+eSTu86/7bbbus2+/vrru83eDlqcrYc+9KFd5/e+j/q5z32u6/zrrruu22z3UWdr0Vvsrfd9yBNOOKHr/P3793edv8i0OFu9v5/r/XXrhhtu6DqfzWlxsSz6Yzfve9/7us5fZFqcreOPP77r/N6t9P6ZzNFHH91tdu/vF9/97nd3mXv77benqnLHHXdocYYe+chHdp3fu5Wbbrqp6/xPfOIT3WZ77Ga2Fr3Fk046qev8o47q+9wri/5zgUU2ixaHf2aeTLb0FjbwM888s+v8iy66qOv8K6+8suv8888/v9vsm2++udvsFbWeBW6xt9e85jVd5/e+Y/2yl72s2+wrrrii2+wVtR4tbupJT3pS1/l79+7tOn/fvn3dZu/atavb7BW1ngVucffu3V3n976P2vsH/D3/LXEfdebWs8At9nbMMcd0nf/KV76y6/yzzz6763xmaj0L3GLv7+fW19e7zu/9dZ2Fsp4FbrG3RX/sZufOnV3nM1PrWeAWn/vc53ad37uV3vchTz311G6ze/9S5NraWpe5vX8pfAvWs8AtvvjFL+46v3crl156adf5e/bs6Tb7wIED3WavqPUscIu9H/vo/XXRzwUW2xHzPgAAAAAAAAAAADBhmQcAAAAAAAAAAAZhmQcAAAAAAAAAAAZhmQcAAAAAAAAAAAZhmQcAAAAAAAAAAAYxs2WeqnpkVb22qm6sqs9V1XpV7amq42b1MYC7p0UYgxZhDFqEMWgRxqBFGIMWYQxahDFoEcagRRjPUbMYUlUnJ3lHkuOTXJHkuiRPTnJukmdW1be21m6axccCNqdFGIMWYQxahDFoEcagRRiDFmEMWoQxaBHGoEUY06yemec/ZRL3C1trZ7fWzm+tPTXJxUkem+Tfz+jjAIenRRiDFmEMWoQxaBHGoEUYgxZhDFqEMWgRxqBFGNCWl3mmm3rPSLKe5JfvdPXLktya5F9U1f23+rGAzWkRxqBFGIMWYQxahDFoEcagRRiDFmEMWoQxaBHGNYuX2Tpjevnm1todG69ord1SVX+WyT8AT0ny1s2GVNXVm1z1uBmcEVaBFmEMWoQxaBHGoEUYgxZhDFqEMWgRxqBFGIMWYVCzeJmtx04vr9/k+r+eXj5mBh8L2JwWYQxahDFoEcagRRiDFmEMWoQxaBHGoEUYgxZhULN4Zp5jp5cHN7n+0Pt3HG5Ia+20u3r/dIvviffuaLBStAhj0CKMQYswBi3CGLQIY9AijEGLMAYtwhi0CIOaxTPzAAAAAAAAAAAAMzCLZZ5D23jHbnL9ofcfmMHHAjanRRiDFmEMWoQxaBHGoEUYgxZhDFqEMWgRxqBFGNQslnneP73c7HXyvm56udnr7AGzoUUYgxZhDFqEMWgRxqBFGIMWYQxahDFoEcagRRjULJZ53ja9fEZV/aN5VXVMkm9N8pkk75zBxwI2p0UYgxZhDFqEMWgRxqBFGIMWYQxahDFoEcagRRjUlpd5Wmt/k+TNSdaS/Pidrr4wyf2TvL61dutWPxawOS3CGLQIY9AijEGLMAYtwhi0CGPQIoxBizAGLcK4jprRnH+d5B1J/p+qelqS9yX55iRnZPKUWz8zo48DHJ4WYQxahDFoEcagRRiDFmEMWoQxaBHGoEUYgxZhQLN4ma1DG3tPSnJpJmG/KMnJSV6V5CmttZtm8XGAw9MijEGLMAYtwhi0CGPQIoxBizAGLcIYtAhj0CKMaVbPzJPW2t8med6s5gH3jhZhDFqEMWgRxqBFGIMWYQxahDFoEcagRRiDFmE8M3lmHgAAAAAAAAAAYOss8wAAAAAAAAAAwCBm9jJb3LWLLrqo6/yTTjqp6/zjjjuu6/xPfvKT3WZ///d/f7fZSXL55Zd3nc9iOXDgQNf5p59+etf5Z5xxRrfZV1xxRbfZLJ6dO3d2nf+2t72t6/yDBw92nb+2ttZ1Poul5/3I5zznOd1mJ8kLXvCCrvMvueSSrvNPO+20brOvvPLKbrPhznbv3t11/r59+7rOh+3S+z5Y7+/nzjnnnK7zb7jhhm6z3f9lo7POOqvr/N4tXnjhhV3nw7Lo/Tjqeeedt7Dzd+zY0W120v+/PbPV+3HU3np/P7pr166FnE0fPb+v6H0ftbfWWtf51157bbfZi/7v4Cx4Zh4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABiEZR4AAAAAAAAAABjEUfM+wAhOO+20brNPOumkbrOT5OSTT+46f//+/V3nv+Utb+k2u+fnNUkuv/zyrvOZrZ07d3adv2vXrq7ze9u3b9+8j8CKOPvss7vOv/baa7vO37t3b9f5L3vZy7rOZ7G85jWv6Tb7Fa94RbfZSfKXf/mXXef3vo965ZVXdp0Ph+zYsaPr/N27d3edv2fPnq7z19bWus7vaX19fd5H4Ctw4MCBrvNPOOGErvMPHjzYdf5VV13VbXbvfwd7f26ZrQsvvHDeR9iS3t8vwnbpfR+vtwsuuKDr/J73URf9MWZmq/dj9r2/Z+n9/WjP+3m9W+x5/3pV9f6+oqe3v/3tXef3bt3Xrr48Mw8AAAAAAAAAAAzCMg8AAAAAAAAAAAzCMg8AAAAAAAAAAAzCMg8AAAAAAAAAAAzCMg8AAAAAAAAAAAzCMg8AAAAAAAAAAAxiy8s8VfXgqnp+Vf1uVX2gqm6rqoNV9adV9cNVZWEItoEWYQxahDFoEcagRRiDFmEMWoQxaBHGoEUYgxZhXEfNYMZzkvxKko8meVuSDyV5aJLvTfJrSb6jqp7TWmsz+FjA5rQIY9AijEGLMAYtwhi0CGPQIoxBizAGLcIYtAiDmsUyz/VJvifJH7TW7jj0zqp6aZK/SPJ9mcT+OzP4WMDmtAhj0CKMQYswBi3CGLQIY9AijEGLMAYtwhi0CIPa8tNitdb+uLX2ho1xT9//sSS/On1z11Y/DnB4WoQxaBHGoEUYgxZhDFqEMWgRxqBFGIMWYQxahHH1fo27L0wvv9j54wCHp0UYgxZhDFqEMWgRxqBFGIMWYQxahDFoEcagRZijWbzM1l2qqqOS/Mvpm390D25/9SZXPW5mh4IVpEUYgxZhDFqEMWgRxqBFGIMWYQxahDFoEcagRZi/ns/Mc1GSxyd5Y2vtTR0/DnB4WoQxaBHGoEUYgxZhDFqEMWgRxqBFGIMWYQxahDnr8sw8VfXCJC9Kcl2Sf3FP/m9aa6dtMuvqJE+c3elgdWgRxqBFGIMWYQxahDFoEcagRRiDFmEMWoQxaBHGMPNn5qmqn0jyqiTvTXJGa+2Ts/4YwN3TIoxBizAGLcIYtAhj0CKMQYswBi3CGLQIY9AijGOmyzxVdV6SVyd5dyZxf2yW84F7RoswBi3CGLQIY9AijEGLMAYtwhi0CGPQIoxBizCWmS3zVNVLklycZF8mcX9iVrOBe06LMAYtwhi0CGPQIoxBizAGLcIYtAhj0CKMQYswnpks81TVzya5KMnVSZ7WWvv7WcwFvjJahDFoEcagRRiDFmEMWoQxaBHGoEUYgxZhDFqEMR211QFVdU6Sn0tye5L/N8kLq+rON1tvrV261Y8FbE6LMAYtwhi0CGPQIoxBizAGLcIYtAhj0CKMQYswri0v8yQ5cXp5ZJLzNrnN25NcOoOPBWxOizAGLcIYtAhj0CKMQYswBi3CGLQIY9AijEGLMKgtv8xWa+2C1lrdzZ9dMzgrcBhahDFoEcagRRiDFmEMWoQxaBHGoEUYgxZhDFqEcW15mQcAAAAAAAAAAJgNyzwAAAAAAAAAADCIo+Z9gBEcd9xx3WZfffXV3WYnyf79+7vO7633fx8Wy3nnbfZSnFt3wQUXdJudJMcee2zX+b1dddVV8z4CK2LPnj1d56+vr3ed3/v8V1xxRdf5LJae9/NOOumkbrO3Y/6VV17ZdX7P7w9uvvnmbrNZPLt37+46f21trev8Sy+9tOv8nl93Dxw40G120v/7D2ar933IU089tev83t+P7tu3r9vs3i2yWHbs2NF1/rXXXtt1fs9W4M527dq1kLO3Q8/HmHs7++yzu87vff+d2er9+brmmmu6zu/9/WjP+5G9vz9g9hb5c9b73/69e/d2nd/7Pvyq88w8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwCMs8AAAAAAAAAAAwiKPmfYARHHfccd1mX3nlld1mL4Oe/+1vvvnmbrPpY8+ePd1mX3rppd1mJ4v/v7cdO3bM+wgMpOf/Hs4777xus5Pk7LPP7jq/t927d8/7CKyI/fv3d53/oAc9qOv8t7zlLQs7/8wzz+w2O1n8+yQjOuuss7rNvvjii7vNTpLLLrus6/zezj333G6zn/e853WbzeLpfR9y165dXefv3Lmz6/ze/1b11PNxBmav92MT6+vrXef3/n5379693Wb3/m/D7PX8nPX+utL762JvPe83XHXVVd1ms3gW/TH7008/vev8E088sdtsXxcXz4EDB7rNvvbaa7vNTvo/lveqV72q6/ye9xvW1ta6zU4Wo3XPzAMAAAAAAAAAAIOwzAMAAAAAAAAAAIOwzAMAAAAAAAAAAIOwzAMAAAAAAAAAAIOwzAMAAAAAAAAAAIPotsxTVT9UVW365/m9Pg5weFqEMWgRxqBFGIMWYQxahPnTIYxBizAGLcIYtAhj6LLMU1WPSvJLST7dYz5wz2gRxqBFGIMWYQxahDFoEeZPhzAGLcIYtAhj0CKMY+bLPFVVSV6X5KYkvzrr+cA9o0UYgxZhDFqEMWgRxqBFmD8dwhi0CGPQIoxBizCWHs/M88IkT03yvCS3dpgP3DNahDFoEcagRRiDFmEMWoT50yGMQYswBi3CGLQIA5lCobgpAAATwklEQVTpMk9VnZLkoiSvaq39ySxnA/ecFmEMWoQxaBHGoEUYgxZh/nQIY9AijEGLMAYtwniOmtWgqjoqyeuTfCjJS+/F//3Vm1z1uK2cC1aNFmEMWoQxaBHGoEUYgxZh/rba4XSGFmGLtAhj0CKMQYswppkt8yT5d0mekOTbWmu3zXAu8JXRIoxBizAGLcIYtAhj0CLMnw5hDFqEMWgRxqBFGNBMlnmq6psz2dL7xdban9+bGa210zaZfXWSJ27heLAytAhj0CKMQYswBi3CGLQI8zeLDhMtwlZpEcagRRiDFmFcR2x1wPRpt34jyfVJfnbLJwLuFS3CGLQIY9AijEGLMAYtwvzpEMagRRiDFmEMWoSxbXmZJ8kDkjwmySlJPltV7dCfJC+b3uY/T9+3ZwYfD7hrWoQxaBHGoEUYgxZhDFqE+dMhjEGLMAYtwhi0CAObxctsfS7Jr29y3RMzeX29P03y/iT3+qm5gLulRRiDFmEMWoQxaBHGoEWYPx3CGLQIY9AijEGLMLAtL/O01m5L8vy7uq6qLsgk8staa7+21Y8FbE6LMAYtwhi0CGPQIoxBizB/OoQxaBHGoEUYgxZhbLN4mS0AAAAAAAAAAGAGLPMAAAAAAAAAAMAgui7ztNYuaK2Vp96C+dIijEGLMAYtwhi0CGPQIsyfDmEMWoQxaBHGoEWYP8/MAwAAAAAAAAAAg7DMAwAAAAAAAAAAg7DMAwAAAAAAAAAAgzhq3gcYwc0339xt9mmnndZt9nY47rjjus7v+d/n8ssv7zYbls3OnTu7zd63b1+32fRxwQUXdJt97rnndpu9Hc4+++yu8w8cONB1PmyXnvevk+TMM8/sOv+SSy7pNvslL3lJt9lJcv7553edv4oOHjy4kLOT5Jxzzuk6v+d9yN727t077yOwQq666qp5H2FYa2tr8z4CA1lfX+86//TTT+86f8eOHV3nX3zxxd1mP+EJT+g2O/HYUA89e+n92Edrrev83uf3dZ2Nen5P9La3va3b7CS58MILu87vfT+v5/d0vf8d6X2fh9nq/dhH7/mLfD9sz549Xef3bn0WPDMPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAMwjIPAAAAAAAAAAAM4qh5H2AE+/fv7zb7tNNO6zY7SZ7znOcs9PyeXvGKV8z7CAAL6dJLL+02e9euXd1mJ8mpp57adf7evXu7zr/iiiu6zX7d617XbXbS9+zM3kUXXdR1/pVXXtl1/nHHHdd1/tOf/vRusy+//PJus+njqquu6jZ7x44d3WYnyc6dO7vO7/nfJkkuu+yybrMPHDjQbTaL56yzzuo6/+DBg13nX3DBBV3n99T7/jWLpef3okly8cUXd52/vr7edf7a2lq32WeffXa32Umyb9++rvOZrT179nSd3/vr4tvf/vau82Gjnv/2926ld+s9v24lyTXXXNNt9u7du7vNThb7/juz1/t+Uu/We/bS+z7qIvDMPAAAAAAAAAAAMAjLPAAAAAAAAAAAMAjLPAAAAAAAAAAAMAjLPAAAAAAAAAAAMAjLPAAAAAAAAAAAMAjLPAAAAAAAAAAAMIiZLvNU1dOq6ner6mNV9bmqurGq3lRV3znLjwMcnhZhDFqEMWgRxqBFGIMWYQxahDFoEcagRRiDFmEsR81qUFX9QpKfSvLhJL+X5O+TfE2S05LsSvLGWX0sYHNahDFoEcagRRiDFmEMWoQxaBHGoEUYgxZhDFqE8cxkmaeqfiSTuC9L8qOttc/f6fqvmsXHAQ5PizAGLcIYtAhj0CKMQYswBi3CGLQIY9AijEGLMKYtv8xWVX11kn+f5EO5i7iTpLX2ha1+HODwtAhj0CKMQYswBi3CGLQIY9AijEGLMAYtwhi0COOaxTPznJnJU2ztSXJHVT0ryeOTfDbJX7TW/vyeDKmqqze56nEzOCOsAi3CGLQIY9AijEGLMAYtwhi0CGPQIoxBizAGLcKgZrHM803Ty88muSaTuP9BVf1Jkv+jtfZ3M/hYwOa0CGPQIoxBizAGLcIYtAhj0CKMQYswBi3CGLQIg5rFMs/x08ufSvLeJP97kn1JTkzyfyd5RpLLk+w63JDW2ml39f7pFt8TZ3BOWHZahDFoEcagRRiDFmEMWoQxaBHGoEUYgxZhDFqEQR0xwxlfTPI9rbU/ba19urX2/yV5dpIPJzm9qv63GXwsYHNahDFoEcagRRiDFmEMWoQxaBHGoEUYgxZhDFqEQc1imefA9PKa1tr6xitaa59J8qbpm0+ewccCNqdFGIMWYQxahDFoEcagRRiDFmEMWoQxaBHGoEUY1CyWed4/vTywyfU3Ty+PnsHHAjanRRiDFmEMWoQxaBHGoEUYgxZhDFqEMWgRxqBFGNQslnnemqQl+fqquqt5j59efnAGHwvYnBZhDFqEMWgRxqBFGIMWYQxahDFoEcagRRiDFmFQW17maa3dkOQNSR6d5NyN11XVM5L8s0w2+f5oqx8L2JwWYQxahDFoEcagRRiDFmEMWoQxaBHGoEUYgxZhXEfNaM6PJ3lCkldW1bOSXJPkxCRnJ7k9yfNbawdn9LGAzWkRxqBFGIMWYQxahDFoEcagRRiDFmEMWoQxaBEGNJNlntbah6vqtCT/Lsn3JPn2JJ/KZIvv5a21v5jFxwEOT4swBi3CGLQIY9AijEGLMAYtwhi0CGPQIoxBizCmWT0zT1prf5fkJ6d/gDnRIoxBizAGLcIYtAhj0CKMQYswBi3CGLQIY9AijOeIeR8AAAAAAAAAAACYsMwDAAAAAAAAAACDmNnLbC2y/fv3d5t9/vnnd5udJBdddFHX+VdffXXX+U960pO6zodDDhw40HX+FVdc0XX+WWed1XX+rl27us2+9NJLu82mj3379nWbvXPnzm6zt2P+BRdc0HV+z9bX19e7zU76/zvIbN18881d519yySVd5/d2+eWXd5v9ghe8oNtsuLPe94GPPfbYrvPdj2S7nHHGGV3nn3vuuV3n93bZZZd1m33VVVd1m83i6f3v/traWtf5u3fv7jq/Zy979+7tNpvF0/NxwiQ555xzus7vfR8YNur5v7fe95N6PzZ08ODBrvN7Pha5Z8+ebrNZPL3/99D7Zxo7duzoOr/n/YaeP6taFJ6ZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABmGZBwAAAAAAAAAABlGttXmf4bCq6qYkD5r3Oe6thzzkIV3nP/ShD+06/zOf+UzX+R/84Ae7zl9krbWa9xk2WvQWezvppJO6zt+xY0fX+TfddFO32TfccEO32dtBi4vl6KOP7jr/4Q9/eNf5PVv/xCc+0W12knz4wx/uOl+Ls9X7PmTv+8C93XLLLd1mf+hDH+o2eztocbHc5z736Tr/8Y9/fNf5119/fbfZn/70p7vN3g5anK1HPvKRXecff/zxXef35vvFzWlxto488siu83t/P/fgBz+46/ye91E/+tGPdpudJLfddlvX+VqcrVNOOaXr/BtvvLHr/IMHD3adz+a0OFuL/jOH22+/vev8nl8Xe99H7f3fRouz1fv7xfvd735d5/e+j72+vt5tdu/7kL3NosVFWOb5YJIHJlm/h/8nj5teXtflQMzLKn1e15J8qrV24rwPspEWmVqlz+tatMi4VunzuhYtMq5V+ryuRYuMa5U+r2vRIuNapc/rWrTIuFbp87oWLTKuVfq8rkWLjGuVPq9r0SLjWqXP61pm1OLwyzxfqaq6Oklaa6fN+yzMjs/r4vE5W04+r4vH52w5+bwuHp+z5eTzunh8zpaTz+vi8TlbTj6vi8fnbDn5vC4en7Pl5PO6eHzOlpPP6+LxOVtOPq/3zhHzPgAAAAAAAAAAADBhmQcAAAAAAAAAAAZhmQcAAAAAAAAAAAZhmQcAAAAAAAAAAAZhmQcAAAAAAAAAAAZRrbV5nwEAAAAAAAAAAIhn5gEAAAAAAAAAgGFY5gEAAAAAAAAAgEFY5gEAAAAAAAAAgEFY5gEAAAAAAAAAgEFY5gEAAAAAAAAAgEFY5gEAAAAAAAAAgEFY5gEAAAAAAAAAgEFY5gEAAAAAAAAAgEEszTJPVT2yql5bVTdW1eeqar2q9lTVcfM+G/fO9HPYNvnzsXmfj7umxeWjxcWkxeWjxcWkxeWjxcWkxeWjxcWkxeWjxcWkxeWjxcWkxeWjxcWkxeWjxcWkxeWjxa07at4HmIWqOjnJO5Icn+SKJNcleXKSc5M8s6q+tbV20xyPyL13MMmeu3j/p7f7INw9LS41LS4QLS41LS4QLS41LS4QLS41LS4QLS41LS4QLS41LS4QLS41LS4QLS41LS4QLS41LW5BtdbmfYYtq6o3JXlGkhe21l694f2vTPJvklzSWvuxeZ2Pe6eq1pOktbY235NwT2lxOWlx8WhxOWlx8WhxOWlx8WhxOWlx8WhxOWlx8WhxOWlx8WhxOWlx8WhxOWlx8WhxOWlx6xZ+mWe6qfeBJOtJTm6t3bHhumOSfDRJJTm+tXbrXA7JvSLwxaLF5aXFxaLF5aXFxaLF5aXFxaLF5aXFxaLF5aXFxaLF5aXFxaLF5aXFxaLF5aXFxaLF5aXFrVuGl9k6Y3r55o1xJ0lr7Zaq+rNMNvmekuSt2304tuyrq+qHkjw6ya1J/leSP2mt3T7fY3EXtLjctLg4tLjctLg4tLjctLg4tLjctLg4tLjctLg4tLjctLg4tLjctLg4tLjctLg4tLjctLgFy7DM89jp5fWbXP/XmQT+mAh8ET0syevv9L4PVtXzWmtvn8eB2JQWl5sWF4cWl5sWF4cWl5sWF4cWl5sWF4cWl5sWF4cWl5sWF4cWl5sWF4cWl5sWF4cWl5sWt+CIeR9gBo6dXh7c5PpD79+xDWdhtl6X5GmZRH7/JP80ySVJ1pL8YVWdOr+jcRe0uLy0uFi0uLy0uFi0uLy0uFi0uLy0uFi0uLy0uFi0uLy0uFi0uLy0uFi0uLy0uFi0uLy0uEXL8Mw8LKnW2oV3ete7k/xYVX06yYuSXJDk2dt9Llg1WoQxaBHGoEUYgxZhDFqEMWgRxqBFGIMWYQxa3LpleGaeQ9t4x25y/aH3H9iGs7A9fnV6+e1zPQV3psXVo8UxaXH1aHFMWlw9WhyTFlePFsekxdWjxTFpcfVocUxaXD1aHJMWV48Wx6TF1aPFe2gZlnneP718zCbXf930crPX2WPx/N308v5zPQV3psXVo8UxaXH1aHFMWlw9WhyTFlePFsekxdWjxTFpcfVocUxaXD1aHJMWV48Wx6TF1aPFe2gZlnneNr18RlX9o/9/quqYJN+a5DNJ3rndB6Obp0wv98/1FNyZFlePFsekxdWjxTFpcfVocUxaXD1aHJMWV48Wx6TF1aPFMWlx9WhxTFpcPVockxZXjxbvoYVf5mmt/U2SNydZS/Ljd7r6wkw2ul7fWrt1m4/GFlTVKVX1Zdt4VbWW5Jemb/7mdp6Jw9PictLi4tHictLi4tHictLi4tHictLi4tHictLi4tHictLi4tHictLi4tHictLi4tHictLibFRrbd5n2LKqOjnJO5Icn+SKJO9L8s1JzsjkKbe+pbV20/xOyFeqqi5I8qIkf5LkhiS3JDk5ybOS3DfJG5M8u7X2+XmdkS+nxeWjxcWkxeWjxcWkxeWjxcWkxeWjxcWkxeWjxcWkxeWjxcWkxeWjxcWkxeWjxcWkxeWjxdlYimWeJKmqRyX5uSTPTPLgJB9N8rtJLmyt3TzPs/GVq6rTk/xYkickeVgmW5cHkuxL8vpMNjCX43+8S0aLy0WLi0uLy0WLi0uLy0WLi0uLy0WLi0uLy0WLi0uLy0WLi0uLy0WLi0uLy0WLi0uLy0WLs7E0yzwAAAAAAAAAALDojpj3AQAAAAAAAAAAgAnLPAAAAAAAAAAAMAjLPAAAAAAAAAAAMAjLPAAAAAAAAAAAMAjLPAAAAAAAAAAAMAjLPAAAAAAAAAAAMAjLPAAAAAAAAAAAMAjLPAAAAAAA/3+7diwAAAAAMMjfeho7iiMAAACYkHkAAAAAAAAAAGBC5gEAAAAAAAAAgAmZBwAAAAAAAAAAJmQeAAAAAAAAAACYkHkAAAAAAAAAAGBC5gEAAAAAAAAAgAmZBwAAAAAAAAAAJmQeAAAAAAAAAACYCGYPMOpm/dk/AAAAAElFTkSuQmCC\n",
"<Figure size 1440x360 with 10 Axes>"
"image/png": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"import matplotlib.pyplot as plt\n",
"\n",
"# dd.images: list of 8 x 8 images\n",
"# dd.target: label\n",
"\n",
" plt.subplot(1, N, i + 1).set_title(dd.target[i])\n",
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The data is a set of 8 x 8 matrices with values 0 to 15 (black to white). The range 0 to 15 is fixed for this specific data set. Other formats allow e.g. values 0..255 or floating point values in the range 0 to 1."
"data": {
"text/plain": [
"array([0, 1, 2, ..., 8, 9, 8])"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"images[0].shape: (8, 8)\n",
"images[0]:\n",
" [[ 0. 0. 5. 13. 9. 1. 0. 0.]\n",
" [ 0. 0. 13. 15. 10. 15. 5. 0.]\n",
" [ 0. 3. 15. 2. 0. 11. 8. 0.]\n",
" [ 0. 4. 12. 0. 0. 8. 8. 0.]\n",
" [ 0. 5. 8. 0. 0. 9. 8. 0.]\n",
" [ 0. 4. 11. 0. 1. 12. 7. 0.]\n",
" [ 0. 2. 14. 5. 10. 12. 0. 0.]\n",
"print(\"images[0].shape:\", dd.images[0].shape) # dimensions of a first sample array\n",
"print()\n",
"print(\"images[0]:\\n\", dd.images[0]) # first sample array"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To transform such an image to a feature vector we just have to flatten the matrix by concatenating the rows to one single vector of size 64:"
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"image_vector.shape: (64,)\n",
"image_vector: [ 0. 0. 5. 13. 9. 1. 0. 0. 0. 0. 13. 15. 10. 15. 5. 0. 0. 3.\n",
" 15. 2. 0. 11. 8. 0. 0. 4. 12. 0. 0. 8. 8. 0. 0. 5. 8. 0.\n",
" 0. 9. 8. 0. 0. 4. 11. 0. 1. 12. 7. 0. 0. 2. 14. 5. 10. 12.\n",
" 0. 0. 0. 0. 6. 13. 10. 0. 0. 0.]\n"
]
}
],
"source": [
"image_vector = dd.images[0].flatten()\n",
"print(\"image_vector.shape:\", image_vector.shape)\n",
"print(\"image_vector:\", image_vector)"
"### 2nd Example: How to present textual data as feature vectors?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If we start a machine learning project for texts, we first have to choose a dictionary (a set of words) for this project. The words in the dictionary are enumerated. The final representation of a text as a feature vector depends on this dictionary.\n",
"\n",
"Such a dictionary can be very large, but for the sake of simplicity we use a very small enumerated dictionary to explain the overall procedure:\n",
"\n",
"\n",
"| Word | Index |\n",
"|----------|-------|\n",
"| like | 0 |\n",
"| dislike | 1 |\n",
"| american | 2 |\n",
"| italian | 3 |\n",
"| beer | 4 |\n",
"| pizza | 5 |\n",
"\n",
"To \"vectorize\" a given text we count the words in the text which also exist in the vocabulary and put the counts at the given `Index`.\n",
"\n",
"E.g. `\"I dislike american pizza, but american beer is nice\"`:\n",
"\n",
"| dislike | 1 | 1 |\n",
"| american | 2 | 2 |\n",
"| italian | 3 | 0 |\n",
"| beer | 4 | 1 |\n",
"| pizza | 5 | 1 |\n",
"\n",
"The respective feature vector is the `Count` column, which is:\n",
"In real case scenarios the dictionary is much bigger, which often results in vectors with only few non-zero entries (so called **sparse vectors**)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Below you find is a short code example to demonstrate how text feature vectors can be created with `scikit-learn`.\n",
"<div class=\"alert alert-block alert-info\">\n",
"<i class=\"fa fa-info-circle\"></i>\n",
"Such vectorization is usually not done manually. Actually there are improved but more complicated procedures which compute multiplicative weights for the vector entries to emphasize informative words such as, e.g., <a href=\"https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html\">\"term frequency-inverse document frequency\" vectorizer</a>.\n",
"</div>"
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0 1 2 0 1 1]\n"
]
}
],
"source": [
"from sklearn.feature_extraction.text import CountVectorizer\n",
"\n",
"vocabulary = {\n",
" \"like\": 0,\n",
" \"dislike\": 1,\n",
" \"american\": 2,\n",
" \"italian\": 3,\n",
" \"beer\": 4,\n",
" \"pizza\": 5,\n",
"}\n",
"# this how one can create a count vector for a given piece of text:\n",
"vector = vectorizer.fit_transform([\n",
" \"I dislike american pizza. But american beer is nice\"\n",
"]).toarray().flatten()\n",
"print(vector)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Most applications of ML belong to two categories: **supervised** and **unsupervised** learning.\n",
"In supervised learning the data comes with an additional target/label value that we want to predict. Such a problem can be either \n",
"\n",
"- **classification**: we want to predict a categorical value.\n",
"- **regression**: we want to predict numbers in a given range.\n",
"Examples of supervised learning:\n",
"- Classification: predict the class `is_yummy` based on the attributes `alcohol_content`,\t`bitterness`, \t`darkness` and `fruitiness` (a standard two-class problem).\n",
"\n",
"- Classification: predict the digit-shown based on a 8 x 8 pixel image (a multi-class problem).\n",
"\n",
"- Regression: predict temperature based on how long sun was shining in the last 10 minutes.\n",
"\n",
"<table>\n",
" <tr>\n",
" <td><img src=\"./images/classification-svc-2d-poly.png\" width=400px></td>\n",
" <td><img src=\"./images/regression-lin-1d.png\" width=400px></td>\n",
" </tr>\n",
" <tr>\n",
" <td><center>Classification</center></td>\n",
" <td><center>Linear regression</center></td>\n",
" </tr>\n",
"</table>\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Unsupervised learning \n",
"\n",
"In unsupervised learning the training data consists of samples without any corresponding target/label values and the aim is to find structure in data. Some common applications are:\n",
"- Density estimation, novelty detection: find a probability distribution in your data.\n",
"- Dimension reduction (e.g. PCA): find latent structures in your data.\n",
"\n",
"Examples of unsupervised learning:\n",
"- Can we split up our beer data set into sub-groups of similar beers?\n",
"- Can we reduce our data set because groups of features are somehow correlated?\n",
" <td><img src=\"./images/cluster-image.png/\" width=400px></td>\n",
" <td><img src=\"./images/nonlin-pca.png/\" width=400px></td>\n",
" </tr>\n",
" <tr>\n",
" <td><center>Clustering</center></td>\n",
" <td><center>Dimension reduction: detecting 2D structure in 3D data</center></td>\n",
" </tr>\n",
"</table>\n",
"\n",
"\n",
"\n",
"This course will only introduce concepts and methods from **supervised learning**."
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## How to apply machine learning in practice?\n",
"\n",
"Application of machine learning in practice consists of several phases:\n",
"\n",
"1. Understand and clean your data\n",
"2. Analyze model for its quality / performance\n",
"2. Apply this model to new incoming data\n",
"\n",
"In practice steps 1. and 2. are iterated for different machine learning algorithms with different configurations until performance is optimal or sufficient. \n",
"\n",
"\n",
"<div class=\"alert alert-block alert-warning\">\n",
"<i class=\"fa fa-warning\"></i> <strong>Garbage in / garbage out</strong>\n",
"\n",
"The principle of \"garbage in, garbage out\" also applies in machine learning.\n",
"\n",
"Cleaning data to remove strong outliers or erroneous entries is crucial in real-world problems and can be the most time-consuming part.\n",
"\n",
"</div>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"./images/303yin.jpg\" width=35%/>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Our example beer data set reflects the very personal opinion of one of the tutors which beer he likes and which not. To learn a predictive model and to understand influential factors all beers went through some lab analysis to measure alcohol content, bitterness, darkness and fruitiness."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. Load the data and show the overall structure using `pandas`"
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(225, 5)\n"
]
}
],
"source": [
"import pandas as pd\n",
"\n",
"# read some data\n",
"beer_data = pd.read_csv(\"beers.csv\")\n",
"print(beer_data.shape)"
]
},
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>alcohol_content</th>\n",
" <th>bitterness</th>\n",
" <th>darkness</th>\n",
" <th>fruitiness</th>\n",
" <th>is_yummy</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>3.739295</td>\n",
" <td>0.422503</td>\n",
" <td>0.989463</td>\n",
" <td>0.215791</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4.207849</td>\n",
" <td>0.841668</td>\n",
" <td>0.928626</td>\n",
" <td>0.380420</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>4.709494</td>\n",
" <td>0.322037</td>\n",
" <td>5.374682</td>\n",
" <td>0.145231</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4.684743</td>\n",
" <td>0.434315</td>\n",
" <td>4.072805</td>\n",
" <td>0.191321</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4.148710</td>\n",
" <td>0.570586</td>\n",
" <td>1.461568</td>\n",
" <td>0.260218</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" alcohol_content bitterness darkness fruitiness is_yummy\n",
"0 3.739295 0.422503 0.989463 0.215791 0\n",
"1 4.207849 0.841668 0.928626 0.380420 0\n",
"2 4.709494 0.322037 5.374682 0.145231 1\n",
"3 4.684743 0.434315 4.072805 0.191321 1\n",
"4 4.148710 0.570586 1.461568 0.260218 0"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# show first 5 rows\n",
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>alcohol_content</th>\n",
" <th>bitterness</th>\n",
" <th>darkness</th>\n",
" <th>fruitiness</th>\n",
" <th>is_yummy</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>225.000000</td>\n",
" <td>225.000000</td>\n",
" <td>225.000000</td>\n",
" <td>225.000000</td>\n",
" <td>225.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>4.711873</td>\n",
" <td>0.463945</td>\n",
" <td>2.574963</td>\n",
" <td>0.223111</td>\n",
" <td>0.528889</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>0.437040</td>\n",
" <td>0.227366</td>\n",
" <td>1.725916</td>\n",
" <td>0.117272</td>\n",
" <td>0.500278</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>3.073993</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>4.429183</td>\n",
" <td>0.281291</td>\n",
" <td>1.197640</td>\n",
" <td>0.135783</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>4.740846</td>\n",
" <td>0.488249</td>\n",
" <td>2.026548</td>\n",
" <td>0.242396</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>5.005170</td>\n",
" <td>0.631056</td>\n",
" <td>4.043995</td>\n",
" <td>0.311874</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>5.955272</td>\n",
" <td>1.080170</td>\n",
" <td>7.221285</td>\n",
" <td>0.535315</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" alcohol_content bitterness darkness fruitiness is_yummy\n",
"count 225.000000 225.000000 225.000000 225.000000 225.000000\n",
"mean 4.711873 0.463945 2.574963 0.223111 0.528889\n",
"std 0.437040 0.227366 1.725916 0.117272 0.500278\n",
"min 3.073993 0.000000 0.000000 0.000000 0.000000\n",
"25% 4.429183 0.281291 1.197640 0.135783 0.000000\n",
"50% 4.740846 0.488249 2.026548 0.242396 1.000000\n",
"75% 5.005170 0.631056 4.043995 0.311874 1.000000\n",
"max 5.955272 1.080170 7.221285 0.535315 1.000000"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# show basic statistics of the data\n",
"beer_data.describe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. Visualy inspect data using `seaborn`\n",
"\n",
"Such checks are very useful before you start throwning ML on your data. Some vague understanding how features are distributed and correlate can later be very helpfull to optimize performance of ML procedures.\n",
"\n"
"image/png": "iVBORw0KGgoAAAANSUhEUgAABg8AAAWFCAYAAAA+cEcQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8VPW9P/7XnEkyyWQSsickJJDIqiRBRBZpIeKC4G2tWkGxeIv799rqtVo3il6lKG39+bXt9Wq1vSrWtXX7esXtgsEFcENIUGSRQICELGSdTLaZc35/TM4w+5wzc2bN6/l49FGTDGfOLOf9+XzO5/N5v3WSJEkgIiIiIiIiIiIiIiIaIUT7BIiIiIiIiIiIiIiIKLZw8oCIiIiIiIiIiIiIiFxw8oCIiIiIiIiIiIiIiFxw8oCIiIiIiIiIiIiIiFxw8oCIiIiIiIiIiIiIiFxw8oCIiIiIiIiIiIiIiFxw8oCIiIiIiIiIiIiIiFxw8oCIiIiIiIiIiIiIiFxw8oCIiIiIiIiIiIiIiFxw8oCIiIiIiIiIiIiIiFxw8oCIiIiIiIiIiIiIiFxw8oCIiIiIiIiIiIiIiFxw8oCIiIiIiIiIiIiIiFxw8oCIiIiIiIiIiIiIiFxw8oCIiIiIiIiIiIiIiFxw8oCIiIiIiIiIiIiIiFxw8oCIiIiIiIiIiIiIiFwkRfsESJl169bhu+++w9SpU7F69eponw4RUdxjXCUi0h5jKxGRthhXiYgomjh5ECe+++47fP7559E+DSKihMG4SkSkPcZWIiJtMa4SEVE0MW0RERERERERERERERG54OQBERERERERERERERG54OQBERERERERERERERG54OQBERERERERERERERG54OQBERERERERERERERG54OQBERERERERERERERG54OQBERERERERERERERG54OQBERERERERERERERG5SIr2CcS7Y8eO4bHHHsMnn3yCjo4OZGdno6amBjfffDPy8/OjfXpERERERERERERERKpx50EI6uvrcdFFF+HVV1/FmDFjsHDhQgiCgFdeeQUrVqxAd3d3tE+RiIiIiIiIiIiIiEg1Th4EaWhoCLfffjt6e3vxm9/8Bm+99RYee+wxvP/++1i8eDEaGxvx5z//OdqnSURERERERERERESkGicPgrRx40YcOnQIP/rRj7By5UrH7w0GA+6++27k5eWhoaEhimdIRERERERERERERBQc1jwI0vvvvw8AWLVqlcffxo4di08//TTSp0REREREREREREREpAlOHgTp22+/RXJyMqZOnYrm5ma89dZbaGxsRFZWFs4//3xUVVVF+xSJiIjIC0m0QSfoff5MRBRrGLeIiGIfYzURJSJOHgRhaGgIzc3NKCoqwrvvvovVq1ejv7/f8fennnoK11xzDe644w6/x3nttdfw+uuvK3rOPXv2hHTORESjAeMq+SOJInSCgP7Du2Guq4XN3AW9KQumqhoYy6sdfyciV4yt0cO4RZSYGFcTC2M1ESUyTh4EwWw2AwC6u7tx55134oILLsBNN92E3NxcfPLJJ7j//vvxt7/9DePHj8fy5ct9HufYsWP4/PPPI3XaREQJj3GVfJFEEeJgH46/tA6DTftd/mbe/REMxZNQdPlqCIZ0Du6I3DC2RgfjFlHiYlxNHIzVRJToOHkQhKGhIQBAf38/fvCDH+Dhhx92/G3p0qUwGo244YYb8Nhjj2HZsmXQ6XRej1NSUoLZs2cres49e/agt7c39JMnIkpgjKvki04QvA7qZINN+3H8pXUoWbU+wmdGFPsYW6ODcYsocTGuJg7GaiJKdJw8CEJqaqrjv6+44gqPv9fU1KCwsBAtLS04dOgQysvLvR7nkksuwSWXXKLoOVeuXMmVCUREATCukjeSaEP/4d0+B3Wywab9sDTUIW38dK4MI3LC2Bp5jFtEiY1xNTEwVhPRaMCoFYSMjAwkJycDAMaNG+f1McXFxQCAzs7OiJ0XERERedIJepjrahU91lxXy0EdEUUd4xYRUexjrCai0YCRKwh6vR6nnHIKAKClpcXrY9rb2wEAubm5ETsvIiIi8s5m7lL2uD5O+hNRbGDcIiKKfYzVRJToOHkQpAULFgAA3n33XY+/HTx4EMeOHUNBQQFKS0sjfWpERETkRm/KUva49OwwnwkRkTKMW0REsY+xmogSHScPgnT55ZfDaDTijTfewFtvveX4fXd3N37zm99AFEVceeWVELgtjYiIKKok0QZTVY2ix5qqaiCJouLj+vuZiEaHcMSCcMUtIiLSTiRjNfudRBQtLJgcpJKSEqxbtw6//vWvcfvtt+Ppp59GQUEBdu7cic7OTsydOxfXXHNNtE+TiIho1NMJehjLq2EonuS3oJ2heBKM5VUBjyeJInSCgP7Du2Guq4XN3AW9KQumqhoYy6sdfyeixBbOWKB13CIiIu1FIlaz30lE0cbJgxAsXboU5eXlePzxx/HFF1/gwIEDKC0txdVXX41Vq1Y5iioTERFRdEmiiKLLV+P4S+u8Du4MxZNQdPnqgAMwSRQhDvZ5PY5590eO4wiGdA7kiBJYJGKBVnGLiIjCJ5yxmv1OIooFnDwI0bRp0/CnP/0p2qdBREREfugEAYIhHSWr1sPSUGdfudXXCX169sjKrSpFgzqdIPgcHALAYNN+HH9pHUpWrQ/HyyCiGBGJWKBV3CIiovAJZ6xmv5OIYgEnD4iIiGhUkAdtaeNPc9k6LuefDTSok0Qb+g/v9rstHbAP5CwNdUgbP5039YgSUCRjQahxi4iIwi8csZr9TiKKFYwsRERENKroBL3bz8q6QzpBD3NdraLHmutqOYAjSlDRiAXBxi0iIoocLWM1+51EFCsYXYiIiIgUspm7lD2urzPMZxI6SbT5/ZmIfEukWDAaMf4RUTxI5LaGcZgofjBtEREREZFCelOWsselZ4f5TIIn593tP7zbnpfX3AW9KWskL281c6gTKZAIsWA0YvwjoniSiG0N4zBR/OHkAREREZECkmiDqaoG5t0fBXysqaomJgc/kihCHOzzWnzPvPsjGIonoejy1RAM6TF37kSxIhFiwWjE+EdE8SQR2xrGYaL4xKuRiIiISAGdoIexvBqG4kl+H2congRjeVVMDnp0guB1wCYbbNqP4y+ti8lzJ4oViRALRiPGPyKKJ4nY1jAOE8UnXpFERERECkmiiKLLV/scyMkrpiRRjPCZBSaJNlgadvkcsMkGm/bD0lAXk6+BKFbEcywYjRj/iCgeJVJbwzhMFL+YtoiIiIhIIZ0gQDCko2TVelga6uy5Wvs6oU/PHsnVWhWz28Z1gh7mulpFjzXX1cJYXhXeEyKKY/EcC0Yjxj8iikeJ1NYwDhPFL04eEBEREakgD9DSxp/mMrCRV0jF8gDOZu5S9ri+zjCfCVH8i+dYMBox/hFRPEqktoZxmCg+xU+UISIiIoohOkHv9nPsd6v0pixlj0vPDvOZECWOeIwFoxHjHxHFs0RoaxiHieJT/EUbIiIiIlJNEm0wVdUoeqypqoa5ZokoYTD+ERFFF+MwUfzi5AERERHRKKAT9DCWV/ssuiczFE+CsbwqLle0ERF5w/hHRBRdjMNE8YtXIxEREdEoIYkiii5f7XPgZiiehKLLV3O1FxElHMY/IqLoYhwmik8smExEREQ0SugEAYIhHSWr1sPSUAdzXS1sfZ3Qp2fDVFUDY3kVJFHkai8iSjiMf0RE0cU4TBSfOHlAREREpAFJtLkUs3P/OVbIA7K08afBWF7l+L28yosDNiKKhGjETMY/IiLvIhWTGYeJ4g8nD4iIiIhCIK+Q6j+8276CytwFvSlrZAVVdcyuoHIfEMbiORJR4omFmMn4R0RkF62YzDhMFD84eUBEREQUJEkUIQ724fhL6zDYtN/lb+bdHzlytwqGdA6KiGjUY8wkIoodjMlEpASvfiIiIqIg6QTB64BLNti0H8dfWscBFxERGDOJiGIJYzIRKcEIQERERBQESbTB0rDL54BLNti0H5aGOkcuVyKi0Ygxk4godjAmE5FSnDwgIiIiCoJO0MNcV6vosea6Wq7aIqJRjTGTiCh2MCYTkVK8+omIiIiCZDN3KXtcX2eYz4SIKPYxZhIRxQ7GZCJSgpMHREREREHSm7KUPS49O8xnQkQU+xgziYhiB2MyESnByQMiIqIQ2dxygLr/TJEliTa/P2t5XFNVjaJ/a6qqYa5YIlItXPEsGiIVM0NpkxPp/SZyx/5q7IiFWKNFTI6F10FE4ZcU7RMgIiKKVzZRgl7Qof5AOzZ9cQSdvYPIzjDgnDNLMWNygePvFBmSKEInCOg/vBvmulrYzF3Qm7JgqqqBsbza8Xetjpu1YBmM5dUwFE/yW2zOUDwJxvKqUF4aEY0y4Ypn0aQT9GGNmaG0yYn4fhPJ2F+NHbEUa0KJybH0Oogo/Dh5QEREFASbKMEyMIz7n9qOvY2ueUBrdxzFlLJs3HfdXBhTkzkgiwBJFCEO9uH4S+s8BkDm3R/BUDwJRZevhmBIVzWY8Xdcy/c7MO7aR1B0+WqvfwfgeF4OoohIqXDFs1ggiWJYYmYobXIiv99E7K/GjliMNcHE5Fh8HUQUXrySiYiIgqAXdF4HYrK9jZ24/6ntHIhFiE4QfA58AGCwaT+Ov7RO9SDG33HFfjOa/n4fpOEhlKxaj6IV98E0fSHSyqtgmr4QRSvuQ8mq9Rw8EZEq4YpnsUAnCBAM6ZrHTL2gw5Ov10Ov12HC2EwIbm2vvzY5kd9vIvZXY0csxppgYnIsvg4iCi/uPCAiIlLJJoqoP9DucyAm29vYiZ372lA5MS8qgzJJtEEn6H3+nCgk0Yb+w7v9brkG7IMZS0Md0sZPVzSgUXJca2czjv71Vyj++e+QNv40l23dcm5YDp6ISKlwxbNYIp+vVjFTFEVYrTbcduUZjt+d6OrDxm2NeGdrA3otwwC8t8mj4f2m0Ste+quBJEJ/NpZjjZqYHMuvg4jCh5MHREREKukFAZu+OKLosZu/bMSMyflhPiNXoy0PqU7Qw1xXq+ix5rpaxbm0lR5X7Dej6+NXUHDRzW7/PnHeYyKKjHDFs1jkfvMv2Jo0giDAerQeXfUn27v0yhqsXFKN82eXYs2T29Hc3gfAs00eTe83jT6x3l8NJJH6s/EQa5TE5Hh4HUSkPU4eEBERBaGzd1DTx2lltOYhtZm7lD2uz//qu0gdl4jIF8YdZZS0dwXL7sHa6+fi1kc/Qq9l2GubzPebElms9lcDScT+bKLEmkR5HUSkXHxEWSIiohiTnWHQ9HFaGa15SPWmLGWPS8+OieMSEfnCuKOMkvau9ZUHUZhrwpJ55QC8t8l8vymRxWp/NZBE7M8mSqxJlNdBRMrFT6QlIiKKETZRxDlnlip67KJZZbCJUpjPyE4SbbA07FKch1TOZRrvJNEGU1WNoseaqmoUv+5wHZeIyBfGHWVUtXcHd2HJvDIIgs6jTeb7TYksVvurgSRifzZRYk2ivA4iUoeTB0RERCrpBQEzJhdgSpn/FTVTyrIxY3J+xIrPqc1DGk+rtfzRCXoYy6thKJ7k93GG4kkwllcpft3hOm6skESb35+JKPLCHXcS5bpX1d7Vb0FedjoWzCjxaJMTPc7T6Bar/dVAErE/myixRuvXkShtElGii82IREREFONsooT7rpvrc0A2pSwb9103N+KruEZrHlJJFFF0+Wqfgxk5N67aFVDhOm40yefaf3g3Wt/8I5qfvx+tb/4R/Yd3u/ydiKIjHHHH+brv+PB5tL//NDo+fD6ur3u17d3/ubTKa5uciHGeSBar/dVAErE/myixRovXwb4oUXxhwWQiIqIg6AUdjKnJePiWBdi5rw2bv2xEZ+8gsjMMWDSrDDMm58MmShFfxTVa85DqBAGCIR0lq9bD0lAHc10tbH2d0Kdnw1RVA2N5FSRRhE4QIIk26AS949+6/xzsceNBIhYgJEo0Wscd+brv27MNxokzYSyvdvzN2tOOnh3vI33avLi77tW2d4aUJK9tcqLFeSJnsdpfDSQR+7Naxho1fVmthfo62Bclij+cPCAiIgqSPNCqnJiLGZPzHb+XV29FeiAm5yE17/4o4GPlPKSJ1CmXX0va+NNgLK9y/N599VL/4d32gY65C3pT1shAp9rn+xHouPH0HiotQFiyan2Ez4yInGkZd3SCAMk6jMyZ58NycCc6Pnz+ZPyrXIjMmefD2nMCurQMbV9EGAXT3un9vGeJFOeJ3MVafzWQRO7Phhpr5Neqti+rtVBeB/uiRPGHkwdEREQhcr8hEa1BmHMeUn9F5uQ8pInKfeWVfbdB6KucvB03nkiiDf2HdysuQJg2fnrcvUaiRBNq3JFEGyTrMHSCHseevst3/Ft2N8ShAeiSUuLiug9XexfvcZ7In1jprwYyGvqzwcSaWFyxr/Z1sC9KFJ94FRIRESWQRMmnqjWlq5wSeYCSiAUIicg/naCHkJKK46885D/+vfIQhJTUuLru2d4RJS5e354SoS/LvihRfOLOAyIiogTC3M2ePFY56QSk5JdCMBghDlow1HYEkMRRscopEQsQEpFvkmhD/6F6Zas8D+5C2oTKuIl/bO+IEhevb1eJtGKffVGi+JMwkwf/+Z//ieLiYlxyySUBH/vkk09i//79+MMf/hCBMyMiIoostXlIo1l0LRLkVU5CmgmZMxcjc+b5SMrMc/xdLhjas+M9mOtq43YLvBKJWICQiHzTCXqY67coeqy5fguMFdWBHxhDErFWQby2yfF63hQ9gb4z8XZ9h/MaULtiP5b7suyLEsWfhJo8OOOMMxRNHrzzzjtoaGiIwFkRERFpz+ZW+NH9Z1mgPKSxUnQtInQCSq7+PZKzCr0WDM2pWYGM6nPQ+ckr0T7TsEnkAoRE5NtoWOWZCLUK4rVNjtfzpvDy11dV+52J9es7UtdAIsRy9kWJ4lNcTh4cPXoUW7Z4rqBpa2vD888/7/ffHjt2DPv27YPJZArX6REREYWFTZSgF3SoP9COTV8cQWfvILIzDDjnzFLMmFzg+LsSsVh0LZxyzlkJHXQBC4bmLFoZpTMMv9FQgJCIPHGVZ+xT3iYbY2o1/2jrS1BggfqqkmiDOGhJmO9MJK+BRIjl7IsSxae4nDwoKCjAhg0b0NjY6PidTqfDkSNH8Nvf/jbgv5ckCYsWLQrnKRIREWnKJkqwDAzj/qe2Y2+j64qi2h1HMaUsG/ddNxfG1GRFEwhKi66VrFqvyflHkySKSErP8jpxIJMLhpasWp/Qq5zkAoS+PnvnAoSJ+h4QjSZc5Rkf1LTJoihBULhQINxGU1+CAgvUV/23S6ux5KwJCfWdidQ1kEixnH1RovgTl5MHKSkpuPfee/HEE084fvfFF18gIyMDU6dO9fnvBEGA0WjElClTcP3110fiVImIiDShF3ReB2OyvY2duP+p7Xj4lgUBj5VIRdeUkWBp2KXq9cYKrfPnsgAhUXxTGxO4yjP2qWqTD9YhbcJ0ANGfPBh9fQkKxF9fVRB0mH1qPvoOquuPxfJ3JpLXQLhjeSRrlrAvShR/4nLyAADmz5+P+fPnO36eOnUqJk+ejOeeey6KZ0VERKQ9myii/kC7z4kD2d7GTuzc14bKiXl+dx/EWtG1cA9YYu31KhHO/LnxVoCQiEKLCaGu8mQh3PBS1UbV18JYUaUqTWG4xGPbSuETqK9aVpiB3Kx0tG6pVXS8ePjOaHkNKImz4VixH62aJeyLEsWXuJ08cLdhwwZkZGRE+zSIiIh8Ulro2J1eELDpiyOKnmPzl42YMTk/8LnEQNG1SA5YYuH1KhWp/LmxXoCQiOxCjQnBrvJkIVx1gm3jAfVtVLQnDmTx1LZSaN/RQAL1VY2p9ltPifadCfX1qImzWq/Yj4WaJeyLEsWHhJk8mD17drRPgYiIyCstCh139g4qei6lj4t20bVID1ii/XrVYA5pInKmRUxQu8ozFm4qxQst2vh4aqOcxet5jzZafEeV8NcHtQxYASTedyaU1xNMnNVyxT77m0SkVMJMHgCA2WzGyy+/jF27dsFsNsNms0GSJK+P1el0ePbZZyN8hkRENNpoVeg4O8Og6PmUPC6YomuApHEqocgNWOKpyBxzSBORM61jgtJVnryppIwWbbyqNqpyIQYHh5GSLEQ9lVQ8ta2jmVb9UCX89UEbW3pxoqsP6ZXR7X9qKdRrIJQ4G+qKffY3iUiNhLn629racNFFF+Hhhx/G+++/j61bt+Kzzz7D559/7vN/RERE4aa00LG/AZtNFHHOmaWKnm/RrDLYRO8T5zLnomv+yEXX+vZuR//h3QBOrmwKhSTaVBUwDvU5Ha+3ZIrfx8mvN5qDI7X5czmQI0ps0YgJkY7R8Uwv6LD2r9sxOGzDqeU5mDA2E4JTe66kjVfVJldUw2BIRv/h3Wh9849ofv5+tL75R03baKXU9iXYXkWHFv1QJQL1VUVRwsZtjUiviF7/U2vyNZB+2gJA5/v77e0aiHacZX+TiNRImJ0Hjz32GI4dO4a0tDRceOGFKC8vR2pqarRPi4iIRjGtCh3rBQEzJhdgSlm232NNKctWVO8AUFh0bdndGO5sQfvGv0AcMGuaaz8SRRbdV2IWr3wAvbs2o6P2eYj9ZpfHBlNkLlwSLR8wEYUm0jGBhXCVsYkiWjssuPOqM5Cble74/YmuPmzc1oh3tjag1zIcsI0HlBdCFW1WHH9pHQYO1bn8PVqppMJRwJW0o1U/VAklfdV3tjbgwrPGR63/qSXnPmbhT26B9dx/Rc+XG9Gz4z2XPqavayAW4iz7m0SkVMJMHtTW1kKn0+GZZ55BdXV1tE+HiIhI00LHNlHCfdfN9bl6TN52rjRvrd+ia5ULYayoxnBnC5pfXAtxwD4I0jJNRTgHLP6Kz2XOPB+m6QvQ+dHLGGo9FHSRuXAKJn9uNFJWECUa9+soVq6raOQI502lwAQAY/NM6Du4C61bTrY16ZU1WLmkGufPLsWaJ7ejub0vYBtvb5ON9jb5YB3M9Z5tsiSKaHn9//OYOJBFI5WU1gVcSVvu/VBB0KGsMAPG1CRYBqxobOmFOLJbNdB3VIlAfdXiPBNSUpIgGAxR63+Gyl8fM6dmBTLPXIqOzc8BohTwGoh2nI102xKrbSwRBZYwkwcnTpzAxIkTOXFAREQRZxNF6J0GBc4/a1XoWC/oYExNxsO3LMDOfW3Y/GWjo+DdolllmDE5X3XBO19F16zdbeiofQE9X73nGLjJtMp9Gq4Bi9LiczmLVjrOP5gic+GiNve11dyFjs0b7APu8mrepCEKgr+bQdG+rqKVVz7Ripp646/tDkRJW1Ow7B6svX4ubn30I79tvHwDTb6JljbhNBgrTrbJvX0DsFptGDq2B5bvtvs9r2jkJ9eygCtpr7N3EBnGZCw5qxwXzJuA/Kw0x9/auvrx7rZDeGdrg+L+qj9K+6q6kb5qNPqfoVDax8y/8CboBCHgNRDNOBvJtiWW21giUiZhJg/y8vIwMDAQ7dMgIqJRRL5ZX3+gHZu+OOIYIJ1zZilmTC6ATZRQXpyJXfvbAh5LSaFjeWKgcmKuy+owucZBsFvN5RsWnR//A33fbcNQ2xFA8p1bNdTt02pvkIvDAxCSUxUNLoIpPhdLAxbnHNL+8uDKua87al+AuX4LzPVbYnJbP1GsU3ozKFrXlaqYoFFai0QvhKuk7Q7Unippa1pfeRAlq9ZjybxytHVZPB6j9IZaRro9FW/Hzk2KXl+0UkmFWsCVwqO8OBO/vKwahbnp+HpvKza8/a3TDf1SrFwyDefNLsPGrQ2aPJ+avmqk+5+hUtvH9HcNRDvORqptifU2loiUSZjJg7PPPhsvvfQSvvvuO0ydOjXap0NERAnOJkqwDAx73Zpdu+OoI43QlYunYtMXjei1DPs9nlzoWMkEgPvKyFCL3MkGGr/FUOvhgI8Ldft0MDfI+xvqAg4uJNGG/sO7FRefi+bqNX/U1KPo+eo9x+9jaVs/UbwIZsIx0iKdVz4aExaRorTtNqYm+6lPoKKtObgLS+ZNxNE2i0sbH8wNNZcUJzoBKfmlEAxGiIMWl5uuozmVFLmyiSKuXDwVg8M23P7Hj3x+59dcMwcrzp+qegerP2r6qgNH9kSk/xkKrfuYsRBnI9G2xEMbS0SBxd6IOUi//OUvUVhYiFtvvRX19fXRPh0iIkpwekHnM6crYC8+d/9T25FqSMLKJdP8HksudKzFgE0SbX5/9ieS26flAYuheJLXv7vfIJcHF4EGYmqKz8XixAHgmkO6aMV9ME1fiLTyKpimL0TRFfeiZNV6iEMDLvmAZfKgVd4qT0S+SaINloZdim8GReu68hsTVtyHklXrNV+1qShGj9xUiidK225/7bGqtqZ+C/Ky0z3aeKU31Jw/U70pC0KaCVnzL0XZLx7HuOseQfFVv8W46x5B2S8eR9b8SyGkmeI6lRRpSy8ISDUkYe3fPvP7nV/7t8+QakjSbOIgEPe+acFP/t3x/fUnmt/tcPQxox1nw922xEsbS0SBJczOg8ceewzTp0/HBx98gGXLliErKwsFBQVITk72+nidTod//OMfET5LIiJKBDZRRP2Bdp8DMdnexk7s3NeG8+aMx4dfHsGew6EXOvYl1Hyikd4+HWzB5kCruaJdfE4rwdSjkEV7Wz9ROISSn94XtTeDop0uA4hcXnnnGD3QdACWvZ9j8PgB6I1ZcVsIV23bXTkxz2e7rLatcd11oH4FMyAhY+b5yF54OZKzCmE5uBMdHz5/sq2vXIicmhXIqD4HVnNn3H02FB5afue14LOvWlnj+P42v7gW1s5mr/8+2mnStO5jalVwPJT2MZxtSzy1sUTkX8JMHvz973+HTjfSIZMkdHZ2orPTd9CWH0tERKSWXhCw6Ysjih67+ctGzJicj9/ffLJ4XLd5EKeMy8K8ymJMKs3SZOIg1Hyi8vbp9NMWwNbT5pEGQabl9ulgbpAHGlyEsntCLloZS5zPp+3tx9G7a7PffMBA7E+MEKmhRX56v8ePswnHyOaVt+coTy2eiNTiiY4YGa+FcINpu30eS2Vb457nPZgbaqklUyAOmHH4+WcgAAAgAElEQVTs6bt8t/XL70HqmPy4+2woPLT8zodKUV912d0Ye8UaHHv6Doj9Tv0/nYD0U38Q9ZvL4dihq+bmvXs/Vf75+6Pd2PFdK9q7+zE0bMOiWerbx3C1LfHWxhKRdwkzefDQQw9F+xSIiGgU6ewdVP04uXic54ogCUDwN7+CySfqbVWSJNpQ+JNbHD9be9rRs+N99Ox4D2K/WfO82vI56AQ92t5+HMMnjvmctHD8Gz+DC7W7J8ShAbS/+yRsvZ2Kdmn4GrRFimQdCjhxAER3Wz+RlrTITx+I2ptB4dgBoRWtYlSgnWxaiNb76KvtFgQdygozYExNgmXAim6z7zZei516wdxQ0wkCjr/8oP+2/uUHI5I7PJavA3IVTH/Vn2A/e0V91VceQsmq9cicuRhdn74KIc2EzJmLkTlrKZKcYnUwsS3U76wk2mCqXKjsuq9cqLqv7O/mfaCYPGncGEwus7dRJ7r6sHFbI1778AB+vXJWSO2jFiKZEpWIwidhJg8uvvjiaJ8CERGNItkZhiAeZ++8a7mCVl3hxjoM50/C39761mVVkgDJ7zbyzDOXYrjjONJKp2oyceC8krhufzuuuvBUSNYhDBzZE/Df+htcqC0+11H7Asz1Wxy/97VLI9SUUO6CucEX6bRSRLFAaX76h29ZENTxg7mu1MbvSEw6ahmjtNjJ5k+4d5IE4t52ZxiTseSsciydV4bcrHTH7819Az6PoUWhU6U31FIKJoysQJbQf0i7Yq3BivbnR+oF11/1FMpnrzZV15jZ/wKruQM5Z69EUvoYWBp2oWPTs0HFNq2+szpBD2PFDGXXfYU2k6yAipickoa+73cgNcWIlUumo+WEGY/9Yyfu+tfZIT5/8G0Y+65EiSNhJg+IiIgixSaKOOfMUtTuOBrwsYtmlcEm2lM/hGMFrbrCjbUouKgKDU09WPOXbTh9cj7+49o5EIcsAQclqSWTRp4v9IkD5/dBEHS4cP54pFdqM7iQi8/5Wt0mp3WQCzG7c9+loeWNNHnA1X9oN8z1rpM0xopqvwMyLW5WEcWTSOTqVntdvbO1Af/1ap3L33zFb60nHX3R+mZ/MDvZlIrEThL/z+/ado/NS8dvb5iLghwT+g7uQusW17iMCn870RS0NT526im9oSakmZC9YDnEoX7oU9Nhrq9V9DrDlTs82p8fqRdMf9XbZxfqZ686VddFNyN/6b9BHOzzn6YrQGzT8jsriTZI1mEULbsbx195yPd1v+xuiEMD0CWlaBLj1cRk0+TZGO5swfFX/4DcC27Aqn85FfUH2nFqRW4Qi5NCb8PYdyVKHAk3rWexWPDcc8/huuuuw7nnnou5c+cCADo6OnDnnXdiz57AqxqJiIj80QsCZkwuwJQy/1tsp5RlY8bkfOgFneIVtMEMuNWmPzCm2tcOTCrLhqDXKxqUaLVS1v19EEUJG7c1Ir3CPrjwRx5c+BusOBefK7riPpimL0RaeRVM0xeiaMV9KFm1HuJgv0shZnfyyjd5YKTs/Qk8cSAOWnDs6btw/MUHYN79EfoP1cG8+yMcf/EBHHv6LoiDFkiizc8x7DerfL1PzjeriOKd2lzdwd6sVHpddXRbsGGj93GEe/yWb+gfe/ouHH/B7Xp/Qb7e+zS5VrWKUfbztsHSsEvx6mC1568XdFj71+0YHLbh1PIcTBibCcHpcwulHVT2/Cfb7gxjMn57w1xkG0Qce/outPiMy94/J5e2ZoX3tsbXTU3nG2r+5NRcCSElFR2bnwMQ/dzh4ezHUHgE01/1fpzQP3u1318tYpuW31mdoIeQkgrJZh3pY97ret1fcS9KVq2HZLNCSEnVaHJYRUw+uAtWcyeElFTkLroK7W8+isJcE7r7BoOaONCqDWPflSgxJNTOg2+++Qa//OUv0dzcDEmyr/KUCyMfOXIEb775Jt5++2088MADuOSSS6J5qkREFMdsoojhYRFrrpmDtX/7zOugZEpZNtZcMwcDg1YkJwsqV9DmuuRhFUUREuAzV6vafKKWASsEQYel88rQd1D5jaJQ0yD4Wkn8ztYGnD+7FAXL7kHrK97zOauptyD/XSycjIIK1+Jz5j1b0b7xLz4nDmTyys3+o3s1eX90grJJGn+reZ1vVlka6uwrwSxdMBRNhHHK7JGCpvb3J9r1GYi0oHWubm+8Xld9ndCnZ4+ssKzC4OAw7vqvLTD3D/s8jhy/qybmQQjj6n3na9klFYhOQEp+KQSD0aN2jNIYHmwhXyVsoojWDgt+fdWZyM9Kc/y+rasf7247hHe2NqDXMhzSThJn3mJgS+cAdDpgzTVzsLWuGQU5Jq+rmmWBPic1hU49zy/AzoWSKcioXmS/cXhsH4Do5g6PxE4g0p5NFDGksr8KePY3WzssaGr3328K9Nmr/f6G2v8Kx3dWEkXoklPQ/dV7SJ84EwUX3ez4m7W7Dd1fvQfTqWcFvbPMPW6p2128BQUX3YyWNx5F4U/+HYbiibAc3IXKismqz0PLHWhK2lg5NZsz9luJYkvCTB60tbXhuuuuQ0dHB6qrq7F06VK88sorOHjwIAAgLy8Pc+bMwWeffYbVq1djwoQJmDlzZpTPmoiI4pFeEPDMe9/iwvnlePiWBfh6Xys+/PJkHtWzZ5Xi9MkFOH6iD69+uB9X/2g6du1vV3TszV82YsbkfDz79rfo6BnAqn85DVkZBuzc1+o1V6uqfKKVC9He2YfGll6UFWYgNysdrVtqFZ2XFmkQ3FcSOxeo/Msbu3HDT6bbBxcHd8Fcv8Xr4EJ53m4bTOmpjp97+waQkZ6K3h0fBJw4AE6ufBtoqAvwSDt/748k2lTmqj7NT/oi15tVnoMr++Ar3KlSiCJBq1zdgQS6CfzX//cNmtv7Ah7nw68aUT0xB5YG7XPTu6eQ0CUZkH/hjejbsx1Z8y9F5szzkZSZ53i8e8F7pTE8fKvbdRibZ8J3hzqw6fNGtHf3Y2jYhrPPKMXKJdNw3uwy3PvkNjS39znaQSV8TZR6i4FF5dVo7+zD0LANF8wthUWjyXN/hU598XtDrbIGxpGJb3NdLYbajsDa0668WGsYcoer3Qmk9POj8NILAl5Q2V9tONaF12q/9+hvPvLvCx3XqC/ePnt7bS0RJpXpKXt3eKaW9MZXbPPX57QMWNHY0gtxJK2o0u+sfN2OOWMxLA116N7xPiTrEHRJKUibUIkxZywOqQ6WTtDDZumBZf+XsFl6kTXvItUx2dbTDsvBXcg8/Tx0bHkJBT9WV39BbX0KOTb6W7Tir42V3y9Lwy72W4liWMJMHjz55JPo6OjAlVdeiTVr1gAA3nvvZINTUlKCZ599Fg8++CA2bNiAZ555hpMHRCHoP7w75GOkjZ+uwZkQRUdDUw9+9egWLJlXjgvmjcevVpzh+FtbpwXPbdyDjVsbMLHUvtJqaNh3Ohpn8graQ83duPHiKuh0wO1//MhnrtZ1/+cs5flEK6rx6sY9EEXJkboo0mkQOnsHfRao7Oi2YOfeVpQWTkTBRScHO0pWcTo/1luO1owzLgDSp6he+WbtUTbp4+/90Qn6MOSqtq+Ok1+nODSIvKXXQ6fT4/jL4Sl0ShRJWuXqVsPXTeDmExZF/z4lSR+W1fve6hqklk4DAGT/cBmSMrJhObgTHR8+75SzfyFyalYgo/ocNL+4VnEMD8fqdpsowWq1wTw4jKkTcjB1Qg4A4ERXHzZua8SbWw7gtp/NwkP/Nh9/+PuX6DYH3kniHuuVxsCCZffAbE0KU1xWR4QO1iErhnInoeCik8dv7+zDx9sOYfG8CfY2WhLRs+N95NSsiGru8EjsBCLtqe2vvrv9sEvclfuba66Zgweun4dfPboFvRbvu7DcP3u55sAnO5uw5Cx1ue9tvcpilr/Y5q/PKcefd7Y2qPrOhrLjyJnPmgKVC5FRvQjDPScAqI/J4qDFsQtBlzTS11fRPqppw/q//9oxnleyaMXbwhgta/YQUfgkzORBbW0tjEYjfv3rX/t93G233YbXXnsNO3bsiNCZESWu/sPfBP1v08afpuGZEEWeY6WrDoDOrUOu0wE6+//Jj0tJVrb1Vn78zKmFKMxN9zpxINvb2Il1T3+O+6+bG7BwY8Gye9BywoyNWxsA2FMXAZFPg1BenImbl1V5LVCZXlmDGVOq0XrCjNdrD+DimokA1A3EfA5CvvkEZTc/pXyXxsjKN8nmO02JM/f3x30FlpaTNN5eZ9b8S5GUnhVSCg6iWOKcq9tf2gk5V3c4Kd3ZkDeSjkfrSVlfKSQkUYROr/dfUHTZ3Rh7xRp0bXsz4POo2smmYnW7AAmGlCRYj36D1s2uMX/lkmrYrFboR25yrb/phzD3DQQ4z+BjYOsrDzpiYCzUELjz8a3Yf7TLY0V0WWEGFs+b4Gije3a8h4zqcwIXa1WY3i8YkdoJRNpS21/t8nIjfW9jJ9b+7TM8fMsCLJlXjlc27fP/XCPkmgNN7WbMnJKnKj2lFv3TQH3OlUuqcf7sUry99ZCi53IWzI4jmaJC98vuhmQdVr7jqHIhrN1tGGo7An36GABAUoa9bVQ7sa4kNgppJoyZ++OQbv5rmR6JiMIrYSYPWlpaMHnyZKSmpvp9nMFgwPjx47F3794InRkRESUamyhiyVkT8LMLpqIwNx1f723Fhre/dWzxXjTrZBqGjp5B2EQR1ZPy8M/N/rcAA8DZs0rR1mnB3Olj8fXe1oC5Wr/e14Y9h7swbfwYH+kPFsJYUY2WE2aseXK7I2d3Y0svTnT1IV3lNvJQax787IIpEIb7/d7sKlh2D5bOG696JbHfQYgkoufLjapWbkqiaB+01W8J+NymqhrYLD1ofeNR6NPHeKy4UjsI9vdee7xOIQmZs5bAcnBnxOpXEEWCTZRw33VzfRa8nFKWjfuum6vJrgPf5yDixwsqcKi5xyXNhTM5HcbcyrEAtJ2U9ZVCInX8afZY8LL3G3HAyI2XVx5Cyar1GDP3xwFjuHMhX61Wt0uiDbYBC1r87YhavhrWQRvaNz4JIcUAU2UNUOE7XYVHDNQJyJx5vvIYeLAOaROmQ5+hbFI80OcUTI0Z93zsh5p7XP7u3kaL/WY0v7gWY69Yo1l6PzWisROIQqe2vzpsFfH5nhavx9rb2Imv97Xignnj8c8P93uNhc6fvft3fM2T27H2+rmKvr9aTGSq6XNeef6UiH5nHTGs+XukFIz3qFXjHLuNFTMU7y7u/OSfgCQ6Ylaq1/SWgflsw5xq66RPOwtJpuygF60Emx6JiKIjYSYP0tLS0NraquixnZ2dMJlMYT4jIiJKVHpBwJTxOTBbhvymFFpzzRxMGW+EXtApXkF7+uQCvPXxQfzohxXY8Pa3APznaQWAd7c14NRy+zZ0923UXT39eHVkS7pzsU9RlLBxWyNWLgnuRlEwN0v0ggB9ioBjz69RvDJUKSWDEMfKzeWrvaa1AJxXvtlU30jrqH0B/Q27ALivuDKqzPXrWhDV/X2WX6eQZkLmzMXInLUESaZsdGzaEPD4QPhScBBpTS/oYExNxsO3LMDOfW3Y/GWj002vMsyYnB/WGz6SaINe0GNSaTb+fPvZLmkuei3DXtNhaL1632sKCZ2AzNPPU56z/+AupE2oVJz6LdBONjWr23WC3uvEgfP5HX/ZfnMpJX8cuj591e+KVW+xPiW/FEmZeej48PmA5wMA5vpaGCuqkL3wClgOfAWx338dHF+fk/y7geYDGDhYB2vPCUi2IfukfYBc3YFqCHhro62dzTj29B32uH/6eS7FWtWmTFErlnYCkXJq+6vffN8Oq1X0ebwPvzyCX604A2WFGR4TXu6fvft3vLm9D7c++hGWzCvHknmu6Sl7R3YbOae3CXUiM5x9zlBIog39R/YgrbwKhZfe7rNWzWDTflgO7UbauCmBdxwtt8dk0/QF6K2rte9CMHcibZz6Ysne2jBHf9Otto44PIi08ioMdzb7jKO+bv6HI8UfEYVPwkweTJ8+HVu3bsVnn32GOXPm+Hzctm3b0NTUhPnz50fw7IiIKNHoBR3W/u0zvymF5C3egLIVtGuumYPjJ/rw1Xct+NEPKzAwZMOycyfjgnkTkD+SDgMA2rr68e62Q44bWM65Wl1S5YgS9El67Nrf5jJxINvf2AnRZlN1o8hnjlYFhc3CucpIySBEXrlZ8vMH/e7SkEQRkETHzZiA78+yuzHc2YKer1yL+zmvuDJWKB8ED7YeRscHz3h9X+XXmZQ9FmNXrEFyViEGmvYjyZQdlRQcwUwiEakhTwxUTsx1uTFlG5lADcfEga8455zm4s//2IWbl1V7pMPImHkeTNPO0nT1vvu1rf5m+RYYK5QVzfRbyFfl6nZVMX+kwGfX1tdPrrz1smLVW6wXDEYA6tMQJY/Jx7hrH0HT3++DtbPZ62N9fU5yWjubpR9pJVOQVjIFwMmbf93b3kTBxbf6zdUdKM/6O1sbcP7sUhQuX+2YgBH7zej69FV0bX0dKfmlMJRMRs6ilRBS0vweSwuxsBOI1FPTX/3+WLffY8nfWblulszXZ+/+He+1DOOVTfvwzw/3uyyKyck04P7rzwJg3zEgXzHKFnt4j0exurJdJ+iRkjcOxvHTA9aqMe/aDOOE6ZD6rX77rcOdLWh75wnkX3A9in92P5IycyEOD6raiSQ/dri71WXixrm/6Xm+NS7n6yuO+rr5H65+K/umRNpLmMmDK664Ap9++inuuOMOPPzwwzjzzDM9HrNt2zbcfvvt0Ol0+OlPfxqFsyQiokTgvhXbl72Nndi5rw2VE/MUraA9fqIP9z65DYaR+gg3/bQaWRkGv9vM731ym8/8ws7Puf9IF7bVN+H7o10YY3Jdtav0RpGiHK1+c5uGd5WRkkGIONBrfx3Dg0jJL3VZuWntbkNH7QsYOLYfhRffCiHVpOhG2nBnC5pfXAtxwHPV1WDTfvQfP4jUgvEounw12t/7b9h62ly2pwMnB8GidRgt//gdrF32tAHe3ldxaBBjV6yBkJKGY0/fBck6hHHXPRLR+hWhTCIRBUPv9n0K326DwHGucPlq3H/tHEhDnukwBlsOwlB0CoqW3+MzpZDa1fvu17aim+VO6SV0ySkBn8P1n2pTEFRVzB8p8JmSX4qh1sOAToBkHcJA0wEYiipcntP9dYuD9oLWamNgyxuPIm/xNSj+2f04+tdfeaycDfQ5CckGDBzZg45NWzxu/g13tqBt4xMoutR3Pb5AtQF6LcNY8+R2/OEX8zWZzAlVtHcCkXpq+qtf72vFD6qL8czb33pNSQSc/M6eVpGLlGR9wM/e13dcFCWXnQunTznF8e+tVhv01gG0v/MEchddFXSarlhd2S6JInQ6QVGtmhObngUA9DfUI6Oqxme/teer9yAOmHG85wRKVq0fqYeTHFTNsOHOZpSs+j2Klt2N1jf/iLylN0BITvV9viVTULT8bhSvfAAtrz+CwaN7HX1bma+b/1r3W9k3JQqfhJk8OPfcc3HZZZfhH//4B6666irk5ubCYrF3JG+88UY0NDSgsbERkiRhyZIlWLJkSZTPmIiI4lWgdAPONn/Z6Fgt63sFrYjmdjN+9ehHMPcPY4wpBcNWGwRBF3Cb+QPXz0NbZ7+fAbsEQIdJpVmYVJoFmyhCLwhuq3bt/y7QjSItCpupXWWkZvWQkkFI5szFSDKNFNVs/t5xc839Zv7xlx88OQDzcSPNZulxGbT5Yv56E1IXXwPBYEThT25xeo3d6G/8FoIxE8bxp0G0DuP4yw86Jg5k7u9r9sLLkZxVeHIgpxNg7WlXXlQvxPoVoU4iEUWCHOt8/eyLkjjXMpJmp3vXVo/HeeSmV3nD11vMy1qwDJbvdzhubvu7We4rvUQwKy9DKQgqUxvz9Zm5yJo0y+/5u7/uobYj6mLgSGHRvm8/hbXzOEpWrUfxz3+Hro9fUfQ5SaIN4oDF64po55t/uYuuguXwN0grneY1H7uSGgLN7X1obOnDaempIU/maCEaO4EoeGr6q/5SEsnsNQ1EXLX0VMfvfH32Sr/jGcZkrDh/KiwDw/hkZxOWnDXBkWpoqKUBeRfcgLSyU112T0k2K4DA3/1oF0X3Rk2tGtNpPwAApFVUw3JwF46/9Fuf/Vb53wazi8K93ZPbsLEr7gUArxMHzm2NPi0DAFBy1W9dUi/JbZb7zX9JtAGApin+2DclCq+EmTwAgLVr16KiogJ/+ctf0N7e7vh9bW0tAMBoNOLnP/85brrppiidIRERJYpA6Qb8Pc5zBa2AsXkmlOSbsLexE4vnTkBykh53P/apom3mRbnpHn+XJxPqD7Rj0xdHHKsDzzmzFDMmF3g9pr8bRVpt/1a7ymig6QB6v3o34OohRXnGHUU1T+YJH2o97Pt1jOQJP/nPXd+fjtoXMdx+BEmZuRgatHistAKApOyxyP7hT6ETBFgadnmshDJNmwdJtGHg+EF0b30doqUb0Akexxps2o/+xj1IHTcZKXklrrnOJRE9O95XVQw6FFpMIhGFS6DY529ltNo4lz5xJk54uV6dc9NnnXWpohu+gVZMOqfX8XWz3G96iSitvFQb8/OW3IjkzFzf52+zeU4SqI2BFdXoqH3BkR7J3madpriGgE7Q+0ylArje/Bs8/r33tlBFDYHKifIkSuiTOVqJ1E4gCp3a/qp7SiKZr3oWvj57pd/xlUtORaohCff+6SPcedUZ6Bvp37jHs/7D30AaHoIuOcU+kVYxI+CkaCR3ZCqhNpWb8ZSZsPZ2ICkjx17XShJ99ltlandRyOckWYeQWjrNMSlx7Jm7UPpvj2Gwab/H+fpPZbTQI5WRqaoGNksPWt94FPr0MY54HmpdC2fsmxKFV0JNHgDAqlWrcOWVV+Krr77C999/D7PZjLS0NEyYMAGzZs1CerrnDZZgvfHGG7jzzjt9/v3GG2/ErbfeqtnzERFR7AiUbkDt4+Rcwmv/uh0XzJuAr/e2qkiLlOu2wlaCZWDYa15iedfCfdfNhTE1WfGAXyfoMXh0H1IKxnusdHLna+CitpCo1dyJ5g2/cXkuX6uHlBTX0zJPuCTakL/0BsfP3lZaCWkmjF2xBjpB7397+uWrYSiYgMJLbvN7rOTcYohDA9CnpsNcX+tyLEcx6EBF9VSkSvH1umMxhzAREHrsU5vmwiXNjhs5N7215wQKfvxLp+fwtttA2YpJ5/Q67jfL5XjjN71EhFdeSqINmWdeiKHWwwHbDVNVDSTrMAR9kt/zH3vlf8BYMcMj1iuOgV5q1Li3Wf5uSKq9+ZdadqrPx8jt/pOv16O10wLLgBWNLb2OlDGsIUBaUNtftQxYPf4W7HcxUJ2MaeOzcd6cMnx3qAPF+SbkZqWj9aMtAeNZ99bXvMYz52tX6+L1WlCbys1YUY2B4w1IysgJ2y4KnaCHobAc4657xPE7a087LN9/Db3B6FljRmlbM5J6qf2dv8BYXoWO2hfQ37DL8Zi08moULb9HVd01XzzislPaPucdGuybEgUvYSYPmpqaYDAYkJubi5SUFMybNw/z5s3z+tjvv/8ejY2NOPvss0N6zj179gAA5s+fj5ycHI+/T5s2LaTjExFRbFK6FRuQt3gHHmzJuYR/f7O9wPKGt79VdC7OaZGcj+VroAbYJx3uf2q7o5hzIPJgLPuHlyH7h5d5vbntzHng4tzhV3KDHzi5ykheGerO1+ohSRT9D0JKJtvPL4QBmMfq4L5uGMaeAuOU2R4rrTJnLnZNL+SF82vp3bkZ/Yfrva7aypy5GEnpY9C28QnkL73RM+e3e6qUIPIDK6F1DmEWtSMtaRH71MYHuf6A7+N1BDyWmhWTcnqdofajsPZ1OQqKplVUq4o34SZfy6nFEzHuukf8thvOK0uPP+f9xr98/i3//D2KLv+NR02JgOminAqLuteokT/L9vefhtjf43eXhuo6DhU3+/y7XtDBlKrHbVee4fhdj3kA9d+fQGa6AZUT8zhxQCEJpr96zY+na1bPwl+djPNmj0flxDxIog1TJ+Rg6gT7/ZTcc/4VpsqFwfWfXK5ddX3OSFHbxqSNsxdjD8cuCjnGDR4/ONJnPNmnzTz9PK/nq7hvO7L7qvCnd3hM2AJAf8MutLzxf1F48W0h13SR47KvtH3O7U8k61sQJZKEmTxYtGgRZs2ahb///e8BH3vnnXfi6NGj2L59e0jP+e239hs7Dz30EAoLC0M6FhERxQ816Qa8bfH2fdyTg7Jg0yIFW8zZG59pNLzc3HZ5HW7FKF1XhQW4wV88CUXLV3sdaDjztnpISXFjIPgBmHtBucyZi5Fz9pUuA5SkzFyUrFqPY8/cNZIiaafiFapp5ZVo2/i4x6qtk8fahcFj+3y+BudUKZmnn6c4BYdawU6+uK4IZFE70lYosc/5+6Y2Psj1B3ytdAx0I0f9bh739Do2e30Wmw2Whl0qjhOelZdq2w051kk2G/qP7gl4/v0NuzBwdC9Siyd6nSgd7m5DcnahR30A98Kizhxp8g7XY6j1cMBdGupr93irm+A7Bs6vrnbkBOfEAYUimP6q1vUsfNXJkL/jnrGiBsaKaohDA7B5WaDizGf/aeTaBaDJynYtqW9j+iEkp8BUuRBDrYd91juQKd1FEahPK/fZXM7Xkf5TYd+2oQ5ppdPQ/NI6r7XBLN9tR/+RPUgrnRZ6TRedgJKrfx8wlVLnJ68EeF+4qIXIm7icPLDZbBgaGnL8LEmS4/cDAwOOn91JkoSmpiYcOXIEg4PKbsr489133yEvL48TB0REo1CgrdihphsINi1SsMWc3SlKozFyc7vtrT8DgGMw460YpUzJDX5bfy9OvP+3kzflfPC2eshXcWN5EKJ+G/vJQYO8OtjWb/Y7QDFWzEDJz38HfVq6qhRJzilQnFdt5Z53tSPdUqDCoHKqlK6tryMlvxR5F/4bDEUVmg6K1Q58295+HJJ1yGliwAZx0MKidswelTYAACAASURBVKSpYGOfI9a9/BAKL/mVqsLj1u42WM2dyJp/qc+VjqkBJsNC381jb190em13BQVDUbux/B4Ur3wAnR//E+lT58BYUQ1rT7v9/HduUvQ8vV9/gLSyaej+YiPSJ5/pMpli7W5Dx5YXkXXWJRhoOoDOzc/5vdEGnYCMMxbDau6y15sZqWHhb5eG2hjobeKAhT0pUtT2V8NVz8L5uPZrIEA/YPk99gUUT9/hdZer4/He+k9O126gPmckJw5U9UFH+tJtG5/A2CvWIG1CpUdqIffdXGp2Ufjr0+qSDMi/8EbYLD0ubaLq9J8jbY2Q5Pu2o3nnJhjHn+b1/NTIOWcldNAFTKWUs2il13/PRS1E/sXl5EFTUxMuvPBCDA8PO36n0+mwc+dOnH766YqOUVlZGfhBfhw5cgQ9PT1YuHBhSMchIqL45L4Vu+5AG4aGbUhJ1qNqYn7QW7yB0NMihVLMWaYojcbIze3iq37r+L3V3IUkUxY6P/mnz/yivm/wj6y0TMtA0fJ7VKVH8jx/74Ul1W5jH+poRkrOWHtR42P7MNzZjJKrfx841+uKe+3nGEIKFPm9M506/+SxlBYGlUToklKQWjxR0fMrFczAt3fXZkASYd79EfKW3IDMmeezqB2FRTCxzznWqS083rv7Y5SsWu93paPzDQebKLrdQLNPTgazm8ceL3UQB/vQ8eHzXtOZKTlOqLxNsPq9tl9+ECWr1iN/6fWO3QCDxxsw9vLVqs+/b89WnPjgaY8dH4axpyBn4RVIGzcFHTar15oUjvQWs5YiaWQyYNy1D7u0O97ar1AmoGUs7EmRFM7+arDUxIrMmYvR9emrPo/l6D+lpiOlYLwjFrhfu8GsbLc/RvJYiS5BByGIG8mq+qAV1ej67C3kLbkegLcdGq67ufRpJsW7KOQdb776tKml9vTblv1fIqN60cnaOiN9VC3T+2nRHkmiiKT0LMWplNzfI07oEgUWl5MHpaWluPrqq/HEE084fqfT6XzuOHBXVFSE3/zmNyGdg1zvIDc3F2vXrsVHH32E48ePo7i4GD/+8Y9x7bXXwmBQtmqUaDRKGlMQ7VMgCpmvrdi2kQFJ8Fu8Q0uLFGoxZ7VpNAyFE9D6xqPQp4+BqaoGSaYsmKYvQG9dLaydzT5XuQZMYaMwPZJailInjRTVbHr6LiTnjEXR5auRnDMWY+b8WFGu1/Z3nkLhT24JPgXKCOf3Tj5WpIoje6N24OtSt0InwDhxprrt7ixqRyqojX3usU7xtbX8bojWYZimzYM4aAlYoLh3OAnPv7cXC04vQeXEfMcNZTkGBpNKbbi7FSnZY3H8pXWQrENBHydYLnG7fgtyz/lXDLYcUpymLSW/FI3/9QtAtCKlYHxQ5y8OWgBJdJkccI59AFCwfDVaX3aN9UnZYzF2xRr7pE/DLnRsetZnu+PefoWaRz2UovNaps9wn8hy/5kSS7j6q8FQW3Q88/Tz0LX1dZ8F1+V4UHDxr5BkOhnbbJYel/6Dr0Ul3s/x5MSCPTWa95XoInSq3zvFfdCuVqRPnQMhyeC/jVl+D8Zd+zCElFTFfT55x5uv+gVyX3Tg2H6klp3maBPl36uN1enTzsJQ+xGvC4G0aI8ASXXaPmec0CUKLC4nDwDgF7/4BS677DIA9nRE5557LiorK/Hoo4/6/DeCIMBoNGLMmDEhP79c7+C1115DVlYWZs6cicLCQuzevRt/+tOf8PHHH+OZZ55Bamqqz2O89tpreP311xU9nzxZQZRI+g/vDvkY7o0/jW6RjqvySq36A+3Y9MURRxG4c84sxYzJBSGt5Ao2LZIWxZxVp9G46GbY+rrQ37DLM1//03f4XVWkJj2S+9Z1pXld3flNneSlqKbzoCFz5mJFN7/7vv0E4oU3ql6lP9TmmnZFfu+sfV2OreORKo7si5rJF+e6FcFud6foi4c+a3CxzzXWKb22hjtb0L/vK2TOWORStNedc+woKTChMCcNgL3/M3h0H7J/eBlsfd2qUiVJNiua/v4fKLz430/GIp3gN52Zx3EqF0IcHoROnxxUjHCP2ykF46FPHwNzfa2if+9IM5JXgqHWwxhqOwJxeFDlin4ROef+3G8aEpsoQW8wunyW4vAA8pbcAJ1OCJjeYuwVa3Bi07NeX3+wedSDSVPlmfot+Ngezn4LqRPJuBpLn7vqouNOKYm8kePBUOthdGza4JFGUu31IokiII2kVfIS350nhnUpRthEQdV759IHdW9jnPqgffs+R9acHwVeTT+yQ0M+tlK2vm7knH2l1z6tnCIzfeocjzbRPZWRP6bKhRCHBjDmzKUwTjzD60KgYPvyzkJJ/xfKhC7RaBK3kwdJSUkoKSlx/HzxxRejvLzc5XfhJDfgS5YswYMPPgij0b4V6+jRo7jpppvw9ddf49FHH8Vdd93l8xjHjh3D559/HpHzJYpV/Ye/CfrfpnnJj0ijWyTjqk2UYBkY9npzv3bHUcfNfWNqclADMvdt5pu/bHQM9hbNKvO5zVyrYs6hptuRtwZnzlwMa3e7z3+vJj2S89Z1NXldfT0v4LmN3VdRzcGm/eg/uhdp46bAXL8l8BNIIiwHdsA0bV5wq/RHyCuy+vZsxZhZSx3HilRxZG/UTr7Igt3uTtEXD33WYGOf+/cx0LVl3rMV7e88hXHX/kFVQfQfzT/NZZdCSsF4ZP/wMvQ3fgPTtLMUr2Q3f/sppCGL60Sc0nRmOBlvzHu2wjTtLL/n7ot73A41lYVh7CkQkg2qV/QHSkOiF3Swifb/Thp3Kgoqqh2PVZrewnTaDzz+rqR2j7+bYWrfp+ETxzBwZE/I6TPC3W8hdSIVV2Pxc9cq7Y0cD7q/eg8n3n3S5W/BXi/2xwmKJ4aDIZ+LoagcRqe45OiD7vhAXRsTxE1tw9hTfC/ocGpT9GkmlzZRb8yEsWKGqr5tf0Od14VAofblnQXbtwy97hDR6BC3kwfuHnrooYg+35/+9CccOXIEZWVlSElJcfx+3LhxWL9+PS6++GK8/PLLuO2225CcnOz1GCUlJZg9e7ai59uzZw96e3s1OXciokQVybiqF3Q+dwUAwN7GTtz/1HY8fMsCiKLokhtVaXoA39vMJZe/u9OimHOo6Xact5sPdTR7vZES7NZ1w9hTNEvJoxP0OPHh8xg8ssd/UU0AAw31SBs3RfEAxfzNx0ifMgdFy+/xOQiVt5zb82x/4PF3R/HpPds9juVeHNlQMhk5i1ZCSElT9yYo5J7bXBJFz8kXc5fXyRcAQW93p+iLlz5rMLHP2/fR/doSDEYYyk5FzoLlEFLTkZSRrW4XTf0WGCuq0f4//+2IA/LKTiEtA8OdLQpSJa2GZLOi/d2/IiXPvljKORZ5pFxq/t5rLQB5V5D5m4+DmjzwFreDvbbFQYtHmiE1K/qVpCFxfM5Jcpo8de2OceIZPnYQBJ9HPZT2NZSblmr6LRR+kYqrWn3uWqa6CrWPCZyMB9aeE+isfcHrv1d7vUiiDZLNioEjexTftE8qmQZ9UlIQ6YtsGGxpQMf/PusSpyGJSCkYH9admpJog3HKHAC+b7q7tylym5g6bgoKLr5VQd92NSTrMHp2fACxv8djIZChZIqm6TWD6VuGUneIaLRJmMkDWXt7O+rr62E2m2Gz2fw+9ic/+UnQz2MwGDBxovcihNOmTUNRURGam5tx6NAhTJo0yevjLrnkElxyySWKnm/lypUxv+KLiCjaIhVXbaKI+gPtfle3AvYB2c59bZg6IRv/9c+v0dET3DZx98FZoH8T7K4FWTBFcd3T7QAnt5snjfG+wyGYretjr1qHtHGTNU3JM9R0AANHAqcEsPbad1AoHaAIyan2m+zWIUXphcZd+weXAtHyqi3bYD+KVz4AwH5jyr7adRfMdaGnKnLPoe0tp7bPmhReUmh0bN7gc2eGfLNUVYqWMKVeInXipc+qNvZ5xDqd4HHDXU6VkfXDZQB0MJZXo69kMgD1Kx1tPU67sJxWdh5/9Q/IXXSV3zQWkijCcnAnxP4eiIP2mx/OsciRcmnFvShZtR7i8CCE5JM1IOSfh7ta0fziWqSOvAY1vKV6AoK4tisXwmbpQc65P/eIW2pW9CuJXzI5iqhtd5xXBXujJo+6fI6htq/BrDRW22+pnJjH3QdhFom4qsXn7i3lUU6mAUvPKsfUCTmqUx6pLzouIuecf/UaF8WhARx7+m6PxQrO1Fwvci0aRTtMYb9pXxDkSnS5fkpnUopHHzTcOzV1gh6pxfZ7Wb76tP7S+HV/9j/IXrDcb6y2WXqgS0pGUkY2hvp7HBOyY2b/CKbqRUgek684fgeiOq6au9CxeQMyzliMtJIpXNRCpEDCTB5IkoSHHnoIL7zwQsBJA1kokweB5OXlobm5Gf39/WF7DiIiig69IGDTF543y73Z/GUjZkzOR0NTDw419wCwbxM/fXI+Vq+aDSQJPldyKV3V5W81mNpdC0CIRXGdz2tkMKNl+gZbzviRc9TuhrLSQYNkHbYPUCrV3fg5+t93IPP08zxSoIjDAzDv2Qrz7o8hpKS6FOo8sXkD8pfeCEkUoTekORVYFSDarEgbPx3G8pM3tdSmKlI6IaCoJsVISgBAst889DXoVptahVvDKQhqdmzJsS6tvBqG4onInHk+kjLzHH+37wh6H4NNBxzfR0kUkbNopf1YIa6e7dnxHjJmnIv8JTeg9Y1H7efgFies5k5HfYLer+27k/zerNfZX9/A0e+8XtsytZNzNlHC4JAVxtRkz7gdRNok4GTdKteipoFX9CuJX4DkuBElx7GOD59H/tIbNb0hp3Q1tnzOw92tmrSvalcaB9NvofgX6ufunvIow5iMJWeV44J5E5CflTbyHDpVuxDUFh23HNyFlNxi17jY2wEAOPG/z3jk0PdG7fUSqZXovuqnRGKnplzbwd+kr3Mav6yzLnWZTJVE+z231JLJLu+tODwA4OQEiHPKqf6DO5E2oRJ6Y8bIIhj/C1KUCmbcYq7fAvPuj1F281OqJ7O4qIVGo4SZPHjxxRexYcMGAEBqairGjRsHg8EQ4F8Fx2w243e/+x26u7vxyCOPICnJ8208etRerK2oqCgs50BERNHV2Tuo6nHG1JNtxdi8dNz002oYUpKwc1+rS/G6RbNKcfqUAnT2DqC5vQ+nluf6XNWlpACeO6WrwyRRDLwl2UtRXJfnGhnMaJm+4e1PG7D8vKmqVpz6o3a1EqCDsULdAEW09KDr01fR8/UHGHf9o9AlJaP9nSfR9+2nLjeFHDfjl69G4cW3wdbfi7b/eWxkcFcDY0U1rH1dGD7RhLSyUyHZrIBOGEnfoa4YoNIJAUU1KZxSAgQavPXseA+ZMxcHXWyUSCmlO7bkWKfTJ8FycCc6PnzepeBmTs0KSDarU6ocAUJKmrqJxKoaWM1dHivIhdQMQBAgpJowdsW9sBzchY4tL0GXlISkjHyklle57LQSUlLlk/a4WS+kmTB2xRoISSkBCwEX/+x+JGXmQhQlKF0vrBd0ePzVOtx25Rle47ZH2iRFaYd8X98idNC7/AzooTx+6fTJaP/fvyK1ZBIyqhfh+EvrIFmH7K9FgxtyagrQOp/zcGczSlb9PvD7FKB9Deampdp+CyWGUD5355RHY/P+f/bOO7CN+u7/b522LMmWh7ziGcfOchxn2wmZZNiMQClJmhAeZqDjKaNAH5IG2oSWp33aAs/zoy0pfUIJBMIotEBC4CFxAmRAdkKGM+w4cbwtD+1x+v0h3Vkn3Ul3sjMw39c/LdHp7iT5vuMz3u8ErF1RgfSUBBw81YpXPzouyXg5NMEgynQ8+Ay0vvdH0C47pyuM0uiRtXwNvJYWUZ9N6vMS7xghdS0q6J+iT47LRF7KmimQiEVM/wLaYYWj7giSZy6Fp7sNysQ0+GlfwFD6zV8LS+QtWQVKrYMiJRu4cAKUVo/EKTdLWn9KQcrfFDuu+mn07NtMiloIBBEMmuTBO++8A5lMhnvuuQcPP/ywoM/AQJCQkIBPP/0UFosFX3/9NSoqKjiv79ixAxaLBcXFxTCbzZftPggEAoFw9TAZxCWomePsTi8AwKBTYu2KCmjUCjz2wk5B87rV905GslGDp17ahceXT4gwshNjgPfUfZOhUsghV1OS2soDx1Lw++mocjt8prihxNrMSA3cW7rtuGXGUAAQJaEjBqkVcIH7FrFBWbIKtNsJn70X2oIxkCeYkDR9ERQJibGNOjcFgvG9Bz+F9WgNAG7gT2FIQdPGNTDf8jAojV70Z2XuXUpCwN3ZJMmsD4iuWa40ZUKmUoNSaeM2GyUQBhra7RDZXROA+dsUnUgsGAPriV2cZCEb7Jcr0fzmM31dBzf/O3tMaNdB+HgZHqzXFoyBMildtBGw3emGj4Yok1RG+mTnoUbcdcNwJPAkTaJJXEh5tmMF5aWMX3KdEdqCMX2mozJKorzSTNA+H/wySvL8G2pAG37PYr6nWPNrPJXGUtcthMFBvL97qOSR2LUrn/Ey3zNdmG3EHfNLoq4Dwp8BRkIOAFTmQBfqQFfmM54HUuQVffYetL7/POQJiXGtRaN1W0ldn0qF6eQSG3Rv/N8nkDxrGYzj5nGOD/1tAO44nDr3HthP7YFx3Hwo9KbYc1Scni5RjeyDMld84yo7ly5eheZNpKiFQBBi0CQPzp07h9TUVDz22GOQyS6vPqNMJsOiRYvw0ksvYe3atVi/fj3S09MBAA0NDVizJqBL/MMf/vCy3geBQCAQrg4+msaciTmoOXAx5rGzJuSgzWJHQ0vA6K6qsgDpKQm8my+GUw0WrP3bXvz+oekYlmPiNbITY4C35uXAObbsqsO0sdnshi6azAITFFFSAN1+ET1fb46Q0fDTNLr3b4WlZqNgYEPMZkZqm7HM6YbC50Tj+tUDWrEkNhnAqTwWocsN+JFW/UDIdXyw1x0W/qxBvXWZQglnSz0MY6+H7eSewKbMTwc2VW//Ftl3/QYJIyrQ/sl6pN/ykOjNDNOibj93RHRCQJ2eD8goQRNphlBJACma5fGYjRK+WwykSScfUrtrQhEzdpgXrYTP64VMa+R4KiSMqOQE+x11hzkGzaEVnHydPeHBetrjgv3cYTZIHn4e5hlmnm1XchGe/fs+/O6nsc1xGekTmvZj8+4GLK/iH7dDJS6ME6oi5g3m+xYiWlB+56FGvPrUXCjba/l/q7DPbD93GMbx86EwJPeZjkqWVxqDLbvqUFVZEPZ9iDeg5TNo5nxP4fOrz4fOmjfQs//jqDru0mWnxK9bZk/IlaxjT7g26c/vHip5JHbtGr5ejSZ7pFIFij351gG9h7ah47O/Cz4D8fisiHleGM+DWNX4QN86t7NmIxx1hwHwr0XFzll8/ilS16fxICno7nZCVzwRzkunA51cUdaHjMeBNr8UxvHVMJbP6ZujouBqOgtHYy00mUVxyBfxry293W3orNmInv1bI/6mmLk069+eIUUtBEIUBk3yQK1WIzU19bInDhh+9KMfYd++fdi/fz8WLFiA8ePHAwD27t0Lt9uNe+65B9XV1VfkXggEAoFwZZFTFMYWm1GSa4pqQleSa0J5sRkbNp8ATftBUTIsqMjHwVOtoszrDta2YkFFHt7ZfppjZCfFAO9gbSsmjEjHn945hMfumAgAghWddHDTuPblPfjl/VOgyxsNy7bXOAEtPwDzTf8O/fApsB7Z3u/NjNjgm93hhk6rQuP6p0QF+ZjvWwxikwFSdbkjr8Nv1Elp9YEg0vj5UBhSQs7lw5D7fg9vbwd6j9QAfj8MY2YCAOuhwFQli/2cACXJCFC38KdQpeVEVJWFEyoJIOW7kWo2SvjuEFqtum3fBaiUcqQmajG2OC0uk04++AK7fAgZboaOHc5LZ2A/9RVczWcg1yUFpcbGoKXDin2HGnDD1NHI/elfoQg1Ofa4oC0YA4+lCbTDCvhp3gpO3s6eprOglCq0f/Iy9KOmwzD6OthO7kHS1NsEvRsYM3brkRqYF46Bw+0TbY7LSJps2VWHeZNyYF60Eq1vRcraMRIXiZNv4oybYp7taEH53HQDEg1atG6r4fw7O36GfWafvQdynTHw/0P0y8XKK5kXrURLhxWvbj6BzFR9zPmXomTITTdAp1HA7vTi9MUunKzvxPD8ZN5xn3ZY0fXlu5z5VZ0zAimzlsHT1RI1cRBPpbGUdQvxOxg8yABJvztN08F3BbD0uiSvXUPHFDGyRwHz5XwMz09hO18d549GfQbi8VlxdzZDmWQWtS6FX4R055JV8HS1RkiLha5FvzjUCL1OGVPSSYh41qfxILhu83nhbDyF9o//F/qRlTBOqIJCb4JCb8KQ+/8YMbeEw5jOJ06shlxn6Evk8iA0lscjSxp6fNtHf0bv4W1Ri2C8lia0b1mHjO8/QYpaCAQBBk3yYPTo0Thw4ADsdjt0Ol3sN/QTjUaDV155Ba+88go++OAD7N27FyqVCmPHjsXy5csxb968y34PBAKBQLh6+Gg/nr5/imCgg5Eeau6wYfOuOgCB4EdakhavfnRc1DW277uAR5eOR266gWNkJ8UAjznHfTePhs3hwZqX+WUWRuSZ8JsfT8OR2jY43D7otCp4bV28ARaO5IJAlVJgsS+m0ipaxVMg+OZyeaBVUtGr9oMEKp2OQJM3Cj6aEr1RY/S0pW4a+CvFAhsdvg1PuAmfwpSJzKWroUxKh73uMDq3vcbRW9cVjgWlToBp6m3w0zScF0+GabLPDH7f0TePftoHV3MdNFlFko0AQ83uhOCTBCCJAUK8MNWq/7VhH4blmrC8eiRrzgkAll4ndGoFoJD3K4EglNDjg+muiawiDXjLaLKKoMkqCnn+aTS127BtXwNunBqoXHe3nUfnZ3/nPL+MSXrTG2sFjT/5OntojwuUkiszYrpuERQGk6B3A3Md5tnWaRSizXEZSZNeuwer1+3B2hVT+GV3guO21IBWrKQ44xsUOn5xxk+ez6wrHAs/TUOVkQ+fvZvtSmh68xlkLvlFVNmglg4rVq/bA6vDE3X+ZSqpqytykZLUJ23V0WXDpXZ7xD1HEJIwkikCieDU+ffBa2ke8EpjMeuWp++fQroOBhEURcHS68Tqeydj7d/2Rl2vdvU6kWTQcF4zGdSS167M8yJF9mj7/j7ZI71GLkrSsufAViRVfk+05E73nn9yukGFYLwAKI0+6hjhtXahY+vLrLlxKEzV/fC8Itz7m88wbEgSr6RTONE67foT1I7lExZqQu+oPwa/xw2ZUgVt/mjoCsqQffdvIKPkgXH2s1cF55bwOYyZa+Q6Q+C/BcbCqGN5P4yUAQQ6JGJ0zwIApQz87ZO1K4HAz6BJHqxYsQJ33XUXnn32Waxdu/aKXFOlUmHFihVYsWLFFbkegUAgEK4d5JQMOo0Sv39oOg7VtmHbvoYQ0+NcjC1OQ3OHDU+t2w2rwwOgL/gRj9ly+HukniMlSRe13dzh9kEhDwRFmPvs/GwDTNctCgb2D8N6pG/z5Olug9KUDm3OCG5rsDVwfhklFx2AiFWprlAqIKNkooN8tpN7gsErH4DopsrMPR4/14FumxtjhqbAqA89JtJ0WghmY+P3eiBTyeGoPwrHucNInHwzFIZAcD1Un5fVPFdpYhqcep02yBQqKAwpsJ89wFZ4iZVrklFy2E/thSarSLJGMN/GOJx4zPoIBCHklAwvvn0IP/5+Ga85J2Msz2cKLxWpybRzjd0YlmNixxMh/xUAMCdrsXTecNAuW8xnPPMHq9G4/gne6k3m2syYCADOiyfZ62pyRyJp6m2QyeWirtO1+58AAl48YuaScOmTpnYbHnl+J6oqClBVUQTzwjL2WLfbE+z8kjYWxEqKM75BzPjFjp/KGOPnklVInnkHZHP+jX3N29Me6OYCYCidwZEN8nm9eG3LCXz0ZR07dwvNv5mpCXjmgSkwJ+thO3cYrTv6/g4SSmeitKiMc88xvwNmzPW44vaNiBYkFLNuIYmDwccrHx7HD+aV4PcPTcfB2lZs39fXeTprQg7Ki81o7rDhjU9O4ZEfjGPfxzz3b3xyCoD0dWd/ZI/ESFoqTZmgVBrQTp9AIpMruaNMEt9RwzxffpoOBNAL+8Y4v88HAFDok5CxeKVg9b316A6YF5ZhyqgM7PmmmVeClEGcATt/UDvaMx+aFBDyCQMgaGLce/ATDLn/OcgUyui+QAJzGDOmMffBNxZKGculy5L6oOfx6OFDrLQVgfBdZdAkD/R6PZYtW4bXX38dhw4dwrRp05Cenh7VOHnZsmVX8A4JBAKBMNhgNtilRSmcyk0moPXi24fR1G5j/50JfsRjtpyerON9Tew5TtR3RG03D01sMPcJP92nyzxuHifAwuqHHvgUCmMKVOn5UCSZYZhQjZYOK/7f20fwxJ2RRs/REKr2Yd4vJsinMGXCNP12AICj/hisR/k2S9xgSrfVhYIsI/Q6dSAA9Jl0I2Y/TYN22QKJA0qOxtd/CY+lCdn3/A4yikLjKyuR/r1HOfq8xnHzJRmcdu/fisTx82EcNx9dX77LPUaEwZyr6aw0jWAmIaDURD2uP2Z9BEI4PprG8XMduPvGUTHNOZ+6bwoStIp+eSBIDey+/M9j+I/l42FU+USZLIvyVAg+4+HPdvi14ad5zZ3VQ4oD1xGQ2Ai/TuKUm9BusaGhpRcFWcbYn51H8qbX7sFbn9Xine2nWbkes0mHny0bH/N8QkQLTja09KKjy8aaNYseP4Njo/XELvQe+JStljVN+z48lhZc2rgWlEIBdXYx0qofxBufnsam/6vlnCd8vjUZ1DDolHjmgSkwqWnhgFd2CbKWrxFVRQ0Eglfe7jY0/u8TME1fAuPYOdygZZRKY06Q8OgOyOQqKIwp0BSOgTa7pC94F2PdQhIHgw+a9uPR53egqqIACyry8OjSvme0zWLHhs0nsHlXHSaOTOe8j3numQRA9/CFHQAAIABJREFUPMbL8cgeHT3TjtGFJtFa/52fvwVKqY7wD/H2dqJzxxvo2RfwD9FkF4u6/1BCn7W+Z+xoIEkRo/qeSfo+edcktHU58PHuehw9046RhSkRhtIutxd/fvcIdh5qBB2SFI9mRB07MeALzBdvPCM4T2Xe8StQSrXg92wcF/CNEbtODZ/D9KUz4LVaIJMrQKl10I+dEzEWSh3LpRDwrxDvrUYgEIQZNMmD2267DTKZDH6/H6dPn8aZM2divockDwgEAoEwEIQHrgK6yH48cecEjjxAQ0sv2rocmD1ButnyvTePZiuTpBo2+2g/tuyqj3pcaGLj6Nl2TpCG0WXWDi1HWvWDUBiS4e64BJ/dipQ5y6EbNoHVlgYAlceB4jwT/mvDPqx5oDLmPUYjtGU7VpCPqV6SUdGrb9MXr4LNp8D/e+co0pO1uOuGEZB5HGhc/3TcFU8yioLtxG4Yx81jr5009TbOhoijz9t0FsZx82A/d0ikFNNhJBSNC5iAls9F1673OG3YQprsocgTEqVpBAcrXDMWP3lZzfoIhFDkFIVumxulRWkxq1TXvCxcySkGP+2TFNhtt9gwYUQ6TIm62IGOTc8i68614gwig88437PNXNvntEGuSYh8FmUUjOVzJV1Hm1+Kj7eeAk37RZvjCkne0LQf9U09KMk1YcWtpf2qXI8WnOSYNWeXSB4/NVnD0Prec4Cf5lbLLlmF9i0vIWnGUrR0WPHRl3UR5wj9jpj515ysgzlZH/3voPEUeg9vg3HcPNHBK+uJXTAvfJitmG7/5G/QZBXDdN33o3QbBJLXre89B3VWEZJnLuV6Xli7QKm1AJQhSfnIdQth8OGjacwOrhfDk312pxcNLb1ssDrwdx4um+PHiltLYel1il67hj4v8cgeffrVeZQWpYrS+rc5PdAOHYe29/8IyGQwjl8AhT6QbFUYkmEsnwv4/eg5sLVfHZLMMyal+p5J+v79o+MYU5SK5VUj0NXrDEscBL5vnUaJny0bjztvGIm9x5qw/2QL2rucaGjp5TWiFnU/S1bB73HDIyCH52o6C9rlgPPiSUETeqnjbOgcxoxpAUPpI8i++z+hyxvNHQulXiPGOpcPIQlWBrbD19YFRYK4YgIC4bvIoEkeTJw48WrfAoFAIBAILELyALXnOzG1LFuS2fKwIUmcCkGphs0A0NkTvd08PLHBBmmYRb6fhuPMflz86yNBc98F0OaXQkZRQUkjrlzD8qoytHRYcbyuEyV5JsmBiXCz1PtuHhWz9Vhs9VLLpkD10qjCZFw/MQcKhQKNG2JUBkepeGJMV3VF4/o2QDwbolCjzvZPX4HCmBrVPC6UQPv7T9F94BPoCst4TYxDddH57lE/ZiZa3/ujKLPQ0ITAlTDrIxBCGV2YGpc5ZyzCA2N+yETJYzBBkE93nMH3ZhSK8l/xe5wBT4WjNTHvC+h7xsOfbebaPoeVN8CiSsuRPJboCstw9Ey7JHPcyy15IyYpzpg1py9eBYU2QfL4GfrdhlbLZi59iuNxEEr4d8TMvwWZBthEJGw6a16HfvR00VXU+hGVfZ19+7eCdlqROOnGqOOsjKLQtvkvSK1+IKb/A+G7hZyiUB6yXmSSfeEIjQXMcy+nZDCVaCQZbkeTPQo3GA9NYjDHxZK0pBHogMosLIP6/uegMCQLavIbx82Hwpgi5avjEE8HmX7MTPi8Xry/8yze2Xaa9ZYI7fLhkym6cVohqioLIKdkbMfCll11nLlO1P0E161CHW2qtBwo9Eno/OzvvOeIZ25hxlmZQsV6TTDjWCDwP4ozFkq+RpR1Lh9+2gdPZxMU+uSY0lZeqwVyrZGsZwkEAQZN8mDDhg1X+xYIBAKBQOAgLA9AizZbrm2w8BoYijVsbu9yIDVJG7PdnKb9+Hh3PZZXjUBJrglbdtVhweRcpC9ehZZNfRsU2mFFz8FPYRw3H7TTyiuTwVQ9mRethEaljStxYHd6OJ8tzaTjJjPCiaNC6qapo0DJ0O+KJxklh7P+GHQFZewGiG9DRDusrNl0+i0PBT6rRL11v9cNgN/EmDmGDxklh66gDEpTJtfwWmAjFRqoirWBJxstwkCTZFBj2z5xpvBiDH+F9KTnTc7F6MKUmIFd86KVaOu04bqx2ZArFLH9V2QUVBkBk+T+GJSzZp89HVAaU2A9uiPifczxUq+Tm2HAnTeMlBTwv5ySN2KS4r12D9Z/eBw/Xz4hcN1+mr8z47osczgefeFz9NjcnNeFDIR9tB+JBi1at9VEv7CMgsKQgt4j22EcNz845h4JyOmFjbnenna0fvwyPO0X4G67wHafxJKF89M+OC6cQMqcO2Nrhi9eBUqji5AIFEMsw1XCtYuPpvH0fVPwq5ejGGXfN4XHDD4AKx0pYu0a+rzwyR5FMxjfvLsBW/fUY1gOt/pbWNKSQmaqHj6vFzKFMqZefrx/s0yBiJTqe0f9Mfa5HZKmR31TD041WPCH1/fj6fsrIta4DIxM0ep7J4P2+9HUZsXyqhGYOykXm3fVYWxxWlz3w9fRFmvuiHduSb3hR9BkFbFeE7TLDpU5D66LtdAVjOEUpLgu1sZ1DbHIKDm0OSPQtHEN1FlFkdJWwUSts/E0spY9LencBMJ3jUGTPCAQCAQC4VolUh6AilLBGTBH6+p1orPHhbUPVvIGd6JVgYYa4P3y5T149kdTRckcbdlVh9tnD8PT90/Bi28fAkUBck0CG2S2ndwLTXYREkZUCpr8MrgunUbrW7+RrE/KfLbwTRVTcWpe8gt0bX8NrsZaToAl3upb5v+Lek+Uiicq2J7us3UH/ltg0+W1NKFx/RMwXbcYiROrJeutyxQqAPwmxqwuOvgDPYCMDZKyXhZhGym/zytY4Sq0gScQBhImgCXVnFP4fJHJSIaaAxcxdUwmnrhjPH93TTCw29Jhxe5jTbhlRlHgnELBFq0exvELONIZUp9xZWo2FIlmTkVkZ81GpN/6CO91mbFA6nV+fPvYuDsFLpfkjZik+I9vHwsaMsgRhxExz7hpPVIDc8EYrL5nMjbvqhPVTRHLh4fS6lmvoFD5IKfTDVXuKJgLQ5KwPi+692+FpWYjaCfXLFuMLJyMkoO290CZN1qElJZ0zXAxhqtkLri2kVMUdFpFjK4h/sRBxHkkdh+Fyh5VVeRjeVUJv8F42RwsrxqNpXOHQa7oC1HFCvjTtB/yfnaPxkJGyWMnjIMw1ffmRSth6bHDZNSxnmIAMCzXxLvGDeVUgwVr/7YXv39oOj78vA6vbj6B1fdOxsLpRdLv59hOmG/+d+hLp8PdXMdZN8eaO+KdWxSGZHTWbIT1+BfQj5wWMQ7SLjsotQ7a3JHsmlrqNaTgp2mYb30EzW/+Gl273oMqLQeUWgfaZYe77QLUmUOJ/CaBIIJBmTz4/PPPUVNTg/r6ethsNuh0OuTm5mLatGmYM2cOZDKi6UggEAiEgSNSI1bMJix6BWeSQQNDgppzrNhzdFtd+L+vzqO2wYIHbx0Dk0EDkyF2u3lWqh4atQJK2o+fL58An9OG5jefCVTrhMgU0R6XBH3tI9Dmi9cn9dE0jp5p59wnU6mmUsqh1GqRVv1g4Fh7D+yn98HZeAaGsbMD/xZH9VJ/Kp6YjW3SpGoAgPmWh9H91YdwNgS0ffk2RLTDio5P1yOhZJJ48+KgkaY2bzS83W2BDWAYhnHz2PsRCvRQah0nSNq2+c9QZQxFQslkaLKKABlFNk+EqwozdsZjzsl/vuiBmi+PNOGXL+/FmgcqI7pr2i02vLv5BD7eU4/nH52Jk/WdGJ6fzPtcqzKKkLl0NSi1lg12SfJUCOpxp1X/EAA40jWM3Abfdd1tF+IwQg+ME9eazr0UaSSpfhVC4yYzrg/LTcKj+X1GsmK6Kfh+D4UpE5lLVwvIB82EIqyzCzIKiePnQ5mcGbcsnDZvtCgpLama4WJ11aP5ARGuDZhxla8TNvT12OeR1n0UKnuUlKCC12mLSHIpTJkwzVgCAHBd+EZSkkoGGvY6kVX4kv72uUkLqevEXg+F93eewz03jWY9xaQaRx+sbcWCijy8s/00m0wQez9MAjNx4g0AAPNN/w4A8Pa0o+fAJ+g5sDUwd/R2Co6jkueW0hnw9nai4f/9EIrENGQufVpwHAx0W1nQ/vE6pN7wQ4nzl7Qgv5D8pioxH8nX30XkNwkEkQyq5EFHRwcefvhh7Nu3DwDg9/c51e/evRubNm1CeXk5nnvuOaSnp1+t2yQQCATCIEFICmPOxED3gJiqzmgVnOKlJLiJi0S9GtdPysP1k/LYDZ2Yik6uPIOMlStyNZ+FYewc0E4r2j9Zj/RbHoLz/DFockawlTvh7dAM1qM10BWK1yeVUxTb4g4AmakJeOaBKX2Vatu5m0pD2WzoS2eix+aCBvFVL8XzHsFqzNKZSJ65NKif2im8IfLT0syLC8vQvX8rEsfPR2fNxojvW1tQBk12MWinDc2bYgd6iAQR4VpGiil8NMNfvmQkHwdr21g9adA0zjV24783HWJ1uPMzjUhL0mLD5uNIS1KzZvIMqsyhyLrzGVAKJeznDgWkwKxdMIybC/2IStEG5d1fb4btxK6IcdXtsgsHcaSOJRL0oq8GYoOTflCS/Cr4xk2gb1yX2k3Bl7ygtPpAAimWfFBIwH0gZOHkOqP4SmQJmuFSdNUJ1zah69WG5l7IZIDfH5AvE7teDUXK88K8JqModH7yv3A1nWVfi+eZCUVSFb6Iv/3wtZ1MoUbaDQ9KXif+9tX9WDK/BG0WOxpaegFAsnH09n0X8OjS8chNN4T4+6RATlFR74ebwDwckEkL84AwlM1By3t/gEyhEh5H41indtZsBKXWiPtNFz2JlLn3oPfQZzBNve2yzl9EfpNA6D+DJnngcrlwzz334NSpU9BqtZg3bx5GjhwJnU4Hq9WKY8eOYdu2bThw4AAefPBBbNq0CSqV6mrfNoFAIBC+pcSSwmCC8UzF1ZVCaEMntaIzVE+VMSJu2rgGCSMq4ad9SJ61jL1GaCUT7eDKLkjVJwX6ZEgMOiWeeWAKTGo66gYkffEq0H45rHZXTFNlBv2YmfBauwDaK7niCUDsasxFTwIyCrrCsYIbItZAefFKXu8IoE/z3NvTAf2ICtZ8LvyY9O8/EQj08CQOGKIFesjGiXAtIcUUPprfQXgyMhp93gkyDMsxQa2UswaejOxEZ48rwkye0uqR+YPV8HucaNywmvP8uVrOQZ0xNPYzHpRMsNV+DeeFE5E3FyOIE2rGLtYI/VonWnCSmX89Hi/Mi1ai9a3o4yffuMkQrZI1ms4/4yMT+nswc2VM+SCecTheWTjm3gdaM1ySrrqEim7ClSfaehXAZV+vhj436bc8BO/sZeyasT/PDMNA/e3zdtrIKJiu+76k6vt2iw1+vx/lxWZs2HwiYh6RKsnHvI+Zo6J1XYlOxix6EplLVkOu1cPb0yE4dzC/UUzD98Ur2XHWOF7kbxo0mIbfD4+l5YrMX0R+k0CIn0GTPHjttddw6tQpDB8+HC+99BJvZ0FzczNWrFiBkydP4q233sIdd9xxFe6UQCAQCIMBMZqlv/rrHk6b8ZUkmpRSrIpOTiVX0IjY0XAcqdUPBCqZ6g6HVdv3VTI1vbEWXksTe+549EkZGZKqygKYk/UxNyAtoTrOhSIrUQvGwHpiF9wt9eKqqrJLONVKMasxg5sin8MquCGiHVZ0bHsV6bc8ElVvnXY7IU9IhJ+m4e64BF3R+EiDY6+n38bPBMK1hPRuKX5iBWooSobcdAOMCargdWkAMs61GdkJk0Hd578SDFprC8sg1xp4x6lQk3TeZzxEmgYA0r/3qODY4rp0Bn6flzeIw1wn645fxbzOYHjumfm3x+7G2hVT+M3fg5+ZNe0M8xMAhCtZxer8+2m67/doOgvjuHlXYRwOzt8DrBk+0BXdhKvHlV6vMutN4Q7NvjWjTKns9zMzUH/7vJ02cVTf79hVh1X3TEZzhw2bd9Wxr4fOI2JgjmPex8xlfIlLBtHJmOAa1d3ZhI5PX0Fa9QP842jpDCiMKfD7vFHXqX6fF21bXgLtsksbB88dhqF0Bi5tXIPMJb+IOpYPlvmLQPi2MmiSBx999BEoisILL7wgKEmUkZGBF154AdXV1fjggw9I8oDwneXomfZ+vd+crIPc4UF7p53zbwTCdwWxUhh9bcapV6z7QJyUUux2c6aSizEihlwBGWSxK5l+sBqN659gOxD6qvX9ghWc3PsPyJXsPNSI6opc2MR6K9QdgT+9BDaHJ2YlqnnRSvi8XlBaY8yKXUqrR/LMZTCUzWbvW0o1pjqjAH7aFzM5IJMrBNupaacV1m8+h7F8LlQpWRyDY293G7q/3ozEidUDYvxMIFwrSOmWioZQoIbxUllQkY+0JC37716fH2olBY2qz2B0+/4GdPW6MHtCQEpp9bo9bNCa9rij6s0zJunGcfORVPm9qJIJrC4zTwBHV1gGT3c7ZDKZYIJAYUyBn6YHtTRD+Pz7yPM7UVVRgKqKIpgXlvUd5/XC53ahbfNfOAltBqFKVqk6/8xv5mishcKYis7tr4v6HOHjcCxjWD6Y9/jsPZdFM3yguxkIV54ruV5lxuPj5zqQm26ATu5BazQZxcUrQWn0sJ18W9T5+dYu8fjKMH/7oc9ctLWd2M6u9MWr4HJ5UFVZgOYOG55atxtWh4c9pqGlF5Zep2hJvlkTcjiyR6FzGe3zIWPxKm63abDYR1IyJnckMhc/yf67NnckdIV94yjjvUN73Eidexfv3OLpaoNMqULGbY/DcfGUtHEwaDBNKZTsPGksn8tZ5w6m+YtA+DYzaJIHdXV1KCoqQl5eXtTjCgoKUFRUhLq6uqjHEQiDnaNn408glCIVRocHrcHkAUkcEL5rxCeFcfkZSCklppKLUgeeb0VCkuhKJuO4+ej68l1OVWdEt4KACR4jVzJ9bDZSkhLQuqNG1Ge3HqmBeeEY/GHjQTxw6+io1UvtFhu0FI2E/NFQmjK5lcEh71GZ82GavhiUSgN73WE4648hedayuKsxtbkj+QN6ikDFc3hyxdVch/aP/gR32wVohpTAWD4Xre8/D5+tC5Rax+qia4aUIHFi9aAO9ESTDyEMXqSac4Yj5J2QmZqAtSsqkJ6SgIOnWvHqR8dDEhM5KC8xQwbA6nAjP9OAR34QMNItL+mTUnrk+Z1YOm84bryuMOaYQDus6PryXXh7OmC+OWBc6WptgCp1COc4pppdM6SEN4BjP3sI6d9/DACgyS7mjCe0xxlynsErzRA+//baPXjrs1q8s/10IGCpUcDu9MLjpfHbH1cia9nTkjoxpOr8M+/XZA4FID3g3v7JetCOHtZEVMrYxhxnP70PhrLZA64ZPtDdDIQrz5Var4auP8uK01BalIbG9b+M/hxt+g2y7/5PaLKGoffgJ7GvwbN2iVaFH0ro376Qr4HQOB7RQRalMh5+YMuuOry6+QQncQAAw4YkQadWiJbkC5c9mj0hF14fjZUvfoHKsiwsvK6Qcz8ypSquBGbH9tfhvnSG7QrRFY6Ft7cD7Ztfgv3sQcBPQxv87mhQCB2dZBQFhTGZHYs0WUUApI+DlFoHuvU8ur58F1273oMqLQeUWgfT7DvZc15JyJqTQIhk0CQP/H4/5HJxD7RcLofH44l9IIFAIBAIAkjVLL0SDFRremglF+12Biqy6kVW2587DGP5XDjqjyFj8ZPw+7xo2vQsnHWHOMdGM8Hz0X788LbARkXqBiQ1SYM/vnEQs8bnYMqo4ohKVADQ69TweH3o7LazXQp8FU9MBSqzAdbkjIjrntq3vgxnw3G42xuhSs0GpUmAOrsEKbMDHZB8gT0ZJYcmqyiQWPDToF2BZK08IRGOusOcY9nXBmGgR6x8CGFwI9XMNvR94YEag06JtSsqoFEr8NgLOwUTravvnQy9ToV/7DoNh9OLO28YGSGl9PnhRtx4XaH4McHayf5/tTmX9xgZRUGm0qBt819gum4RZHIlWt57Dp7ORmTf8ztQCnUgkdt0lg2wMIlEdeZQQWPRwUT4vMpITzGJA8bo+sV3j2LlXZNEd2LEo/PPnMfZdAba7BLJ47Dz/FG4W8+HzYk6SYEqZ+NpaHJHxdYMX7xS9JjZn4puwrXFlVivMuvP0xe78OS/jZfUNaorngBspngNzTnX4Fm7BAL2tGhfGSDSs4pZ28kUamhyRkQY1gPcDjLjxGqYC/kr42W0H1WVBSjISsTh021o73LA7fVh1vi+bjkxknyr7+XKHjH+Plt21eHEeQsutllRWZqBFL0CKnMup1Jf6hrVdeEE67XDMTOedy+cwU7iPmP5yLk3dKxi/r/UcZBZxwIA/DTcreehzhoG7ZBiUecZKMiak0AQZtAkD3Jzc3H69Gm0trbCbDYLHtfS0oIzZ86goKDgCt4dgUAgEAYbUjVLLzcD2ZoeWsnl93kD2sdHa0TdB9OCnH3Xb9hFtvnGH/IaKguZ4MkpGdSqwBJF6gbkwVtLQYUUE3T12LH3eCu27bsArUqOX9wzGRq1Ar/4yy5evey2zX+GKmMojOMXQGlM4Www4w3SOxuOw916HgDYDVFSxcKYm5BwPW1vTzuvNIW77YLga3x8WwI9UuVDCAQ+wgM1VZUFSE9J4E0cMJxqsOAPr+/HmgcqcdvMoeyYIqdkSFDL8fuHpuPImTYcqm0L/LvEMcHv8wIySvDv1k/TSJ61DG2b/4KU2Xci+67fwN3ZFKFlzYwrDLGMRQcLzLzKSE9VV+QiJSmBfb2jy4b/29eI/AyDpArSeHT+fU4bmt9YC1fTWeT+5M+SjFW93W2BIGWQeH4/n70HCcMnR6+MDpHIE0s8Fd2Ea5PLvV4NXX/mZxold43qFv4UqrSciPEsHL61i4yi0PzuHwLjZJS//dD3ha4pKK0eCSMr4ad9SLvhQfa83p72iHUrXwcZcw8MckoGP+3D8PxkDM9PBhAYc/yg2Nd9NC0oyTdrQg7Ki80c2SOma9jp8uLVzYEgf6/dg1+8FJDPS08xwXHxFDytDTCOm9u/wD34O4n1pTPR2WVHQ6stprSVpMQjzzgIDJxBshTImpNAiM6gSR7MnTsXL774Ih5//HG8+OKL0Ov1EcdYrVY8/vjj8Pl8mDt37lW4SwKBQCAMBoSkMPiYPSFXlC43c14hk+NYDHRrOhO4ZtqfpVYy0R4XWv/5AiilOqqhspAJHrMBk1r56GwIN+abiflTyjCzPBtqtRI+msah2lZRetnhOubxBOlptxOq9ALIExIlG7+F62l7OpuhKxwbGcyRauj3LQn0SJUPIRD4CPdOKMw24uCp1qiJ1szUBPzk9sBzwjem6ArLMDLfhDFFaZIDJX6ajpo4APqe/YzbHof9/DdwNZ9FQvGkqN4KDIPdFJ2Zf081WPDMA1NgTtbDdu4wWneE/Ebl87BodglkFCVaMo89v8S5rnPbBvY3kWqs2lmzMaLauu/3GxWz+8BP++Bz2aArHAu5Vi+oGe7tbkP3/q1IHD9f1GfrOz/Na9Ad+jmudICPII2BXq8KrVOZ9adOEwgvSX2O1NnFUZMHfGsXplPIfnIPnOePCf7td9ZshKagDNqc4ZzOIoUpE5lLV0OZlB45TkRZtzLjeGTnkpBBdGDOsHTb8Y8d5zB+uBlji82gaX+EJJ/T7cUXhxux82AjhueZ8KPbytiOhVc+/IYjhdTUbgtZw+YidVzJgATugchOYl3hGNB2Fw6caonYP4T/TfghE594LCyDu7MZ+lHXXXWDZLLmJBCiM2iSB3fddRf+8Y9/4KuvvsKCBQtw0003YeTIkUhISIDVasWJEyfwwQcfoL29HVlZWbj77ruv9i0TCAQC4VtKuBSGkGQC02YcC3Emx7GTDwPZms4Er9KqA5VYUiuZKKUaXkszV46Bx1AZEDbwlVr52L1/Kzo+Xsd5LbRayE/LRellmwxq/Me/TYqsQI0jSG9zuDkValKN3wIa6D5os4vZ9/MFc1hDP5Gt+9d6oCce+ZBr/TMRrh6h3glyisLRM+0YWZDMGa8ZDDolnnlgCkxqWtAgXltQBvP3n4DPC8gVCkmBErHPH3OMNmc4G0SO129lMMHMv7/9USX0Cm/Eb0Rp9TDNWALaaeUdC2NVkEqd61yNtey/iTVWzVj0JDyWFvTs38p7brG/n4ySQ2XKhLeng71muGY47bJDptQEZAQljv2hCWwpvhGEa4eBWq8KrVNvnl6IYTkmdl1pdwbkIaU+R8mzlsPdUi9p7RLaKcR0BYT/7TPyQ/rudujyRsFRfwxAYJzIXLoalFIjOM7zrVuFCjDEVK2bF63EjVPz8cjzO5GVqmc9yEJRKihMK8vGtLJs9nsHAnNY3aWeiOsya9h9J1rwws9m4ujZTowZJn4+4ktgsvcd7CTOWPQkvD0dUMuVuHVGIfs6399EZooOt80uQrpJKzrxqExKu+oGyWTNSSDEZtAkDwwGA9avX48HH3wQ9fX1eOWVVyKO8fv9KCgowIsvvgiDwXDlb5JAIBAIgwZGCuOLQ5cwYWQ60pK07GttXQ7sO96CaWOzRFRxDZzJcXFOEo6ebecEwvgQ25rOLIwlVzLZuqBISGLNlgH+NmiGaAa+YisfvT0dsNRs5D1HeLUQX/KEpv2obwpszEYWBFrNOZVzMgqqtBy4Wurg7WmPGRwyL1qJlg4rHn3hcyQbNZhWloXFc0skbTZCq9ic9cdAe9xQGFNgHDePN5jj7e2EJrEkpqHft2HDE498CIEQCzlFwUfTuPOGkey/tXU58PHuemzZVYdeuwdVlQUwJ+sFDeIVpkykVj8AedBI3XZyL0zTFyNj8So0b4oVKJFuuhh6/GA2RZcCTfthStTx/kbGcfMj5J3CEaogldrt5rP3cKp2YxqrBiVUPJYWNL2xFrTTyntuKb+fn6YhU6nhd7tiyLb44hr72SQy4j6gAAAgAElEQVSWSN8IwrVHf9er0dap9U09+J/HZqE4Jwkerw9Olw8dXXYklErrGqXUmriSVBFjYlAvP+K44DPl97gBSBgnQtatjrojggUYYqrWW98KGERXVRTgrc9qeT3Iovn7RFu7a9SBeeKDL+qQnqxl/byiJTC9Pe1wNddBZc6L8HgAQr4znweXXnsacq2eHTN9tB9Olxe/+utunDgfOC4zNQE/XTQG5mQ97A0noErJjGs9ejXGFLLmJBBiM2iSBwCQn5+PDz/8EB9++CF27tyJ+vp62Gw26HQ6FBQUYMaMGaiuroZSqYx9MgKBQCAQohCQwlCgqjIfB2tb8epHx9lKrNkTc1BVmR9s5Y0e8O+vyXFou/CdN4xE1dQCTiCMDylSSoDEDoDCMlhP7IJ+RCWvjirTBt216z12oxLNwFdM5SPtdqJx/ZOCgRj22sFqoWRj9ORJaOUcpdUHWuHHzYPCmMoe4/d6ogZqWjqsWL1uD3psbvTY3Lj35tGSvnOmis12Yjd0ReOgK+iTVPL2dsDdfgHa3JGcDYy3uw1du/4BADCUzgir5PKx3+e3BRIoJQwkQpWzsyfkYHnVCMydlItf/nUPqityBc0+Q6tVmzaugTqrCKap34MiIRF+mh7QCm0+rX7DuLlwtZzjdG7x8W0yRY8HGWjY63iqRGUUjOPmwX7uUFwVpFK73XoPbYsIuHGMVcMkVHz2HnTWbETP/q1R5yspv5+MokCpdJBp9HB3NkOdUQBdYd984afp4N+etKRV5HXkYf/97ZlLvuv0d70qtE416JSYPDoDHi83IWtzeJBQGJ9fhtQkldQOB5lSJX2cOHcYSVNvQ/LMpQJyRRKq1s8dRlVFEd7ZflqUBxlDuPwURcmQn2FEQZYxcG5PYI2nUcmxet2eCD+viPnI64FMoUTmklUA+D0emO+s5R9/BO3shX5kJWiPC5RSHfD/0Srx8zvHY/PuBnx+8GJExx67fg4bB6/V9ShZcxII0RlUyQMAUCgUuOWWW3DLLbdw/p2maVDX2ABFIBAIhG8vgUosb786BvpjciwmEPbUut1oardxzhXemi7WV8FP+2JX1galGCitUVBHlWmDDjXHC1SeRTOx5K98tNkDHQQd//cKR49WCKZaqLoyH9v3C+v/NrT0oqPLBkP5PJhmLAno4Z47hM7tr/dp2JbNhi6/NBDADwnUtFtseHfzCWzeVcdq04qVrwr/zH6vh93gcq5dOgO6wrHw9nRAYUxBz8FP0bNvC6dyzLJzE9u6r84ZgZRZyyRd/1pAalCA8N0kmlcM8//FdHitvncynnmwEilJWkGzT6Zatfnd/0Jq9QOcsYF2u6AfPQ26oeN4g180AHmM+2WO59XNHjMT+hGVUGcMjdDgDufbYooeL0JVoqq0HCiMqaxXTyz4Kkil6Pw7L9VGvA5ESqgkjJiKpMpb4Gqu43TdCRFrTgyH+Z2VSWlhCafB+zdAEE9/1qtC69TM1ASsXVGB9JQEHDzVim37+tahcyflonRoSlx+GVKSVNJ9sXzQ5o+G48x+aePE0R0Bw3GBeJKkqvWjO2BeWIbcdAPqm3pEeZABffJT5cVpGDU0FTdOLYBGLefMHV4fjdkTAgkGIT8vJnDvuHgS1sPbono8MJ4IPnsPsu/5XXC+Owzr0b55KaF0JpZXleHW6QXQJ3AloPikpOTGVKTf8rCo7+pKQ9acBEJ0Bl3y4MMPP8S//vUv/OlPf4JC0ffxHn/8cZw7dw533303br755qt4hwQCgUAYDPS3YyBwjugmx6HatEfOtLEbDLGBsDUrKvDo8zvYDoSSXBOeum8KLL1O/OmdI9Co5KJ9FWSUHJQmIaYUQ8e2V5Fx2+OCOqpMxQ4jacRUnjW1W5GZqgdN++GHnze4JqPknPt849Na3LewFF5Li+B98117eH4Kq//LB037cbC2A3MmlIB2WqPr4S5eCYqSw+mh8bsN+3DgVCtHNorZlEsxIfTTvkBVGCWPqcVLu53QDS1H+5Z13O87pHVfpojsuOSrau5vZepAEo9ZNgmSfbeIlkAtLzHD0utEU7sNIwtSRI3Xa/+2lx2veSsQmWrV+qNImXMnr1a2vXYvIKOQMHIqUhesgEypwu9eOwBjggq3zylGcqIG8qCPCfO8Mf/tBwUZ/DF1szMWr+T1jmGk1dTZxd8JSQW+34iZV/pTQSpW5x/wI2FEBXoPfip8geA4nHz9XQBk0MVZjS0W0h1A4KM/61W+dapBp8TaFRXQqBV47IWdvOvQqWMy8fgd42PK1jBJ1XiQ2ilU39SN/IIy2IIeUlLHibON3RiWY+Jdz0k9l06jAEXJoFaK//Q+2o+n7psCmUwGOSWLSNosnV+C8hIzRuSZ4HD7cOxcO/adaIFfBqQY1fjJ7WVIVPrQwlMEFO7x0L7lpYDJ8xfvIPMHq2J7QyxZBdoNePiS2mFSUvay2aI9A67UWpWsOQmE2Aya5IHf78fKlSvx/vvvAwDOnz+PoUOHsq+fP38eJ06cwM9//nPs27cPa9asuVq3SiAQCIRvOf3pGAiHT3/foFOiqrIACyryOdq0PppGc7sN2WaD6EDYPTeNwpEz7Zg9IRdji9PQ3GHjdCRI9VWgPS6ozLmcFmRvdxs6azbC2Xga6bc8HNUIkqnYoV12jjfAbzfsw+p7JiMlUYtDtW0CxtE0HC4vXvrHUfxs2XioFMHgm8RqIUuPE0/fNwW/epn/OyzJNeG6sVkBDVsB82EgqIe7KaBhS8loPLF8AtZ/cAxNHXaYDGrMmpCDcp7EDN9mqLXTgR0HLkKplOO2WcMgU8nR+PovRWnxUioNp5ND6HMHriVc1awrEG/mermRGhQgfLcQm0BNNmrQ1etCfVO3qPH6ZH0nhucn844pTFW7s7EWyvxSYa1sPw3bN5/Da2lG9t3/iduvL0Z+uh5yhYLtQhB6/gBZTN1sZsxhvGMEpdVCxplrPVkYD3y/ESOV198KUrE6/1LHKD/tE1mN/e3/fQjXBgOxXg1fp1ZVFiA9JYE3ccDw5ZEm2F/eizUPVEKVOwrmMCktAOh1eGBzeJCZqpck6xiKmE4hZp356/Vf4ZkHKpA8azkA6ePEf286BLVSzrtelnquaWOz8dgdEyLW+GI6ga12N9b+bW/Ed3/qfCeee2Qm/vPHU0HJ+8aPji4bLrTakCLgE8MQuq5M//4T8AQLcyK8IYKJasaU2tV0lvWQCfc0471/EZ4BA7FWlTLvkTUngRCbQZM8ePPNN/Hee+9Bp9PhJz/5CTIzMzmvr1u3Dp988gn++Mc/4u2338aUKVNQXV19le6WQCAQCN9mYnUMhBKrJTncAC28FTxUm3bOxByUFqXiUG2r6I3grAm5uH5SHiw9TmwIk9MJPTa86kxYWkMJhd4Ex8VaOOuOwNvbBr/Xy7Y8xzKC1JfOgM/eg+Q5/8Z6A/z21X148s6JUMgpwSo2JsHhcvtwsLYVbV0OlBaloqPLJt6Yr3QG2i02/OKlPXjmwUr8/qHpOFTbhm37GkKqlgNJFj/tg72OX/c8FEY3W50zEnKFAj/6/lj2tTaLHV8cbsS0smwA/JshhSkDiVNuRkayGUvmDWffS3tc0BaMgcfSJKhvzujnavNLQWn0wp87WCUFIHZV85JVoNS6ayJwJUU+5FpIeBCuHFI7CT77l7jxesvuOpTkJvJWIDJV7drcUZI09QvzRsNx4ThUqUMgk/EnJK3ffIHcn/4V7rbzos+bNPU2+H1eJE6+CQq9CfZzh7nyZiFBFmdjLXoPfHLNJQtjSTjxv8cPmZ/mHffdbRfg7WmHvnTGgFSQxqrklzpGySg5KLUuRleD+MTBYEwKEQaWgVivhq5TKUqGBRX5OHgq9jr0YG1bMCGRAgCobbBg99EmnL3YhUR9X5dYe5cDGrUcWnXsApZwonYKlc6ErnAM60HV3GHH6nV78OsHKpCq9kEvce3Y0NILmvZHrJclVa2XzoTP68VN0wp51/jROoED/ybjTRxkpibgmQemIEGrhL3uMDfgXjoTZUWjJa1ptTkj0LTpN8haupqd74QS1Yxfgr3+WISnGR+xPAMYz6/Ya9UE3rE73sQDWXMSCNEZNMmDd999FzKZDOvWrcOECRMiXk9OTsaSJUtQWFiIO++8Exs3biTJAwKBQCDEDV/HgNTjwg3QYrWC1zf14H8emyV5I1jX2IWHn9/JkdMJ51SDBcfrOlGSlwQ5RUVIgTCbGhoyyAFosoZCO6SYfb+fptG9fyssNRsFEweMoTIA2E1FrDdA9dTYVWyhCY75k/Px8e56LK8agS276lFVKd7M+d3NJ9DYZsVP/7Adv39oOkYVJkd4QAASNWyDVVRutwc2lw+/e/VrWB1eNLT04lf3V8BH+0HxyJEoTJlIveFBVjfdenQHZ7MXrj/Le+2gFq9cZxD+3CFVUjGrmoPVY9fC5kisfMjVvk/ClUVKJW3tBQuKc0yix+vOHpdgBSJb1Z6QCOvRHaLOx4wNntYG6PJGC1Z9qtJyoNAnofOzv0s6b/KsO0C7bDGl1RT6ZNjPHmATkWICMJcTIckpMTJ6ckqGLbsu8I/7fho9Bz5B8sylV6SCNJ4xignuR3Y1+DivR+Pb0kFGuDboz3o1fJ2am25AWpIWr350XNQ5mXXoH17fz56DIbRLzOnyQa9ViTon9/4CMpdN7Vbo04phXsjtFOq1u/Hsq/vYbtumdhu2HWjE4uuLxcuIBdeOzBo6vEtDUtV64Rg4XV78/MXohTLhnQ0+mobXS+N4XSevcXW4WXEo7tbzGHL/HyWvadVpQ1hvCIUpE5lLV/N7gAWLh7y2LigSkqJ2wgKAXJ8c9foyihK9Vg2nP4kHsuYkEKIzaJIHZ8+eRUFBAW/iIJRJkyYhJycHx4+Lm/AIBAKBQOAjvGMgnuMYAzRGfz9WK7hOE5i2pW4E937TApr2czwU7E4vW0UFBDYfWakJEkz1IgMc+pGVsB7ZLlixk754FTq77fjthv04ed7C3lOVyCq2Uw0WHKxtxYKKPDzy/A7MnZSLqWMy0dlth3nRSrS+xS8xFNq2vnlXHQCg1+7Bm5+cwqNLx+PZV75Cl9UFs0mHny0bz75PqoatSqWESqWE1eFFR7cDD946BqVFKWy1WOhmhtLqkbl0dWwd2aD+bIS+edi1ffYe3s/NVEkBfjjOHxNXdRbsZrgWECsfQvhuwASKYiVQGem3rNQEANLHa9oXKS/jbrvABkekjg0JIyujdivEq9UvKsgSJnPEeU0gAHM5ESM5Fc289XRDF17fegLjSlJ5x/2eA1thKJuDjMUrBWXnBrKCNN4xKrKrQWy3Qf+qcgnfPfqzXg1fp8a7Dm212HlfD+0Sa2q3wZysE919ED6WKBQUJo1IR5JBja5eF7p7nXjy7sn4jzsnsv5fFCXD7Ak5OHK6DRnJWpgXr0IrjwcA0Ldu9Xq96Oyxo7oyH91WF/Yeb4no0hBTtZ6+ODDm/Hr9V5L9J+QUBbmKwrZ9kXNfVWUBzMl6weR0vPOLPCEgxUS7XeLWq4tXwk/TkBtTAJ7kAdO5kDT1Ns6/h0vsiV6r1h2J8E7oT+KBeT9A1pwEAh+DJnlAURSUykhDQD4MBgPa2tou8x0RCAQCYbASXokVjdkTcqNWUfpoP56+fwrWvrwnZiu43ekFIH0j2Gt3Y9H1xREeCm1dDny8ux5bdtWhqrIASQa16Or/cMRU7Fi67fiPP+1iK8AyU3R4dOl4pCZp8XeRVWzb913Ao0vHw2TQ4Kl1u7FmRQUyUhLgcnkE2tZnsPJIq9ft4Ug2MZvaLqsLx+s6cbyuE3Mm5rLVZFI1bB0Xa6HJKkJuhgG/vH8KUhK1OH3BguwUHdB8krOZMY6bH6kjG0ao/qyQjixzbdOs5ejd/3HUKinRVWfBboZrqcKKGIESALDjaLTAVbj029AhiZg9Qfx47XL7oFbJ4VdHGsS7W85DUZgkeWxQJCShM0q3Qrxa/Y6Lp0QnBFk5CYCjV80XgLmcxGPeysgZySkKw/OT8dwjM/Hl4UZMLc3kHfe9vZ3QJJYEf78jsB69/BWkV2qM6m9wjPDdYiDWq8w69Vd/3RP3OpR5Hx9MYUhhVqIk2SJmLLnUbhVc4+460oSqynxUVRTgrc9qOZ0TpxosWLtiCr+pc3Dt2N3rQKJCgYeW9BWWeLw0Gpq5BRti1sA+rw8n6i04dDp6HEqK/wRFyVBdkQvbOWFJItrtDHxfEucXKni8fvQ0cevVYKJaV1gOx5kDnNc5nQvhskqcjinpXb8M/U08hELWnARCJIMmeZCXl4fa2lo0NzcjIyND8Lj29nbU1taioKDgCt4dgUAgEAYT4ZVYQpTkmqL6HQTOJYNOo8TvfhoIlERrBW9o6UVbl0NSIMxH+3H7nGIkGdQR+qqzJ+RgedUIzJ2UC5VSzpu4CO9WOH2xS3BTE6tiZ+MntWzioGxYKp6+bwqUQdNjqVVsOo0C9U09ePT5HaiqKEBVZR7UamXEtdstNlYeKdzrgW9Ty1STSdKwHTMTfq8H1qM7oB1SjEd+UA5mmzEsJ7AJaz1a0/cGGQXjuHniddNDA39hOrKMZndARqrPxJqvSiqeqmYC4VqBqTofnp8sGLjik35bdH0xlleNED1eHzndhjHD0tBr98Dm9EBpKoJ5YajZpxR96xnwWrug0EfvVpCs1V86IyDJcYDfmD4c69EdMC/8KVLm3o2EkkkcvWqfveeKPetSJKeiyejNnpCDW2YUoaPbEThvmFxJu8WGf312BoAfcyYMjZAyAb6d49tABscI3w0GYr3KrFMZn6gem0vCOjQHbRY7Glp6ox63fd8FlC81xzwfAzOW9NjdeO7hGbw+YbMn5KCqMh8Olxc3TM3HO9tPczonmtpteOT5nYE1ZAV3nGfWjhdae7Hyrkl485NTOHaugz1veYk5wqNFeA0ckCSTK+TYsrte1OcL7WwIvU743JebbkBKUgJad9REPZ+flubx4KdpJE+7HX7aB13ReEk+PwkjKtDx6Xp2vcp22qq00TsXgh1TtFvcfiDcO6E/iQcCgRCbQZM8WLBgAY4fP45HHnkEf/rTn2AymSKO6e3txc9+9jP4fD7Mnz//KtwlgUAgEAYLoZVYfBsyRnohWtcBQ+jr0YLoNO1ntf7FbgRpmgZFyaIaEa++dzL0OhV2HbnEvsbIfvBVctWe74z6mfgqdnw0jallWfh4z3lkpujw9H1T4HT58N+bDuFny8bHXcXWa/fgrc9q8c7208jPMOKXK6aguaMLr3x4PEKaKZxZPJta5vuXpGEb3IBoC0bDT9NQyOWwnTsM29EaUFojUufdzQkcqtJyWB1ZMTCBv3Ad2Wia3XwBI6lVZwTCtYScorB5Vx1SkrSCgSs+6bctu+owd1IuVt87mddoEuCO13u/acaYYWmw9LqQl2nEE/+9Ew63j02gXj8pFwuni9fK7v56MxInVkd//qRq9Qe9Y3y90YPwDEyQJXFiNa9eta5w7BXpNBJr3ipWRm/1vZPho/34n3eOoKndxivJt/GTU2wCPCfdgJ/cPpbvkt8KSHCMEA8DsV5l/j0gxUihvERsQsKMDSF+AUKILSDpux8KXx6+FNUnjBknnrpvMhINGgzPM0V0ToSuIflkPWeNHwIA+PLIJdQ39XDO+/R9U6DTKiJM3qNJksXjPyGnKPTYXFAp5RFzH5MMiZacplSawJpWgscDALR//Feoc4bDMOo6ST4/5oU/Readv2a7YQ3l88R1LgQ7pvSjp8FeuzfmtfjWqlKLZAgEgngGTfJg2bJleP/993Hw4EFcf/31mDlzJoqLi6HT6eBwOHDmzBnU1NSgp6cHeXl5uOuuu672LRMIBALhW0x4Jda2fQ0h1U65GFucJipxEE6sIDoTCHvqvslY83LsQJicorDm5egSEYzebHGeKRDcD5P9CK/kmlqWLfmzhVa/3VE1HEqFHE+++CVOX+zCnTeMFF3FxhfwBwKJlXOXurHnaDOqKvPh8/nZjV44FCXD9LHZKC8248PPz3FeC/3+/bQPGYtXoTmKHm7GoifhsbTA092GhGETI7SoVea8wOcPCRzGqz/LvI+9tgTNbqnV0j57D+Q6o6j7IxCuFJ09LsEEKkXJeKXfeu0eVuLs9w9Nx8HaVmzfd0FwvO61u9HW5UB6ig4Olxer7gkkHY7XdQIANn16CpWjM5C+eBVaoo0Ni1fCY2mB5fO3kVAyKWZXQZ9Wf+wxx9vTDoUxVXJCsOX952H75nPOa1daJ19M8EysjB4zd00fm43fbtjHexxN980F6ck63mO+TZDgGEEqA7leZQLlYhMSll4n6zUVDWbtJWVtWZKXHNUnDAiME2teDowTs8bn4M//OMLbwRs6ToQitOY81WDBr14OyKsx/l1iiNd/4qtvWnD9pNyIpA2TDIk2FzBpG6+tCxmLnkTzW89Gn1+C3j7OCyfg6W6FYdR10j3AMgphXhjohvXTPtjrhGWVGJjOBV3ROEBGRXTahsN03obOWaRIhkC4fAya5EFCQgJefvll/PznP8fXX3+Njz76CJs3b2Zf9/sDw2ZZWRmee+456PX6q3WrBAKBQBgkhFZihbZ7+4IVVlITB2K0aZlA2AuPzowZCAP8OFTbJkoi4lBtGyaNzECiXiWqkkvI0DL65/PjVysqoA6TSJLSTVFebMaWXXW8VWwluSZMHZMJt9fHW2XMdFPcOK0AJoMGAHDjdYWYXJrJej8EpJ4CLeIySg6/3xdVD9djaUHTG2uhyS6GLn802rf+jbNB4pMjiVffXJmaDUWiGfrSmdAVStPsltRJUVgGd2czKI2eSF4QrilMBrVgJ0GolnU4VrsbOw424sapBRhTlIry4j55DI+Xxp6jTdi+/wJ+fHsZZk3Iwd5jTbhxWiH+9q9juGFqQcRY+8GXdVg2rySqvjXtdqLplZWgHT2iugpohxUd215F+q0/i+rf4rG0oOnNZ5C17GnxMkdjZsJrtcB2/Eve16+kTn6s4JlQEogPZu6aMDIdFCWLWd0cy4Po2wAJjhHiYaDXq+ISEjROnbdESEbyMWtCjuRnc9KodEnjxKRRGXjp/aM4db4T08qyRa85hTon+rwJUuCjY3+H/fGfOHW+E6VFKUgxajlzX0NLLzq6bEiIIkmkzRsFP+2Dp+MSFIaUmGtar9UCeD1wt12AKngOqeOOXKHA3z86DkuPEw//YJzkjqmEkVMjEt2h8HXeSpYbvYZ8vQiEbwODJnkAAFlZWdiwYQMOHjyImpoaXLhwAV1dXdBoNMjPz8d1112HioqKq32bBAKBQBhkhLcsxxuYEKtNa9SpoFUrUHu+E6VDuYEw7kZQJkoiAgjoqz66dDwWzy2JWcl1qd2KLw5dwrwpuQD6Pmu4/mv4v8spGRK0yuD1+u5LmqwIjarKAmSm6jmb1VkTclBebEZzhw2/e20fHlpcztnUymQy3H3jKCQZ1DhU24r//dc3Ed4PVRX5SE3SwuX24i//PIIf3z4W7ZvXQZU2BMbyuWwVFQB4u9vQWbMRPfu3gnZa4UsKatP2tHNvnEeORLK+eXCTk1b9QwBAd29A51vqpsdP08hYskrQbLOvqrkDqmRh/ygC4WoQGnjh6yQwJgTCHOGV7eGdVNv3X4BSIUdakhZji1MxPD8F+VlG1H3Yg3/uPIflVSNw4EQLAKDuUp+vyoKKPDy6tM80s73LjuP1FuSlF3E09X3eQCUopdJArtXDawnpKohR9ZlW/SD73+G62eFjjiSZo4Ix6KzZGLWS80ro5IsJnkVLAvHBaINPH5sd9bxiPIiudUhwjNBfBmq9Gvpe4YQEhZEFKaKD9LGSf6H4aBrGBDVnLRkNZo276ZkqqJQKUZ0Tq++djOYOW9TOiVBvgljE6z/ByH6ufmk3fv1gJZITtcH1bSu27buAg7UduH6SQHGIjIKxfC48Xa3Q5o5E08Y1UGcVCa5pnY2nkbXsaXTWvAH46bj8eLp7HUg0aHH6Qhc83oDfg9TOhdSqFfBamoXXqjydt/HIjRIIBPEMquQBQ3l5OcrLyyW956WXXkJ9fT2effbZy3RXBAKBQCDERsyG5qn7JsPp8qI4L5ndpDGEbwSl6qvOHJcdtZKLE4irbcW2EBPLORNzMLbYzFZLMf8banY5ujAFS+aVcO5LqqwIELlZbbPYsSFojCyTBToOnS4v8jIMeHTpePhoP+xOT/RuivsCyYk/vH4ATR0BY2dKpUbXl++ia9d7UKXlgFLrQLvscLdd4ATimGorpqsgFL7AodTA3wefn8Ouo5dg1KkwdEgiFl1fEvX35ENGUaDUuqhVZ96eDshUahJ0IlxzhAdehIL6oZXtfAbKoby+tS9I9OyPpuLFtw+hucOGRXNL2HPF0sSmKBlum1WEO6tH4tlXvkKv3YXf/Oi6CImIpjfWIvMHq/mfv2C3Quhzx+hkWz5/G7aTuyPGHLEJiYwlq+C1daFnf2xz5cutky8meBZqaCoG5rgHv1eKpnZbvz2IrmVIcIxwLRItISHeb4G/+CTWNaWOE5fabEgyaJBkUEMhp6KuOZs7bHhq3e6onRPMeS+09CIrTS+i+0C6/wQzbhp1Kjz0xxosnF6EG6flo7QoFWODxUNCxSGMx1bb5peQVHELzAsfQvNbz/KuadWZQ5GxeCX8NA1HwzcInliyH8/BU60oL9HCZFCzUlBSOxcopSZqZ5/QGjVmkUx2iSTJTwKB0MegTB7Ew44dO3Dw4EGSPCAQCATCVUWsNm3o8dGQqq9q0AlXcsUKxHEljRS8ZpfdVheWzCuJuK+mdptgMJC/rV4Gm8ODVz78BifPWzgGmYuuL4Y5OdA9cfpiF+5fOBo3TisU3KwBXP3anHQD9h5v5raC+2mOWXE4AVmQrkCALwzaYY0IHNpO7oW3txMZi1eiedNvBAN/5kUr0dZpg93lwWNLy5GSlMC+7qd9ETQQa74AACAASURBVMZ8sZBRcvhpGtr80awpHgD47D1wdzZDlZxBNlWEa5bwwEtoUF+vVeDJuyZxKtv5DJTDCdXOf+q+CnT2OIPX4lbJC2li07QfY4rS0G11Yc83zQCAji4btD1NUBqSOcmCjs/+Dv2oadANHcd5/mhfoDoz/Lnz0z6ohxTDsvPNyOuGjysRMkd98mZtH74I2mmN/f1eAZ38WMEzsyngSyB17tKoB96D6FpEVAcZCY4RrhEulz8Yg/Q1rhIyGfDYCztxqd0quOb84lAjXnzncEzJJea8B2tbkZNuiHkf8X4foePmax+fwMZPTmLFwtG4YVohXnz7EDq6nXjw1tERyWlNzigAgPf/s3fm8VGVZ9//zZmsM5OQdUISshoIWxLCHkAJIEioSmsVFItPKRZb7eNCtbZQsELrUtu3+vixz1PU0kpxQazPWxXUvkCCGlDDFtYEJCEYQtYJmSWZzMyZ94/JmcxyzplzZglZru/n009l5sw595nJue7rvq/lp7sqGMCOGJWNhEX/4Ugg0XdAwTBwvbqcQLWdtaE4X+ucP5969bDPtkqueFZMeVbg2VlHAF3ItjmSZNRec2JYXCpGldyO8FHJbn6zP340QYxUKHhAEARBEIOMYPWm9be/qlAml9SNuKdfdWzCf3680eu4hmY9r1gdAN4M3zW3TsLYzDgA7vesZBSIigzDQ3dNcVuAJcRGYsWisThe66ieYBgFZk1OldEXtwVLS7Kw+8B57DnUgNVl0rM8DWcrBduCWHVNaNz+C8ROvQWjZt7q3Di0s2zfIucEDNUVXht/bTojGAZYeXM+jBdPoKWiHDZDJ5SauL4MrCLZm0Tcsa6LJqUqFkyUxu19ghhs+Np4iVVHOjPbz3/bKat3/rHaFuSmjcKlpi4U52thsdpktZi40mpwBjAdtmOCaIsI/Yn9sOiakbRkDZp1PdAmqLxsu69Mc86uxM9fhdjim902Wdp0Rhw59i1uLB7jU3jS+f0OQJ98qb3S/e0NHqye7oMVoc0xKVm5BHE9CNWzKcdOLJieAYOpF4lxKjcf1tPn7O614ekfz4ZGFS5Jq2Hh9ExYrCyOnWvG7TfeIGnc/nwfnnbzwJEGzC1yVAp/fNiR2HLuUgfKSnJQVpIH7fIi989r4tBdX+30Q4XaFtlMeiQvewDK2CTne3wJML4q57hqibFj4mT70q54buxLsWt8gQdubA5fO3A/miBGIhQ8IAiCIIhBSqC9af3tr8qXyeWXiOUEbxFLlrX7FEjmMnzzM+MxPjtB5P74F2AAnFoP8vtnX8b6VdOQmRKDvZV1WDIzA9oVG9CyS7g6gMu2YlSxoudmuw3o/OI9RGVOQkRyBlr+90+A3Y6ozEmILb7ZbSHX0WnCB/+vBgunpWNUOIvG7b/0ur7h1EHn9ZlIteyFjz+LMoK43vjaeOEyNLe9f1LWs3+g6jKKV2mx/aMzOHDkMh5eWYwes9WnFsumtbPQa7EhLVnjtGmc7Uha/ihadj0j2CJCu2IDOq6ZkJqk5hmRA1+Z5uHxqdBMnANAARvL4mLjNfzXO8eh0/fg/zxyI+w2q2x9lVDbAim90v2Zu7jP8l1rOOFvVi5BXE+C/WzKsRPF47Qwdlt4fVjPqrIPP68T9VFdzztlXDKO1bQgRi2tAsJz/O7/Fv8++Oyma6UwXwJOj9mGzWtnQtOX+c/5oUKtOEevegp21oakW9a6aQ64JsDETi9z81f57I6NtcNut2PT2ln4484jaG43SPSlgzf/cD6unWXBmo28c2igfjRBjCTo6SAIgiCIYYyNtePpdSVYOjsL2amxYDwWJ679VR3HOzK5POE24eWI0yXHq5DJU8a9t7IOV9uN2LR2FvIz+TNdXTUIfMHXJ5ernvC3f7YqKgx6kwWbth1GRw+D9DXPYfQ9m6GZPB/ROYXQTJ6P0aueQvqa5/oWHEqosiYjMm2s6Pm5nrCspRdhsclQhIXDeq0VvR1NABzVAADQ0GLEmGQNkuM1gostwCFyevXt39GChxhxCG+82BGuZPDzex1tKOQ++1t+XIL1q6YhTMlg5yfn0G224g+P3IQtD5RgwbQxmDIuGQumjcGWBxwaLd1mK97dVwMba3faNC/bcfevEaHNhiIsHBHabIy++9dIX/McLEwU4jTum06cDeBwzTQfveopERvEQMkw+NfBi6hv6sIts7OhTdBAf2I/VLlTpNmmnMIBtSVSeqWLzhEuc9dIhALAxEhHip3YfP8stHV2Qx0dLsmH3VtZh059j2/7c/9s9FpteGX3CWcF1EDgajf55jcuGHKmrgMXr1zDnkOXoMotcp8D+lpx9lw+62jJaWdd5gAl75yjumEaojInIUwT7zZP8dkdJaPAH/5RhW6zFVsemANTrw1mRPT50uLzWLBRMIxg8B0gP5ogpEKVBwRBEAQxrLFDHR2Oh+6aAgDoMprx1elm1DZ0YE5huld/VaFMrkA24T3xFEgWa10hR0DPFa56wtRjdfu33M81tRnx2IsHeUvBucWTgmFgY1lYLTafmVXaFRthtVoRHpfslrl1Td+Nz483IiE2EhNzk1CQlwgGdpjqToiWeQOOhY+prhrRWZOodysx4lEyDP7nX9XIGh2LW2/Mlf3sN7Ub8PGhety9JB91V7oEtVhcRdrzMuKgZBSw2lg3m/b6B2dwU3E6Zk6YCK2LxoHRZIbVaoMqOkJSGwU5meY6vRkMo8CykkwYL55AR/lOROcUSexX7Z716dkPeiD7Q4e6Vzpx/fCc2wOZ64nByUD9xlLsRPu1Hvz1g1P4xeoZknxYvcmC7R+ewcMri0XP22u1YctrhxGnifSqgBoopMxveyvrcPu8bN9aKSs3wmrsRNuev0CpjsOo2bd7zTltOiOOnmjEvKJ0wevZWBZnLrYjXRuDiDCHfc5JHQUAfZpbk6DKdZ3H+DV/goGdtaH70ikZfvRkCiIQhAAUPCAIgiCIIYKcxRi3qXLyQhv2fX3ZuehZNCMDN8/MxILp/dUFYsJsXAAh0E14TziB5AfvLEJJQapH6wq2b1z+OfCufXDFNBb4WDg9E7quHjQ0652veZaCj8+Kx0N3TXHbRFMyDP72yRncOjebvydswXyocovQ2mFEpJ2FggG2vX8cLToTTD1WN8Hn/Mx4PL2uBOrocBiqyyXds6G63Ku3K0GMVJraTfj0qwbMKkiV/ez/8pUvkJkS4xR252sF4fnMcvbu7U9rcP/yyV7teAymXlhZC1RR4QAAVVQ4WLMRjTuktVHgbL2UTPP4mEhkpsQgMU6Nlopy3/2q+2yTq93g/rv70qnr2h96pOgYjBTE/JIp47QUDBqkBMv3DNVv7MtOvP3pOVxudgjGS/Vh7XbHOFnWjoIb3M9rsbI4VtOCV3afQJwm0lkBNdB/u1I1H/QmCxrbTBiXMUpUs8Cia0bTW1th1TkqYfXHPkVkej5G370R+l4Gz75RhXOXdCjMSxINHigZBpkpMSjIS3ZodZX3zyHqglKoc4vQ3mnC6x+cwehEFe5bNjGo34srCkbplx9NEIQ3FDwgCIIgiBASjOwruYsxG2uHqcfitvnPUX70W2e7B24jyxO+TK5rBjO6jGYslCFi2aozuW3Ce6I3WaCJjoC3GHJgm1Ke1RO+NBY4uP615l4rxo6J4+2LGxmuxH3fmci7UKy70iVYpdCmM+K9PWcREcFg5c35PkWn//bhaTx01xTYDJ2S7tlmdJyrdc//IGHBvdS7lRjRxMdEStJX4eCe/R17zoJl7bxBR8++2K4snJ6Bnl6r45l1sQ2vvHsc5y7pnHYwMyUGt87LwS2zsyW1UUhf8xw+P94IjSpc0sYbt5n01qc1jn/32Q+3ftUC4s0xRQsBDM7+0CNBx2C4I8cvod93YBHyU0Ppe4biN+azEzaWxdyiNHz6VYPsRBLu/mx93TMvN+txrLYFx841I0YdiZ/dNeW6VkDJ0XyYmJOId/5di16Lzcs/tRp06Ch/E11HPgHbY3D7rLmxBlff2or0Nc9hcm4SztR1+AzA2FkWKqUFjdt/IziHaFdswH8sG4/XP5CmSRQIcv1ogiD4oeABQRAEQYSAYGVf+bMYUzIK3uM5ahp0ePrVw/jDIzcJXlcok6tYhojl3so6N7FkoeNCgY21Y8sDJfjv96rxyeF6LJ6Z6VP4lMseCwtT+tUqg8tS3n3gPKrONSMn1SGgXHelC/VXHZuOr21cLEl0+twlx/tKTZyk+1WqHX15zY21zk1HghiJuGZj7q2sk/Tsb75/Nq62G7Gnsg6ANGF3189PGad12jrONthYO+77zkQ8/eph53sNzXpMH+/IxpTURuHiCYzPysPaZ/Zh7Jg4nxtv3GYSJxjvaj/EhDI1k250Bg8UDIOOAztht/YCCgawu+vOuAY2CEIqwfBLiOAi5KcumZWJiblJ18X3DDacTRw7Jk52MLn/HI77S0tWIyPlBtx+4w0ABkcFFF+lsCv5mfHYtHYWrrYb8b8VF2DotuCfFRfw981LEB2hhKX5G1x949dedt4VrqVPWckN2H3gvFtghQ8Fw6DlHfHgeMuuZ5C+5jncVCxcwRAs5PrRBEHwQ8EDgiAIgggywcy+krsYs7EsTl5o87k5XdOgw/HaVhTkJYmOwTOTS8pCxbEJz2LelHTs+/qyz836YC+8uKw5VVQ4fn7vNJh7rfjm205kpMTICgrIaZVhY1ksmZUJbYIKy0oykRindr7X3mnEnkMNOPVNG5LjovHGR45MK4ZRCLZBaWjWw2DsgaawFIZTB33es6ZgvkN4ufUyYGepdysxYvHMxnTVVzlW24IDVf2bZAumZ6B4nBY6fQ82bzsEQ7fFeR6pgQchO8ZXwRUZrnS2E/KJgkHPpdNIyi1CyeTROHTqqqSNNxtrx7rvFeCavhvqAh770SeU6YpmyqI+/QQ7FIwSyct+AgCwGjthPFsJ3WfvgjX1V11Qf2hCDsH2S4jAEfNTtQkqFOQlX1ffM5hwfusLO6pwtd0YgE0PTQWUL20ZsYplKZoPPWYr3jtwHnkZcYiPicSyOTmIVTuqB3RHPnYEDhSMV1DZNaBgqC6HdnkhbpqSLpr0I0tj4OIJzJzAX8kbLOysTbofXVhKbT8JQgQKHhAEQRBEkAlW9pV/izHGmXXqi/1VDbIz/+WIWA602KVnFl1Prw3zp6Zj5gQtJuYmOY8rykuQFBSQs1BUMgwm5yb293itcO/xurqsCB3XTACAnl4bVtw8TjDIsLeyDnqTBYdPt+DmmUWITBsruhCLTBsLVW4ROsrfdC72qHcrMZLxDHIKiR7runoAAH/eXY2mNqPbOTyF3T0DD1LsmGAvbpE2Cky0xtFeaOoShMU67NYv/2Om0z6cvNCGibmJotd0BKYjgBgf9kPBIHbGrYjOmAAFw/CKN4+avgyxUxbj2pGP0fnFbrDdjrYWZGMIqYTaLyHkI+SnMowCS0uyJVVIDqTvGQicTdzywBycqetAWhJXXdqC/TJtulSkiM0LassUlEKVWwTdNRP+WXER08ZrRSuWfWk+hIcz+NFtk71eBwC214y4ud93m28AwNrVhq6jn6Lr6Cdguw3Olj4//X6hj6oDGRoDJyugzS3yfWAAKBglVDkS/WiazwhCFAoeEARBEEQQCWb2lb+LMZ3eLOkzUo/zHpc0EcuBFLv0zKJLTVLjmZ+UICleDVPdCXSKiH4GYxxS+oSnrNwIO8viP+8sRGxMlGCQYcnMDGzadhi1DR1YNH0MRt+9UbA/emTaWIxe8StYdM3oOvJJ//dBvVuJEQxf8LL2sg5t10y4dW4ucsfEocdsxfYPT2P9qmmIilDynocTducLPMixY16BSIE2CmHxqUhdtQnhcSkwXTyOjgM7vezDNX23pIo1wLFhxWc/nAGK6d+BUhXjW+Ng5UaMmvEdqPNnoenNLbDqmsjGELIItV9CSMfGsrjYeA1miw1MnygwR2ZKjFuFpC8G0vcMBM4m5mfFOe1xQV4SpozTOo8Jhm8qVWxeqs94+7wcPPKnCqQlaSS1reO7Z7FEmKRl6xCmjvOabzQF85FQugoxRYvQ9NZWZ0ufyIgwn9/PYNMYsLOsbz/67o1UdUAQPqDgAUEQBEEEiGtJsZJhkJs+CituHufMIBdCSvaVP4sxX2Jmco8TQmpm/kCIXSoZBba+dhhmiw3TJ2jxyIopiAm3onH7LwdE9FPBMD4FUJvfcfQJV0cqRMelXbEBW9fNRouuBywUYCJVSF/zHEx11Y7FqFEHpToemoL5UOUWwaJrRtNbW92E7qh3KzHSEQteKhkFoiLDsH7VNFisNqdGAh96kwW79tVi94HzeP6heRibGQ8lo/Dbjgm1UWCiNUhdtQlMeJSofeCCkFLsloJRgolUu9kPMAokLLwPYepR6NU1IYwZ5Vu8uc92KVWxSL1nExq3/4JsDCGLgfJLCHE4f3VsRjxefnwBWju78fGheqe/qopybA8NZt8zEFz90WD7pnLF5qX6jCtuHofX/3U6qHoRNpaFwm6HQqEU95NX/Aqp92yCpasNdpH2Sa4MNo0BBcN4zYNOP7qwFKqcQgocEIQEKHjQh90uLOhIEARBEHwIic0tnJ6B1WUTsHhmJjZvO+TVDoNDyuJM7mLMVSzUF75Ez4YKNpZFS4cJT9w3A8lx0c7X+RZEHMEU/ZTV47WuGhHJGTA3fSN4DCckl5Ko6XvVkRUdnTnRrazaeq0VHeVvouvIJ26BA4B6txLDH88+0EJ9oYWzMRUw9VgQFaF000gQYuyYOIzPThAVgZeCUBuF2Km3IDwuxafd4jaUpF/Pcf/RWZOcmySs2YjGv21Ayh3rYbp4XHJ/6ghtJsLjUxA79RZEZU0mG0NIYiT6JYMNqf6qqccKgHxPf5ASELj6zrNIu28rTHUnJPuMt82diN37zwtWLEudC13h3m/0IWx8ddezSF/zHMLjU0TPxzFYNQY850EOh9YPaB4jCAlQ8KCPn/70p2hvb7/ewyAIL05eaAvq+bQJqqCejyBGKlJEkTetnYUt60qw/sUK3goEX4szbjFW39TFK6rrSv9ijJG0EZafGe9Xz1l/FimhR4HUJA2O1bRgx54zePD7BWCvnJW8MAtU9FNWj9fqcmiXP4yI5Awv0VLvcU1y9si1s6yjZ64yDK17/gfmxlovQTsO6t1KDGeENsEWzcgQ7QvNdx7WbgfDMNDpe3yKaG5aOwud+h7ExUQFbAe92igoGMROXSJ9I98Pu8XZEm6Dy27tRVhsEjoO7JT0ecPJCmiXP4zub2sQO70MYRqqPCCkEWq/hBDHl786ISsem+6fjWcfnIs/7jyC1s5uLJwuNxAw9H7jYPqzUpNI7JYe2T6jKqcQK2/Ox7b/PelWsRzIXCg36cXVHxXDLTje9I2gCPP18lM974GCBgQhnSEZPKioqAjKeebPn+/875tuCk4JGEGEgpPfBC+AsCghM2jnIoiRjBRR5K2vf4k/PHITykpysGtfrdcxvrKvlAyDgrwkvPz4AudrniXmgPdizFMs1JP8zHg89ePZsjK/grVhF2w8F8W56aMQFRmBFpkLs4DHIbPHKxPpEshVMF4LLM9xORY44bCzLBJK78XVd34nGDgQ6t0qRcCPIAYzUoK2vvpCcygZBf7+4Rk8dNcU/O3DM7hnST6vMPKC6RkoHqfF1XYj3i+/gJ9+vwg2mx1Kl8fLamWhjGAk20HPNgo99afkbeR72Aepz7brhlFUxgQA8m1XT91JRN94J1UdELIIhV9CSEPIX41RhaNsTg6WlmQjRhUBAHjmwXkwmHpRnK9F8bhkHKttFTzvQPieoSAU/qzUgADn+8m1uzdOScVr/zrlrFj2nAsZRoHMlBhYrDa8/q/TiI44h033C8+F/gQwpGJnWaT+4Gmw5m6EubQw4kSYzVcuQPu9x2gOIYghxpAMHjzwwANQKAKbcBQKBc6ckSYERBAEQRCuyBFFPlbbgqUlWdh94LxbxYCv7CupJeaxqgivxRifWGj/5zMxZVyy7MBBsDbsgo3nojgnNdYx5gEWbJPb45U1m/pFS6cuQVhskvMYa1cbuuuqvT7LLbKYKAENBIHerVIF/AhisCMlaCulLzRnw89dcpyHZe2CwsitOhN27DmLozXNeOr+EgDA6Yvt2F91GdcMZuSNicPsglSMy4yH3W6HjZXWO5uvjYJcuyXl2QbsLlUHSkSm5CBu7vfR3eBYB8m1XVZ9q9v4CUIKwfZLCGkI+aupSWpsXVeClEQ1jtW04I2Pzrj5mcX5WmxeOxt/2FmFL6qbvM7LFwgYCr9xKP1ZKfabNZsAyLe7cTHRyEyJcVYsc3PhlTYDVtw8DstKMpEYp3Z+rr3TiM+PX0HZnOyAxgv45ycz4ZHo+fYcOvb93UWEuRQJpauoVRBBDFGGZPAgLS3teg+BIAiCGMEoGQb7vr4s6dgDVZexftU0ZKbEoL6pC4Dv7Cspi5vN98/Cf60vRVRkmPM87sLNjn8X8oiFcu9Lv9/gbNgFG7EgzkAKtsnq8VowH9ZrrWCtVqT/6PcIj0uB6eJxdBzY6bLAmo+YooW8m/qO37hPA0FC71a5An5EP1SpMbiQE7Tl6wvtCmfDG5r1bi06OGHkzJQYt1Zx6qgw/OnR+WAYBR5/6SCutBlQNicHP/zOeLcNGwZ2AO62mBs792/P91z/pmQHIXu7cfWtrV7Pdk/jeaSt3oKwmASY6k64BxYK5iOhdBUsumZY9R3QFMyXZbvsVqukMRKEJ2Ii5q7vE8GDz1+NUYVj67oSREWG4fGXDopuoj+xegZur+/Ax4frJQUCBvtvHEp/Vor97m29DJupS57PaOxEmDoOqqiwvoplx1zYZerFi4/dBG2CBsaLJ9BS0W/n1QWlKJtTBLPZgrDwMN7vPRR+shyfkwgu5LMSoWZIBg/2799/vYdAEARBjHCkiB27Hlc0Ngk5abGSsq+kLG62vPal1+JGSgm27EyqIG7YBRu+RXHdlS7HZn6B9IVZoJn3QgKonkSmjYUqtwi6z3cj9Z6NYMKjeMVR+Tb1+SpREmIjsWxONsZnJzp7DnuPTYKAX5CEo4cLVKkxOJETtHXtCy2ETm8Gy9rx8aF6rC6b4OzVzbJ2Z6CXo2xODlIS1Xj8pYM+N2zUuUWwWm14/cMzqLvS5ZbJq9P3oKnNiIk5iV5zgD9Ck3zPNhOtQeqqTVAwSnH7suJXAKOEKneKZNvVUf5mUGwmMbIREjEnQoOnv+pqz6Rsoo/PjsfE3ETne1ICAYPxNw6lPyvZfttZ2MwmWT6j4WwlNBPmQBuvcs5rX5y4gt8+MBvxkayonU9ZuRFMuBqA+32EStiYfM6Bh3xWYqAYksEDgiAIgrje+BI79jzu/uUFAHwvuuQvbhJh6rGGrKVQsDfsgo3norj+ahe6zTaocqUvzLiM/UDwEkDluRanRaCMSUB4XArvgo/DdYHFilSiHDgi/BvLF8QLTDh6OECVGoMbuUFbMTjbvLeyDotnZgoKJjOMArfOy8Hx2hZcaTPgxcdu8rlhM/rujbhtbjYeffEg9CaL0xZvWjsLCbFR2PyXSjyxerrbMysrCJlTiN6OJpgba7zej516izT7sutZpK95DjaTHqNXbsDVd54Rtl0rfgWLrhk9jeeRULpK/IslCGJQ4eqvMowCS0uycaymRXLrzYIbkmAPIAllsBBKf1aO/Y6IHw07a8PolRtx9R0Rn7HP7jLRsejs6sa67xU4g875WQnQJmh82vnmd/g36uXON1Ign3PgIZ+VGEiGZfDgs88+Q3l5Oerr62E0GqFSqZCZmYl58+Zh0aJFAeslEAQfJy8ET9SYQ5ug8n0QQRADjo1lsWiGo82FLzxFkX2LeMpf3Gx7/2RIWwoFc8Mu2HgGcVjWjg++qMeKhXm+N8RWbghaRo6nAKqQFgEAxEy+CaaLx2UtsLa+Jr/MPpSCeMMVypob3MgN2grhasP1Jgs2bzuELetKeAWTl83JQXxMFP76r9Mom5MjacOG+xspK8nBrn21ABzP6dbXHRVjMyaOxhsfOcSaXZEThLx2+P96X1zBIHbqEun25eIJRCRnwG6z8tuugvlQ5RbBomtG+/43kHLHespiJIghhKe/mpkSg+S4aLzxkTTtxwNVl1E8ThvKIQ4oofRn5dhvBaMEE9XnM148AcPJCkG7O/r7T0AFuK0lZk3SwnjxREAb9fLGK6XqgHzOgYZ8VmIgGVbBg/b2djz66KOoqqoCANjt/cKUhw4dwjvvvIPi4mL86U9/QkpKyvUaJjGMOflNcAMIixIyg3o+giCCg5JhMGWc1tnmQghfoshCyF3ctOhMoscF2lIoWBt2chHrG879my+I838rLmDRtHQkxKpEF2Z2W3B7d/MJoAJ8WgQMDCcrJJ2TW2B199pEjxP6jQdaOHooQ1lzg5tAgraeeNrwpjajoGAyVy12zWDGD78zXvqGzcVqlJXcgN0HzoPtOwf3nC6bm+Mcm6tdkxqEVDAMrLpmr+tGJGcgLDYJHQd2+vyOAMBwsgLa5Q/jyhu/hip/FkZNW+pmu6zGThjOVoJRjcLo7z9BgQOCGGJ42jpVlGP7R66fef5yJ3LTRw3ZqgOOUPqzUu03C4DrRM9azIjQZkK7/GHneazXWtFR/iZ6Gs/3BWwdvetd54wYdRRaTpZLGpfQRr2c+UYq5HMOHOSzEgPNsAkemM1m/OhHP0JNTQ2io6OxZMkSTJw4ESqVCgaDAadOncL+/ftx9OhR/OQnP8E777yDiIiI6z1sgiAIYohiY+146sezBbUJfIkiiyF3cWPq8b0J7m9LoWBu2Em/pnd/fz4NB6Egjt5kwYb/OYTfPjAb2gQNosaMhyq3yPk+a+lbNCsYpyPtK1AhB0+BMj5nXe4Ci1vwi8H3Gw+kcPRQh7LmBjfBDtraWDueXleCp189hLOXdNCbLG6CyeOz4vHDWychfliK7wAAIABJREFUKtLx7OWNiUNinBotFeWSxms4WQ7t8kJkpsS4aShwz2mXsRex6ginneE2iKQGIfmebSbSUbEq175EpN6A3qt16G6shSprknMsYeo4aCbM4RVjJwhiaODqr3L+olw/89DJKxibIc2fGKwMhD8rZL/1hh78+6tLqL2kw9yiNEwZpwULBRhlOMI08ej+thY9ddWw6h2i9JywPd/mPTdnBGOjXnrSizTI5wwcqcLH5LMSA82wCR784x//QE1NDcaPH4+//OUvvJUFV69exbp163Du3Dns2rULP/jBD67DSAmCIIjhgJJRQBUVjj88chOO17Zif1WDc5NbiiiyEHIXN536HjQ0630e629LoVBXWXhiE+nvz6fhIBTEaWoz4tE/HcTqsgm4ZZZ7FZdCGe74fwEhYiGx6WAid4ElJUDk+RuHShBvuOF635Q1N7gJRtCWCwwqGQXU0eF49mfz0NLRjffLz6Op3cRrw20si5LCVMfnAwz8cc/p1XYj3t1Xi++X3oC42Gh015+C4aSw2KHrsyn0bLNmRxWaXPuStHhN33m5DSPfAVCCIIYGnv5ql9GMhdOl+ZkLpmegVWfCN99Ks3uDmYH0Z1kw6Om24G8fnsa5Szo0NOudFWgfH77k7ssCiEq7AdFjxjk/L2XzPpgb9cGw+XbWBk2BRJ+zoLS/CiNIiTtDHX+Ej8lnJQaSYRM8+Oijj8AwDF566SXBlkSjR4/GSy+9hGXLluGDDz6g4AFBEAQRENzmVEFeottCw5cosvg55S1uPj/e6FyQiBFIS6FQVll4omQUgtcBvPv7Sw3iuNJfbSAvUBEo3PfT22uRvsAqLIXeIC1A5Pkbh0IQj49gVm0MNJzYXNsnf0XKdx+hrLlBTiBBW1+BwgfuKHJpC2EH6/J3rGQYjM1w/OaBBv645/T1f53Cz1cVQ620oHH707LEDoWe7d7Wy7B2tUFTMN+voCEFCQhieOLqryoZBsX50vzM4nFa7NhzFqM0wW1Leb0YKH9WySjw1LZDkn1ZuZv3gzE5RMEoocqV6HPmOnzOk7UtshJ3hrK/KYa/wsfksxIDybAJHtTV1SEvLw9ZWVmix+Xk5CAvLw91dXUDNDKCIAhiuOPpuAajbY+0xQ2LURppLfgCaSkUqioLT2wsi5MX2kQXs4B3f38lowDLsrKDOHIDFYHgGqgoGpeM1WXSN/Wb2gySAkR8v7FPQbz0fFmCeJ73dD2qNoKJU2yu6RtYF97r96YrMXD4E7SVEyjkznG8ttX5d52aqMLa5ZMRoVRALTmzcj7adEavwN+C6Rno6OrGwhkZDvHlv23wS+yQ99m2s+g6+ikSSleFPGhIEMTQQ+mSPOHLz9y0dhauthuxp7IOT943Y0jM6b4YCH/WH18WsMvaFB+o5BA52FgWVosN2hUb0LLrGVERZpvNht+8+iWOn291e18ocWc4+Jti+CN8PBgDSMTwZtgED+x2O5RK715gfCiVSlgslhCPiCAGJ+rocGgTVChAkt/n0CaooLSGB3FUBEG4ImdxU5CXPCAl2GIbdmyQMoGUDIN9X1+WdCzXN/zlXcfRa7HxLiDEFhL+Bir8xTVQcaXNgCUzMyQtsOwsi9QkDUqnjsFBkSoTod9YSBAvLC4Vo0puR/ioZEm9VT0Z6KqNUOApNkebroMLXxmGUoO2bJ9NkBooNPda8eR/V7ode+I8cOJCG158bD7UkjMri/DenrPOZzZGFY7VZRMxJS8RCkaJW2ZlAwBS7liPrqOfouvoJ2C7DV7nEhI7FHq2bSYD2N4e8aChi32RupkgtQ8zQRCDH1c/81htCw5U9W/ILpiegeJxWlxtN2LztkNIT9YEpS3lYEFKADqQjHZ/fNlz9R346It6SZviNpbFmYvt0MZH+/QjU1ZuHDBbrWQYKCMZdPRYHPPSxRMwnKzoF2EumA9VrqP9zvM7qrwCBxyeiTti/uaRc81Ye9tkLJiWjn4Zasf8BCiGxGa5v8LHgzGARAxvhk3wIDMzE+fPn0dLSwu0Wq3gcc3Nzbhw4QJycnIGcHQEMbhQttQgttv/AFqkOh2+u28TBBEIUrNrB7KlkOO6rpt5dq8M3UAzgaRqM3DHfduix5m6Dtkb1v4s7vzFM1ChN1mwadthbF03m3+BNWWRi2ip4/v++b3TcP/tE/Gvz+uxt7IOelO/Dff1G/MJ4nGbho5rS+ut6spAVm2ECk+xua6jnyCmaBFGr/gVru56NmibroQ8gplhaGPtsNvtOFHTKjlQmDU6Bt9cuYbs1FioosJg6rGioVnv0FH5P+V48bGbfG7Ma1dsQHO7AXsqHZXOqUlqPP/gHMSPUsFUd8K9n3GfMGZM0SI0vbUVVl2T1zmFxA7FxC4VYRFegQWlOr7vGS8U/BsWChJ0Xz4Lw/F9sm0FQRCDE0fVph0FNySheFz//kmrzoQde85iT2Ud0pM1QfUhBxNKF92rc/Xt2FNZj46u4GS0y/Vlt394BmfqOpyvi/m0SobBp182oKZBJ+xH9m3UX9N3Y1QQAwe+gsg21o7w8DDsrazDjAl50C4vcr7XpjNCYbbgwuVOfFHtPc+54pm4w+dvpiap8exPS5AYp+aZV0udgQpgcLfkC0T42Gd1MfmsRBAZNsGDxYsX45VXXsETTzyBV155BRqNxusYg8GAJ554AjabDYsXL74OoySIwcOlY1/7/dnCsvQgjoQgCDF8ZdcOVEshT0KVeS5Vm4E7zrWfuNwNa7mLO3/hC1Q0tRnx2IsHUVaSg7IS9wWWI2MKvKJpq8uKcPu8bPz1w7Ow2+0yf2MFbD1GwGYFFApcfcc7W829t6rKY1HI9i22B7ZqI5S4is2x3QY0vbUVqfds4l+M+9h0JQIn2HbFcYwC+6ukBwrXr5qG1zcuRkJslPP11s5ufHzIEbh79MXP8PL6+aIb82azBR9V1iAvI87R8uj2SQiz9aBx+y+Fn7kVv0LqPZvQuP0XXhUIvsQOxfpl8wUWPI/hXhcTawyPTUZP43lncEOsDzNBEEMDhlHA7jAJOH+5E4dOXsE333ZilCYST943I2Q+5GAglBWUgfiyHGI+rU5vFvUj23RGvLfnLC636LHhhzNljZ0PqWK+3JqkbE4Ojte2Ys+hS+i12BARrsTMiaORFK/Gp182SLpmf1VGu9fvE6MKxzM/KUFcJCs+r67cACZSBTsrHEAYDDoK/gofC1Ugks9KhIJhEzz44Q9/iH/+85/46quvsHTpUtx2222YOHEi1Go1DAYDzp49iw8++ABtbW1IS0vDmjVrrveQCYIgCCIohEK4Wco1g515bmNZLJqRgfKj3/o8dsH0DLTqTGAYBSbmJDizg+VsWMtd3EkZv9AChC8AoTdZsGtfLXYfOI/MlBgkxUXhsbsdAqq+RNMeXTkFir6sOUDab6xgGBjPfIHYqUt4F1scrr1VPz/eiI8PX3LLxAMUOHKuRdJ3EmjVRqjxFJuz6prQuP0XiJ16C2KLF0O7/GHne0Mhg22oE0y7YmNZXGy8hrEZ8bIDhW2d3dj+wWmXQGwGVpdNQFlJNn79l0q8/sFpPHjnFMGN+bBwJX5022S3czdu3yT+zO16FulrnkPs1FvQ+cV7bu8HInYoRYhTklgjT3BDTJOBIIihAec/5KbHYmxG/5wYSh9yMBCqCkp/fFlPbRzXMfD5tJxf6ulHulbLsawdC6aNkTV2PuSK+fpak8idj4/Xtnm9VzYnB0nxat++7DvPCM5Pg0lHIRDhY7EKRNf3CSJQhk3wICYmBtu3b8dPfvIT1NfX429/+5vXMXa7HTk5OXjllVcQExMz8IMkCIIgiBASbOFmIUKVea5kGEwZp/Wp4VA8LhnF47QwmHrx0vpS5+tcdnBldaPPDWsby2LhdGmLO19i074WIIB4AIJl7ahv6sLMSaMRq4lC4/bfSBZN4+uFyxfA4HqqqvKmwnTxuLTeqhdPYHxWHl7YeQQsa3fLxPvu/Dzs+7rBrX0SH4FWbYQSIbE5ttuAzi/eQ2fl+4hIzgATqUL8wvsQlZZ3nUY6Mgi2XVEyDAymXgDyA4Uv7zqO+qYu5+uuf/sv/7wUlX0tF4Q25l3bYdisVpgvn5b8zMUWL0Zn5ftwpgMj9GKHksQaBYIbQpoMBEEMLQbKhxwMhLKCUqovm58Zj+JxWuxw0cbhg/NpXas/PYMTnB/pCee/OsYl5MOKZ977I+bruB7/35Pc+bi1s9vtdYZRYFlJFkx1JyTPq1EZ46FQhjvnqMGk2xUs4WMpiQIEEQjD6i8qOzsbH374IZ5//nmUlZVhwoQJyMzMxPjx41FWVobnn38e//rXv5Cbm3u9h0oQBEEQQxa5egFyHG9OwyE/kz/Tdm5hKjavnQ3AUWL/x51H8Ov/qcQfdx7Bt816rC6bgJWLx/u4BouWDhOK87WC1+HghIjFAgemHgsef+kgNv3lEMqPfosT51tRfvRbbPrLIfzivw7CanMs9MRwLIYyYboocTFUV+3MKuLGAQAnL7S5fScnLzgythSMEj31pxAWmwTDyQrR83MYTlYgKV6NzJT+hAsuEy9xVBTKSnzrR0ldJF4PXMXmeLGz6G25BLvNiugx42ghFmKCbVdsrB3F+Sno6bVi4XTx549DLAuU+9sPD1Ni/tQxzmdO6NqmHgv+uPMIlGFh0vsZn6xA2KhkRCT3j5cTOwzV35+dtcnahIktXgwo3MdiqC6n54MgiCFDKP1YwLcvm58Zj01rZ+Fqu9GpjcNHapIady9x+LScf3eg6ltncEIMzn/t7bXC1GPxmrN8+Y021i5vfujzS8XnRt/+MAcX+LBYbW6vZ6bEIDFOJWteZcIj3eYoqVUnAxFA8+mL9hFqX4AgfDFsKg84wsLCsHz5cixfvvx6D4UgCIIghi2h0gsQ03BYPDMTE3OTYOq24OlXhLOFNt8/S7RSQMkw+OeBC/j+wrHYtHYWtr7+paDYtO9ziS9Azl7S4d9fNqBsTrZoFppjMaRGS0W5yLfTj6tomo21w9xrxX+/V42DxxvdMtjKj36LpbOz8NBdU8BaHFnYcnurqqLc3UUuE29pSRZ2HzgvmjHnq2rjekNic4OLYNkV16zConHJWF02IShZoDUNOhyrbUH26FiEhTGCWYmcXVAq+4TtZT5zTKQKUDBQT5yHpLIfh7jqQIZY48kKaJc/jIjkDPS2XHK+7kuTgSAIYrARSt0rKXpkOn0PNm87BEM3fwVnjCocW9eVIEypwOMvHXTOX0fONWPyDYk+/ddNa2ehU9+DuJgo/HHnEfz83mnO96Vk3j+9rgTq6HDZYr493RZERYYJzI3SqzKmjEsG21clXHely9mSSaMKd9yDnzoBg1G3i3xRYigw7IIHBEEQBEGEnmDrBbgi1C/VYrU5NuVeE88W2vLalz571Da1m7B52yFsWVeCPzxyE47VtuBAVX/LoQXTM1A8Tov2az2ipd5SFiA79p7Bgmlj8NSPZwsGGsZnOTLI5C6G7KwNSkYJVVQ4fn7vNPzwO+Ox51AD9lbWOVsKnbvUtyEZHgFAfm9VPiE/Tlg2MyWGt1Qe6F/8DWZIbG5wESy74hrUu9JmwOKZmZIChb6yQAHgQNVlrF81zWszhsPVLmSnxjrGI/OZi5t3F6IyxoMJ779PO2vzakvgiecxUj4D+Bnc4Bk3QRDEUCGUfiwgrkfGsiy+bdajqc0o+PmyOTlISVS7BQ4Ah86BFP/1arsRb31ag8fumYoWncltI1ws8SVGFY6iccmw97XOkzs//O3D03jorinCx/VVZQhdn2sZ5Eg8YVCUl4iXH1/gfL+zy9HGyF+dALlVJwPhx5IvSgwFhlXwwGAw4O2338axY8fQ2dkJs1k4SqxQKPDuu+8O4OgIgiAIYnggRwwukMxzz36pDKPAsZoW0c16hlHAbLHh/OVO5KaPErzu5NxEfFFtxuP/dRC3zMrG0pIsrF/VvxHYqjNhx56z0JvMePBO/kWQ1AWI3mTBW5+ew33fmSi60APkL4Z6rlyA/sjHsBk6odTEQV1QitVlRVgyMwObth1GU5sRDc166Lq6EZU9GdauNmgK5kvrrVowH206I28LFy4Tb3xWPG/wwH3xNzirDjhIbG5wECy74hnU87XRwmWBtl8TzwLl4P72PTdjOFztQkOzHu2dJpn9jG1Q5RbBVHfCsYHQ92w7NhCKeDcQuNe6L52S/BlX5Nod1mziGTdtbBAEMTQYKD8WEOr9r0BBXrJgBj7DKLC0JFvQ521qM2L9ixUoK8kR9F/3VNZhxsQUAI4kEG4jXCzxJTVJjd8+MBvaBA26v60BVPmy54dzl8Qz9qVUZdhYOxjYASi85jV1QSnsmsnS59WC+WAtZjfNg1BWnfgL+aLEYGfYBA86Ojpw5513oqmpCXa7cPk8h0IxuBeyBEEQBDEYEBJSk1N2HCyUDIP9Vfyb9TGqcJTNycHSkmwkx0X7HP/dS/Jx95J8p8jyYy9WID4mylkW3dCsB8vasfWBOaKLRqkLC1OPFUqGwefHG5GfFe+10PvH3rNYNicL6gLpm4xWgw5Nb/zaTVjVcOogItPGQrtiA7aum43HXnScKzyMgSqnCF1HP0Xs1CWITBsr2sM2Mm0sVLlFeE+ghQuXiffQXVMwtyhdcPE32AMHrpDY3PUlWHaFL6hnMPWi4lgjbp2bg8K8JGewDujv+/z2p+dEs0A5uL99180YTzi7wLJ2HDp1FbfOK5L2zOUUwtZrxtWdG72O5Z7t0XdvBBOpdv592lkWrNnI2+7A8zMs4GUPGdhlbcJYr7Wit7X/++XGTRAEEUp8CfvKIZR+rNRximXgZ6bEIDkuGm98dEbwOnqTBbv21WL3gfP4/oI83LdsIp7921c4fPqq029z1fGJ65u7hBJfYlTh+O0DsxEfyaJx+y9hbvoGmT/7b78STnxl7PuqymAA0XktqewBWb6sJ6GuOgkE8kWJwcqwCR68/PLLuHLlCqKjo/Hd734XeXl5UKlUvj9IEARBEIQX3MbvyQtt2Pd1f5buohkZmDJOCxvL4jfrZuM326SUHQdvA5lvsz41SY2t60qQkqjGsZoWvPHRGd7xKhnG634WTs/A6rIJWDwzE5u3HXLLopeyaJS6sEjqC2h8fPgSXth5BJkpMV6BCjuA1WXSNxk7yt90CxxwmK+cR8uuZ5C+5jmHqLEC0KgiYe1qhzp/Nqxd7Ri94le4uutZwd6q2hUb0dxuEGzh4pqJx7f4AzCkAgfE4EBeOwPhvy9XO+FpHw4cuYzwMCWS46JRNC4JE7ITYWNZzC1Kw8eHLwmek4NvM8YTV7twsfEa7CwL7cqNaHlHuJ9xykpHP+Pmd58TfP7NV87j6tu/Q/qa55yvKRhGsE+y52da2gx485Oafvs3w1H1xIk1StmEcbU71IeZIIhQ49sf9c/PDNZ8038+h59ZfaEN+139zD476xlEEMvAv+3GGwBIS1BhWTvOX3a0Fuo0mJ2BA08dH9d5ie+8ZXNyoE3QOAIHfXNB19FPkVC6SnbCidTEGvcgi+N7bmozIjVJIzqvdZTvhGrsdN86ASs3wG6zAgrGOUcNZNUJQQwnhk3woLy8HEqlEn//+99RWEjZLwRBEMTIJBiZWVKE1J768WyoosJ8lh0H2+FOiI1Edmqsc+Ndp+/B1nUliIoM8+oL6zbe+2fDbLHh9zuqoDdZwDAKZKbE4O1/12B/1WXcv3wytqwrwfoXK6A3WSQtGuUsQIrGOjbX42MiwbJ23lY/eyvrsGRmBrQrNqBl1zMii6GNsOia0XXkE8Hrma+ch+niCZSV5EGhAIwXT6D941eRes8mhMengO3tcfRWvXgChpMVXr1VW9oN2LTtMG8LF8+gCn9JPkHIR2o7A19/Y9wmCSc4KWQfdn7i+Hv+3U/nSM5CFdqM4XC1CzGqcNx7y3goGAYmWxj/M1cwH6rcItisVnR/W4Oe+mrRezNfOQ9TXTWisyYDsKP70inRTR3nZy5WIzz+BjdR9fKj36J4XDKeun+WhE2YjbAaO9HbdhmayfOpDzNBEH4hx0+V7o/yi9eLEaz5hrsHU7eVV5PL1Q9VRYd5BRAA/gx8QH6GPKdRxQkmu+r4uG6Ee56XYRRYVpIJ48UTbnNA19FPEFO0SELCyQa3hBO5Gfvc77z1tcN48r5pXuPwhO024MqOzRhz/x/5dQL65lW+lj/Xq3qaIIY6wyZ40NbWhqysLAocEARBECOSYGZmiQmpAQ5R4qdfPewUJR6ozHOWZfHQnUWIjOh3X4zdFqijw3k3Bt3G+5pjvMvn34BeC+vV3kin78HoRDUeXlmMqIgwSYtGOQuQ8dkJPoMNepMFm7YdxtZ1s0VF06zGTjS9tRVsj0H0+zKcrIB2uaNcu6WiHFZdExq3/wKxU29B7NQlYCKiEJ092a2k22Zy6Bu8u/8CbwuXoaRlQAxNfG2m+Pq7c33OhAQnXalp0OF327/CUz8u8ZmFKrYZ0z/+frtQNC4ZiXHR0Ol7cPmqASc+q0dZSZ7zuQSANp0R+z67iNtuzIXh2KeSviNDdbmzVZChulzaZ06WQ7u80Evk/FhtK174xxE8uXq6aECRE18efeeTAKgPM0EQ8vDHT5Xrj8pFaL5hWbusIIeSYXgDB27jfE14nHxJGPIy5DPQqe9BbnosfnT7JKdgMqfj47oRznfezJQYJMap0VJR7nZettuApre2IvWeTQLB71KocgvR7JFwIjdjn/udzRYb7zgAAAoGEckZYCJVYM0m9LZeRvv/+zuSl63j1QkQC2wHu+qEIEYCwyZ4kJxMUUGCIAhiZBLMzCwxITVXahpcBdFCn3nucOAZnK3vX3QmxEbiwTuLcLxWXESZG++x2hbcUZqH8DClV3ujhdMzEJ8f1Scup5B8HzbWjqfXleDpVw/h7CVfCxDfwYamNiNe2V2NLQ/M8VoMWSyOjLK2PX+BVdfke2zG/mvYDI6SdrbbgK6jnwAKBWKnLUWYJt55jNWgQ/fF44gpXDCstAyIoYm/doV7ziZkxYsKTrpyrLYVNZd0yM+K481C5UTNhTdj3J8JbmPCamNxrKYFpy62Y3XZBLyx5yx2Hzjv1bZsfFY8brsx1/mc+oLv2Zb6GVWU9/Lvi+omnLzYjhvSR6E73j240R8kEO7DzAUWhP5NEMTIxh8/1T9/NHBRY86eH69tlRTksLEsqmWNM9FnRbBUnxHgMuQdOj6P3TPNTTCZm6tcN8L5zsvNC3zziVviSfFiaJc/7Hzvmr7b7Vr945G+N+f6O0/MSfAaBxOtcSa9hMUm9Y+rqw3ddY5KPbk6AcGsOiGIkcKwCR4sXLgQO3fuxOnTpzFp0qTrPRyCIAiCGDCCmZklJKTGhy9BtGAhtOjMTo1FVESY5PEeqLqM4nFa/HHnEa9MLs/Fq+8xOTLQlIwC6uhwPPuzeWjp6Mb75efR1G4SXIDYWBZP3T9bMEMtPzMeT/xget/53RdDb/+7FquXTQQTESXpfpXq/sCAUhMHAAiLT0Xqqk0Ij0uB6eJxdOx7AzZDJ5SaOGgK5iOmcIEzW4u0DIihimPzvgTq6HBRwUlXPj5Uh4k5DiFzz799vs0YrgrhlXdP4Bf3TXfb9OI2JpSMAn+tOo0j55qxeGYmNq2dha2vf+n17HOtJrjn1Bd8z7bUz3DX8uT/fdWAwlXTsOHPlWDtdswrSsPKxfmimzCcrei+dMpRJcXZksJSqHKKqKURQRAA/PNTr4c/6k+QQ8kw2B/AOPkqHEw9VrywowoP3lkkOG8ArgkqjnOcq+/A3kN16OgyY8bEFAE/1A673e52Xl9zENttQOcX76Gz8n1EJGdAPX4O4m+8E5u3fYmLV67xjEdO1UH/7+w5Di+f9cBOd5+1aKHf80ygVY4EMdIYNsGDBx98EPv378fDDz+MF154AVOnTh3Q63d2duK2225DS0sLampqBvTaBEEQxMglFJlZUoXOpB4XKEKLTi5TSu54W3Qm3velBFl8ld0/cEeR2wKNG3//vTAwW2z4wyM34VhtCw5UXfbKbm7r7EaMOsLr2ucvd6K90wh1QSkMpw76vF9NQSl6ey0ID2OgKSyF6ZujSF21CUx4lJsgHofh1EGnACoTqSYtA2LIomQUiIr0zz44Ps84n3XPzRjPKoSmNiOv3eCeF53eDL3Jgs3bDmHLuhLeZ3/h9EzYWRs0hVKf7flo0xkRq46Q/ZmGZr3o/UdFKnGmrgNxMZFYKXI+O8uCNRt5dRI8bQkFEAhi5BKInzrQ/qi/yTj+jJPPn1xakoV5RenOMfiaNzwDA2Mz4zA+e5rbNbj7cr3H5/7+NX546yTnecuPXEaXoQcaX/6lnUVvyyUk3PxD9PZakJ0Wg1hNRMAZ+9z30tCsd/q5cn1Wf+cZ8nUJQhpDMnhw5513Cr7X2NiIe++9F6NGjYJWq0VEhPfiGwAUCgXefffdoI3p6aefRktLS9DORxAEQRBSCEVmllyBtlAitujkMpT8FZTjQyzIwpeRxgkvv/VpDfZ9fRnrvlfgzEjz/rzjXn6/owplJTlYWpKF9av6F3mu2c1P3jfDawyjNJHYc6gBq8uKEJk2VlRMLjJtLFS5hWBZOxSMAqqcIiSU3ovwuBTeRRiH+cp5XH37d0hf85zguQliKMA9O/7aMyWjAMuyyE6LxWP38D+nXJsGMbvBnbepzYj1L1bwPvs9vVacON+OKflSn+0ivLfnLHLTYzG3SN5nOLFkofuXalcVDCMosAyQLSEIwkEgfupA+qOBBDnkjlPIn3zk7mK3Vnu+5g2WR3PHFSE/9IvqJlRfaHOe1znHaSTOJzmFYFnWbW4MJGOf+15Y1u70c23ksxLEoGJIBg9OnTol+r7dbkdnZyc6O4V7gCoUwYsofvjhh9izZ0/QzkcQBEEQcghmZpY8gTZ5gmj+ILbobGjWo7WzGwunSxeUa9WZBDNvOYSCLK7EnxiUAAAgAElEQVQZaTGqcJTNyeEVXhb6Prh70Zss2LWvlrf3Obex5zkG7nf5/Y4qLJmZAe2KDWjZ9QzvgorLxLKzLJi+haSdZRFTtBCmi8dFF4WAYzFmqqtGdNZkyhgmhjSB2jOGYfDn3cdQd6WL9zl1Ragdhev1PZ/9G9JH4dF7puLPu0+g6mwz/vxEKUbfvVFwUz4ybSy0Kzagud2APZV1KMhLwpyCVGhXbkTLO9I+I8QCD/soZt/trA3dl06RLSEIQhL+ZeYPrD/qb5DDxrJYKGucjhZDnhUOmSkxSI6L9mq1J+Qz5qa7B7al4HWPCgAu+2J2lvU5B3n6l/3n9u+79/yd91bWOfxc8lkJYlAxJIMHzz777PUegpPm5mZs2bIFxcXFqK6uhs1mu95DIgiCIEYYwczMkifQFnq9A0B40cmydnx8qB6ryyZIFpTbIZJ5K3Y914y01CQ1tq4rQUqiWlB42bOHLd+5WdaO+qYuSWPgfpe0JA02bTuMretmI33NczBdPAHDyQrYjDoo1fHQFJRClVvo1QPW8d8MDCcrRO+dw1Bd7ibWTBBDkWDYs44us+Bz6gqf3RC6Pvfsc63XOrrM0KgiYAcDJjJK4NmeD1VuEZrbDdi07TAM3RZERSihYBh09Sr5P1NYClVOITqumbBpWyVMZiuyU2O9AiH5mfEodrGPvuy7glHCUF3u8zsByJYQBOGfn3o9/FF/29wVyxgny7I4XtsiuxWnp88Y52e1hU5vFvRjc9Ji8YNb8h3zSV21Q8vGYz4JtpaN5++sN1nwl/89hc1rZ5PPShCDiCEZPPje9753vYfgZOPGjejt7cXzzz+PsrKy6z0cgiAIYoQRiswsh9jobMG+r/4IogWC2KJzb2WdqBAp0D9enb5HNPNW7HpctlaMKhxb15UgKjIMj790ULKgHsfk3ERcM5gFs5fFxuD6uzz24kGUleSgrCQP2uVFzmNYm83Rqgju57azNigYJWwG4apMt2sZxcv2CWKoEKg9CzQ4K3Z9rkVQaqIK/3lXERhGgWvGXph6rIiId3+223RGvOfRLomrFnjsxQrcMivbyx4YjD3Qm3oRplTie/PzMHNiMhLj1M732zuN+OpMK+YWpuJquxF7Kusk23eyJQRBSCEQP3Wg/VF/7b2NZfHU/bPx9Gsi47y/X9iYr8LB31accuHmGz4/9sT5Vuz7ugGryybgllmT3Dbk7SwLACHJ7vf8nY19c5y/8wzn8xIEETyGZPBACna7Ha2trTAajVCpVEhJSQn6Nd5880189tln2LRpE7KysoJ+foIYKqijw6/3EAhixBKKzCwlo4AqKhx/eOQmHK9txf6qBlGBtlDia9HpKUQqPF4WNZd0zk03MYSCLDq9GWVzcpCSqOYNHHDwCepxC8a7l+Tj7iX5aO3sxseH6rG3sg56k/eY+MbA97u8/O4J3DAmDiUFaRibEQeFAlAwCpjqTjkyxgydUGriEDN9KaLT86HUxPm8fwBQquMlHUcQg51A7Jn8TS/viiNf17exLO5YkOe0K0XjkrG6bAJ+8V8H0d1rE2yX5FotcM3Q62xr8fxD8zA2Mx5KRoHf/+MoWLsdv7l/FsrmZMN08QRaKvrtgqagFGVzimCzWvHpV5fw5H0zJNt3siUEQUghED91IP3RQIIcSoaBKjrMpx/KzQ981QU6fQ8Mpt6QtmrynG/4fg+9yYI/v1eNA1WX8fuH+/3YULYE8vydqy+0Ol6XOc+0fvTfsFt7+6okioJeJUEQI5lhFzy4cOEC/vznP+PgwYMwGo3O16OiojBnzhz853/+J8aPHx/wdS5duoQXXngBJSUluPfee/06xz//+U+8//77ko49e/asX9cgiIGipcMk6/goqw0WC+vzc9oEVSDDIkYYI9WuhiIzizuuIC/Ro/e+/4Jo/iBl0dnUZsSfd5/AlgfmiIyXwcScxICCLAmxkVhaku0mZidEv6BeIpQMg5MX2rDv68tu7Y1Wl01AWUk2/vrBaVxu1ru1EBEag9jvYmdZsGYTb69aw+nPkfnwq9AUlsJw6qDo2AFAU1hKiy7CyVC3rf7aM7mbXk1tBqQmaXgDf0LXVzIKaBNUTrtypc2AxTMzsfFHs/C7v34JU48VqqgwZKbEuNmITWtnOasFOMaOicP47ATnv1MSVLhrUR7s5m407uCxC6cOOntYf780Dyy4jTBx+25nbWRLCCJAhrpdlUMgfupA+aOBJuNwgQHvcbJu7wPeVQNcGyGNKiKkrZqUDOM234hx9pK3MHQo8fydZc0zBfNhvdYK/Yn9gJ11m9uYSDXNPwQRBIZV8ODf//43nnjiCZjNZtjt7uX63d3d2LdvHz777DM899xzWLZsmd/XsdlsePLJJ8EwDJ555hm/xZcbGxvx1Vdf+T0OghhsyAkgjLawsFptop+hwAEhl5FqV0OZmcWXResvnlm5QroA3p/zveh8YvX0vnsUHm8gi1cby2LZnBxeMTshOEG9P+484pZFFqMKhzZBhey0WCTFReMXq6cDAFo7u1F1phnzpqT5/L3471MhKHIHO4uuqj1IKF2FyLSxogJ0kWljqXcs4cZwsa1y7Zlj00fh025wG/nrXzyI9GSNYNsyoesrGQb7qxxtLPQmC57fUYUt60rw7M/muX2my2iGsduC1CQN2jq7sXnbIWc1laf94jJMtQkaNG7/peAzb75yHlff/h3S1zwHqU0eFIwSqpwisiUEEQDDxa5KIRh+ajD9USGCkYzDjZPzcT3/7Vnh4NoOc/NfKvHgnUWSWnEG4tdz840vKqsbvaomXO8lFHDnlTXP5Baho/xNwM46X3ed2wiCCJxhEzyor6/H448/DrPZjEWLFmH16tWYNGkSVCoV9Ho9Tp8+jX/84x84cOAANm7ciEmTJvndaui1117DsWPH8Nvf/hZpaWl+jzk9PR0zZ86UdOzZs2eh1+v9vhZBEMRIYCTb1cFSKcAHt8DxzL5fNCMDU8ZpJSwYgxMcCeQ8SoZxZvTKFdRr0fUHST1F6v5adbp/DDMyUDYnu29RJu/3srM2dF86JbrA6jr6CWKKFmH0yo24+g5/kIHL1KJMYcKVkWZbXW3WkXMt+O78PF67sWB6BorHaXG13ejcyOdrWyYFzl6kJqnxy9XTEaOKwLGaFuyv4reZR881IyVBhfFZ8bz2S8kwGJ0QDePFE6J2AXBsspjqqhGdNVnyc29nWYy+e6NgwJJsCUGIM9Ls6mD2UzmC4W/68nkBhVt1gWc7TNdWnMdqW3Cg6nLQWzVJ8WNTk9S4e4mjY4e//nugSJpnVvwKFl0zuo584vW+P3MbQRD8DJvgwauvvgqz2Yw1a9bgySefdHsvLi4Oc+fOxdy5c/Hss8/i73//O3bs2IFf//rXsq9z7tw5vPzyyygtLcVdd90V0JjvuOMO3HHHHZKOXb169YjJTCAIgvAXsqsDk5klBxtrh6nHwpvF5Utc2JVgLToDOQ+3SJIrZseJ4AUqtiyGglHCUF0uegzbbUDTW1uR9h+/Rfqa52Cqq3boIhh1UKrj+3rEFtJmH+HFSLKtfDZr39cNKCvJwdKSLKxfNc15bFtnN3Z4iBgDrm3LpLd7iI+JlGUjFs3MwpLZ2c4xA972S8EoYTxZLun6hupyWVUCCoYBE6kmW0IQfjKS7Korg81P9SRQP1GazxuGp348G1tfO+zVDrOpzYj1L1bwzjk9vVawQdiw9+XHcnNRmFIRdH9VDqLzTMF8qHKLYNE1o+mtrWB7DLznkDu3EQTBz7AJHhw6dAgajQaPPfaY6HE///nPsXv3bnz22Wd+XedPf/oTLBYLLBYLHn/8cbf32L5+dtzrGzZsQEJCgtc5CIIgCGKkoGQUguXfAL+4sPj5grPo9Oc8XCsQ6WJ2GWjVmdDQ7MgW9FdsWSo2Q6fPY6y6JrTt3YbRd/4C0VmT3BZU9j4/hjb7iJEMn83SmyxOQeLMlBiMz4rHQ3dNwceH6rFrXy3vebi2ZVLg7Io2QeWXjRDdzJJgFwDAZhTvf80HZyvIlhAEMdzw10+U6vOqo8KdgsSe7TA95xxVVBhMPVbkpsfisXum8Z1aMlL82FD7q3IQmmeshk50lL+JriOfCAYOAP/mNoIgvBk2wYPW1laMHz8eERERosdFREQgNzcXtbX8jr4vTCZH64EvvvhC8JgPPvgAAPDoo49S8IAgCIIYsdhYFicvtMkQFx4YUbZAkCeop8WOPWfBsnYwjMIPsWV534dSEyfpOCY8CoAjK9kV2ugjRjq+bBbL2lHf1IX6pi7MKUrDLbOz8O7+82BZu9exUtubAf12JSs1Nug2QqpdUKrjJY/XE7IlBEGMdPzxeTmE5gtuzuGIk1j5KoYvP3Yg/FV/8JxnOva/AcPJCp+fC2RuIwiin2Hj2alUKrS3t0s6tr29HVFRUX5dZ8eOHaipqeH9n1LpMGjcv8eMGePXNQiCIAhiOKBkGOz7Wpoo2/6qhkEfOODgBPXyM/kXJFwpt07fgz2VdQCAzJQYJMdFSxapk/t92FkbNIWlko7VFJY6M4MJguhHjs06UHUZyfEqZKbE8L4vtb0Zh421Iz4mKqg2guwCQRDEwBCIzyu3HWagiPmxofZXg4GdtUFTMF/SsTS3EURwGDaVB5MnT0ZlZSUqKiowf76wIamoqMCVK1cwd+7cARwdQRAEQYxM5IoLDwWkCeqxqLmkc/ZBV0U5XK5QfR8KRglVThEi08aKiqNGpo2l3q8EIYLcZ5R7tj1ZOD1Tlpgkd1wwbQTZBYIgiIHDH/strx2mvHlFCDE/9rYbb/AaoxjXw3+nuY0gBp5hEzxYuXIlvvjiCzzxxBPYsmULli5d6nXM3r17sXnzZigUioDFjgmCIAiC8M1AZ1MNFL4F9RhMzEl0loVzosmh/D7sLIvRd2/E1bd/x7uYikwbi9F3byQRU4IQwV9BdFccbcuk6R0Een1fkF0gCIIYGHzZZYZRIDMlBpNzE52vyWuH6d+8wocvP3aw++80txHEwDJsggdLlizBrbfeig8//BCPPfYYtm7divz8fKjVahgMBtTU1ECn08Fut+M73/kOb3CBIAiCIIjgcT2yqQYSG8u6Cep5/9tRFv70q4dx/ttOtHZ2Y+H00H0fCoYBE6lG+prnYKqrhqG6HDajDkp1PDSFpVDlFNIiiiBEkGOzFngIonNwbcv8sWehsJlkFwiCIEKPmP2OUYWjbE4OlpZkIzku2u0zSoZx8xf5AgiBzCu+4BOGHgr+O81tBDGwDJvgAQC88MILyM7Oxvbt29He3o7Kykq39zUaDdasWYOf/vSnIbn+mTNnQnJegiAIghiKXK9sqlDDLZJOXmjDvq8vO0u9F83IwJRxWuf7nmXhtZc6MLcoPaTfB7dIis6a5FaqzfV7pUUUQQgjx2YVj9Oiqc2I+cXpPG3L/NtIUUAREptJdoEgCCK0CM0fqUlqbF1XgpRENY7VtOCNj854+Y0AJLTDHLgN+qHiv9PcRhADx7AKHigUCvzsZz/D2rVrUVVVhfr6ehiNRqhUKuTk5GDatGlQqVTXe5gEQRAEMWK4ntlUocDG2mHqsfDeT/nRb533o4oKdwYQAEdZ+EBmlykYpce/aQFFEFKQ84xqE6KxftU0t88C8OvZ5WyLudeGTWtnYevrXwbdRpBdIAiCCB2e80eMKhxb15UgKjIMj7900KffCIi1wwzcR/ZVMSt2L54MJv+d5jaCCD3DKnjAYTAYcOONN+LGG290vlZVVYWGhgaMHz/+Oo6MIAiCIEYW0sSFr//CQwps3ziFFlIAUNOgw9OvHsYfHrnJ7XVucTacvg+CGI44ntEwn4LojmdU4fXZQK779KuH0WXqxZZ1JfjDIzfhWG0LDlT1VzctmJ6BYpfqJoIgCGLw4OnjGbt7kZKo5g0ccHj6jXxthAJFasWs2L2Qv0oQI5thFTxobm7Gr371K3z11VeorKxEbGys871XX30VBw8exOzZs/Hss89i9OjR13GkBEEQBDFy8C0uPPgXHjbWDrvdjhM1raIl3IBjIXi8thUFeUm89zYcvg+CGK44KgCs+Px4I6ZPSHGrLGjVmbC3sg7zpqQ7q4uCc00WJy+0OW3L+hcrUFaSg6UlWV7Xb2ozQptAldQEQRCDEVcfDwCO17YE7DcGgtyKWVfIXyUIgmPYBA9aW1ux4v+zd+/xUZX3vse/syYhyeRCghAIgUAQgogE5KJgK6aotdqXxy3txsveWD2Ktfbi1tOj9VBFVLbW2m7rq+7dqq/Ss6m3amFr3bZ4RJAWVECFgCDXmHBLCJBAJpPbzJrzR5iQSWaSmcmamczk8/5HZ9az1jyzwjzPbz2/Z61nwQLV1NQoJSVFx44d80seDB8+XOnp6frwww+1cOFCrVy5UtnZ2XGsMQAAA0s0ZlPFim+W8ftbDoZU/v0tVb0+BzaRzweQrDrfXWQYNhUNz5YjPUWuZreqahpkml6t2Xyw291FfftMQ2s2n21bGlxt+uOaPXpj7d5un3/ZhYV+CQUAQP/ji/E6t+09CSVujKwekd0x638M4lVgoEuah4E999xzqqmp0ezZs7V27VqNHz/eb/ujjz6qtWvX6itf+YoOHTqk559/Pk41BQAAicRjmtp7sP2iq66hJaR9Qi0HoP/wmKbfLFHT9OrLo6e1s+Kkvjx6WuaZ2Za+WaK+2ZdWCNRmBPp82hYASBzxjBu79mnBRKNPA5BckiZ5sH79emVkZOiZZ57RsGGBM7a5ubn6+c9/rkGDBundd9+NcQ0BAEAishuGPiw/KknKy04LaZ9QywHoP7reAdCT97dUWTr7krYFAJJPPNv2ePZpAJJL0iQPamtrVVxcrNzc3B7LDRkyRMXFxTpy5EiMagYAABLdvkP1qq1v0ryZo0MqP29mETO4gAQUj1miHtPU5bNoWwAgmfSHtp07ZgFYIWmSB7m5uaqr6/l2LB+n0ymHg4XGAABIBh7T7PG1FQZnpemvH36pCyfma2JRXo9lJxblaVrJMGZwAQkoHrNE7YahaSW0LQCQTMJt222yPnnAXW0ArJA0yYPzzz9f1dXVeu+993ost2HDBh06dEiTJ0+OUc0AAEA0+GZobd93XL946RP99Dcb9YuXPtH2fcf9tvf9c9pnjv1lY4WqTzTqodsvDnohOLEoT0sWzWZmMJCA4jlL1GN6tWTRbNoWAEgiobTtD91+seoamvX5gRMd+1jz2fG/8wFAckiJdwWsctNNN+mDDz7Q/fffrwceeEDXXXed0tPTO7a3trbq7bff1pNPPimbzaabbropjrUFAAB94TG9cjW3aekLH3VbCG7dp4c6Btoc6al9nqXrmzk2cmiWHn7+Qz165xw9fc9cfbbnmNZuOai6hhblZadp3swiTSsZdubiyyuJ2cFAIuk8S3TvoXoVDc+WIz1Frma3qmoaOhZM9s0SNXsZaPGYpuyGEfS1/2fb5EhP1dP3zNXWPbV6f0tVwLaFuw4AIHH01LZ/beZoXViSr+oTjXr4+Q919HhjVOLXiUV5PS6a7OvT+iKc/g5A4kma5EFZWZluuukmvfLKK3rkkUf02GOPqbCwUJmZmXK5XDp8+LDcbre8Xq8WLFigK6+8Mt5VBgAAEbIbtoCJA5/dVXVa+sJHevqeuZZ8nm/m2NIXPtJ9z3ygq+cU65qvjNV9N8/oKHPK2aL/t6lSeyrr9JWpIzWtJD+swT4uvID485heLfveJXK1uJWXfXYiUm19k/764ZfaW1Wn//VPM3S8vklDczOCHsNu2LR933Gt2Xw2wXj5rNE9tgu+96aMP8dvIMc3G5TEAQAknmBte22dSyve2aV3NlbI2dQmKbrxa6CYufNdbZH0MeH2d8S6QGJKmuSBJC1ZskRTpkzRb3/7W1VWVqqystJve0FBge68807uOgAAIIF5TFPb9x3vcRaV1H4BtnVPraaMH2rB7C3/mWMbyw/LZrPJ6WrV//3vnfqiss5vZvJfP6oMefZYpAONAKLBq7RBKdr15Un97q3PO83+H62FV0+Sx/Tq5KkmLf7NRt39rand2hcr7orqOpDC7x8AksMXX57Q8rd3drujrbNoxq9W3tUWTn/nqwuxLpCYkip5IEnz58/X/PnzVVlZqaqqKtXX1ysjI0Njx47V+PHj4109AADQR3bD0JrNB0Mq+/6Wqj7fin32c7vPHPvxr9b36e6HWD5+CUDP2n+P7h5/jw/fcbFMr+R0tQZsX2J9VxQAIDHYDUP/veFL7aw42WvZaMevUt/vagulv/v5ii1asmgOsS6Q4JL2/qAxY8bo0ksv1bXXXqsrrriCxAEAAEmkrqHF0nLhsBuGPKaprXuOhXz3Q7BF6EIdaORiCoi+UH6Pj774sYYPcejqOcXd2her2gUAQHKKd/zq/zry2DLU/m5CUR6xLpAEEvLOg6amJkuOk5ER+DmlAACgf8vLTrO0XLisuPshHo9fAhBYOL/Hz/Yc0zfmjNHxUy6/bfG6KwoAkBjiHb9aJZT+zjBs+sacsfpsd+hJdWJdoH9KyOTB9OnT+3wMm82mnTt3WlAbAPGSMjg/3lUAEAce09Tls0Zr3aeHei07b2ZR1J6j2tfZYww0Av1HOL/HtVsO6r6bZ+jqOcXd2pd4zioFAPRf/SV+tUpv/VjR8GwNy83Qf/53aONuxLpA/5WQyQOvt++3+FpxDCSu7fuOW3q8/CEOS4+H0DVV7ujzMTLGXGBBTQDEit0wNK0kXxOL8nqcyTSxKC+qFyFWzB5joBHoP8L9PZ43dki3bckyqxQAYK3+Er9apbd+zJHePtxIrAskvoRMHqxZsybeVUAS2L7fugTC5UOKLDsWwtdU+XnE+2aMmWxhTQDEisf0asmi2UGfoepbfC1as7asmj3GQCPQf4T7e+z6u062WaUAAGvFO361Sij9navZLYlYF0gGCZk8KCws7PMxDh8+bEFNAABAPNgNmxzpqXr6nrnauqdW72+pUl1Di/Ky0zRvZpGmlQyL6oWXFbPHGGgE+o/wf49mgMUnk2tWKQDAWvGOX60SSn9XVdOguoZmYl0gCSRk8iCYU6dO6Y033tC+ffvU3Nws0zT9tns8HrW0tOjYsWPat2+fPv888tnKAAAgvnwXF1PGn+M3EOcxvX7bo6Wvs8cYaAT6D6t+j8kyqxQAEB3xjl+t0lt/N2FUrhxpKcS6QBJImuTB8ePH9e1vf1s1NTUd6xnYbDa/tQ1stvZG2Ov1KiUlab46AAADWvfZv7G56LJi9hgDjUD/YcXvMVlmlQIAoite8atVQu3viHWBxJc0I+gvvviiqqur5XA4dM011ygjI0MrVqzQzJkzNWPGDFVXV2vdunU6deqUZs+erX//93+Pd5UBAECC6+vsMQYagf7Dqt9jsswqBQCgJ6H2d8S6QGJLmuTB+vXrZbPZ9Pzzz2vmzJmSpLfffls2m0333nuvJOnEiRO6/fbb9fHHH+vzzz/XrFmz4lllAL3IzEiNdxUAICR9mT3GQCPQf1j5e0z0WaUAAISit/6OWBdIbEmTPDh69KhGjBjRkTiQpPPPP1+ffPKJTNOUYRg655xz9MQTT+j666/XihUrSB4ACeDYSVfQbeluj9razB7LBJI/xNHXagGA5RhoBPoPfo8AAFiLvhVITEmTPPB4PBo6dKjfe2PHjtXGjRtVVVWlsWPHSpImTZqkUaNGadu2bXGoJYBIBEsOjGgz5XZ7wkoekDgAAAAAAAAAemf0XiQxDBkyRCdOnPB7b/To0ZKkvXv3+r0/ePBgnTx5MmZ1AwAAAAAAAAAgkSRN8mDKlCk6evSoNm/e3PHeueeeK6/Xq02bNnW819raqkOHDiknJyce1QQAAAAAAAAAoN9LmuTB/Pnz5fV69d3vflf/9m//JrfbrZkzZ2rw4MF65ZVX9Oabb2rPnj16+OGHderUKY0bNy7eVQYAAAAAAAAAoF9KmuTB1772NX3rW9+Sy+XS7373O9ntdmVkZOjWW2+V2+3WT37yE1133XV68803ZbPZdMcdd8S7ygAAAAAAAAAA9EtJs2CyJC1btkyXX365PvzwQ9ls7au233XXXWpubtZ//ud/qqmpSTk5Obr77rt12WWXxbm2QPimnDu090K9GJRiyJNit6A2AAAAAAAAAJJVUiUPJGnevHmaN29ex2ubzaZ7771XP/zhD3Xy5Emdc845stsZOEXiymk40Kf9zYYxFtUEAAAAAAAAQLJKuuRBMCkpKcrPz493NQBLVH62ufdCQQwfQ/IAAAAAAAAAQM+SZs0DAAAAAAAAAABgDZIHAAAAAAAAAADAD8kDAAAAAAAAAADgZ8CseQDE25Rzh4a9T2ZGqvKHODRF7fvmD3HI7k61umoAAAAAAAAA4IfkARBDOQ0HwirvOZwuu9ujnKY2SVJaZqHc0agYAAAAAAAAAHRC8gCIscrPNodc1igcrMamNh076ZIklV5dGK1qAQAAAAAAAEAH1jwAAAAAAAAAAAB+SB4AAAAAAAAAAAA/JA8AAAAAAAAAAIAfkgcAAAAAAAAAAMAPyQMAAAAAAAAAAOCH5AEAAAAAAAAAAPBD8gAAAAAAAAAAAPgheQAAAAAAAAAAAPyQPAAAAAAAAAAAAH5IHgAAAAAAAAAAAD8kDwAAAAAAAAAAgB+SBwAAAAAAAAAAwA/JAwAAAAAAAAAA4IfkAQAAAAAAAAAA8EPyAAAAAAAAAAAA+CF5AAAAAAAAAAAA/JA8AAAAAAAAAAAAfkgeAAAAAAAAAAAAPyQPAAxoKYPz410FAAAAAAAAoN9JiXcFACDemip39PkYGWMusKAmAAAAAAAAQP9A8gAAJDVVfh7xvhljJltYEwAAAAAAACD+eGwRAAAAAAAAAADwQ/IAAAAAAAAAAAD4IXkAAAAAAAAAAAD8sOYBEIIp5w7tcXtmRqryhzg0RcHL5Q9xyO5OtbpqAAAAABXXhuwAACAASURBVAAAAGA5kgdAiHIaDgTd5jmcLrvbo5ymtqBl0jIL5Y5GxQAAAAAAAADAYiQPgDBUfrY54PtG4WA1NrXp2ElX0H1Lry6MVrUAAAAAAAAAwFKseQAAAGAxj2n2+BpA8uL3DwAYyOgHgeTCnQcAAAAW8Zhe2Q2btu87rjWbD6quoUV52Wm6fNZoTSvJ79gOIPnw+wcADGT0g0ByInkAAABgAY/plau5TUtf+Ei7q+r8tq379JAmFuVpyaLZcqSncuEEJBl+/wCAgYx+EEhePLYIAADAAnbDFvCCyWd3VZ2WvvARF0xAEuL3DwAYyOgHgeRF8gAA+ihlcH68qwAgzjymqa17jgW9YPLZXVWnrXtq5TG9MaoZgGjj9w8AGMjoB4HkxmOL0O9t33fc0uPlD3FYejxAkpoqd/Rp/5TB+XKfOtbnemSMuaDPxwAQPrthaM3mgyGVfX9LlaaVDItyjQDECr9/AMBARj8IJDeSB33g8Xj00ksv6Y033lBFRYUyMjJ0wQUX6JZbblFZWVm8q5dUtu+3LoFw+ZAiy44FdNZU+XnE+2aX5vf5GBljJke8L4C+q2tosbQcgMTB7x8AMJDRDwLJi+RBHzz44IN68803lZWVpTlz5qitrU2bNm3Shg0b9KMf/Ujf//73411FAAAQI3nZaZaWA5A4+P0DAAYy+kEgebHmQYTeeecdvfnmmyouLtbq1av1/PPPa/ny5Vq1apWys7P161//Wl9++WW8qwkAAGLAY5q6fNbokMrOm1nEs16BJMLvHwAwkNEPAsmN5EGE3nrrLUnSj3/8Yw0dOrTj/QkTJujaa6+VaZrasGFDvKoHAABiyG4YmlaSr4lFeT2Wm1iUp2klw2Q3bDGqGYBo4/cPABjI6AeB5EbyIELPPvus/vznP2vu3LndtjU2NkqS7HZ7rKsFAADixGN6tWTR7KAXThOL8rRk0WxmWwFJiN8/AGAgox8EkhdrHkRo0KBBKikp6fb+2rVr9de//lUOh0NXXHFFHGoGoCeZGanxrgKAJGU3bHKkp+rpe+Zq655avb+lSnUNLcrLTtO8mUWaVjJMHtPLbCsgCfH7BwAMZPSDQPIieWCB5uZm3X///dq3b5/279+vkSNH6qmnnvJ7nFEgK1eu1KpVq0L6jF27dllRVQCSjp10dfx/utujtjbT771wpbs9IgTqH2hXEW++C6Ip48/RtJJhHe/7ZllxwYRERNsaGn7/AEJFu4pkRD8IJCeSBxY4cuSIVq9e7ffe7t27NWvWrB73O3z4sDZt2hTNqgEIwpcsGNFmyu329Cl5UGRVpdBntKvoL+yG0eU1F0tIXLSt4eH3D6A3tKtIZvSDQHIheWCBESNG6KOPPpJhGNq4caOWLVumxx57TC6XS3feeWfQ/QoLC3XRRReF9Bm7du1SQ0ODVVUGgKREuwoA1qNtBQBr0a4CABIFyQMLOBwOORwOSdLVV1+tgoIC3Xjjjfrtb3+r73znO0pLSwu43/z58zV//vyQPmPhwoXMTACAXtCuAoD1aFsBwFq0qwCARGH0XgThmjZtmoqKiuR0OnXw4MF4VwcAAAAAAAAAgLCQPIiA1+vVU089pXvvvVdutztgmUGDBklS0O0AAAAAAAAAAPRXJA8iYLPZtGbNGr3zzjvasGFDt+0HDx5URUWFHA6HiouL41BDAAAAAAAAAAAix5oHEVqwYIGeeuopPf7445o4caJGjBghSaqpqdF9990nt9utW2+9Neh6B/G2fd9xy485ZfxQy48JAAAAAAAAAIg9kgcRuuWWW/Txxx/rgw8+0NVXX63p06fL4/Fo27Ztcrlcuuyyy3TPPffEu5o92r7fugTClHNJHAAAAAAAAABAsiB5EKHU1FT9x3/8h15++WWtXLlSmzdvlmEYKikp0fz587VgwQIZBk+FAgAAAAAAAAAkHpIHfWC327Vw4UItXLgw3lUBAAAAAAAAAMAyTI0HAAAAAAAAAAB+bF6v1xvvSqB3c+fOVU1NjbKzszVp0qQ+Hev666+Xe9Awi2p21pRzh2rXrl2WHnPSpEmWrs0gSZNLilRz0qXjx0M/7uSSImU7DwXd7shIU5vbVFtbW9AygwtGq63+mFxNLSF/btfjRnKMroaOLlZLXY0anK6Ij9G1HqF8/96OEUhvx+0v53RwwWi566pVWVUZ8TEKxp8vd32tao/XRnwMSfrSZdeqVav6dIzOzjvvPC1evNiy4/UnVrarABCqZG5XJdpWAPGRzG0r7SqAeEjmdhXh4bFFCcLlah/obWho0KZNm/p0rL7uDwDJwMp2FQDQjrYVAKxFuwoAiCeSBwli1KhROnTokBwOh8aMGRPSPrt27VJDQwMzFCzEOY0Ozmt0WHFezzvvPItr1X9E0q72hH/HyYG/Y3Loz3/HZG5XJWvb1v78d0xUnNPo4LxaL9xzmsxtK+1qYuOcxxbn2zrJ3K4iPDy2KIktXLhQmzZt0kUXXaQVK1bEuzpJgXMaHZzX6OC8xhbnOznwd0wO/B2TA39H63FOo4Pzaj3OaXRwXmOPcx5bnG/AeiyYDAAAAAAAAAAA/JA8AAAAAAAAAAAAfkgeAAAAAAAAAAAAPyQPAAAAAAAAAACAH5IHAAAAAAAAAADAD8kDAAAAAAAAAADgh+QBAAAAAAAAAADwQ/IAAAAAAAAAAAD4IXkAAAAAAAAAAAD82B955JFH4l0JRM+kSZN00UUXadKkSfGuStLgnEYH5zU6OK+xxflODvwdkwN/x+TA39F6nNPo4Lxaj3MaHZzX2OOcxxbnG7CWzev1euNdCQAAAAAAAAAA0H/w2CIAAAAAAAAAAOCH5AEAAAAAAAAAAPBD8gAAAAAAAAAAAPgheQAAAAAAAAAAAPyQPAAAAAAAAAAAAH5IHgAAAAAAAAAAAD8kDwAAAAAAAAAAgB+SBwAAAAAAAAAAwA/JAwAAAAAAAAAA4IfkAQAAAAAAAAAA8EPyAAAAAAAAAAAA+CF5AAAAAAAAAAAA/JA8AAAAAAAAAAAAfkgeAAAAAAAAAAAAPyQPAAAAAAAAAACAH5IHAAAAAAAAAADAD8kDAAAAAAAAAADgh+QBAAAAAAAAAADwQ/IAAAAAAAAAAAD4IXkAAAAAAAAAAAD8kDwAAAAAAAAAAAB+SB4AAAAAAAAAAAA/JA8AAAAAAAAAAIAfkgcAAAAAAAAAAMAPyQMAAAAAAAAAAOCH5AEAAAAAAAAAAPBD8gAAAAAAAAAAAPgheQAAAAAAAAAAAPyQPAAAAAAAAAAAAH5IHgAAAAAAAAAAAD8kDwAAAAAAAAAAgB+SBwAAAAAAAAAAwA/JAwAAAAAAAAAA4IfkAQAAAAAAAAAA8EPyAAAAAAAAAAAA+EmJdwUQmmXLlumLL77Qeeedp8WLF8e7OgCQ8GhXAcB6tK0AYC3aVQBAPJE8SBBffPGFNm3aFO9qAEDSoF0FAOvRtgKAtWhXAQDxxGOLAAAAAAAAAACAH5IHAAAAAAAAAADAD8kDAAAAAAAAAADgh+QBAAAAAAAAAADwQ/IAAAAAAAAAAAD4IXkAAAAAAAAAAAD8kDwAAAAAAAAAAAB+SB4AAAAAAAAAAAA/JA8AAAAAAAAAAIAfkgcAAAAAAAAAAMAPyQMAAAAAAAAAAOCH5AEAAAAAAAAAAPBD8gDoR7ymp8fXAAAA6B+I2wAAQLwRjyDaUuJdAQCS1zRlMww1Ve6Qs3ydPM562bNylVVaJkfx1I7tAAAAiC/iNgAAEG/EI4gVkgdAnHlNU2ZLo6pfXaaWI3v9tjl3rFfayAkaceNiGWmZNPwAAABxRNwGAADijXgEscS/ICDObIYRsMH3aTmyV9WvLqPBBwAAiDPiNgAAEG/EI4gl/hUBceQ1PXJVbAva4Pu0HNkrV0W5vKYZo5oBAACgM+I2AAAQb8QjiDWSB0CceE2PbIZdzvJ1IZV3lq8jawwAABAn0YzbWOwQAICBLdRYgHEkxBprHgAx5lu0pqW6Qukjx8vjrA9pP09jXZRrBgAAgJ5YHbex2CEAAANbJLEA40iIJZIHQAx1XtTG627VqEW/lD0rN6R97Zl5Ua4dAAAAemJl3MZihwAADGyRxgKMIyGWiEKBGOq8qE1r7UG5Tx9X1pTLQto3q7SMZ9UBAADEidf0KKu0LKSyocRtLHYIAMDAFkksYHU8AvSGSBSIkW6L2nhNnf70XTnGTVPayAk97ps2coIcxaVcPAIAAMSJzbDLUTzVkriNxQ4BABjYIo0FrIxHgFDwLwiIkUCL2pz+dLXa6mo0YsGDQRt+321qXDQCAADEl9c0NeLGxX2O21jsEACAga0vsYBV8QgQCtY8AGKo66I2ZpNTR195TAU3PaTC256U68A2Obd/IE9jneyZeWcWyCllsTwAAIB+wGYYMtIy2+O2ivL2hQ0jjNtY7BAAgIEt0ljAyngE6A3JAyCGAi1q4647qsPL71fO9KuUc+GVyr/uRx3bzt6WRoMPAADQH/jisowxk+UoLu14P9y4jcUOAQAY2PoSC1gVjwC94V8SECM9LWpjNjlVv+FPqnrubh164T41H9lHlhgAAKAfsxn2Lq9Dj9tY7BAAgIHNqligL/EIEAr+RQExEtKiNl5TtpRBSh85ngYfAAAgSbHYIQAAAxuxABIF//KAGGJRGwAAAEjEhQAADHTEAkgErHkAxBCL2gAAAEAiLgQAYKAjFkAiIHkAxBiL2gAAAEAiLgQAYKAjFkB/l3T/AleuXKmJEydqy5YtYe1XU1Ojhx9+WJdffrlKS0t11VVX6bnnnlNra2vA8qdPn9bPf/5zXXXVVSotLdW8efP05JNPyul0WvE1MACwqA0AAAAk4kIAAAY6YgH0V0n1L/Gzzz7TY489FvZ+1dXVWrBggV577TXl5OSorKxMjY2NevbZZ3X77berra3Nr7zT6dQ///M/68UXX5TNZlNZWZlsNpuWL1+uG264QQ0NDVZ9JQAAAAAAAAAAYi5pkgerV6/W7bffLpfLFfa+jzzyiKqrq3XPPfdo1apVevbZZ/Xuu+/qkksu0aZNm7RixQq/8s8884x2796tBQsW6J133tGzzz6r1atX67rrrtO+ffv0zDPPWPW1AAAAAAAAAACIuYRPHlRXV+v+++/Xj370I5mmqaFDh4a1/4EDB7Ru3ToVFRXprrvu6njf4XBo2bJlstvt+sMf/tDx/unTp/X6668rKytLDzzwgIwztxGlpKRoyZIlGjx4sN54442IkhgAAAAAAAAAAPQHCZ88eOaZZ/Tmm2/qggsu0GuvvaZx48aFtf/f//53eb1efe1rX+tIBPiMHDlS559/vg4fPqx9+/ZJkjZv3qzm5mbNnj1bWVlZfuUzMzM1Z84cNTc3a/PmzX37YgAAAAAAAAAAxEnCJw/GjRunn/3sZ3r99dc1ceLEsPf3JQUmTJgQ9PiStGfPnrDK7969O+y6AAAAAAAAAADQH6TEuwJ9deedd/Zp/2PHjkmS8vPzA24fNmyYJOn48eOSpNraWr/3g5U/ceJEr5+9cuVKrVq1KqR67tq1K6RyADCQ0a4CgPVoWwHAWrSrAIBEkfDJg75qamqSJKWnpwfc7nvft4aB778ZGRkhle/J4cOHtWnTpvAqDAAIinYVAKxH2woA1qJdBQAkigGfPLDb7ZIkm83WYznTNCMq35PCwkJddNFFoVRTu3btUkNDQ0hlAWCgol0FAOvRtgKAtWhXAQCJYsAnD3x3EDQ3Nwfc7nvf4XBEVL4n8+fP1/z580Oq58KFC5mZAAC9oF0FAOvRtgKAtWhXAQCJIuEXTO4r31oHvjUNuvKtceArF2r5YGsiAAAAAAAAAADQ3w345MGECRMkSfv27Qu4ff/+/ZKkkpKSsMpPnDjR0noCAAAAAAAAABArAz55cOmll0qS1q5d222dgiNHjmjXrl0qLCzU+PHjJUmzZs1Senq6Pvzww26LIjc2NurDDz+Uw+HQjBkzYvMFAAAAAAAAAACw2IBKHhw5ckT79+/XyZMnO94bPXq0Lr30Uh04cEC/+tWvOt53uVz66U9/Ko/Ho9tuu63jfYfDoX/4h3/QqVOntHTpUrndbkmS2+3Wo48+qtOnT+uGG25QVlZW7L4YECVe09PjawAAAGCgI2YGgORAew50N6AWTH7ggQe0adMm/eAHP9APf/jDjveXLFmim266Sb/5zW/0/vvvq7i4WJ9++qlqa2s1d+5c3XTTTX7Huffee/Xxxx/rv/7rv/TJJ5/o/PPP186dO3Xw4EFNnjzZ79hAIvKapmyGoabKHXKWr5PHWS97Vq6ySsvkKJ7asR0AAAAYqIiZASA50J4DwQ2o5EEwo0eP1uuvv65nn31W69evV2VlpUaPHq1bbrlF3/nOd5SS4n+acnNz9eqrr+rXv/613nvvPa1du1YFBQW64447dNdddykzMzNO3wToO69pymxpVPWry9RyZK/fNueO9UobOUEjblwsIy2TzhMAAAADEjEzACQH2nOgZ0mXPFixYkVE2woKCvTEE0+E/Dm5ubn66U9/qp/+9Kdh1Q/o72yGEbDT9Gk5slfVry5T4W1PxrhmAAAAQP9AzAwAyYH2HOgZKTMAHbymR66KbUE7TZ+WI3vlqiiXt8si4wAAAECyI2YGgORAew70juQBgA42wy5n+bqQyjrL13HLHgAAAAYcYmYASA6050Dv+FcPwI/HWR9auca6KNcEAAAA6J+ImQEgOdCeAz0jeQDAjz0rN7RymXlRrgkAAADQPxEzA0ByoD0HekbyAEAHr+lRVmlZSGWzSst43h8AAAAGHGJmAEgOtOdA70geAOhgM+xyFE9V2sgJPZZLGzlBjuJSS5735zU9Pb4GAAAA+hOrYmbiYACwVrjtajzGQIBEkxLvCgDoX7ymqRE3Llb1q8vUcmRvt+1pIydoxI2L5TXNPnWcvv2bKnfIWb5OHme97Fm5yiotk6N4ap+PDwAAAERLX2Jm4mAAsFZf2tVYjYEAiYrkAQA/NsOQkZapwtuelKuivL3jbayTPTPvTMdbakniwGxpDNg5O3es7+icjbRMOmcAAAD0O5HGzMTBAGCtvrarsRgDARIZyQMA3fg6xYwxk+UoLu143/d8v752mjbDCJrVl6SWI3tV/eoyFd72ZJ8+BwAAAIiWSGJm4mAAsJYV7Wq0x0CARMa/fgBB2Qx7l9fWrHHgqtgWtGP3aTmyV66KchYkAgAAQL8WasxMHAwA1rK6XY3GGAiQ6PgVAIgpm2GXs3xdSGWd5evorAEAAJAUiIMBwFq0q0D08asBEHMeZ31o5RrrolwTAAAAIHaIgwHAWrSrQHSRPAAQc/as3NDKZeZFuSYAAABA7BAHA4C1aFeB6CJ5ACCmvKZHWaVlIZXNKi3jWa8AAABICsTBAGAt2lUg+kgeAIgpm2GXo3iq0kZO6LFc2sgJchSX8kxCAAAAJAXiYACwFu0qEH38agDEnNc0NeLGxUE7+LSREzTixsXMCgAAAIiQ1/T0+BrxQRwMANayql2l3wQCS4l3BQAMTEZapgpve1KuA9vk3P6BPI11smfmKau0TI7iUnlNk1kBAAAAYfLFUE2VO+QsXyePs172rNwzMdZUYqw4sxnG2Ti4orz9b0QcDAAR62u7Sr8J9IzkAYCY8pqmzJZGHVv1b0obOV45F16p/Ot+1LHd7ayT2dYimz01jrUEAABIPL44q/rVZWo5stdvm3PH+o7Zl0ZaJgMhceQ79xljJstRXNrxvm9WLH8bAAhPpO0q/SbQO5IHAGLKZhgdHXNTxTbVb1ylQcNGy0hzyGxxqbX2oNIKzlXhbU/Gu6oAAAAJpXOcFUjLkb2qfnUZcVY/YTPsXV4zMAUAfRFuu0q/CfSO6ARAzHhNj1wV2/w7Zq+p1mOVaj64S63HKiWvqZYje+WqKOdZrwAAACEKGGcFQJwFAAD9JhAqkgcAYsZm2OUsXxdSWWf5OmZfAQAAhIg4CwCA0NFvAqHhXz4QY54u2equr5Odx1nfeyGbIVvqoOhXBgAAIIBEjddCirMkeRrrolwTAACsE61+mX4T6B1rHgAx4jG9shs2bd93XGs2H1RdQ4vystN0+azRmlaS37E92dmzcoNuMzKylDP9KuVM/7pScoZ2vO81Pd2eXQgAAGC1RI/Xeoqz/Mpl5kW5JgND1xiVmBUArBVuvxxuu0y/CfSO5AEQAx7TK1dzm5a+8JF2V/lnrNd9ekgTi/K0ZNFsOdJT+/UFaV95TY+ySsvk3LG+27aUvAIV3PyQUnOHy3Vgq06ufUkeZ73sWbnKKi2To3iqvKbJrYIAACAqEj1e6ynO6iqrtIy4qg98566pcoec5euIWQEgCsLplw15w26X6TeB0JA8AGLAbtgCdng+u6vqtPSFj/T0PXNjXLPYshl2OYqnKm3kBL9FiYyMLBXc/JCM1HQdXv6TbgsWOXesV9rICRpx42IZaZl02AAAwHKJHq8Fi7O6Shs5QY7i0hjWLLl4TVNmS6OqX11GzAoAURRKv/zzFVu0dNHsiNpl+k0gNEQzQJR5TFNb9xwL2uH57K6q09Y9tfKY3hjVLD68pqkRNy5W2sgJHe/lTL9KqbnDVf3HJ4J22i1H9qr61WVchAEAAMslS7wWKM7qzDeA4k2QNRz6I5thBByg8iFmBYC+C7VfnlCU16d2mX4T6B13HgBRZjcMrdl8MKSy72+p0rSSYVGuUXzZDENGWqYKb3tSropyObd/oMGzvinXgW09Zvul9k7fVVGujDEXcEEGAAAskyzxWrc4q3ydPI11smfmnXl0QymPXegDr+lRU+UOYlYAiLJQ+mXDsOmaOUV9Gkug3wR6R/IAiIG6hhZLyyWa7osUtc/WyxgzueP2P+f2dSEdy1m+jlsGAQCA5ZIlXvMNcHSOsyR1zJocyAMgfV3g2GbY5SxfF1JZYlYA6Jve+tui4dk6JzdTxz5YF9LxOrfLndt/+k2gZyQPgBjIy06ztFyi6G0xOensYoMeZ31Ix/Q09nzbIgAAQCSSLV7rOig+kAc/rFzgmJgVAGKjt/7Wkd4+pBluu1z3t9eVNqqkW/tPvwkERvIAiDKPaeryWaO17tNDvZadN7NIHtMru2HrtWx/F+5icvas3JCOa8/Mi0Z1AQDAADZQ47WBwOoFjolZASD6QumXXc1uSeG3y41ffKi69a+ywD0QIn4dQJTZDUPTSvL1jdljNLYgR0aQC82JRXmaVjIsaS5Ew1m0yGt6lFVaFtJxs0rLWKwIAABYyhevTSzKk2HYNLYgR+cXD+kWuyVbvDYQWLnAMTErAMRG5345mKqaBp1qaAq9XZ5ymdynatVa276WAgvcA6HhzgMgyjymKbth6Pv/OE2SVFvfpL9++KX+srFCDa42Se0XoksWzU6aWWyRLCbnKJ6qtJETetwnbeQEnh0LAACiwmN6tex7l8jV4lZednrH+77YbW9Vnf73wplJE68NBFYvcGwz7MSsABAjHtOrJYtma+kLH2l3VfdHwU0Ylav0tFSlhdouj5uqk+telrxnE7ud239T7UkLAP5IHgBR4ruw3L7vuNZsPqi6hhblZadp3qzRWnj1JF1zSbHeXL9P0ycO17SSYUl1IRrJYnJe09SIGxcHnRnmu6UwnGfSAgAAhCNtUIp2fXlSv3vr87Ox28z22M1jeiUpaeK1gSAaCxwTswJAbNgNmxzpqXr6nrnauqdW72+p6tQ3F3WMo4TULi94UG11NTr9yepu233t/94vT+i8seck1dgMYAWSB0AUeEyvXM1tATPk6z491HGnwXe+Obnj/WTrnMJdtMhmGDLSMlV425NyVZS3L2bXWCd7Zt6ZxexKuQgDkHSaKndYfsyMMRdYfkwg2YUauznSU+NUQ0TK6gWOiVkBIHZ84yRTxp+jaSXDOt73T+jbgrfLUy6TY9xUtdXV6Ogrj8lsdnb7DF/7v/ztnfJ4vB39fbKN0QCRInkARIHdsAW9tU6SdlfVaekLH+npe+bGuGaxE8licr6LrIwxk/1mfvmeF8tFGIBk1FT5uWXHyhgzufdCALohdkte0VjgmJgVAGKr6+OEug7sB2uX3adqdXLdyzr9yeqAiQPpbPvvanbry6On6e+BLohqAIt5TFNb9xwLevHps7uqTlv31HZkzJNJXxeTsxn2Lq9pqgAAQHQQuyWvaC9wTMwKAP2Lr132mh41HdqtqufuVv2GPwVNHEjtCykfr2tUVU2DJPp7oCuiG8BidsPQms0HQyr7/paqpLwVrvNicj3xLSbHhRYAAIgXYrfkRUwKAAOTzbArY9REpRWc22M530LKf/mwSmanZAH9PXAW0REQBXUNLQHfNwybxhbk6PziIRpbkKNTzsDlkoFv0aK0wokalD9G6aMnaVD+GMnW3ux0XkwOAAAgnoLFbpGWQ//REZMGSSAQkwJAcgql/c9f8H9Uc8KpdzZW+G2jvwfOYs0DIArystP8Xmc7UnX1JcW6Zk6RzsnN7Hjf2dgc66rFjG8xuZG3POZ3S7fHdVqeFpcG5Y1gMTkAANAvdI3d+louGK/p8YuLur5G6EI9lyxwDAD9i5V9YU/H6rH9P7OQcs0Jpx56/iM5m9r8jtvX/h5IJiQPgAgF66Q8pqnLZ43Wuk8PSZIKhmbq8e/OVv6QLDUe2KZjH6yTx1kve1ausqaUSeOmJuUFi+87uSq2tXfSvu9cWiZHceJ8Zy7yAQBIbl1jt57Mm1kkj+kN+1EGvrinqXJHXOOiaMQ1sY6VIjmXLHAMAPHXe/sduP8I1M9ItpD6gmDt//G6Rv3pnV16Z2NFt8SBFHl/DyQjkgdAmHrr8AxJ00ryVTZ9lD7bc0yPf3e28tJMHV7+E7Uc2et3LOeO9R23ShtpmTG7cGm/UPJG7ULPa5oyWxpV/eqyfvOdwxWvi3ySFQAAxJbdMDStJF8Ti/J6XDR5YlGeppUMC/v4NebkIgAAIABJREFUXtMjs8UV9biopxgiGnFNPGKlvsaYnRfStBn2jjLEWwAQXSG13zcslpHue1KDV70lCNynT+j4X16Qu+5o92N16gt8yYbObLb2t2wBcgOR9vdAskqK5MHGjRv1m9/8Rrt371ZbW5smT56sRYsWae7cub3uu3DhQm3atKnXcj/4wQ/0wx/+sOP1FVdcoYMHgy+s9vnnnyslJSlOLzoJ54Llf/3TDDW3tCk9LTVg4sCn5cheVb+6TIW3PRmT+kvts6tcB7bJud36Cz3f/oHOkU8sv3Mk4pH86C8zEgEAGIg8pldLFs3W0hc+CphAmFiUpyWLZoc1C/HsrEd72HFROJMJQpnJ2dfkRaD6xCIh0lVfY0ziLQCIj5Da79fOtt9ma7O87lZVv/avwfuZBQ+q4KaHdHj5/TKbnP7HOtMXOHdtlJGe2Z5saKzXyTUrJK+pzCllWnj1VH39otF66PmPdPR4o6TI+nsg2SX86PbKlSv14IMPatCgQZo9e7ZM09THH3+sRYsW6dFHH9UNN9zQ4/6XXHKJhg8fHnBbY2Oj3n//fUnSpEmTOt5vaGjQoUOHNHToUM2ZMyfgvgZBZ1IK54LFuWujHONnyFWxLWj5zvu5KsqVMeaCqF2weE1T8prtF3o9dcB9uNDzfYbrQHm/+M6RinXyIxnu1AAAIJHZDZsc6al6+p652rqnVu9vqVJdQ4vystM0b2aRppUMCztxYLY0yuvxqPXYl2HERZNlM+whD273FkMMvfq7ypn+9YjjmkCD7dnTr1TWpEtiPlHEa3rUVLkj4hiTeAsA4iPc9jtt5ATZ0zJ0+KVHeu5n/viECm97UjnTr1L9hj91P9aBbUofOUFVz92ttIJzNWLBg8q7dIEOL7+/o90ffsNi/ez7l+iVd/foktLCsPt7YCBI6ORBTU2NlixZouzsbL388ssqKSmRJJWXl+u2227TsmXLVFZWFjQ5IEnf+973gm778Y9/LElatGiRrrjiio73d+3aJa/Xq6997Wt6/PHHLfo26O/C6vAObFP6qPNkpKbJWb4upOM7y9f5PYPPau0XQUbAxIFPXy/0fJ/h3P5BSOWj/Z0j0dcL00gk+p0aAAAkA99AwZTx5/g9rsBjev22h8JmGDq++nca/g/36OSa8OKihp0bVLvql/7bggxu2wxD1a89Ia+7VemjJ8lscam19qDkNSWbIcf46XId2BpRXBNwsN1maNi134/4mH1hM+x9iquJtwAgPsJqv7d/oIwxk0PvZw5sU86FV6p+46r2vq/LsfKv+5EGDRsdMNnQcmSvas7c7XD3t6dF1N8DA0FCT6l46aWX1NraqltvvbUjcSBJpaWlWrRokVpaWvTaa69FdOy33npLf/7znzV58mT9y7/8i9+2nTt3SpImT54ceeWRcMLt8FKyh0iSPM76kPbxNJ69Rb79mXwK+jpcXtMjs60lrAs93yOOwvmM5iP7JEX2nfuLcC9M+3ox7DU9Yd2dEu7fBQAAhMfepW8Pf3Hk9r7dc7pWUvhxUUbRZMnWPb7wDW53fk5/a91RDZ9/n0Yt+qVG3vK4Ri36pYp+8B/K/cq3lD5qolJyhoY1qaNzXBNosH3QsNF9OmZfRRpjEm8BQOwEGr8Itf22paS2X5OH2s9s/0Apg4dp0LDR3T/zTF9gpDkk+ScbfP1s53afpAEQWEInD/72t79Jkt9dAT6+99avXx/2cZ1Op5566ikZhqHHH3+829oFu3btkkTyYCCK5ILFnpUb0j72zLyO/2+q3KFjb/5KR19aqmNv/kpNlTskKeILGZthb78LIooXejbDLtfujyVF9p37k1gmP2KdrAAAANHl69vNFpek8OOilKzcgIMgUtfBbZsG5RWo9fghv7ix9fghDSm7WfnX3ysp8oksgQbbfQMw8ZooEmmMSbwFANHnG6/oPJ5xcu1LkkJvv1Oyh0oKv5/x9U+d+foCX38sBU420O4DPUvYxxZ5vV7t27dPhmFo3Lhx3baPHTtWhmFo37598nq9sgVaQj2I3/72t6qtrdUNN9yg888/v9v2nTt3ym63q6KiQj/72c+0e/du2Ww2zZgxQ3fffbdKS/vXY1hgnXAvWLymR1lTyuTc0XsSK6u0TF6PW0dWPKyWw7v9tln1HNZoX+i1HN0v9+njyppyWejfuR8uTBfr5Eci36kBAAC68zjr1Vp7UO7GemWVhhgLTrlM7sZ6pWTmBhwE8Wnc9ZEyxlzQ+/P7b/g/8pqmUvJGSF+W9/r5neOaYIPtkSZErOA1PaGfywAxJvEWAERPsHVlmip3KGfGVSGPEaQXT5EUfj/TOUHgkzXlMrlP1bY/zu+MQMkG2n2gZwmbPDh16pRaW1s1ZMgQDRo0qNv2lJQU5eXl6cSJE2psbFRWVlZIx62vr9eKFSuUmpoacD2E1tZWHThwQB6PR/fff7+mTJmiiy++WHv37tXatWv197//XU8//bS+8Y1v9PpZK1eu1KpVq0Kql+9uB8RPWBcsUy6T21mvlKxcOcZNVdrICT3eJp02coIcxaU69cnqbokDHyuewxrtCz175mCd/vRdDSm7OeTv3N/09cI0Eol+p0Z/QrsKANajbQ2fPStX8ppq3LVRg2deE1pcNG6qnLs2KmvSJQEHQXzSC8eH9vz+1/5Vhbc9qcGz/4caPntXshkaNGy0jDSH/9oIZ3SNawINtrfWHozbRBGbYZejOPS4uiviLfQntKtINkH7Ja/Z+xjBmf4prbBEGaMmytPsDL2fmXKZ3A0nZaRnaVD+mI6+zdevnlz3sl9fFyjZQLsP9CxhkwdNTU2SpIyMjKBl0tPTJSms5MFrr72mpqYmffvb31ZBQUG37bt375bb7VZmZqaee+45zZkzp2Pb73//ez3xxBN68MEHNWPGDA0bNqzb/p0dPnxYmzZtCqleiB+v6ZHNsId3wTJuqk5tfkeDZ10jd2O9Rix4UNV/fCLgfr47CszWZtWte7nHukS68JzX9MjrcUf1Qs836H5s1S+VPfXykL5zJJ9hM+xBX1uhrxem4YpHsiKZ0a4CgPVoW8PTuW+v+9vrypl2pUbcsFjVrwUe7E8bOUEjFjyotroaGRk53WZJ+rEZckyYGcbz+7cpY8wUDb36LjnGX6iUnKEd292nj+v0p+/q9KerlZpX0C2uCTjYHsogUKfvZfVEEa9pasSNi4MmTjKKp2r4Pz4QMGbMnbtArv2fymxy9vgZxFuIBdpVJBOv6VFT5Y7u7fKZpEBLTYXaTp/oNkZgZGQpZ/pVypn+db/+STLkGDct5LEXSRq58FFJ7X2ba9+nypw4W211NTr9yWq/fQLdjUC7D/Qs5smD/fv3y+PxaPz48TL68MMMZ1+v1xtSOdM09fLL7YO3d9xxR8AyU6ZM0d///ne1traqsLDQb9utt96qzZs367333tOqVat055139vh5hYWFuuiii0Kq265du9TQ0BBSWVjD13k0Ve5of25ta4uGXnNnyBd/dX97XZkTL1Jb/TGlZJ+jwtuelOvANjm3fyBPY53smXnKmnKZHOOmymuaOvn+CpnNPV/MSO3P4wv3Qqwj+RFqB9zL8YMN4juKpyo1r0BHX3lMBTc91Ot3DrVz7vq38DjrZc/KVVZpmRzF4R0r1M/r6cI00uRHILFOViQ72lUAsB5ta3i69u2nPvmrBs/6Zo9xUVtdjU68/58a8a3/3W2WZGeDho2W3ZET8vP7m/ZvVcaYKcqZfqVcB7bq5NqXzsZRUy7TkLKblTP9KtkGpfnFNT1Nbjj96eqoTRTpjc0wZKRltp/LivL2uPDMucye/nWlF5bIZhhyVWwLGDOOuuOXOvKHJXLXHQ14/ESPt2Ix0QbWoF1FMun6qLtgSQGvu629/a78XE17t2jw7P+hlKw8uQ5s8++fps5TRtHkkK7JzdZmnXjv93LX1Zzp28qUM/3rMt1tqv2vf/MbYwl0N0Kit/tALNi8oY6sh6GhoUF/+MMflJeXpxtvvFGSVFNTo+9973sdt9wVFhbqiSee0KxZsyL+jJkzZ2ro0KHasGFDwDKXXHKJTpw4oc2bNysnJ6fXY27ZskX/9E//pAsvvFCvvvpqRPV64403tHjxYl111VV69tlnIzpGIAsXLtSmTZt00UUXacWKFZYdF4EFe15fSl6BCm56SKl5w7tdsHS++Dv6ymNy1x1V7le+pSFlN+voy48qbeR45Vx4pVIGn70jxX2qVq4DW5Vz4ZU6+tJSNYXwPNqM4lIV3Lwkou8krymzxaXq1/61xw442LoKvgvAYBdkXtMjs7VJ1a88rra6o+0BQ5fv7PW4JZsRVuIg2DN9Q6lzpM5+1y5/59IyOYpLLb0Yjtd3HOhoV9EfNFXuUFPl55YdL2PMZGWMucCy4wHhom1t17lvb6s7qsL/+XPZHTkyW5uUknX28QjuU7U6/dn/U/PhvRo+/z5521p16IX7gk4oyb7wSg275q6Q4kYjI0uj7nxGNntKCDGGI+Ag8+HlPwm4X48xcRRipUACDZSbLa7eJ3+0terQi/d1uwMhkeOt3mN0ZtQmMtpVRIvHNGXvvDZMl9fh8PVLKXkFKrj5IaXmDpfrwNb2hHmnpLVj3DR5TY8kW4/XwI7zZmv4P9wrmz2le+L9TD/jPn0iYEK4fd2fB2W2NOvw8vtlNjk7Jnqarc06/Lv7ZTY7E7rdB2LJ8jsPTp06pQULFqiqqkrz5s3rSB48/PDD2rlzpyQpNTVVhw4d0qJFi/TnP/9Zo0eP7umQAWVlZcnhcKiurk5ut1spKf5fxe12q66uTmlpaSElDiRpzZo1kqRvfvObYdfHx/eooubm5oiPgfgL9rw+d91RHV5+f/ug+MyrlX/dj85uc9bp5LqXdfqT1R0XfKc/Xa2c6Vcp//p7Vf3qMtVvXNXtWbOZ539VORdeGfXnsNoMQ15TMtKzAs986+VCr6cBbv8FnR1+s8Fq3/kPDRpxrjInXqz0kePDShz46t3rM337uBZEsM+V2gfiOs9E8Jqm33arPivYLLpYXYADAADrdO3bT2/5iwZffK1Ssoeo6dAeNVeUy91QK6/b3XEHgNf0yLTZlDqkIOjg95B5CyWF9vz+nOlXKSUrL2gCQOo5jurpTkx33VEd/8tvNfwfH4hJrBRI12SHzbCHHDOOvPVnqv/bH5Mi3go9RmdwDEA7j+mV3bBp+77jWrP5oOoaWpSXnabLZ43WtJL8ju3hsGflysjIUsHND8lITQ/Y9/japIJ/XiojNa3HNtv1xUeqfu1fVXDzw0ofVdLxeCKpvd079clq1a17OWCyvX3dnydUeNuTGnr1d2WkZ7UnGxrrVff3P8oxfkZCt/tArFmePPj973+vyspKjRkzRtdff72k9uf5ffDBBzIMQ8uXL9eMGTP0i1/8QsuXL9eLL76opUuXhv05NptN48ePV3l5ub788kuNHz/eb3tFRYVM01RJSUnIx1y/vv223K9//etBy7zzzjtas2aNysrKdO2113bbfujQIUnSiBEjQv5c9C9Bn9d3htnkVP2GP6l+4yoV3LKsfUBcUkpWntLHXCD3qeN+dyOk5Jwjt9vdbcB+0OCxGnLFrWc6rNg89/7sreimMsZe0K0D7lwm0L7hDOJbcSHZ29+i82dHshZEKLpfmEYnsIhlsgIAAERfsL590Ihxyhh19hrleF2jPthYoUsvLFRmWkavkwlCihtthnKmf12uA6GujdA9jop0ckM8YpbwY8bJfpOAEjneitdEGwCJyWN65Wpu09IXPtLuqjq/beu3HtbcaYX63rdKlTYoJeQEgq9fShk8TKm5w3tOWh/dL7OlSc2Hvui1zW6q2NbRP3manDLbWpSSlaumyh068dfne9zX195nTpx9po6mUjJzlX/tDzteS4nZ7gOxZnnyYO3atUpJSdHvfve7jjUBfDP6p0+frosvvliSdN999+lPf/qTNm7cGPFnXXrppSovL9d7773XLXnw3nvvSZIuu+yykI7ldDq1f/9+FRYWavjw4UHLnThxQm+//baOHj3aLXng9Xr11ltvSZK++tWvhvNV0I90fV5fUF5TDZ/8VRmjzl54dL04rDvdpJV/2aUPPj2kuReO0tVzxiv/ukAD9rF97n2gDrLze4FuAw9/EL9vg+6+OoT6TN9I1oLoj2KVrAAAAD0LFA9JtrD7Zt8xnnt9q76orNOhWqdGDcuSIz1Frma3qmoaZJperdl8UE/fM1dS75MJAsaNZxamNNIcsmfmKiVnqE6ufSmkOgaLoxJlckNfY8b+8j3C1R8m2gBILHbD1i1xkO1I1dWXFOuaOUU6Jzez4/3O/WBPa6r4xjMGDRsj14GtPbZJg4aNVkpWrk6u+b8h1dfXZtszss48Ys+wZIyAthAIneXJg4MHD6q4uNhvMeG//e1vstlsmjt3bsd7qampGjVqlPbv3x/xZ82fP18vvviiXnjhBX31q1/VBRe0P+N3+/btevHFF5Wenq6bb765o3xVVZXa2tqUn5+v7Oxsv2N9/vnn8nq9HccI5pvf/KaeeeYZffLJJ/r973+vW2+9VVJ74uC5557T1q1bVVJSonnz5kX8vRB/Hmd9aOUa/TP1Xtn+P3tnHh9Vee//z5zZJ5NJMkkmG1kJiSwhEEAIKgSQJdiKS00ESytV3Gpd8FYFmnqVVmx/tNfWa69bxaVApVJtvQ2CFwgoAStbEgRCkOxkJZNMZl/O+f0xOSczmSXnJBMI5Hm/Xn3JnPWZoTzP9/luHzgdTkil7n9aURolCvNTwADYXV6Ljw/UICUuHCqFBGu+NxkTUqLALr9XUqQ3EP6EieWJmdAuuO+KOfHZMdhaa6FIzBzy3wWBQCAQCATCUPBnD7EijKqMXMGOcxdNo+pCJz4/Ws8dq2sx+FxX3aDHqfMdyMmMgXiQZAJPu5HTmRooTEm7oEzLgfm7Ez79/X3GOIgddS0kN4xFm3EsJtoQCIShw65HnoGDhJgw/OrhOdBp1bC0XIS5qxfyuDSIwyK8AgeOnnb0HPknnPpWv5oqDE33BQUOBh0DJVe5xzKEOZtde8bifE8gXE1CHjyw2+2QSqVen48dOwYAmDNnjte1JpMJ1DAMz3HjxuG5557DSy+9hHvvvZeravj666/hdDrxm9/8BtHR0dz1999/P5qbm7F582bcddddXs9i2w3FxMQgGFqtFi+//DKeeeYZbN68GR9//DEyMjJQXV2Nuro6xMbG4rXXXvPRYCBcWwxFf4ChaVAUBWtdFfRV/RvNsJwCrC7MxZIbk1Hy1lFus1haXot1aVru/qvd9z5Qv1TG5QBwZRZozzEwTjvGrf39iGtBEAgEAoFAILDw6h9fvAGUXAWG9u9EH5idSYGB0eJAuEqKXrMj6Pv3H2vAtKzYQcfpaTfSdisomQLmi6fQdWCbl1hueO5CKFImo2XHJh9BSU+uVTvK87ceqzYjcaIRCAS+iCkK+75p5D4nRKvw+ydvQZjcPY8q4tL8i6/3CR1H5t+Blh2bYKmr9NE9ZOfiweYk2mZ2j2UYc/ZYne8JhKtFyD3ciYmJaGhogNVqhUKhwJEjR2CxWKDVajF1an+mQ11dHZqampCRkTGs9913331ITEzEO++8gxMnTkAmkyEvLw+PPvoo8vPzeT+nq6sLAHwqEvyxdOlSJCUl4c0338Q333yDuro66HQ6rF69Go899hi0Wu2gzyCMXoaiPwBg0I2mrmgDNj00B0+/egi9Zgf0vTaf5wktDQ9WOiiUQP1SQ7G4D2kMIgpOQyfUOfNHXAuCQCAQCAQCAeDZP/6jlwMKDPutWJhagJtzczFhXARK3jqKlk4Tdw9FibiqVLPViR6jr30YbKwMTYNxOdC89T+DBjsSVpageeuzASsQ/NlRobQzQ43Xb111ENGLfgx1zsjrh41GiBONQCAIgfVDJMSE4fdP3AK1Sg5zXRVksckQiSi0fvRy4PWkaL3XeuKpqWK+eAqqjGmDzkn2jsa+ff7Q5uwrpRdJIBD6CXnwoKCgAO+//z42bNiA2267DVu2bIFIJPISIa6srMTGjRtB07RXK6OhsmDBAixYsGDQ6/bv3x/w3Nq1a7F27Vre75wyZQpee+013tcTrh2Gqj8w2Eazfad7o1mYn46d+84jKlwedAzen31L1QNtTj1LB/kSrF+q06gH43SM+ALtMwaGhuHEXmgLVg1JC2I0b3gJBAKBQCCMPgT1j79YAUXyDRCJpZwTX0giCQC//aWNJqugMQsJdujuWIf2T3/vE0AYaEeF2s4MNf5+a4kmZsg247UMcaIRCAShRIXLEa6S4lcPz4GSsqN56wtQpk+FKi0nuNDxpRq07tyMpDWvQJO3FN2Hd3HHzRcrIItO4pf8N8x9/pXWiyQQCEDILYeHH34YCQkJKC0txeOPP47a2lpERkbi0UcfBQAcOXIExcXFqKmpQUpKCh588MFQD4FAGDZsH1l54gS/5z31BxjaBXNtBe+NZmF+CihKhIUzU+CimSGNjbaZ0Lz1ebRufwnG04e4ssHW7S+heevzoG2mPlE/fgTrl6qZvhgiiZRboIPBLtDCAwe03zEYTuyBQ9+G+KL1vP4u2GcBgKX+NNr/8Qe0bHsR7f/4Ayz1p73OEwgEAoFAIACeFZ4C+sdXHQQllXM2Dx8nfvvOlxEXrUbRrVl49el5WF04EYquC172CtVW7TWm4OMWYIPWVkKZloOkNb+FJCqBO+fPjuJnZ149e8rfb204+QWchk7EF2/gbTNeD3g60YIxVBudQCBcX7hoGotmJaNwbjp0WrV7Lm35Dpq8JYMKHQP9Pg3N9MWAqH8+MVYdhCQiFqbqf0OVMW3QOcl26QIvn0tcsXvOHug3EeKvIRAIwyfklQdarRa7du3C22+/zQUI1qxZg7i4OABAeno6VCoVli1bhmeffRYRERGhHgKBMGz46g/QEEFMUYI2mroVuZg3LclvP1sXTUPsYdQP/MyOLeDmVESBcdrRdWAbYpc/Iii7yG9vQhHlNiTqqiCN0CG+aD1ad24eRNBZWMY/Q9OgHVaI5SqfMdAWI1p2bELCypK+UsgKGKsO9v9d5MyHKiMXtN3a/6zB+hTfuxGUPIxsnggEAoFAIHC2A2s7DaV/vNCKhe/fNBm0zew3w1OIvTIUsVxKEYbE1S9B/+XHCJs4x0dTi1clQ1+LiqvBwN+aUqq9xKIZmr5q+mFXC0/x7OA2+vX33QkEgjDEFIVpWTpkJGq44LM8eSIkmhh0HdjG6xlun8YTkMUmw95eD6B/TTRfPAlV5oxB/Qa6O58GbTODcTr8z9l9+/y2y0Zs/dsx/PSeaVAppBBTIgBXXy+SQBhrjIiqr1arxXPPPef3XHx8PI4cOQKZTDYSryYQQgYf/QHWJS50o/no3VPhohlu8WP/XHWhE/u+aYS+14aocDkWzUrGtCwddz7Q5nTgxqkf/pUN/noTymKTOUPC2lwzqBOfoWlYm6vRe2Iv7xJ3EUWhc/fbiLvjSb9jcOpb0Lz1Wff3m74YuhVP9J/r7UJX2Xa4zL2IXf4wgMHbR13NDS+BQCAQCITRBessZ5x2AEPrHy+0YkGVkYvO/303JPaKUBu068BfELv8EcQuf8hHU0tQEKS2EsrUKVfcMeP5W0uiEpCwqgTSyDhOLJq226CecjNU4/N46YddDxAnGoFAEIKLZqBRK9C+rwySqATE3bnOfVzgekLJVdwxdk10GS7zTv6jbWY0/fnniFnyAMJumO01Z3fqTdhVehal5bUwWhzo7LZiy5PeLc+vpl4kgTDWGJHgQTC+++47uFwuZGZmgiIGDOEaIJD+gIumUdPQjRvStII3mnKZxCtwYLY68OLbR1HdoPe6vuxEE7JTovDC2jl9kXbfzam/jZPQ3rQM7UL4zGVwGjohVkXAZTaAthpBKdw9eF3G7qBOfMbpAG23ovVvv4G1rtLr2QMz6ACG+03ZTarpzFdwLrwvYH9E2mJE9+Fd6C7/BLLYZMTc9hgk4Vo0/PejAO2Ess9YsF66MKo3vAQCgUAgEEYPXs5yEeXu1cy3f3zOfNAOG6d5INTp4jJ0ep8QUZDFJoOSq0DbzLC1fMfLXhFqg9qaz8NcWwHFuBtASeUDqg6EVzIIIVSOG5exG5RSjYRVJaCkCp8KDvP5rwERhbBJNyGm8CFQUsWosflGynkl1IlGIBDGLqwfgrbbkLCqBCKJ1H1c4HpC28zcMfXUAjiN3e61tLstcPJfTwe6yraDdjgQs/jHGPfgFkjU/cH4nl4rDlVcwkdfVKPHaOeOVzfocep8B3IyY7jxs1xpvUgCYSwyIsGD3t5e/OUvf0FUVBTuvfdeAEBbWxseffRRnD17FgCQlJSEzZs3Y9asWSMxBAJhxBFTFErLaxEbKUdYjjChMs9WRGJK5DdwwFLdoMeLbx/lIu2em9NgGydAWOm7MikbytWbAPRvZJwm97tYQ2KgE5+SqxA2cS4iZi3Hpa0lvDLoaJcTIgzQOeArmsTQEElkUCRmoqtsO0A73ePrM2BM1V8H/H4cIgrWutNEPIlAIBAIhDGOl7NcqIBjX8UlW+Up1Oki6svYDFQ96jR0wtpcM2jyh5Bgh7OnA/aORhgrD0KVnou2T19FzNIHvGzEobRtGoxQO27E6khokpZCGhkXWNyToWH69ks49a2jouL0SjmvBnOiEQgEAot6ys3uefS9DYi7a93gQsfsfR7rCeAtTDzuwS1wGjphOLEXhhN70F3+CSLy70D0gvvQ9s/XYDp9CJLIOCT+yO13sLc3oGvfB9ycGJZTgO/fnIsbJ+pQ8tZRtHSauPfuP9bgt/VzMEhbYwIhNIQ8eNDT04OioiI0NDRg4cKFXPDgl7/8Jc6cOQMAkEqlaGpqwtq1a/HZZ58hOTk51MMgEK4IXQYbSo80YHVh7uAbzaRsH4e1i6ZRdaEzYOCApbpBj3N1XT5VDpq8QTbfpaJBAAAgAElEQVROCF76HnAjkzMfqoxpoKQK/xtThnb3NxRR0N3xlCBxJcW4bEAsARgaQH+mnuHEHoTnLhpcV6F4Axz6NhiO7+GOs0EZe8t3Ad8faHNOyhUJBAKBQBi7eDrLDSe/gGbGUp794932g/liBeTx6YKcLozLiZglD6DN1I24u57xXz2aMx/qifk+TmX2vex/WbFcPsGOrrLtAEN7VT8MtBHF4VGQ6VK5Cgh7R2OfzeaNZ9umYITaccPapbLoJP7251WuOCXOKwKBMNpgaBdUmTPc82hzNb/guYhC2KSbocrIRc83pQD69+cMTaOrbAdcvZ1Q58yHtmAVwnMXoWXHJijTcsDQNLS3FMHR2Yi4u56BiBIHTX7UFW3Apofm4OlXD6HX7AAA6Httgr/naNfxIRCuFUIePHjvvfdQX1+P1NRU3HnnnQCA5uZmHDx4EBRFYevWrZgxYwZ+97vfYevWrXjnnXfw4osvhnoYBMIVISpcjt3ltVhyYzJ0RRvQvvNlv3oE2oL7EJ670Os4Q7sgpsQ4XHGJ17t2H6lFdkpEvyOfFTMWtHGa7NEyiMdGpmg9GJoOuDH11ETgA9vnt6P0DWgX/BBipdqrqoFPf0SnoRMtOzaBthoBeGc6iMP8C7CHorUTgUAgEAiE6w+xOtI7wSA8OrDoLqfx5AJts6D1r7+C7VINIm+6W1DFQs/xPYiYsRQJK0sAmuZVPQq4nSCM0wGRTAxLXRVM575G1C33IL54A1o/8rVB2XfGF633SrzwbDlhb6/nnOsAEFP4MCipnLvfM4OUthi542zixmC2U6gdN2zABAB/+3MILZZCCXFeEQiE0YaIErur76oOAgieyMetkTOXQ9K3d4+YtRzh0xaBksrhNPVARFGwNp2FrfGsly8h8YcvQqKJRs/xPVDfMAcJ95ZArAofNPmxfefLSFrzCgrz07Fz33kAbt+LEK4FHR8C4Voh5MGDAwcOQCKR4N1330VSUhIAYN++fQCAvLw8zJ49GwCwbt067Nq1C+Xl5aEeAoFwRXDRNBbNSkbZiSaUvHUUmx6a4+P0lunSEDWvGJRMAXNthd8y5VVLslBxodOrJM8fXQabV4YZ47QLc9z3bZze/9cZJMWqceuNKYNvZHZuRtKaV+Cymvxm4bEiSVzW3oB+vQOz1dhMt6hbitCx+w3E3fG0V1VDMF0F2m6Fy2pC0zs/B20xAPDM/nO3DfBXuh/K1k4EAoFAIBCuHxjahfC8JYiaf69A0V0xFzgABFRP9jnx9WXboUyfCpk2gXf1KO2wwWUyubM1t/0nd4+lrqo/8SJAsMOhb/NKvBjYcsLy3UnOaWKpP+dTjeqZQerUt3glbgz2+46E44YNWoxEi6VQQ5xXBAJhNMJWr7HzqE8iX996AkoE7cIfQRIWAXNtBbr2ve/jz2D1c5Spk2FrdLcp9/IlWIzQl22HsfIAkta8AntXC++uBYX5mfj4QA1omsHCmSlw0YyP5kEgRlrHh0AYS4Q8eNDY2Ij09HQucAAAX375JUQiEebN61dHl0qlGDduHL77LnCbEQJhNCOmKEzL0iE7JQrVDXo8/eohFOanozA/E7oV7owoNru/eet/BnRaxxVv9CnJ8wcbaWdoGvH3buSCBkI3TufqLuN7N6XCdLGC96LNBgQGBkfkCRMAAJKoeEQmTfDbr9czW43r8yuWInrBajh6On2qGvzpKog1MYi74ykYz5ZDHp/m3hBPLYAqfapX1pu/ConhtnYiEAgEAoFwfSKixFAkZYO2GoOL7i5bC0qmhNXuhFzMwNp41utavtWTnBPfZoZYEQZzLU9brLYSisRMSMK1PuNkEy90d6yDMm2K/2CHWAL1pLkwnNgDaVSCVwsjSqlGxJzbeVWjJqwsQefuN6G782meVQcj47hh3ytUZ+JqQJxXBAJhNMJ2I/CcRz0T+SJm387ttd3+jOBJeKAoaKYvRvfhv3PJg+z6JYsZB9pm5j7L49IAEeW3JZ7X86sOQrciFylx4ZBLxYL1DoCR0fEhEMYiIU9rsNvtkEqlXp+PHTsGAJgzZ47XtSaTCRTJrCBcw7hoBi+snYPslCj0mh3Yue88Hnh5H3625QD2HK3jVabc9tGvERetRmF+etB3sZF2EUWBkqsQu/wRAMI3ThFqOaIjw2CrPw1F8kTIdKnuxTsAxqqDkIRr0f31ZwAAeXw6dCueQMKqF6BdsAqM04HoW38MbcEq2Dub0HVgGzr3bkXXgW2wdzZBW7AKSWt+C0lUApfp1rpzM6RRcbB31LuDIcUbIE+c4P3iPl0FxuVEzNIH3D1uJ85FwqoXoFvxBFde790H2B1Y4Z41hNZO7EabQCAQCATC9Y+IogK2/GFFd1t3bIKIoqBUyEBJ5VybB09Yp0tX2XbIohM5W0m34gnIYpPRVbYdzVufByWVQZ0zD2KVxu9z/GGsLAMlV8HSdM7vOGmLEV1l2zgbxnqpBpcPbEPrX3+F9n/8AfbORmgLVmHcg79HfPFGrxZGmrylkKijeFWjSqPikLDql4IqNUfKccNqH/CBbbF0tSDOKwKBMNpgaBdohw3qnPlex9lEvsY3fgaX1cy77RolkUGiiYEs1lvP1FhZBkm4ljturCyDWKXxuY5DREGmS4UieSJEUhkA4IbUKLywdg5cNCP4e14LQWYC4Vog5JUHiYmJaGhogNVqhUKhwJEjR2CxWKDVajF1an8mRV1dHZqampCRkRHqIRDGIC6ahthjEzPw80ghpkRQKaTY8uQ8nDrfgf3HGqDvtUGrkWNBXhL/jLKLlSjMH4+PD7ivTYkLh0ohgdnqRENbLyaMi/SKtLuF8gK36vGHOmc+LnebkHdDHBjaBe2C+7hzgfrZAv0bGbbU3XB8L0znyrmWRXH3POc+fuIQVJl5UGVM83luWPYcrt9hV9l22Jqr3eLJSVnu/r0MHVznwNQNa9N5KFMmcplu/jat7sBKGFdqaa07PaTWTgQCgUAgEK5/BLWUuVgJZdqUoO1yBlZPKtJyELN4DTpK34Q8LhXjHvx/XhWa0Yt+DIkmxq/95Qlri1lrq/yep5RqxN31DBi7Bc0flnh/HxEFe3s9TOeOQrtwNUQSGdp2/Mpt13FJFvwrIIS21Rkpx40gseirbNuN1G/Ath0J9JlAIBACIaLEMFV/DfXEuX7nUdpiBOO0w1xbI2h9oBRqr3Ps+sW1Ox7wmcVLe8hjnWRoF356zzRB7Yo87+XtK+Gp40MgjFVCHjwoKCjA+++/jw0bNuC2227Dli1bIBKJsGTJEu6ayspKbNy4ETRNe7UyIhCEwi4iVRc6se+bRuh7bYgKl2PRrGRMy9INaZERCvv8nMxon1K6br5lylVl0K2YigdXTMHcKXGIjgzjzvX0WqCQS32+S7BWPQNhBfpokw1LZqf66i/46WfLfT+21ZDEHflXpOdAf2gHACDyprshVobD2dvFZfh7iRHnzIcmbwmchsuQaKLhshi5TDdj1UHoMtyaBu1//y+E3TAbYRPneukcOHs60FW2HYbje0Bbjby0CdjjytTJ3GaRZHwRCAQCgUAYiKCWMlVlUGW47YpBncF91ZMyXRoAILbwIUg00X7spAJv+6u7za92FGuLOQ2dfl/nr0VjMEeMduEqtH/ye0jCo0c0yWKkHTdsxWmgrFhPbayr5RAaid+AvcZSf9qvnhpxgBEIY4uhBhKNp7+CPH484ovWo/OL9+AydHBrjyw2GRJ1JLr2vc9rDOz6IFaFex1n1y/aZvb7GQAkUQlIWFXipT3ko6sABoAwv861FGQmEEY7IQ8ePPzww9i7dy9KS0uxe/duMAyDqKgoPProowCAI0eO4Cc/+QkYhkFqaioefPDBUA+BMEZw0QzMVgdefPsoqhu8nb5lJ5qQneIub1MppCMeQADgt9JBqNP6+zdnwHyxAu0HvTcC8r6NgL8Fk6Fdg26cdEUb4XQ6IYcdzVtfGLSfbfPWZ7kMOLbVkDItxy2ENC7bvQC3fAfNjKWg7Va3eF+wPohF60HbrWCcDs5Q4CoanHboVvzMZ2NrPFuOy3vfBW02cMeFaBN4GkykXJFAIBAIBII/hNpqtNMOdc58fs7gaYvAOB0QiSXB7aTi9Ui6fzMYlx2S8GjuPFvBqejrO824/Ghj+WnRGNQRk1MAVUYuktb8FoaKfUP6Dfgy0o6bgRWnXmLRfrSxrgah/g3Y/uNB9SkGSbQhEAjXB8MNJIrDImA6/29EzFiGuDue5I67TD2wdTS6/yx0jXS5vI6zvgR73/PUU+e7xyVVAHAHuhNWlYCSKgbVVRjKvHYtBJkJhGuBkAcPtFotdu3ahbfffhs1NTVISUnBmjVrEBcXBwBIT0+HSqXCsmXL8OyzzyIiIiLUQyCMEcSUyG/ggKW6QY8X3z6KLU8Kr24JVRskoU7rtk9fhenbL73OBVow2UqEs/XdSIphxYwrYazy3TgZzTaoJRI0fzh4P9ukNa9Ak7cU3Yd3cRULPcf3IGLGUgD9C3Dnnne5DW7zNl9BaH/PpWQKyGJTYG+vg0yXBoamQUlksPZpJXgaPOGTb4EiMcunEkJo2TwpVyQQCAQCgRAIobYaJZFBlTGNnzM4dTIAoPXDzcHtpI/cdpK9qwXt//iDT2UoQ9OgHVaop8zz0UmQxSZ7VQ8IccRo5907pN9ACCPtuPFXccq+1/P81SSUvwHf/uN8Em0IBMK1y3ADiQztQvStPwYlU8B88ZS7dfCA4AMgfH1QT7oJlppvAPR3P+gq2w4wdF+QNBcuixHxRc+j9aOXoUyf6lM5N5DhzGvXQpCZQLgWCHnwAHAHEJ577jm/5+Lj43HkyBHIZLKReDVhjOCiaVRd6AwYOGCpbtDj1PkO5GTG8Ko+ENoGKViQQajT2mnUw3TmsN/z/hZMEUNjd3kjPtx9BgBQmJ+Owvzx0K3w3Di50NJphFxKwcS3n+3FCmimL4al7jTi73kOTsNlqCfN9dIaoORhiLvjSXev4Loq3s9VpuUgflUJek/tQ8Ss2wY3ePxUQgD9ZZF8SjJJuSKBQCAQCGOXkNlqOfPR1W0GRECUWob44g0BhZY5Z7BLiKZCBWTRiTB++xXAuB3fXg4gmRKqjGlQpufCUlvB3cv1ke7LDvXXwsjf+1i7cqSTLK6U42agPTiaHEGh+g0EaXQMQZ+CQCBcXYS0HwpFIJFxOdC81TcJ0Hj6EMLzliBm6YOC1kjaYYN6Yj4cl5tga66BbsWTcOjbYDi+p6/KbiMYlxP2y81QJE5A0ppXQDtsI6q7A1wbQWYCYbQzIsEDf5hMJoSFufu4k8ABYbiIKQr7vmnkde3+Yw0+WgT+ENIGyT2GYEEGGmKBTms2Ih8IbmOpS0XX/g8QNmU+CufmIi87BiVvHcXOfefx8YEaTmxZF6XCM/fNQEKMW7SovayMx6/Vp0Ww4gkk3f8yaLsV4rAInw0N+2cRJfbJgAv2XFVGLpxGPaJuuhsMTaP9s9cEVUKwsGWRju52yLQJg264SLkigUAgEAhjC34JIQJstYxc7Co9i5bLRvz8vhmgFOq+qs8Kd8bmAGewy2qGSCyGsaqM13hZ+0sWmwx7ez13fKADKL54A9o+/S+Yzx0FADB914nVkX5bGAXC0xEz0kkWxHETmt9AkEaHQH0KAoFw9RDafmi4gUT388TBgw9N1cKS8DJyYTxbDvXEudDOXwmGpuEyG2A4/jl0d65z+wFM3RCJJbBqkvHPfReQFq/G7JxE/uvkMOe10RxkJhBGOyMWPGhtbcV7772HQ4cOob6+HgzD4MyZM2hra8MzzzyDn/zkJ1i4cOFIvZ4wBtD32kJ6nZA2SDa7E8/9T7nPtcfPteG1/1gAmUSM//eXY/jpD6ZCV7QB7TuDZ6Y5Td2ckHAw2I2lva0OxqqDfXoGG7DpoTl4+tVD6DU7UNfi1gg4U9uFJbNTMSlDCzFFDamfLSuSHGxhFfrcrr3vgnE6EF+8EdELfwRr/WmvqgJPPCshuss/ARgakqg4aG9dA4Z2QaZN4MY3WGYGKVckEAjDxVJ/OqTPk0ToQvo8AoHgxl9CSLhKisK56UjSucUc2UpSXtpRxRvRdtmI0vJaxEQqIaIoGM//G8qUyVCmTYEqI7f/3RYj9F99DHtHPeLufEawncRWEnjSn0CSApFYgrg7n4Gl4QzsrbUInzrfXT2QUwB7e/2QBJCvVJLFaHbcDFVwVOj9w/0NRkqfgkAgXB2G0n5oqIFEdg5nXA5Y6s4FDQjYOxrhNPVArAwfvNKuaD0c+jYYv/0S6olz0VH6BrQL7oNYpUH0rT+Gs6cDXWXbYe9sRPwPnsN//60SMyfGY8akeABkXiMQrgVGJHjw5ZdfYt26dTAajWAYdz6MSOQ20JuamnDs2DEcP34cP/3pT/H444+PxBAIY4CocHnIrhPaBik1Phw1Tb6LXOHcdERHKPEffziE6gY9St46ik0PzfGvR5BTAFWGe8PW8b+vg7b6d6B7jXPAxtJ2qQbtO19G0ppXUJifjp37zntd/+WpJkzJ0AIQ3q/w8yN1WJafNvj1Ap9LW02wt9ej9aNf+1YViCjIYpNByVWgbWbYOxq9MvEoVQTiizeAkkj7Mv3KfAQAA2/WSNYbgUAYPpb6b0P2rPCpJHhAIIwEAxNCEmLCsOmhfMRFh+FkdTs++NcZrhKhcG4aJqZGDWqrXW7TY9akOPQYbTCarKAkctT//n7IdKmQ6VIBEWBvrYO9owGSyDgk/PBF91iE2kk2C2S6VC9bCAzN2UMdpW8gdvkjUKZMhDJlEmibCb2n9kGTtwSmc1kAhDtixnKSxXAFR4d7v1BGUp+CQCBceYS2H2LnFKHzPBuk6NzzLuLueHLwbH+GhunMYUTMWg6Gof1X2uXMhyojFw59G1p2bIIiyb0G2ZrPc2O2NlejdecroM0GqKfMBwA8u3om5DIJztV14YY0LZnXCIRrgJAHDxoaGvDEE0/AYrGgsLAQt912G/70pz/h7NmzAIC0tDTceeed+OSTT/D6669jypQpKCgoCPUwCNc5LprGolnJKDvRNOi1C2em+GgVDERoG6R1q2YgJS6cy/IHAIoSYVl+Gk5Wt3Ob1ZZOE55+9RBWzB+PHxRMgiqj32ndqTdh35cX8f1bMoK2K/IaJ7exNHPH2Gy0wvxMfHygBjTNcOeyUrQQURScxm6oc/j3K2RoGrkTYgf93QTrOhg63ZtgeFcVGE5+Ac30xdDkLYFEE8Pd4zR0wlJbCQCQxiQh9vtPgHFY0fxhySCZGaogVQijN+uNQCAQCATC8BiYEBKukmLTQ/lQyCVccocnZSeaMD0rFhvX3AhF6mQfW+2z/6sGGGDhzGSsWzWj/8aMXMgTxsN2qQb2tlruMCdYLJb02V/zedtfLosR8cXrfWwhw4m9sHe6bd6oW4oAAI6edsiiEtD611/D0d2G8KkLoF2wGsDQHMxjMcli+IKjw7tf+HhHVp+CQCBcWQS1H6r/FsrkG9xthRVhgud5NkghErtdgHyCD/qv/gZN3hLYO5tg+KYUmumLoVvxBHeerSgwHN8D2mqEuvAhMC4HVFmzYDj+OdcyKen+V9CyY1PfvOSC3UFj4/8cQk1TN97duAhhfP0UZF4jEK4aIQ8evPnmm7BYLHjqqafwyCOPAADeffdd7nx0dDQ2b96M8ePHY8uWLdi+fTsJHhAEI6YoTMvSITslKmi1QHZKFC+9A0B4GySVwvufT0pcOGIjlfjgX2e8jveaHbA7aIglEvxu23G0680wW51oaOsFAMzNieO/YObMh7Ong3PAs7iz0XK9AhoUJcKcyTqYaytgbTgD7fyVvPsV2rtaEa/VQTSIyLRQMeKBug5sFt24B7ZAoomG+eIpdB3Y5lFNMB/huQvB0DQi8u8EJZH6DRyw8BGGIhAIBAKBcP0yMCGkcG464qLD/AYOWE6e78DG/ynHlifn4atTTfjsq1rOVmOTMrbvrUZKXDhuSI3CT++ZBqPJCl3xRrR/5O049hQsVqZPhbZgFW/7CwDMLRd8bCFtwSo4TW5Hj0gsRfN7GxB31zpO20CmS4VIIgVjM3EtjIbqiBlLSRbDFRwNhWCpsPEKs7sJBMLoRkj7Idps4HQK4u5axz8w3eewZ4MUMl0qAH5BZtpsgKWuCqrx06Hf/xd0l3/i0yWA3duz8469qwXa+SsRPnUhDMc/hyp9Kii5Cok/fBESTTQA4MV3DnPrcemRBqwuJPMagTDaCbk1ePjwYURERGDt2rVBr1uzZg0iIyNRWVkZ6iEQxggumsELa+cgO8V/+RorcOzyyMQPhtA2SKxwMgsbTBgYhPCsSCg70YQztV2oazGAphnQNIPSIw0Iy3AvmMFgN5aGk1/4VCqw5YieAY2UuHCowxQwVpbBWv+tu59t8YaA7/HsV9hz9B+DbhYZ2gV7dyu/5xa7nztQ14F2WN2bVokUzVufR+uOTTCePgRLXSWMpw+hdccmNG99HrTNBLkuFeY6/sJQDO0Keh2BQCAQCITrE9YWk0go3HZTuldVaCDY1pRzchLB0Axnq7HQNAO5VIwfLZ+E1ssmvP3PM6DkKiSteQUJP96MqHkrEZ63BBE3fg/mixWwXaqB4cQeOPRtiC9aH9xOuncjGJcTl7a9GNAWEonEYGgX2v/xKhiHFRJNDIxVBwH0t7PsLH0LlvrTUPG1K9OnXtfBgWAwtAvm2goBdqW37T3c+4cKq08x6P+fQvQ+AoEwsvBqPySioEyZ5J5zmqthOLEXqoxpAub5/iCFvaMRTkMn1Dnz+Q1QLHVrAxVvhDxhPOzt9bA2noW9vd4rcMD6ES5tfR7NW58HJVMgYvb3AQBdZdsg0USDoWm0dBpxqbO/XfPu8lq0XTZCVzSIP4HMawTCVSXklQeXL19GdnY2xOLgAlNisRjjxo3DuXPnQj0EwhhBTImgUkix5cl5OHW+A/uPNXD9axfOTMG0rMHb7rAIaYO0YGYynC4aD9+Zg+r6LvSaHQAAs9UJwDcIEagigWV3eS2W3Jg8uLBykX8HPNBfjsiOAQBuSHUfYw0StziSk1e/Qmlk8GoNd5aaGGKZCtamc5CER/N67kBdB/XkW9xZWwEEmADvrC3aYvB7zUA8haEIBAKBQCCMLRKiVchOzcJtN6VDq1Fg62f8tEoOHG/AtKxY/PaJeThX14XdR2rRZXDblgtmJmN6lg5mqwNdBhueXpkHo9kOMeWCclwWlOPcvZ4Z2gXaZgKlVIO2GNGyYxMSVpb4t5M89ATaPvkdrHX+k6psl2o4rSh5wnhYG9w2JWvjse0sKZkc7Z/8Hklrfju4wGUIBJCvZYYqOBqq+4fKWNanIBCuR/hUAMhikyEOi+DmHMOJPQjPXYT4ovVo3bmZ1zzPBSkYGoYTe/lXxaVNcTvtKcr/vONnv2+7VIPWnZu5qitb83mYayuhGJeNhBg1/uupeSh56yhaOk3oNTsG6EQGXifJvEYgXD1CHjzQaDS4dOkSr2vb2toQGcmvVxuB4A82MJCTGe3VnoitNuATOHBfx78N0vQsHXaX16JwbrqXSHFDWy86ui1YONM7CBGoIoHFd8EcKNYX3AEPuNsZdepNXCuk7JQo/Oi2Se7vpo7k2hzpv/wbxKrwQfsVsmJH/mBoGrTDCrFcBbFKg96TX8D83Qlo8pYO+lwvRBRUmXmCsrYUyZMAETWoRgRbiUEgEAgEAmFs4aJpPHD7FCjkEpxv0EOrUQzamjJcJUXh3HSsuCWdO3ZDmhbZKRFcGx+niwZNM1AppEiKDYPRZIM6TA7TxQq0V3kL5aonzoU8fjxadmyCU9+C5q3P+rWTXKYeMDQNS+MZmM8dDTpGT60o84UTAPqdTp6ZpMbTh4IHLPrsSoZ2jXlHjFDB0VDfP1TGoj4FgXA9wlfHhK0u4wLGgwWmuXm+3+HuGaTgHXwo3gCnqRv2ziaoUqfAZTH6zDuB9vvs/l2ZPBH2zmYuiNr26avQLv4JNj00B0+/egi9ZgenE1mYn47C/EzoVuR6/EZkXiMQRgMhDx5MmzYN+/fvx+eff45ly5YFvK60tBQdHR1YtGhRqIdACIKLpiH2mHgHfr5WGfgd+AYNPGHbIL349lG/AYTslCiUPDAbrZdN+KD0LOJjwrAsP5UTKaZpBp8fqcPqwoleQYhAFQmeeC6Yd8zPgs5DrM9p1PcvyDYzZLpUrz6D8oTxUGXkovzf9Zg/Pcmr6sLlciFyXhGovnLDsIlz0Lr9paD9CoHgYkQiikLn7rcRd8eT7t/N2A3aYkT34V3oLv8E0YvXIGLWcrR9+ipMZw4HdPSHTboZlFQuKGtLt+IJyGKT3WWSQfAUACQQCAQCgTCWEMHhovGLPxyCzeHCa/+xIKgNlhAThl89PAc6rRrmixVo3+cRCMgp6HfAiERgwOB8gx6Rahmi5DSat74QWCi3aD0SVpageeuzXnaSp/2lmjAL2oKVMJ7ax+ubsVpRYBivYIG/TNJAAQun0W2fskERdxAheMX49cpQhKVDef9wGUv6FATC9QirYxI2eR5chg6/+3IAEGvcSZKec07QwLTZ0Pd895wwMEjBtyqOTV506lu4SgYRJcblA9tgazwbcLwsbMBAFpPEBVFdhk6073wZSWte8UrE7DU7sHPfeXx8oAYpceG4OTcRxYuzybxGIIwSQh48uP/++7Fv3z6UlJTAarWisLDQ67zT6cSnn36KX//61xCJRLjvvvtCPQSCH9j2PVUXOrHvm0auvc+iWcmYlqXj3d7nesazDdLJ8+04cKz/d2JL1Vsvm/DLt47AaHHgwLFGrFs1w0ukeHd5LQrz0/DCg3Pw4jvuIESgioSBsAtmTmYMcjLlEFMi92ZVLIHt0gVoZiyFJm8JJJoY7h6nsRuUXAmGpnHrjam49cZU9Bht+OLf9Wi7bMK9i7Mgi0qA+eIp0M3n3ZlwfZvKQA74YGJErEmQI4IAACAASURBVNiS6cxXcBU+BLFc6b1xYmjov/wIqswZiFm8Bk59a8BMhphCty6K0KwtNvMiGKww1FjdDBMIBAKBMFYRUyIuEYSiREFtsHCVFL96eE5fIOD5wIGAezeCkodBRFFo11uQlaL1ez2LZ8sGTd5SdB/e5T7B0F72V8xtjwEYii2k9AkW+MskHRiwEGtiELPkAThN3egsfROUTNHnJMrty+5kvGyn69mW4pvxC/hPqhnu/QQCgQC45xI2KQ8AnIZOGE7sheHEHtAWI+SJE6BdvAYupxPqHO85J1BgWnvr/VCmTgHgDiA4etp9xNaDBh8sRp9qAtulGnQd2IbY5Y/AfukCrI1nB/1unvt3NohK28ywt9fDfLEChfmZXCIm9536NIceuH0K8VERCKOIkAcPZs2ahSeeeAJ//OMfsX79emzcuBEikfsf/Pe//300NTXBarWCYRisWbMGc+fODfUQCANw0QzMVoffjPqyE02csLBKIR3zk7OYEuGLf9dj2oRYrFs1gzveoTfjw9KzKC2vhdHi1jhgS+Bvzk1EZLic01qIiVTCRdNeWgwV5ztw640pvNoiebZfYvuaxt/7C4goCuaLFeg6sM2rNF6Vngva5cK23Wfw9bdtaGjrRZhCglefngfGZkHzh7+G7VINKKUa8vjxgnojDsSrvyvtAu2w9We99SGkvy8gPGtL7BE88Uew4AeBQCAQCITrFxdNo+pCJ2drBaoKZSmcmw6dVj14IKBPewkApo6Phukiz5aLfW2Guss/8cnMlCdOgCIxE4BwW4i2mf0GC4RmkgKAtbkGiatfgiRcC3NthbuX9QA783p0fLMZv7x6fvuxK4d7P4FAGNuw86ql/rT3vJtTAG3BKmhmLYfjcguUKRPRdtmII8fqccf8AHOOR2CanXMYmgZtM6H1r7+GQ9/i1sIZ4AfwDD6ETboJMUsfBO1yovNff4LL0Mnp6bDYmt1VAkNZs9Q58+Hs6eDaKbsr6XK9EjFZBvpECATC1SfkwQMAeOyxx5CZmYk//vGPuHDhAne8psY9SSUlJeGxxx7D3XffPRKvJwzAMwPLH9UNerz49lFseXLeFR7Z6KSyphP//bcKpMSFQ6WQwGx1oqGt1ysiDvS3ISpenI3ivmP9WgvuDZanFgOftkgvrJ3jN8LOLvyBMuJ0xRux+MYUlJbXgaYZv5vhwXsjFkCV4V+MyLO9lcvY7RZtUqphPFvuVc3AEiyTgaFprr+vLCreJ/gQCLaaIGbpA0ErGtzBj9GTKTdwLKNpbAQCgUAgXE+IKQr7vmn0Ora7vBaLb0xByQOzsenPX3M2GEWJsDw/hX8goLYSytQp0KgVaN9Xxms8bJuhgS0XPe0VAIIy2J1GPdcmwp9dd3nf+1BPvhmq8TOgyujvG+3VBrMvk5RSqpGwqgQiSsy78iKUXG0biaFpxN+70a+NDQyeVDPc+wkEwtjE07EfbN6VJU7AR1+cx6cHL0AsFuHWmUmC5hzP64L6AaYtgip1MhinA2KlGgnFGwD4VkHYOxrhMhv4r1l9AQORVAFVRi66yrZzgXS2KoHVh2QJ5hMhEAhXjxEJHgDAkiVLsGTJEjQ2NuLChQswGo1QKpVIS0tDZmbmSL2WMICBGViBqG7Q49T5DuRkxlyzk3Qo9BxcNI1Fs9yl7QMj4ANZODPFZ1Fj/+zZJqqiphN2hwvREUosn5vmVZHAtkXy1CkY+PsPXPgHYrtUg/aPfs31Dfz4QE3AzXAwp35Pr4V7X//v0f89Kms68aPbJkGsjgTjcldfGE9/FbCagc1ksNSdRnzxBq7dEPt846l9kETEepXcB8Iza4uSq9xGT22lO0vDp6JhdDjnA2aTXMdZfAQCgUAgXG0GiiP3mh345VtH8NJD+V42mFwqRnRkGNoPlvF6Ltu7GRDeZijshrkQh0UEtFeEZLDTdhvkCeNhu1QzaLKG+78uWC9dQMsHv/CpftDkLYU0Mk5Q5UUoGNxGujK2HFvhG9yuDGyvDfd+AoEwNuGzv+fmXRGD5TelY3l+CtRhCjC0LOic09NrgZi2g2qrFpDc5w5kWxq+dQcVuCqI+dAWrEJ47iKuYs1ccwzhuQv5rVkZueg5vgfx9zwHh74NhuN7uPNsVcLkjGjIpOJBfSIEAuHqMmLBA5bk5GQkJyeP9GsIAfCXgRWI/ccarsnysFDqOYgpCtOydH5L2ylKxFUj6KJUAX+rYG2iPt5/HqsLJ2Lx7FSv+/srFrzHyWoM8C2NL8zPxLGzbUE3wwN7I4bdMBdRt/wA//yqFqsLJ3FBl4Hfg6JEuO2mVITPWIbek3vdv4lcMUg1w3yoMnLhNHX7VjMYu2G+eAqavCWIL96A1o9eDpxBUbwBzt4u6L/cibCc+VAlT4QydbJXGThr9IyWwAGfbJKRyOIjEAgEAmEs408cuaXThHWvHsTKJTdg+U1p3jaYwEAAMEjLBhHF9Z6WJ0xwj+mWHwD4AQDAZHYHNyx2GnIZxWlcDWoLFa2Ho6cTIonUx+Zy9nTC3tUCSUQs56xm7QsRJUbv8c99BS1FFDR5S2C+eEpQ5cVw7RZeNlLxRlCKsL5hjqydxD7f166keb1/uPcTCISxhbD9fSV+UDAJYokEposVaD9YBtpug3rKzVCNz/Oac7oNFuwqPYvTFzvxm8dvQXtVmdd6xIobe/oBxJpo6FY8BTB08Dm5aD0SVpageeuzsDZfgDqnYPAKiOINoO1WRMxYyrXLY6veAECdUwDa5cKPlk/ijgXyiRAIhKvPiAYPTCYTjEYjaJoGwzABr0tMTBzJYYx5BmZgDfe60cRI6DkMbC8UrpKicG46luWnITZS6XGd/8qGYG2ies0O/GlXJQ4ca8Rvn5jndY8/vDQGBoHtG5iWGO4e32Cb4b7eiOKwCAA/wJwpiXDRDKoudMJoceDm3CSf30Apl0AZmQ3luGwAQEzhw+g+vAstO16EetLNPlkMzp4OdJVthyLNbdhIwvo32+F5ixGblAWJJgYMTfvPoOgLPnj25+09+YVf5/toCBqwCMomIRAIBAKBEBI8K0gH0mt24KuKZnz/lgy8tvMUXC4aT63ME9y72a9QroiCYly2uwXkhBmQqKP6x+R04vOjjTh2rhWd3VZoNXK8+NBc2B00VApR3+0UGJczaCIGawvJdCmI/8GzkMene7Ul6k+ioLjPrG3kzyaUxSZDoolB14FtvL6/Z+XFcOBlI/VV1NIOGwDpFXHAD7Qjhb5zuPcTCISxgbD9fRlUGVPR9umrMH37JRcMMHxTiu7Df4c0Nhkxy9bCaBfh8d+Vocdox6R0LQBAmZYD7YL7IPHQC/RsQ2Rvr0fkhJkQK8IGrz7buRlJa16BJm8pFH1CzFzVVRB9Q5epG93lf/dqlwewVQlTse+beiyalcodJ0EDAmH0MiLBg//7v//Dq6++iu+++27Qa0UiEc6cOTMSwyD04S8DazjXjSaGqucQrMWRmBJBpZBiy5PzcKa2C4kxYYgMl+NkdTs++NeZoJUNfNtEna3n3yZKaEacCO7nCd0MT0iOxO7yWrzxSRXe2bgYJ6vbUd2gR0JMGH718BzotGp3xkOVd3m5Zykjm8Xgmd0gTxgPbcEqTh8B6Nt4T5wL88VT6DqwLWAGBRt8GGhwjGbnu6BsEgFZfFe7LzCBQCAQCKOdYBWkAGC2OgEAdocLh041Y3VhNsJy+Pdu7tSbcOxcB5blu9sMOfQt7hYQM5dBrIqEiKJgrq1A174PvMQvb7s5FzMnxqLkraOIULvt7chwOVo6TdBpVRBTIui//BvEqvCAiRisLaRIynKfoMRe2e3B2iTK4tJgqav0+j5sO8mhVF4MFaEVtTJdilcghkAgEK5luAp/gfMubTMh8qa7oclb4hMMMH37FSLylmDp7DTs3HceYQopGJpGeO5Cbq/ttw3RX3/dV33GU/fnYgU0MwshUUe5tSAZGo6uFsiiE71bILkcoB02dO59F8aK/T5Vb/LECdAVbUDbZSOq6/VewQMCgTB6CXnwoLy8HD/72c+CVhp4wvc6wtAIloE1EH89/EczQ9FzAMCrxRH7G2SnRsJsdeI//nCIV2XDSLSJEhoEuNhiwOVuk4DNsLtksKvXjg9KzyIlLhyxkUp88K8zCFdJ8auH5yBKTgcX0ivewJUy+ggCFq2HQ98GShXBbXJpm9kn68x8/mtARCFs0k2IKXwIoBlc2v4inF0tfscdyhL6UCIom4RHFh/RTiAQCAQCgT8DK0g9aWjrhb7XytnGpUcasLqQp95ARi52lZ7F7iO1mD1Zh/iVvwDjsEMSrgVtt4K2Gv22HWJtJV3RBmx6aA7a9BZ06M1o6jAiIzGir22RC2ET56B1+0t+EzE8nS/qqQVgaBqUzF0Ny6dNYtS8YvRW7gdt6U/EoG1mAMLtzOEgvKL2CViazkORmElsHQKBcM3C+hhqGrpxQ5pW8LwbU/gIpJpov8EATd4S0HYrbrspFXu+rsMjd00ZfF0oWo+E+16ARBPNv/qsb05maBoURWF3eSMK56ah+b0NYBxWbs2inU4k3LsRutsehXriXL+VdG2XjSh56ygeuzv3mvI/EQhjmZAHD9555x0wDINZs2bhqaeeQnp6OhQKRahfQ+DJYBlYLNkpUdec3oEQR315ZTNyMmMEtzgSUxTvygaaZkBRopC2ifJbGh8ANiOuvsUgcDM8FU6XC1v/91vERCqhVkq48RXOTYdOqx68lPGjl5G05hXEFD6M3pNf+JTZX97/AeLv/jl3T8BydYaG6dsv4dS3ImnNK0i6/xU0b30eTr3/AEKoSuhDTaiy+Ih2AoFAIBAIwvCsIGXFkdlkkYUzUxAVrkBUuALZKVHYXV6LJTcmQ1e0Ae07A+sN6Io3ou2yEaXltQgPk4FhGFAyJWiGgeHEXmjylqB5238GtZXad7ptpbhoNT4sPYuObjOmr9IBcDvVPUWTPRMxBo5loN3Dt01i1PxVuPz5W9w5e0cjnIZOqHPm87Mz+4IWw7U3hNpI1tpKKMdlDeudBAKBcLXwbLNc09SNdzcu4p/kN7UADO0CJZEOmsgXFa7G6sKJ/PbufW2IgCF0OaAo1DTq8eHuM8jLjoHunufRvvNlWBvPctdywswzC72qEjr1JuwqPYvS8lokxaqvOf8TgTCWCXnwoLKyEmFhYXjjjTcQFhYW6scThkCwDCwAnNP8Woz68nXUZ6VoBbc4ElLZcPJ8O3LGx4ChgYRoFSqCV/4B4NcmauBmMhCeGXE0zfjfDA8QTBJJFYgvXg+GpiERi/Efq6ZDRImh77UCABJjVFienwIT31LG2kqEZc/hWhOxZfbW5hrE3bWur+qAEVSurkydzFU0eGbL9f04EEllg/6GV4NQZfER7QQCgUAgEITD2rM5mdHe4sh9YozdRhtKHpiNTX/+GiVvHcWmh+YE7d18uduMkrfKIRIBv3p4DiKUYogoMVo/2oy4u9YJEh2WJ0/C50frkJEU4TEuGk6Ha9AgRlzxRtjtDoglElCgBbVJ1ExbBGPVQdiaq90nGBqGE3uhLVjFz84MUbKGUBvJ2dsRkvcSCATC1WCgD0JQkl/fvOuvqo3FM5Hv1lnJMNfy27tbmqqhHJc9pH1reWULes0Or/XTeukCzNX/hq31AsSqSChSp0CijsLlbjP+/NkZNLb1oqGtFwAwb1oSHr176jXpfyIQxiohDx64XC5kZGSQwMEoYrAMrGlZsdfsxM3HAU9RItw4OQ6nzrcLanEkpLLhwLFGTM9yZ4/dtSATnx/1nzHmCd82UQxNI/7ejQGdyGz2OUPTmJYVi45uM/S9NvyrvA73LclG0ppXYNe3QixXQazSeDzXBdppR+eeP4NxWBCetxTKcdkIk7v76P/k9ilQyCRoP1jG6zdgqwAMx7+Are0CGKeT66vomakmpFxdlZELaVQcNHlL0X14FwCAUqrdmQwDej5eLQ0Af1oEvKtFgmTxjZR2AoFAIBAIYwXxgHVRTIngomlc6jBCq1Fgy5PzcPJ8O3YduICslCjMnpwNnYcIscPhgMlixxO/PwiDyY6iW7Og06rhNHbD3HQOjMM6JNHhrJQohKukANh2FhTe23MG37sprT+IcfoQRBIpJOExUIyfBmViJhjaBQlncwhvk5h0/8teARKX2QjabuVtZw7XzhBaUevs6QDjdA7rnQQCgXC18JeMyCb5xRVvRNtHQebdovVgnA5Yms7xCwY0n4cyKYv3utB7Yi8UiZlQC9D9YWgaNET4rqkb4SopbpmWBKnEvS4oEjOh6FunRJQYtMsFAGjuNEEiFiEhJgz3Ls7CrIk6yGRS7rlEx49AuDYIefAgPT0dTU2D99cnXFkGy8C6FgMHfPUcUuLCoQmTD0mLQGgLoprGbmQkRWBiahTO1oemTZSIokDJw9ybydpKd9/7ARlx7IZuUoaW03YA3H+/DE1DFhUPc22Fd8/8nAKoMnKhLVgJxunu2QsAMpkULqcT7P8lhJYyamYsBrAYALyE/LjrhJarX7oAzfTF6C7/BJLIOCSsKoE0Ms635+MV1gAIpEUQOa+If7VIkCy+UGsnEAgEAoFAcAcUJqVH45dvlmNCchSW5afisR9M4853GSz45ts21DR24/GiafjrF2dhMNlBUSIsz0/hsjW79h0csujw4/fkornD6JVEUnvJgKdfPYQV8zJx+y0TEZs2xSc5wdHdjp6j/4RIIkPMkjWC32s4+QVUGdO82ki4nE4wlISXnTlchFbUdpVt5xxWJEGCQCBca/hLRuw1O/DCO1/j9Wfm+69462v96zR0QiSRukWHeWC9WAllUhb/dcHY5Z6TM/jPyQAgBpCaoMHj90yFTquG6WIF2st8fQystunkjGhMzYzl5nFzbQW6iY4fgXDNEfLgwcqVK1FSUoLt27dj1apVoX48YZj4y8C6VuGr53BDqrvEbihaBHwqGzyvO1J1CROSI/HC2ny88NaRkLWJYhdSZepkLyfxQOf8wL9fCkzAnvnW5hokrn4JknAtzLUV6Nr/oc8iDgyvBY8/A0Do80zVXyN6wX1QjMtG7O0/AyVVBO/5eAU0AIJpEZi/O4FxD/4+JFl8odJOIBAIBAKB0I+LZvDz1TPx4ttH8fGBGqTEhUOlkMBsdaKhrRcTxkWi5IHZaL1sQml5LQB3Mkp0ZBj0VZVQjsuGy9g9ZNHh6AgloiOUoPuSeAC3LalWybBoZhKUCpmfpI/5UGVMQ2T+Hejc++6Q3ttbdRCdu9/i2liKNTGIu+MpHD3dgjlTEga1M0MBr4raovVw6Ntgba6BtoDsJwkEwrWLPx+EVExBLJHAeLYcisQJXgFdtvWvrbUWCfdu5L0fdPZ2AhC+LrjMBsQXrUfrzs1B52SnqRuSsEi4aBo/XJYNymEJuifXFW2Ai1bC5qChVkqJjh+BcI0T8uDBPffcg8rKSrz88su4cOEC5s2bh7i4OEil0oD3ZGZmhnoYhDECHz2HH39vEgDhgQC+lQ0AsGBmMjr0ZnzX5F7cFXLJiLSJGljSN9jiGqhnPqVUI2FVCUSUOPCin5SNxNUvhaQFD8tQytXtrd/1fS6ANDJucAGoK6ABEEyLgLYYcekvLyDxhy8OO4svVNoJBAKBQCAQ+gnU0jNOq8IDt0/BtKxYtF424ZdvHYHR4gAAqBTubZPTcNn9DHUkLPWnhYkO58xHp96Epg4zcjKjuaQPF01j8Y0pWF2YjUg5HTxJomg9Ypb8BM7ey4Ley9A0lKmTYWs86yXIbJ66ABNT3YLEQu3MoRC0orYv49ahb8Pl/R9wmlnEmUQgEK5V/Pkg2PWk98QXaP/kv7x0Ce0djQBDQ6ZLBcB/P8g4He69tpB1weWAvbMJkvDooFUQDn0bnEY9xEoNxBQFsYxC87aSoHvy9p1uHQaxmCY6fgTCdUDIgwd5eXkA3NoHO3bswI4dO4JeLxKJcObMmVAPgzBG4KPncLnHCrvDioUz+QUC+rUI+FU2ZKdEYXqWDh+WnkWEWs6NC7i6baKC9czX5C0d3BHfXI3eiv3Q5C0JmZDeUMrVxSq3wRR2w2yYBYg3j5QGAB8tAqe+BU3vrEPi/b8ZchZfqLQTCAQCgUAg+BLQVnPRsNqdeP1vFWjpNHHHrXZ3/2bGZfcKGAgSHc7Ixa7Ss+joNnu9UwRg6gT350GTJHZu7nO8V0CVMY33e+1dLdBMuxXdh/8OMDR33lh1ELoVuQHvHwkCVdQ6Td0wni0HpYpA/N0/J7YNgUC4pgmUjGi2urVcxOpIgKG9Aros9o5GYcHpKfNA262C1gXzxQqoMnLRsv0lyBMzoZm+2G8VhLW5Bon3vQBgKLp8k3mLOBMdPwJh9BLyf5VmsxlmsxkMw/D6H03Tgz+UQAiC5+Zv3aoZ2PTwXKxbNYPr/f/Xvefwr8O1mJ7tDgQEg9UiYJ/JVjYEui87JcqrrJ0NPPSP7eq0iXLRTOCe+SIKmrwlMF88Negi3lW2jRPSkydO8HuNZwsePrDl6kGf11eubji+h3OMi5XhMFb5+T5+MFaWjZjRwVeLgLYY0f3lziFn8XkGWoLBBm6IkUUgEAgEAn9Ye63qQife/9cZvP1pFd7/1xlU1+shlYix6ZG5eOnhfCyYMQ7TsmIxc6LOHdifMh+GE3s5B43hxB449G2IL1of1LbRFW1A22UjSstrfdpYUBQFhnbxd7BcrIAsOonXe1mbqufoPyGJiIUsNtn7d+hrfehpv14pWBuJod2BGUlYJNQT50KZPLHvPLFtCATCtYtnMqInDW29uNxtQlhOQeCbGdprrQkGGwwwHNstaF3o/PxNOPRt0K14EpbaSjS8/hia3l6HSx/8Ak1vr0PD64/BUlvJVYEBwnT5rHWnBev4kXmfQBidhLzy4Ny5c6F+JIHAC3+OehdN46bcRPz2w2NYfGMKSh6YjU1//pq3FoFnZcPJ8+04cKyRq2xYMDMZ07N0XFl7UqyatwjySOKiGdjsTqgUUr89EmWxyZBoYtB1YNugz6ItRugPfQTtwtX+SxmHIKTnVa4epDSyZccmSLUJXhlpo0UD4EqNg1dfYB7aCQQCgUAgEPpx0QzMVofftpcf76/B9KxYbLj/RkzJiMb0LJ3XeVVGLnqO/oNz0LTu3IyWHZuQsLIkqK3UdtmIkreOwmhx+G1jIcjBUnUQuhVPoPWjlxG95IGg7+Vsqki3jcqKPLOwrQ+vpg7alWiXRCAQCFcDf22WaZpB6ZEGrC4MXpFvOLEHmrylvHVier7+DL2VZYHXowF7bWfff/1dL4tIg/bW+/3u9fnuhWmnTdD1RMePQBi9hDx4sG3bNmRmZmL27NmhfnRAysvL8cYbb6C6uhoOhwOTJ0/G2rVrMW/ePF73t7S0oKCgIOD5vLw8n/ZLbW1teP3113H48GF0dHQgISEBt99+O9auXQuZTDacr0MIIWy0PzFGjV++dQQvPZQfNBDgT4tATIlA0wxyxsd4bSA79GZ8WHoWpeW1SIpVCxZBHinElAj/s6sSz9w3w2+PRHbTyHcRt7fXQURRMJz8AqqMaV6ljC6zAYDwTZ6Iorjeu6qM/lJ5tjTScHwPpNoEH8f4aNEAuFLjCNoXeAiBGwKBQCAQCG5bKZBeFgCcPN+BX7xRji1PzsNnX17EVxXNiAqX4/kf34ieXgtiVjyFy5+/ieiFP+IcLt1H/gFFUiZUE2Z62Tb6HjN29dmLrH5Cf4tMb5tRqIOFtpnRvPVZaPKWIuLG73m9l6Fp9HxTCv2hj0BbjVAkZXH3eOKu8HT5OPAJBAKBMHwCtVnuNdlgszmCBgakUQkQyeSgZMqgOjFOQye6yrZDoomGvaMx4LrgudemrUb3MX0Ld/3AtkWB2u3y3QtTErmg64mOH4Ewegl58OCNN96A0WjEwYMHodFoQv14H/7+979j/fr1kMlkmDNnDmiaxtdff421a9fipZdeQnFx8aDPYDUXsrOzkZWV5XM+PT3d63NrayuKi4vR2tqKSZMmYfLkyThx4gT++Mc/4ujRo3j33XeDCkQTriye0f51rx5EYX46luWnYt2qGdw1ThcNOojjn6JEXHvYmsZuHKm6hO+auhGhluO5H80alghyKHHRNKoudOLQqWbcf9sNCMvx7ZnPbhqFLuKGY7vRufstL0EnsToSCSt/6bPp5LcJZSAS909BLosRlrrTcJmN0N31jI9jfLRoAFzpcQTqC8xXO4FAIBAIBEI/rK0UTM8KAKob9Dh5vh1zpsTj/75pQI/Jji6DFa2dZkRHyBF/989hrjsNe3sDlGlTfBz3dgeNAyeb8JfdZ9FjtHPn2BaZ/hBqm9E2s7tN4uFdUKRMhiw2+f+zd+bhUZVn///OmZnMkklIQvaQkIQsbCFhlbAGFDB0cakFwdKKC7i9WpdfVTBgxQVbW7Wv7WtRS0URRa1aKyiV1Rqw7IQtCwkEQsg6WWZLMnPm98fkTGY5M3POZJJM4P5cV6/LzDnnOWeGnue57+devqj//FXIhyYiZuH90J8ptm8QaXJmw9zaYBPj7EaoZtVgxz87lSAIIjB400O0st2BgcoT0JXwJ4pZAVgtFjd/kO0ywdJhgCw8GnG3PAoAMLc1ou3IDrQd+ca2LsSlQhY6BE27N6N1/+dOmjf2cbrXkZbizzAk/2YMnXMHmr/7CFEz3ffSxPjCytSxQePDEwTROwIePGhtbUVGRka/BA7q6uqwdu1ahIWF4YMPPrBv/J84cQLLly/HCy+8gIKCAsTFxXkd58yZMwCAe+65Bz/96U993vfZZ5/FlStX8Mgjj+CBBx4AYNN6ePDBB1FcXIz33nsPd911Vy+/HREo+KL9b3x8DCOGRSA/JxGZyRGQSCRgfGz8c4t+elI4MpN7nDt/RZAtLOvUasn1b3+QMgx2HrzotRRStPiSo7PpIuikiU0FAJguV6D98New6Fog1UR0Gzu5vIs/95nxwpLtxgAAIABJREFUwklb5oTDNWG5c6DJmW0/1/FaUWLLfegID9RzUEk/QRAEQfQezlbyRZhaDoOxC1FDlHj9sQL750M0Idh96BL2HK3BvMnpiAxT2uyaS6UwVZ2Aua0RVksXQsfOxo1TczE+MxpFGw6gtlHv1CITsDrZfaI2WFwCAVy/6+Y9H8BUfRqycNvmFJcw4nic2zi6FloferM5PdmpBEEQfQVvm+VuGVJV6hio050TxViWhQQ2XRxDla2lkEQqR0hcKsJy54KRK22fO85vObMRVbAU4RMWQBY+FM17tyB8YiFUqWPRWvwP7w9oZaEaPhbm1gaYtfW8p/jjCweDD08QRO8IePBg1KhRqKiogFarRWRk35Ydbd68GZ2dnVi5cqVTxcC4ceNw77334tVXX8VHH32Ehx9+2MsoPZUHY8aM8XnPyspK7NmzBykpKbjvvvvsn6vVarzwwgu44YYb8P7771PwIMjwFu13PC5sLP9EkLngAFehUFLRiJ0He1onXT85GXkeWieJgRPh215chflTkhG7aBXqt77Ys1h3iy9FFSwVtoi7OJuOaMYVwKzTonbTM07HdSf32Z1SRqF2EMRjwXboeUszna8J5X2eYNEACJbnIAiCIAhCPK6Cxa4kRIdi3Yp8xA0NxbGyejd77YYpKWhqNcJqtcJs0qP+Ix67pmQvFImZiFu8Gr9/aDqq6/TIyYjutgclOFbW4DTu0gXZSBC6weJgmzn2u247/A0A5+CCIjET8YtXw6xvQWfjRWjGzr4mWh+62ZwSBiExybBautD87bvQypWIX/w0GEXoVfsbEAQR/PTsD0hx9nwTjpU1oqHFCCkD3P3TMZBZTE4+J6PSIGL6rbB2mlDz/lqvPrXVYoYyLQ8yTQRkmghR64smZ7bHNUKsL0y+M0EMfgIePHjxxRdx9913Y8mSJbj77ruRl5eHmJgYKBTuwmAcKpXKr3t99913AIAbbrjB7dgNN9yAV199Ffv27fMZPDhz5gzUarVbeyI+/vOf/8BqtWLOnDlgXCa2xMREjB49GiUlJaioqEBGRoaIb0P0B/5u/PcGLhhwurIJyXHhkEjAK9q858gle0aaWin3+9k4Eb52QxeKNhzAuhVT3QSQLAYd2E6TYPElzhl1Pa5OG+cxsNBxuRxXPnwBScvXg2WtYBgJJAzj8X7cNfWfvYqEpZ5bIblpABhaoIjPgDp7CpSJGf1idJAWAUEQBEEMXhwFixlGgpS4MKiVMhhMZmjbTVi3Ih9KhQxPvL7Po732wv3ToAiRoWbjU17tmrqPbLbQmFAlWNYKg8nMq7dw+Gwd3niiwLdttngVzO3NsBjaEb9kjZP4JWvS2Td/dGeKEb+kqNsmsdlQ8bc9CeDaaH3I2Zxd2lpETP8ZwifMhyw82n7c3NYI/Zn9CJ8wfwCfkiCIaxlubub8/pgIJbosLPaXXEbhtDQoQuSo2VjUsx5IGETOXAx5RBzqPn8dHbXneMd19MOl8Rn4ev95TMyOQdzi1ajjCXYDzr6/qaYcUQVLPT63WF+YfGeCGPwEPHjw61//GhKJBBcuXMCaNWt8ni+RSOyZ/2KwWq2oqKgAwzBIT093O56amgqGYVBRUQGr1QqJhH8jtqWlBZcvX8aYMWOwceNGfPHFF7hw4QLCwsIwZ84cPPTQQ05tjyoqKgAAmZmZvOOlp6ejpKQEZWVlFDwgYGGtMJi68Nu3DiA3KwY5GTG8jihHabUWv33rAF55RJjYt/v9WFw/ORl7jlwCANQ26vHoa/tQmJ+GwvwMxN7U04+3s7MLcoXc6yJubmuyO6OOcFlsngILHB2Xy2GoPAFV6lhYWRbGCye9ZjvIIhMQvXAlAHgsMefgej669621ivnJ/Ia0CAiCIAhi8MHZSofP1qFwWhpuzE9FTERPIpPO0AmNOgRr/lrs0V4rv9QCU0cXLDWnvNo1QLctVHUCquFjIWEYj0LN7YYuPPWXYqx/YJoH22y2U6udmIUr3cQvHbM3NaOmOdgk/rU+HKxaAVbWAuOFk7AYdUi663eQR8TBUHkMzbs3O7X2CJ8wH2ynCRJZSK/stsH6OxEEMTB4aqkWmlOAZYW5WDAlGXI5A33lcXRcLgej0tgEjR2CoHE3PwLz3Dvs+gas0dlf71l7xuDG/FQ0t5nQAZlX4eUubR2adm1C3K2P+dzMF+sLk+9MEIObgAcPysu9G9CuWK3+bfS1trais7MTUVFRCAkJcTsuk8kQGRmJpqYm6PV6aDQa3nE4vYNTp06hrKwMkydPRnx8PEpKSrB161bs3r0bmzZtsgco6uttvd9iY2N5x4uJsbXEaWxs9Pkd/vGPf+Czzz7z/WUdnpMYXEgZCX771gGUX2rBk7+ajKOl9YIE+o6VNSAnI1p09YGUYZCXFYvslEj7fdoNXdi6swyf7C63Z9bFRqrx+B09gtF8i7iVZSELH4rowhX8gQV9C29gwRVdyR57/0bdiT0ez2NUGiQsLQIjV/Jm8bm2QgJsv81A97ElLYLgguZVgiCIwHM1za2crfS/T8zB0CEqHC2tx6avTru1kXzgtlys2bAftY16tzFS4sIwJEyF+l17BN1Td2IP1GnjcPZ8k1c7sLZRj4de2YNXHpmFBBfbzNzagJYf/oXQUdMgD4+C8VIp2o/sgEXXDHXGRI/Znv4w2LUCJIwU+jMHhNmVi1dBInP3JYUw2H8nYmC5muZVQjhC2vjGLl4NmVKJxv8cgCwyAQlLizwGQaMKliIs93rUblkHs7bWebzutefI2TpIJBKMz44Fy1rdfH+zvgW6M8Vg1EMQ/7P/J2ruEusLk+9MEIOTgAcPdu7cGegheTEajQC8tzxSKpUA4DV4wFU9ZGVl4S9/+QuSk5MB2ASQi4qK8K9//QtPPPEE/vGPfzjdlxvb0z0NBoPP71BTU4P//ve/Ps8jghNfgscWlkVJRSNKq7VITQhHTIQKm74SVmWz61C1kzaDuOeyYu29U7Hu7QMwdlrsZfjVde04X9uG7JRIrLglx0lbwXURZyGBwdSF/xyrweRRIxB7U49xwXZ1AgAat/3VzUDhfR59j5Ns0bV4PC98wgLII+J8lv/Xf/Yq4m9/RrB2ghCDhDLGrh5oXiUIggg8V9vcamFZhMilXtsSFd19HZ5bkY9XtxwBALstxbJWqJU2F8qbXeN0v25bqNPMIkwtR7uhy+O57YYufPTvUvx6cR6Ml0qh3fUe2A4DOhtrEBKdBOP541Cnj0do1mTE/vR/7NdZWQuA3m/EiNGnCuZNH2VSpiC78spHLyJp+XrR418tv1MgIXtaHFfbvEp4fgcc9wkEtfHtbnenTB6FiGk3+w6CLnoaCUuKULPxN04VCNzak54Ujl89929kDovoaZHs8Hyy0AiXarVrY84iCEI4AQ8eJCUlBXpIXlz1BrzhrbrhzjvvxPz58xEaGoqoqCj752q1Gs8//zwOHjyIU6dO4dixY8jLy4NUalsMPLVB4mBZ9x7wriQlJWHKlCmCvsOZM2fQ3t4u6FyibxEjeKwzdiFMLbc7mb4E+jiEnseHlJEgVCnHSw/NcApmtOk7oDeakRAdCpa1wgoruOx92/fqMWq4ionSaq29F/CIpCH49ZIJaPn+E0QVLAUTwh9Ac3ue0B7hdKkmgv8kCYPwCfNhqDzms/xfkZghyOji+jx6Q2jG2GBwfshhs0HzKkEQROC5WuZWztaRemkfBNiqQNe98wNeeWQWXn5opv3zhhYjvt5/HqcqbRXGHu0aFzhbaFxGDP7469keKxo4QmRSSBgp2g9/jc7GiwifsADxi1e59exvPbgNhsqjCIlNxdA5dwh6Fm/2AsuyYAJkYw006sxJguxK17ZSQgmULXo1QBUY/nG1zKuEsHcA3T6lrza+QM+8FJo9BUwIf+DA8dwrW19C0vL1CJ+wAC3ff2o/xq09EWEqpMSFubVIpioAgiCEEvDggStNTU2oqqpCe3s75syZA5ZlYTAYPFYCCEWtVgMAOjo8b7KaTCanc/mQSqX2agNXVCoVpk6dii+++AKnTp1CXl6evdKBG9ufe3LceuutuPXWW32eBwDLli2jzIQgwFHDwFumGmu14lJdO2bkJiFjWAQ2fF4CwFmgzxtCz/P0jFJGgmNlDR6CGzbH2dtxrmICAFjWivO1bfYASMflCpjbGqHJmQ3dyX0+n0czrgA6vQmhKrntv3muCYlJhiw8Gs27N3sfzB5kON5rZ1BQxtjiVbBaWXQ2XoJ6+NigdH7IYXOG5lWCIIjAM9jnVsfEj/SkITh3qVVwG8m0xHD8YfNhDNEoMHdSMpYVjsKVJj20bUZocvjtGlc0ObPRqNXjd+8dxuq7bBUNj72212MFQjSnwSBhvPbsHzJ5IdQZE6H9z1afz+DRXsgpgDo9F63tRqiVcpgulPTZhnt/YWUtkKrDoSvZK+h8rrWHmPHFbAAG6+8UCKgCw38G+7xK2BD6DligglQm89rG1+nakr1QDR8jPAhaeRzh4+ehpfgzwGpLZNXkzIZZ3wJZaITdl+9Ni2SCIK5d+mwF37lzJ2699VbMmDEDy5Ytw4MPPggAuHTpEmbNmoWXX34ZZrPZ7/E1Gg3UajW0Wi3vOGazGVqtFgqFAuHh4X7fJzraluHDtSvitA48aRo0NDQ4nUdcXThm5PPBZapFhilxrKwRT7y+DyqFDCtuzkFTixFzJ/EHqlyZOykFFla8HggX3Hji9X0o+ut+7DlyCcfLG7DnyCUU/XU/nnh9HwxGMxpbjPjde4fcjv9h82FIGQY7D150G9tgsr1n0tAhaDuyA+r0PCgS+YXDORSJmbb+u2BgBQN1Wi7vNTYNA9/l/1yQQVeyR9DvoTuxx6OjIihj7KMXIQuNgKnqBGo2PgW2Q28v5wwGOGO1ZuNTuPLBc9Cd3Afj+RPQndyHKx88F5TPTBAEQRD9iaNt9M4/TyE8VIFdh9ztHD52HarGEI0C2vYO7DlyCWs27LfbdjKZFOp0frvGEUViJtTpudi+vxpnLtjsxPihoSjMT/N4TW6mrXVl1PXL7O0qrmxZ57zOb1mHmo1PgQlRImruMq/P4NVe2GKzF9QyFnK5iI0tLzbWQMNl04ptKyVm/KvhdwoEQiswrubfgLi2EfoOSGXi2t1JZHLbXCM0CFqyF7IhMQiJse03cGuPqdrWNpnz5QHb2kaBA4IgxNAnq/gbb7yBhx56yK4nIJVK7a2DampqYDAY8Pe//x0rV66ExWLx6x4SiQQZGRmwWCw4f/682/GqqiqwLIusrCyfz/rwww+jtLSU9/ilS5cAAPHx8QCAzEybg1BRUcF7/rlz5wDA532JwYeFZXGsTJjg8dGyetyYPxzll1rsTuLFunaMz7aJGXsjOyUSeVkxbgs618vW09+AsODGb98+gOgIld1pZRgJUhPCMTotyn5PvrZJ1XXtaGrRIzSnAG1HvkGXtg7xi5726DRzWRYdHV1Qq+RgGAmsLIv421e7XcN22DRCfJX/Cw0ycHhyBq2sBYYqgdUL3VkcHbXngs75IYeNIAiCuFawuATCXf/2hKNt5G8bSe46oCdRJEwdAivLIm6xu13DoUjMROyiVahr0mFbcZX9es5OZHg2b7JTIjEyNQqsxQJZaASubH3JZ7sKWWiE10QBIfZCy+73APTdhvtAILatlBiupt/JX0TZ01UnKJmFuOoQ61NaWRbSMGHzjSzMlsQqdq5hFOruCvrV6NLWgVGFo1GrR3VdT9ur3rRIJgji2iTgO0r79+/HG2+8gdDQUDz77LP44YcfMG5cTxnoddddh/Xr10OtVqO4uBhbtmzx+14zZ9p6kH777bdux7jPZs+e7XWM0tJSfPPNN9i+fbvbsaamJnz//feQy+W47rrrnO65e/duN12Dy5cv48yZM0hKSkJGRob4L0QENZ4y8vnYfegiYiLV9t6CR8vqMSxOgytNehTdfZ3HAEJ2SiTW3jvVqeqAM7StFucKG+5v7rjY4EbhtFQsnpeFt1fPw/8+MQcvPzQTv14yAQB/2ySWtWLb/mqEpudCHpmA2i3rwHaakLR8PeKXrIFm7Gyo0sZBM3Y24pesQdLy9TCycmzeUeogzMyAUYTarlm61n5NSFwa2K4OaMYVeH12oUEGDk/OoKiMMYcsjmByfshhIwiCIK4FOJuopKIRf9h8GM+8WYw/bD6MkopGp+P81zrbRlzmpdg2ko4Zm4DNliqpaARrBSQhKje7xtEWajYxKNpwADpjT4siRzvREa79ZWOLERIJRK3znhBsL9SUAejbDff+xMpafNqVHJpxBaLtpKvld+oNVIFBXOuI9SklDIOwCQsEna9Mt+2hiZ1rIucuQ9Ly9WBClGja9T7UqWOxfX81WIe1sjctkgmCuDYJuObBu+++C4lEgt///veYM2eO23GGYXDzzTdj6NChuPfee/HPf/4Tv/jFL/y616233oq3334bb731FmbMmIGxY8cCAEpKSvD2229DqVRi6dKl9vOrq6vR1dWF2NhYhIXZjPXFixdjx44d2LhxI2bOnImJEycCAPR6PVatWgWdToclS5YgJsZWPpycnIyZM2fiu+++w+uvv45HH30UAGAwGPDMM8/AYrFg+fLlfn0fIvjxN1Nt96GLeGzpRDz39gGsuCUHrzwyC0fL6rH7UI/mwNxJKcjLinESXLaybHfPQgami2egK9nr1OtWnZ4HWFlYWfHBjceWTsQvbhyFo6X12PTVaWjbOxAVrsADt+Xi+snJ2HPkktt124urMH9KMmIXrUL91hdRu+W3iL5xJVQpo6FOz7WfZ2Ut6Og0Y/Wb+xGucTZOOMdBNXyMU39ZK8va2xp5cnA7Gy7CrGvxqJ3gis0Z5BcO9ieLAxDfF7evEOuwBcMzEwRBEIQYhGhNrb13KtRKOW8LBlfbqLquHQ3dbST57BxX5kxKRoPW4JSxCQAJ0aFIjguDVMrgRHkTACBnhLNd06jV49NtZ7CtuMopcAD02IkzchMREaZAZJgCcyYlY3xWLBpbjFArZQFb54WOw5rNsFrMIm2s4NVVkjBSn3Yl0NNiUwxcYML+O0kYhMQkg1GowXYY0NlwsafneD//Tt4EsfsCqsAgrjVc3ylGFY6Q2OFO7z0f3DugGpYtaF5SJWXBarGInpPlYVHQnSmGZtQ0xPzoPpjNZuw75rzezZmUDLOFhUQiofZFBEEIIuDBg2PHjiE+Pp43cODIzJkzkZiY6LH9jxCGDRuGJ598Es899xxuv/12e3XADz/8ALPZjJdffhlDhw61n3/nnXeipqYGL730kl2caMaMGVi+fDk2btyIX/ziF5gwYQIiIyNx6NAhaLVaTJo0CU8++aTTfdeuXYslS5bgzTffxK5du5CWloYjR46goaEBs2bNwpIlS/z+TkRw42+mGuckZg+PxN++PIVZ45MwaVQcxmf1aGNwmXOuCzjbYcCVj170KurLKDVO9/EFd96fPz6Grw9ccDoWE6nGssJRyE6JdHPU2w1dKNpwAOtWTEXS8vVgO01gQpQwVB6D8cIpWLs6IZGHQJU6Fuq0XKy6czK+Kj7P+wyujoyEYextjTyV1isSRoAJUfp0BhmVBlEFd0A1fIxHB0psFgdX9RBMzg85bARBEMTVjKB2jG8dwCuPzPI4hqNtxLJWfL3/vEc7x5HslEiMz4rF+9vPOGVshqnlWLciHxIJ8MTr+1BarUVqQjj+94k5ePer0zhd1QSDyYzqunan6xzh7MTF87KxuPuzVl0Hahv1SIgOtduEgVrnfY3DqDRIWLIaVou5zzbcBwKfdmV3i02xm/tcYEKVlgtFYgbCJ8yHLDzaftzc1oi2IzvQcbmi334nj4LY4wqgTsvtswAGVWAQ1wr2d+ziGbCGNqiG50CqDkP0fFviKPfetx35BqxR53Y99w5YWYvveWnR0+jS1sFYfQrhuXMFz8mtB7eh6d8boUodC82oadCbpQhXyjArbxi27rRVl3Fr2/biKhRO86y9QxAE4UjAgwd6vR6JiYmCzo2KivIoPCyUO+64A4mJiXj77bdx5MgRhISEYMKECbj//vuRn58vaIynnnoKubm5eP/993H69GmwLIuUlBTcc889+NWvfgW5XO50fnJyMj7++GP86U9/wr59+3DhwgUkJyfjl7/8JX71q19BJgv4z0oEARaW9ZiR74prppqjk9gznrND6a5xYDNQ+AIHHJyob9Ly9bCyLKLCxQU3zl5wdza3F1dh3pQUFN19Hda984ObY13bqMffvjyNJ5dNhNXShZqNz7o9X2vxP+x9fu+Yn+1UTeENW1sjNZKWr4eh8rit0kKvhTQ0stv5GQcry3p1BmWRCUhc9hxkYVEwVB334EBZEDZhvrAsjpzZMLc22LJJ4O789HeGlyPksBGEM1wbk0CQkxHt+ySCIPoMC8uipKJRUDvGY2UNyMmI5rU1XBM/fNk5gHMbyRunpcLafV27oQuF09IQNzTUHjgAeioaxmVE45Nd3tsDAT124vN/+y8eWpSH9KQhGKJRQKMOAdBjEwpZ5xmVBmHj53u1R3yNEz5hAeQRcaj94DlEF65E/KKnPWot+LvhPhA4tss0VJ2w2YQ8dqXj9xBq11lZFvGLV0EilcFQeQzNuzc7VQdHFSyF1WLul9+JE8Tms4vtyUa3rwajCA3os7hVYHgh2CtVCMIb3DvWsO1NDL3+l5APHwtD5TG3rgBRBUsRlns9aresg1lb6zSGJmc2zDotZJrIHn/Xw7xkMbSj7rM/wNxSB82oaYKDDdp9HwFW1u77vbDxIG5fkI0b84fjk93lyBwWgaK7r8OVJj02bTuDhGiNx7WTIAjCkYDvcsfGxqKqqgpms9nrJnpnZyeqqqrs7YB6w5w5c3xWOgDArl27PB4rLCxEYWGh4HsmJCTgpZdeEnw+MfiRMgzysmJ5M9UYRoKUuDColTLERqoxPisW723ryVSbOynFbQPd9yJthaFSuACTKjUHhdNSsfuw7+DG3EkpvGX4gK264Nm3DuD5+6bhlUdm4ez5ZmzfX4XmNuf2SgBQ40N8r36rLbAhBgkjhZVlbdULDq2Q2E4TdGeKoTv5HeSR8YictdjN6JJFJGDoDb/sDmo85dWBUiZlQ5WWC2PVcY/PokjMhDo9F817PnArP7c9a/9neHGQw0YQ/JSc630AIWcEBQ4IYqAR045x16Fqu23iCF/iR7uhC2s27MdzK/K9tpFsajVh67enMCE7FssKR2HelBQ8+/YB3JifiqOlzhpT/lQ0vLftDCovt+LL787hsaUTu79zj20oZJ2XRSYgYWkR5BFxXhMmvI4jYRA+Yb6tirTqOGq3rEPCkiL+RI6c2VCn53ZvqA8Om8Jbu0zH4/5k7rOdRkEb9n2NEEHsKx++INom933fvmsNRRDBhIRhUP/Zq4heuBKMXOndz1z0NBKWFKFm42/sFQiOPqVy+Fioho9FZ3MtFHGpUN/0sH0MK8uCNXdBqg5D3C2Po3bLOmj3fYSobh0Dt2BD95zcpa2z6RGabPfT5MxGo1aPs9Vae7vilx+cgZGpUbjSpMeaDfuhM3Z5XDsJgiBcCXjwYPr06fj444/x5ptv4qGHHvJ43p///Gfo9XosXLgw0I9AEH2GhbVi7b1T7SX0YWo5Cqel4cb8VMREqOzndZktUIQwCFPLkRit8WtRljBS6Er2CDpXV7IX6vRcjEodKshpzcuKcQpucHDfZ2F+CoZ2f5+RqVHIThliz7qysCxYiwWm6pOCRfxUw8eKLAfnHDkL2K4ONG7fAP3p7536SLaf2IXI2UsRnne9m0PCVw3h+EycAxX38ydR+/5an1kcbYe/sX/GZakNRIaXI+SwEQRBEFc7YtsxuuIp8aO2UY/HXtuLwvw03Jg/3L55DwANWgPec9Aq+HzvObuQ8fMrpyE6QoVNX512u5fQigYu63NbcZXXZ/e1zjMqDRKWFoEJUXndyEr4xW+9jhMSkwxZeDSad28GAJi1tajZ+BuET1iA8PHzEOuwsWVubbD30g4mhFQL8LXL7DlfvF03UBv2rlhZC4wX+s4m933/vmkNRRDBAveOKRIzII+I451vOToul+PK1peQtHw9wicsQMv3n7r5lObWRqjTxqH+09+js+Gik16KRK5E/M+fhNlgBhOiQsKSIjTtfBcShoHZYnELgppbG9C85wO0Hf7GHjjgAhWfdvv63BqTEh/mtLYBwtdYgiCIgAcPVqxYgS+//BJ//vOfUVNTgx/96EcwmUwAgNbWVpw7dw4ffvghvvzySygUCtx1112BfgSC6DOkjARqpRyvPDILp6uakRgdiogwhZPosC1rLRmLbsjG3EkpUCqkgtv2uCK2121Hp1lQGX5Tq8nutHIkRIfi+ZVTERulgb7yOOr38mddSbsN//4Q65UwUlz54DleA4016tD09QboSvYi6c4XsWP/eUwZEwd5Y5kIB2qM4CwOV+cnOBxGctgIgiCIqxexWlMA3GwuC2vltY3aDV3YurMMJRUNWHtvPrrMLF76+39xtlrrllxRWq3Fund+sGsr8G24+Kpo4ASRHbM+fX1Hb+s812rI10ZW3ccvI/72ZzyOwyjUtt/JweZkjTq0fP8pWoo/cxMC5nppBwOB6vMv1q4b6A17RwIlrO3//cW3hiKIwYQtoW8vogqWwlB5THBXgCFTfgxlyhg3n5Lz2xmFGrCy6Kx31h/kgg+th7/BkIkLoBkzAwDw13+U4IGfjYPZqId293voqClzE2nm2gbXNensvj63xjz3zg84VdnkdC+hayxBEETAgwfDhg3Dn/70Jzz66KP47LPP8Pnnn9uPTZ06FQBgtVqhUCjw8ssvIy2NRFqIwQXnkGYPj4DBZHbqecux58gl+0a9SiETHTjgHF+xPe0lEsDYYfbqtFpYK7Z+e8rutAK2ioPnV05FpIL12e7HIlUhJETW52K9gh2zmlIYKo9j8phosDTwAAAgAElEQVQsRISrUL97j6DxHR0o1ywOtqvD1iLp1HdQJmVBU7jC7vwAVhiqBLaT6nOHkRw2giAI4urEH62p3793CEX3TIVaKYeUkcDCsii9oEVUuNKrbWTsMOM3b3yH2ka9x3s4ait40pgSU9HAwdfaksPjOq+JQsT0nwmyR4xVx2GqKUNIQgavvRA2cQEAD7oIPBtbwaKjFKgqUP8CAQO7Ye9KX9vkvhDaGoogBisSaYhThZYvuK4AITHJbpUB3BzKdhh4r+WCD6EZE2CoPA71iAlo1Oqx47/VmDMpGdnJQxCz8D6PyW91TToUbThgX2fmTkpBU6sRZ843u93L2/pDEAThSJ8o+86cORNffPEF3nnnHezevRu1tT1iMVFRUZg9ezbuuecejBgxoi9uT1zjWByy4/n+DhRShrG3L+KjtFqL3751wJ6lJm5sCUymTlE97Ts6uqBQyPHprpMID1XwOq3vbz+Dn8xIx8SRsfh87zn7scJpaYiN0vguw3TIuuprsV5RjlnJXsTeZNNH8MeBcitll8qgGTXNnlnn6vwEk8NIDhtBEARxNeJNa8oRRw2BMxecbS8pw2B78XkcPlvHu6Hf3Garjv7bP096DRxwcP2hF3rRmOIqGj7ZXY71D05HwtBQrHnrAC7UtrlVNHCtJL3haZ0HhNsj7Ud2IPamkTh7vhnZPG0vLEYdNDmzB5WOUqCqQP0NBAz0hr0jfW2TC8VbayiCGMzIwocCEP/e13/+KkzVzm3uNDmzYW5tsFUNeMDm2z6M1iM7oE7Pxf4fKu3aOqPTbGuY65rQqNXjU5cAtbd2xULWH4IgCI4+CR4AQFJSEtasWYM1a9ZAr9dDp9NBrVYjLCysr25JXONwUfOSikbsPNiTVXb95GTkdWfcByqqbmFZlFQ0enVmAecsNaH35sYuq9Zi0Q3Ce9rvOXIRBROSsfwnY7Dmr/vxye5yu4izwWRGdV07ModF4OfXZzo54wwjwcL8FOgFizOfgCJlNEJz+l6s1x/HLBAOlC/nJ5gcRg5y2AiCIIirDVetKVf4NARcbS9te4fThr6jbaRRyfDSgzNR28SfAeoK165opACNqcxhERiVOhTbi6tQVdPK++xr750q2D51XecB8fbIR9+W4r5bchClAlr2vG9vexEx7RZEFSwdNDpKgW4bNFD2ZiAQIqzNESyBH4IYTFhZC5TptnlP7HvPmpyD0o7CyY7thlzh5hqruRMAcPhsHQCgVdcBC8vi1LkmxEapEaqSY9NXp3H2ghbVde1OAYLslEisuWcquswWfH3gvNP4YtcfgiCIgAcP3njjDSQmJuLWW2+1fxYaGorQ0FC3czds2IDy8nL8/ve/D/RjENcYFtYKg6mL17l0bCHElbH3FinDYOdBz9kCjnBZarbn9F0FwY19+Gwd5k4cJqinfUubEacrm1AwIRmKEBleeWQWjpU1YNehamjbOxAXpcbdPx2LvKwYNLUa0abvtPf/7eiyYGhEKOr37hH0fXQle6BOH4fQdHFivf4YJ2INNJ2+A5p+CGoEi8NIEARBEFcrnN0glzJudo03DQHA2fZy7OnMslacr22z/52aEO52jje487q6LIKEkc0WFoXT0pAQrXF69rmTUpCXFdPrjRux9khjiwlFGw5g3YqpiFt4HwyVx6Er2YvOxksw61sQv3g1rnwU/DpKgW4bJPZ3DKYNe1/C2hzBEvghiMGGhJFClZQNs65FeIUWT3WBIjET8YtX2YWTvWFvSSwLAQA0tdqq5EYMi4CUYfDv/1ajtFqL51bk48Gf53lsydfSboJcFoIFU4ej/GJLQNcfgiCuLfokeDBx4kSn4IEntm/fjqqqKp/nEYQvpIykz1oIeYJPLM/beR/uKMXI1Ei3Kgi+gAKXJbfqzf14YWW+z572Gz45jPnXpTqNm5Mx1KkU0cJasb24Cpu2ncGIYUOw9p6peOWRWSi/aMu2Ept11dxqQOyiVajf+qIgJ1NiZcGyDBiBRoo/jpkmVAGIDGqIJZgcRoIgCIK4GnFMCrncqMMvF47GvOtSnOwaTxoCQI/t5Us3obquHQ0tRsydJExbYe6kZJg6zVCGyKCSwKcw8r/+cw533Dia1yYD0KuNG1H2SM5sNGr19szUR1/bh8L8NBTmZ9jbPnJjDhYdpUBVgfpn1wV+w97KWpyqS1z/9n6tZ2Ft7jmCJfBDEIMRK8uCUaigTs8T9t6n50J3phiq1LFOegRspwm1f19l1z/wBBd8UA0fa5+7ASA/JxGAbY0TorFzsb4dq+6cgl8uHG0/Foj1hyCIa49eBQ8uXbqEvXv3un3e0NCAzZu9i8nU1NSgrKwMGo2mN49AEH3aQsgbYrPUvj9xGZu/OdtdQngdusxWfLjjLKbnJroFFLhrahv1eOTVvd0O3gjE3uTc1/DI8RrMyE3q7gvs3LPQVfehpKIRf/n0BMLUcvzPz/NgNJnx7YlqTB9nM0IEZV1JGCgSMgEAH+8sxy2zR3h1Ms36FjT868+AlUVoTgFC03MFOy7+OmZ97UBRhhdBEARB9C2uSSFffV+FG/NT8e5Xp3G6qsnejtG1hzMHZ0dJIPGqm8D1kF5WOEqQtkJet7bC8fIGrLn7OnQwFiTHhnkURs5Ijuj+Ps72RiDsUFH2SHouPnXoec3XxmlM+lD7BtNg0FEKVBXoQNub3HHjhZM2W1rXAqkmotuWFmY3exTWDtLAD0EMNmzvjtz23guq0LI46eeZWxts4sfpuZCqNDB72bbg5uzWw99gyMQF9rk7OyUSmd1rCrfGeWrJx62PcyYOcxufggYEQfhDr4IHsbGx2LRpE6qrq+2fSSQSXLx4Ec8//7zP661WK+bOndubRyAIv1sI9QZfmWyOzJmUjAatwZ4xUFqtxXNv/4BXHpmF8FAFiv6636mtEmB1GtubUfDsvVOhbTNhxS05XksPHX+jwmlpiBsaiide34fSai12HKjGH389w2u7H0alQfiEBQifMB+y8GgAwMpbc9HcakBnlwWypFGIdRTf02nRvOcDtB3+xp5ZoTu5z25QMYpQQQ6MP45ZfzhQlOFFEARBEH0DX1IIVyEwLiMan+zy3ucesNleLe0mhIUqYLawXlsMlVdrYbaworQVdMYuPPeOzZb7Yu8Z/HDqitumDSA80cT1+7smgHhqeSnEHolbvBp1TTq7JoQjjm2clswfabclg11HKdBVoANlb1pZFmyHnve+Yu1mCcPAyrKDIvBDEMEOXyWQFRIwDANGqeZ/77urC8xtTWCtAGvuROP2N2Fpa0Jnw0UwSjVSHvqr77lm0dMwtzVBPTLfPndnp0Ri7T1TUddsgJSRuFXLubbk45gzKZnaExEEERB6FTwICQnBmjVr8Oabb9o/O3jwIMLCwjBy5EiP1zEMA7VajezsbKxYsaI3j0AQAMS3EOoNtgWY8ZrJxpGdEonx3VlqjtlxpdVaHC2rx435w/HJ7nKXtkr8WXKuRgE3ds8zeTcKtO0dYBgJbsxPxdHSevvYlbWtMHSwHjUMZJEJSFhaBHlEHAyVx9C8e3NPVlROAUKG5KK1vRP/OVGLuZNSUPf5a9Cf/p5XBKrjcjmufPgCkpav9/qsHP46ZtzffeVAUYYXQRAEQfQNfEkhYisExmfF4mhZPcZnxWL9uwdx54/HeG0xZGGtUCvlorQVOFtuwdTh+HhXOW8VxNxJKYI3brjzSioasfNgzzNePznZrUKVQ6g9svHjQ26tnVx/s0Ak1/QXga4CHSh7U8IwHjcRAeF2c0/1Qgl0JXshkcohC4+GMm0cVMOyySYlCIF4rATKKYDaXkEvhe7091CmjEHsTQ/brzW3NtiT5+RRCUhavh6KuDS0VBwBAMgjE8CEKGFlQ7wGH9hOE6ShQ6BtM+Cr4ko8+cvJyMuKQYPWgKK/FmNmXpKotbC2UY/YKDUFEAiC6BW91jyYPn06pk+fbv975MiRyMrKwnvvvdfboQlCMGJbCPkL14P39+8dwgO35QoSy+Oy1FzZfegiHls6ESlxYThf2+bUVgmAzwy4tfdOtWejCTEGIsMUSIkLQ0yECpu+Om3/nGWt+Nf3VVg0NwOxi1ej3qEMk1FpkLC0CIxciZqNT3nMiopbvBqz8xKhP38S+lPfeX2OjsvlMFSdgGr4WIHti/x3zPoyc66vAxQEQRAEca3Cl+yxvbgK86akCLa9kuPCcLS0Ht+fqMWJikavfaHzsmIwOn0oAHfNKG/aCq62nOuzCN2Qd9R4cP1ee45ccqpQ5QsgAJ7tERYSPPjzPDS2mHzYlIMrOzXQVaD9bW9aWQuMF056DX4Avu1mb9UL2Peh6KpfgrhWEVoJJJHK0fj1BrAmA0JiksEo1GA7DDZx5O7kuY7L5TBUHkf4+HloKf4MioQRiL99NSxmM6QyGYwdZrfKfftcI5MDACLD1bjrJ2OhM3Tio3+X4vO956AzdoleCz/bU44Hbsvrq5+NIIhrhIALJm/atAnh4eGCz29ubkZUVFSgH4O4hhDTQkhMBhgfjj1412zYj+dW5PNmss2dZBP1c81Sc4RzjNXKntfQsa2Spww4bmwx34P7jbbsKHW6N8cXeyswd+IwRIV3l2FWHoeuZC9UqWMhj4jjDRxwdFwuR91Htqwoq9G9XJIP3Yk9ovUAgrWEPlifiyAIgiAGK3zJHu2GLq+2l2OFwIbPSrDmnql491+n7dd66wvd0GKwJ29IGQb/u/UYLtW3e9VWYBgJFHKbDTAiaYjTeWI35F01HlxxrlDlx5M9ImUkAbUpg4W+qgLtL7tOwkihO7FH0Lne7OZAVS8QxLWOmHcpfMICtHz/KTrrL3gcT1eyF7E3PYyEX74A1bAsmM1mfL6vErfNzYJKIcMfPziM81faMSJxCKKGKNDcakJVbRskVgmm5sRj8bxs/PnjY9jx32qnNUjMWrhmw37ERakD/lsRBHHtEfDgwdNPP41x48bh1Vdf9Xnu0qVLcenSJezb57tfJUF4QkwLod6UZLv24K1t1OOx1/byZrKZOs3QGzvx+Ov70Kbv5B2Pc4wjNAqMTouCwWRGq65nU59z4lwz4CzdxoMYJ4/7jbg2AK5OebuhC6vfLMa6lfmIiwqFbNhoxKbnwspaYKg6LjgrSpk8GpAwvC2LHLHo+f+d+PpLujpxBEEQBEFcvXhLCvFmezlWCKTEhwFwT5bw1Bfa9bzOLgtOVzXzPl+YWo7CaWm4MT8VMREqAMCvl0zAnT8eg1OVjQgPVSAnI1pEuyJ3jQc+HCtUxW70B9Km7C+E2ISDvQrUomsRdp4XuzkQ1QsEEez0tY8o6l1yqCjw5vNy721IfDqOltbjz58cx0M/z0VnlwUhcinGZcRg2cLR9nUEABpajPh6/3kcKa3H4nnZMHVaeIPXQtdCnbELI4d7F40nCIIQQsCDBzU1NYiPj/d5ntlsxpUrV9DSIsxoIghvWFirwDY/vak6cO/B6ymTLT0pHI8umYiocKXH4MHcScnoMrN4+s4p9s/a9O5l+q4ief4+v4W1YsUtOdC2m9xElgCbEfLoqz1GSEyIXHRWVOxNDyMkJtlrFgYASEOdjRiP/SXHFUCdlku9WgmCIAjiGsFXUghne5VUNOB3D8/CN/vP41/fVzll/htMZgD+tbX0FrxIiA7FuhX5iBsaiqOl9dj01WknbYLpuUmwdG9ce7LXXAWQ+exLTzhWqPpDoGzKvsQfm3CwVoFKNRG2/5AwHtufAO52M0egqhcIIljpLx9R1LvUXVEQEpMCwOrzvX38f/+Dc5dauxMZY8GyLCysFTdMSXFbR+ZOSsaywlG40qRHcxu/z87huA+x/sHpSBgaijVvHcCF2jangENvOy8QBEEAvQwenDt3Dk899RSsVudo6NmzZ3Hbbbd5vM5qtaKhoQENDQ1ISUnpzSMQBID+K8n2JLjsmskW0e2EOrYkcoQzHi436LBlR2nPs07uEe4L9ALP/UZSRoLIbCWyUyJRfqnFrXyfM0KWzMvG7fOzRWdFMQrfpZGacQV2Y09of0kxvVqpgoEgCIIgBi9CkkJW32Xr5/z3r067tYesrmuHtt3kV1tLT8GLMLUc61bkQ6mQ4YnX94nWJuDGL69uwbGyBjS2GhETocLiedke7UtXhJ43WOkLmzBYsbIWaPKuh2xIDMInzIcsPNp+zNzWiLYjO9B25BuwRp2T3exKb6sXCCJY6e/5QOy7FL+0CLLQCPvnbu9tzmw0avWoutxm1yBoaTdBqZChy8x61bgpuvs6SCQSjM/23V0hc1gERqUOxXvbzqCqptXpWG87LxAEQXD0KngwYsQIJCUl4euvv7Z/JpFIoNfrcfLkSZ/XSyQSrFy5sjePQBB2+qMkW2wGG5f55kh2SiTW3jMVjS1GPP76PieH15fj2Vu48SwsixfunwZDhxmRYUr7ca5Usrxai5/MTLddo4ngG8p97O7sCqmD88OHIjHTKfMpkL1aqYKBIAiCIAY/QpJCzBYW//fpcV5dqcxhEVArZH63teQLXhROS0Pc0FDewAGHqzaBY5WBlJHAbGYxMjUKI1Ntem/NbSYAQMJQNY5775YBQLgdOli5lvr3SxgpVMmjoR4+FobKY2jevbnHbs2ZjaiCpQjLvR5NuzZ5rRgQa6cTxGChv+YDbp4W+y51aa+g+dt3Pb+36bk4crwGz9471a5BcODkFdw8ewSe+T/v68i6d37AK4/Mgt7Y5TOQzgkjbyuucjvW284LBEEQHL1uW/TMM89g9uzZAGwVBatWrUJqaqrXoIBEIkFoaCgyMzORmpra20cgCCf6qiTbH2Hmu3861sXhTUZeViwaW4xY9X/f8zq8QkTxeo8EihAZzpxvxt/+ecqtVJILuFhZCzTjCqA76VuXRJMzGxazGVHz7oJZe4XX0OMyRDo6uvD5vnP48fQ0MM3n0VF7zuvYQnq1XkvZagRBEARxteMrKUQikeCpX03xWnHqb1tL1+DF7sPV+MkMW99qMdoEJRWNOHy2HrcUZCAqXImSc43Y5SBsOXdSMqLClbjrp2NxvKIRtY16r2Nfze0nrrX+/YLs1sWrEHfzox6TX0TZ6V6qFwgi2OiP+YCbS0sqGjEiKRyaHA/vkktbMc24Aph1WtRuKnJqU8T33s7ITbJrEHx94Dxee6xA8DpytKweOSOiIZHAZ3eFmgY9Jo+O65POCwRBEEAAggfR0dG45ZZb7H+/8cYbGDlypNNnBHE14I8ws7vDy+Jyow6Pv7aPN3DA0RtRPF9YWCsMpi6vpZJc5YOEkUKdlgtFYqZX402RmAl1ei4+31uB/LHxSFq+HobK49CV7IVFr4U0NLI7+38cDKZOdHSYsXjeSNvF6mykPPR/TmWefPjq1XotZasRBOGdnBHeK6B8ERvlu/0aQRD9g6ekEKEVp/62teQbf9chcdoEW3aU4rElEyBlJD5bHb14/3Q8/IfdaDfw24dXe/uJgerfP1CtLgXZrR+96NVuFWWnk94BMYjo6/nA1R9edEMWlhU6v0uMSoPwCQvc2opxgQ1GqXbzWx3f231HL+HjneV2PZ7UhHDERKiw6avTgp5x96GLGJ8Va//b21qXPTwCo9Mm8h4jCIIIBAEXTN61a1eghySIoEFsBpu7w8tgyzelXgMHHL0VxfOElJF4fH7AvfLByrKIv321RwdHkZiJ2EWrUNekw0f/LsPWb8tQmJ+GwvwMxN6Uaz/PyrIwGjuhVoXAevk46nfv4S3zrN2yDmZtrdt9vPVqvday1QiC8E14e6Xf10rNchjb5U6fyYbEejibIIiBxFfFaW/bWjqOL1abYO6kZFGtjpYVjsJfPj3hds610n6iP/v3D2Sry0DarULs9PjbV1PVATHo6Mv5wNUf3l5chflTkhG7aBXqt74Ii1GHhKVFkEfEubcV654jkpb/jtdv7bhcDkPlCYxOHWEPHAA9Woie1hGGkThpEbbqnM/zttb1VecFgiAIjl4FDyoqKgAAqampkMlkTp+JISMjozePQRD9RiCEmQdCFI9lWXCy5iUVjaJK7qUMA0YRaqsmqDphc7C4aoKc2VCn56KuSYeiDQfsQRFOdPlnczLwy4WjYWFZmM0WyFgTajau8VyevehpJCwpQs3G37hlcnjr1SokO4XLHlHEpTo5TySmTBBXLxeOHvTrutgoNRiX6oOwcRQ8IIjBTCA2V8RqX00eHS+q1dH8qalIiNb4ZV/2Jf2Vnd9f/fsHutVlILOqJd7s9O6qXwocEIORvpoPLCzr5g+3G7pQtOEA1q2YiqTl68F2mmA1d6Jm41N++a26kj2IvWkcUuLCcL62DUCPFqLrOhKmlqNwWhoW5qdgaERozxh6k6jvRRAE0Zf0Knjw4x//GAzD4KuvvkJaWpr9M4lEuGErkUhw+rSw0i2CCAZ6m8Em1vHsDT3PxODs+WaMTI3CzoPiSu4B2B0O1fAxTg5Mo1aPT7edwbbiKrdqCpa1YlwG5+wykIYwqNlc5L08e+tLSFq+HuETFqDl+097DkoYhE260avz4y07RRaZ4JQ9oivZS2LKBEEQBEEIRoz21ZxJyWhuMyIqXIWNX54SND5nd/lrX/YF/Zmd35/9+4Oh1WUgs6o92elWlnU6ThCDhb6cD6QMgxPljWAYib0qAABqG/V49LV9+M0vJiEvOxY1m5/1z29Fz3vLVRsAQHVdOxpajJg7qWcdSYgOxfMrpyI2SgN95XHU73WszC8A0slHJQgiOOh12yKWZd0+s1qtPGfyI+Zcgggm/Mlg80d02V9n0cJaYbVaoTd2Yd07P0AqleDlh2b2qvLBMcvsD5sPY9+xGiejyxHH3rxW1gLjeYHl2ZXHET5+HlqKPwOjVNt6TU5aCJlD9gmX8WZhWfu/g6fsFEalQcLSIjBypffsERJTJgiCIAjCA2K0r8ZnxeKb/eexID/VD7uLv+1Sf9MX2fneKhj6q39/sLS67IusatdqELJpicFKX8wHjvPNL380Gj+aPhzb9ldje3GVXWtGbzIjOS4U+srjov1WR/Fk7r3lqg0AW2Ld1/vPY1nhKGSnROJyow7Pr5yKSAVLPipBEEFPr2ags2fP4uzZs/aqA8fPxPyPIK4VHB1Pb3Ab771xGKWMBDIpg3Xv/IDSaq3HUklPeDvPwlqx4pYcZA7jd3wce/MC3eXZJXsE3VdXsheyITFQjxiPpLt+h6iCpehsuID6L15H7ebfov6L12G8cBIAYO6y4G9fnkSbzmTLzuAhfMICyCPicGXrSz4zzMgoIwiCIAiCDwtrhYW1Ys09Uz3acdkpkVhzz3W40qTHrsO2Sk+xdlew9KoWmp0vxHbiMuCNF07y2nPcca5/vyIxk3ccx/79/iK2ZVBf2IZcVrUQuKxqgrjWCNR8YGUtAADjeef5R9lcgWWFo/Dqr2chIdrWLiglLgxDI0KhF+m3hsQkO32uGVeAljYjquvanT7fXlyFK016FN19HZYVjkZslAb1W18kH5UgiKAn4ILJjrAsi9OnT6OqqgomkwlhYWHIzMzEiBEj+vK2BBHUiBVd9u8eLMxmFqermu334CuV9Ia3ygd/tB/ElmfH/PRhwGr1mokRu2gVfjQtFdsPVGPxDTzZKRIG4RPmw1B5bMAzzAiCIAiCGJxYWCsMpi78+eNjuPPHY/DKI7NwtKweuw9ddLN/jB1mrNnwHeqaDX7YXaxbZetAEGhBXzEVDP3Rv78/hZn56K8qC4IYzARiPrCyFrAdBq/zT+yiVVi3YioefW2fvc2Q2DmCUfToZHHvrbTTjMxhEW7aCms27MeL90/HjVOTYRBa4UA+KkEQA0yfBA8sFgv+9re/4d1330VTU5Pb8eTkZDzwwAO4+eab++L2BBHUBEJ02fc9bBoDuw716Bu4lkr6Krl37Lfr6XsAwrUfxJZnS1Ua3sABR8flctRvfbG7H60VdU06xC5a5ZS9ERKTDFl4NJp3bxZ0b1+idARBEARBXHtIGYk96eNERSMK89NwY/5wPLZ0ov2cVl0HjpbVY3xWLMLVIaht1Iu2uzy1guxvAi3oK0ZfoD/69/eXMLM3uKxqT7+NY1Y1bRgS1yq9nQ8kjNTn/MP5k4X5afjv6SsAxM8RbIcBgPN7K5NJPfr70REqABBemU8+KkEQA0zAgwcWiwX3338/vvvuO1itVqhUKgwfPhxqtRp6vR5VVVWorq7G008/jVOnTmH16tWBfgSC6DWumV+BzgTrreiyUFz77G4vrsK8KSkouvs6ezsjV7JTIlF093WCAxhCtB/Ei16JyHirPI7rJ2bgmb8ewG/vvc6WnVJ5HLqSvWDUYQAGPsOMuHYoqWgM2Fg5GdEBG4sgCIIQj6V7g6qkotFuM7UburB1Zxk+2V2OlLgwjE6Lwv0/y8UfNh9GxaUW/PHXs+12Vl/YXf1FIGyn3lQw9FX//v4UZvZGf1VZEMTVgD/zgTjNvRMozB+Bf+ytQFOLHqE5AueInNkw61sQEpeGqBvudH5vWRaAxKO/D5CPShDE4CHgwYMPP/wQ+/btw5AhQ7B69WoUFhZCLpfbj3d0dOCTTz7BK6+8gvfffx+TJk3CggULAv0YBOEXnONWUtGInQd7StGvn5yMvKzYgDt2/ogui8G1zy5XKvncinzekvs5k5IxPisWdc16dHRZEDNE4VHYTgz+lGcLzngr2YvYm3IhlzF49LV9KMxPQ2F+BmJvyrWfEwwZZsS1Q8m53gcQckZQ4IAgCGKg4Oy98uoWjEyNws6DF93OYVkrzte22f8eolHw2lnbiqtw06wM3gxUzu5qaTdBykhw9nwzMlMigyKIEAjbKZAVDIEiWFoGOdrUfVllQRDXKuI09/Yg9qZxWHPXFHRZgKHpAueIdJu/GfvT/7G/tywkkAL2/YRWXQdGDIvAtHEJyEx2ni/JRyUIYrAQ8ODBp59+ColEgr/85S+YOHGi23GFQoE77rgDSUlJuO+++4RGcq8AACAASURBVLBp0yYKHhBBAdfPlk+LYM+RS3YtArVSHhROnTe4TLnrJ7v32a1t1OOx1/byltw3aA34fE8FpucmICZSDUPVcVsmlK4FUk1EdyZUrl+ZUGLLs8VmYqiVMpyv7ckGnDclBQ/9PC9oMswIgiAIggh+HO1BqVSClx+a6VbJ6YirppSrnTU+K9Z+7pj0KKcM1AatAe9tO4PcrGh0mVls31+FkalRAfwu/lXSBtJ2CsbM2oFsGcSNabxwssfGDotE2IQFUA3LJjuUIAKI2PlnfHYcrKwFZrMZsYtWo36r5zkibvFqdHV2gZFJIWUYm//qYT/haFkDPtlV7rSfwIAlH5UgiEFDwIMHlZWVGDFiBG/gwJGCggIMHz4cp0+fDvQjEIRfOPaz5aO0WovfvnUArzwyq5+fTDiOlRM6Yxdm5Cbx9tl1LLmflZeEx++YiC+/q8RH35bij4/MRESIxatQsaOwnVDElmeLzcQwmMz2z1jWis4uS/d9gyPDjCAIgiCI4MfRHkxNCAfgXsnpCJ+mlGtrI7VSBoPJjFCFFOv/Zxa+2X8e//q+CtV17cgcFoFlC0fhvW1n0NzmOUghht5W0gbSdgrGzNqBahnkVTy6ZK/fNjZBEPyInX/qPn8NQ+ffDakyFC0WqVM7XPsckVMAdfo4NLcaEKWWO48jaj+BfFSCIAYPAQ8eqNVq3yd1o1QqERISEuhHIAjRWFjWqZ+tJ0qrtThW1oCcjOigqz5wzXQIU8uRMSzCa5/dzGERWHFzDuqaDfjgm7NYOD0NsVG+hYodhe3EIFT0SlTGW85sNGr1qK5rd/p87qQUu3NMonQEQRAEQfjC1R50rSrwBKdtsOaeqXju7Z6NI8fWRtkpkXh6+XW40qTH3786DZ2xy653cKVJj23FVZg8Oi4A3yEwlbSBsJ2CufqzP4SZ+e4pRjyaIAj/sbIWaMRoF7Q2QH/6e5i1V5C0fD3UyhBsL67C5FHO7XAbtXrsLa7CjNwkp2ouf/YTGFjJRyUIYlAQ8ODBrFmz8MUXX+D48ePIzc31eN65c+dQXl6OefPmBfoRCEI0Uobh7WfLx65D1U4l58GCa6aDL32DuZNSkJcVgwatAUV/LYahw4yF+SnQVx6H1dwJZfIosB0GdDZcBKys0734hO3E4Ev0SlTGW3ouPt12BqyD+FR2SqTTvxGJ0hEEQRAE4QtXe5CvqoCPdkMX/v6vU/h/yybzahtwNldLuwlbdpRi8ug4u97BlSY91mzYD52xyynxwf/vEJhK2kDYToOh+rOvhJld6Y14NEEQ4pEwUqhFaBe0HtwG5bBssB0GGCpPQJk6BoXT0nCsrAHb9l9AZ5cFIXIpxmXEoHBamlsbOP/2EyTkoxIEMSgIePDg8ccfxw8//IAHHngAL730EmbNcjdMS0pK8NhjjyEyMhK/+c1vAv0IBOEX3vrZ+nNef+Ip08GbvoHO0ImP/l2Kz/eeg87YhdFpURgaEQpLSBqG3ftH+3nmtka0HdmBtiPfgDXqeq7vY2E7IRlvsYtWoa5Jh23FVfbPuYw6V+d7IDLMCMJfYqOEV/ERhCOyIbG+TyIIwiOudh5XVeCtkjM7JRIP/jzP/ndOxlCnJAYLa4XR1IWIMCUeXTIBQI/ewbbiKnsVQm+TUwJdSRsI22mgqz8dhYn5/u4vglE8miCudqysBXGLV6PuIy/zz+JVsJq7MGTyQgyZvBAAYDG0gWGkKKtudtOqMZtt8x+ffow/+wnkoxIEMRjoVfDgtttu4/2cYRg0NTVh5cqVSEhIwMiRI6FWq2E0GnH+/HlUVlYCACZOnIg//elPePnll3vzGAQRELz1s/XnvP7EW6aDa9/dGbmJWDwvGxs+L8Huw7YS/IToUDy1zBZY6LhSaevryIkk58xGVMFShOVej9ot62DW1gLoe2E7IRlvHR1d+Kq4FBnJEU6Zfd6y9vorw4wgektJRWPAxsrJiA7YWETwY7xwMuBjqoaPDfiYBBGMuNp5Qis5HW0Pvk0lM2vFHzYfRr3WAIPJjOq6dnvVpKfEB7H0VSVtb2yngdQXcBMm1kR03zN3QLJ5g1E8miCuZiSMFHqLjH/+yZkNdbptLjBdOov2o/928n/V6XmIHqLEI3/ci+RYDSLCFFAr5bh1TgbUDH/bt97sJ5CPShBEMNOr4MHJk96dU6vVisuXL+Py5cu8xw8dOoTDhw9T8IAYcCwsi+sne+9nyxGIkvK+wFemA9d3NyJMgcUAHls6EXMnpaD4RA2Wzs+GRmb2LpK86GkkLClCzcbfgDXq+kXYzlcmhkwuxV0/6dnQsnQ74cH2b0MQ/lJyrvcBhJwRFDi4FjFeOBWwsVTDxwRsLIIIZjzZg94qOYXYHlJGArVSjsfvmGhvaRQRphCc+CCGYKyk7e/MWq/CxJxdOwDCxMEoHk0QVztvfFKCcRnR+PF0l/nH3AW204QrH78M0/kTTtdw80Tc4tV44b6p2LKjDPk5iV7n6qthP4EgCMITvQoevPTSS4F6DoIYUKQMg7ysWK/9bAH3XvrBhD+ZDo5l9T5Fkre+hKTl6xE+YQFavv80oMJ2vkrKPWViuGb2kQFGEARBEIS/eLMHHSs5Z+Ul4fE7JnZfI8z24M7ja2kkZhxfBHMlbX9l1ooVJu6P1kbBLB5NEIMVIe+uMkSKt/95EtNy4qDSXULLrvcQOmoahkxeiMsbi7zOE3Uf2eaJB27L8zlXXw37CQRBEJ7oVfDglltuCdRzEMSAY2GtWHvvVI8ic4EoKXcVVnL921/8zXSQMow4AbfK4wgfPw/G8yftmRuejDYh3y0YS8oJgiAIghh4HO2IvrKf+O/r3R7MHBaBFbfk+G0P9mXiA2W++idM3B92aH+KRweLzgNB9BWuPiTb2QHN2BlQZ0x0+//+0gXZOHy2Dtv2V2NZ4ShoWRah2VNgqDwmap7gW3P41qYX7p+GFzb+F0fLGtzOD1SLOoIgiP4m4ILJBDFY4UrKX3lklr2k3Fs/WzFw15VUNGLnwZ4+uddPTkZeVmxAetw6ZjowjAQpcWFQK2VOfXX5Mh1ECbiV7EXsTQ8jfskzdkfEzeHKKYA6PRfmLgukCsbjd7OyLNhOI5p3vYeOmjJ0NlwErLby9YEsKScIgiAIYuDg7IbSC1okRtv6TJ8ob8SuQ4G3n/jwZA9GhStQmJ+GkalRQbvxQ5mv/gkTN3/7LjrrL/R83kd2aF+LR1NSDnEt4NqWTBaZgISlRZBHxMFQecxZu29cARLScvHGEwV4/m//xfwpyYhdvAoylQbNuzf7vpmEgckhaY7Dl2+/9t58lF7Q4uv9VQHbTyAIghhIKHhAEA70RUm5hbXCYOrizWDbc+SSPQNBreQXXhJzn7X3TsV/jl3GpNFxiIlQ2Y81tBhx6HQdZuQl8hosHgXcJAxCYpLBKNRgOwywGGznMXIF2A6D116ysYtWodnUBblc5uG7WSFVhiJm4X0AAHNbI9qO7EDbkW/AGnVuJeUEQRAEQVzdcDbT7987hAdvy4VEAjzx+r4+tZ/44LMHHTNMpYykT6sfekN/VNI6EoxZ7mKFiRmF2u1YX9ihruLRpvMnwZo7wMiVUGVOhCopq1eBg2DUeSCIQOPYloxRaZCwtAiMXOldu+/21XjmrilYt/Eg1t41BREq7/MEo9IgfMIChE+YD1l4j3aYlbXACkaQb589PAKj08Tp4xAEQQQrFDwgCB4CWVIuZSQeHTgAKK3W4rdvHcArj8zy+x7cfdRKGQqnpeJoWT02fXW6J9NhcjIKp6V2O7ru38VVwM2TwWQxtAGwZXX56iVbv/VFJC1fj+3FVSiclgbAZnABEv6sqJzZiCpYirDc61G7ZR3MLXWwmjthulwBRXw6OToEQfQboSr5QD8CQVyTcDZTblYM4oaG8gYOOAJlP3l/HqbPq0cDTV9W0joSzFnuYoWJ2Q4D73HHliWBa1/kSTz6/7N35/FR1ff++F9zZrJNFrKHEBIIhIQthB1CFQQRjLZ6y1VQvKgUwaV9wEO0WhfAgltv9etyf7aKaHulWrGobb2CWlmtIMgalMgaCMSQhSRkmSwzc+b3x3CG2eecmTPJTPJ6/qNkzpxzZs4y78/5fD7vt9n2uj8dMErrPBCFC+frQTR2ICZ3FIwNVUgYOxsRiRm+a/ddPvcfu3MCtFrrujzdJ5xnMtRve9fl/mY0mtBk6HT7fk+/TaH0O0FEpBQ7D4iCyCyKOHKyzuvUccAaZBw6XovCvNQA6ilYYGg3KZ7h4FzAzWPAFJ+E+HE3IDo6Fu1VJ9FRdcrr/kg1EiaPGIKOTiOiIiNgMRlhMXXiwoZnPY8MmfcYsu5+DhZzJ3TxKQ772d0j2YhIXUdO1qm2rvRk15Gjgaipd3yYFG0yw2gUXf4uh9r7RtQTSTHTifONePSuCTh4rKZL4ifv+9Q1s0fVFuzizKEyyt3drAcA8gsTF06D6VKtNXWmOx5SlgS2f54G0VxO+9naCGN9FWKyh8nugPGnzgMH5VAo8jWTyWxogrm91TbgTBMZDUP5YdnnftqAEWhpN+NScxtiC13vE3JnMqTPfRxrlkzGgy/vRLPB6LK9YP82ERF1NXYeEAWRVhCw5VsPDRInW/dVBJR/1t8ZDvYF3IwNVS4Bk20WwrjroYtPBgDEZBUg51d/dEgz5I61RkIRTG2taDqwDQljZ6Hy3ae8jwzZ8ByyFj6Pzvoq1PzjlZAayUZE6jtySp0OhGuTc1RZjz37joK+RhEmk1lx5wE7DojkkWKmnIx4pCXG4J1Pj8p6X6Dxk/d96prZo8ESrOLM3T3K3desB9mFiQcVoX77e7aaWxJvKUvkDGTxtX+mpouo2/wmTA1VtvfYOl3mPgZdXDKq3luN9J8/KKsDxp86D0RdRU5qM4/XjNSp1lyPS3s+QcygIugHjYap6SKE6DhoY2JRr/DcX/vxIaQn67GgxPU+IXcmgzTDvqQ4Fx9sOe52uWD+NhERdTV2HhAFWUNzh1/LOefS9ZZbN9AZDlIBt9ay3Q4Bk8MshPLDqN+63nOaIbsGkG2/LueSbdj2LpKumgPD6UPyRoacPozIlH5o+f7fLKJMRETUSzQ0d0AfrbP9v9z3BENXzh4NJ909yt3XrIeY3CL0nfe478LE8x6HsaEaTfs/d3hNTsoSbwNZZM3KmPsYMm9fgco/PeIwAKfjxxO48IF1EE1UvzzrgJq7n5X1vSit80AUbHJTm8m9ZhLGXY/KPz2CiKRM9J37GHC5A0LpuV/TYMD+H6qtxZPnPo6aDy7PiNcISBg7S1F7taQ4Dxu3nYB4eVaXvWD9NhERdYce0Xmwa9cuvP766zh27BiMRiNGjBiBxYsXY+pU+aOAduzYgXfeeQdHjhyBwWBAWloarr76ajzwwAPo27evw7ImkwljxoxBZ6f7PHcZGRnYudP3VFnqHZLioxQt509u3UBnOEgF3OJHXwvD6cPKClB5aAABdrlk2y5Bl5CK+m3vuu6QU1Hmztpzl2csLEVkWjY6a87aFmW+ViIiop4rKT4KZ6qabP8v9z3B4E9sFWr1D4JB9ij3AFP+eF6t91kPbeWHUf33l5Dx84dshYlbSrfD3NoAbWzS5QeXoyB2tqPqz49DbL8SuyopvuppIIusWRmXOwgSxs5G49cfurxuOH0YfSbdhISxsxxe8zbzQWmdB6JgUprarO7zt6HR6hCZPsCaRsxuNpC7a+bC336HfneuAaD83De0m9BsMGLF2m+wZslk633i9GG0n/3ec3vVDWmGfU5GvO13y16wfpuIiLpD2HcefPTRR3jssccQGRmJyZMnQxRF7NmzB4sXL8bq1asxb948n+tYu3YtXnzxRQiCgFGjRiElJQVlZWXYsGED/vWvf+Evf/kLBg8ebFv+5MmT6OzsRE5ODoqKilzWl5go7weMej6zKOLaCdnYfuC8z2WvmzgAZlH0q24BEPgIPakB1HJkOwD50za9NYDiRl1jLbKstRYftR8Z4mlKuKmpDm3lpdZlolzTfTBfKxERUc8jxUyr3vwGtY1tmDFeXvw0Y3xO0B7aK42tOjpNiIrU9fgOBG8jfQNN+eON3FkPhh++Qdu5MsRkD3NTmNj6UFKIjIY2Jg4mu3BbafFVf/dP6iBIGHMdGnd97JI2qeXIDugHFaHt4nlZMx+c65d5EzfqGqYApaCT04lW8/FLyJy/EqLJiIz/WGZ7zdRU55Ia1/masRjboRG0MBuaEFc4Tfa539LajorqZgBAVV0rHnx5J0qKc1FSnIfUQdbnOkpnMkiz5ZwF87eJiKirhXXnQXV1NVatWoX4+Hi89957yM/PBwCUlpZi4cKFeOaZZ3DNNdcgIyPD4zpOnjyJl156CXq9Hm+//TbGjBkDADAajXj22Wfx3nvv4fHHH8eGDRts7ykrKwMAzJkzB/fff38QPyGFE09phkbnp6MgJ8nrtPeCnCQU5lkbWP7m1lVrhJ65pdGvaZvODaCofkOgzx2F5iM7kTxjAYArI0O8TgkvnIb4ohmwiKLbzgOA+VqJeor0ZD0KYb33qVX7gIjCkxQzDemfiM92n8GCkmGy4iclOaWVpIQElMdWf/ywFA/dMU72/oQrTyN9A03544ui3P6HtkA/YARqN70OISYesQWTEN0vz/a6lLLT9oBTaezrZiCLov3zMMsWsEv7ufUvaD9XduU9HmY+2Ncv81nnQcXiz4F2BlHPJKcTTZeUidQb7gUAtJ876lTnwH1qXPtrRmojGk7sQ3zRDNnnfumJWocUQ80GIz7Ychwbt51A8ci++M1dE/2ayeBM6W8TEVGoC+vOg3fffRednZ249957bR0HADBq1CgsXrwYL730EjZs2IClS5d6XMc//vEPiKKIhQsX2joOACAiIgKPP/44PvvsMxw6dAiVlZXIysoCABw9ai3gNmLEiCB9MgonvtMMiXhqyWQ8tdZ9p4A0myCQ3LpKZjhIoyAA94XztHGJiEzL9m
Loading
Loading full blame...