Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Introduction"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## What is machine learning ?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- Discipline in the overlap of computer science and statistics\n",
"- Subset of Artificla Intelligence\n",
"- Learn models from data\n",
"- Term \"Machine Learning\" was first used in 1959 by AI pioneer Arthur Samuel\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## What is \"learn from data\" ?\n",
"\n",
"- Model examples: \n",
"\n",
" - Is the email I receied spam ? \n",
" - Does an image show a cat ? \n",
" - What can I recommend my customers ?\n",
" - How will the stock market look like tomorrow ?\n",
" \n",
"Learn from data: \n",
"\n",
"- No exact model known or implementable\n",
"- example data should contain sufficient information to build (approximated) models from this.\n",
"- Requires data with sufficient \"encoded information\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Some history\n",
"\n",
"Rough Time Line\n",
"\n",
" \n",
" 1812: Bayes Theorem\n",
" 1913: Markov Chains\n",
" 1951: First neural network\n",
" 1969: Book \"Perceptrons\": Limitations of Neural Networks\n",
" 1986: Backpropagation to learn neural networks\n",
" 1995: Randomized Forests and Support Vector Machines\n",
" 1998: Naive Bayes Classifier for Spam detection\n",
" 2000+: Deep learning"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Features\n",
"\n",
"(Almost) all machine learning algorithms require that your data is numerical.\n",
"\n",
"A collection of such data is organized as a feature matrix:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"features = pd.read_csv(\"beers.csv\")\n",
"features.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- columns are called a **features**\n",
"- rows are called a **sampled** or **feature vectors**."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Other examples: images"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.datasets import load_digits\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dd = load_digits()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"N = 9\n",
"plt.figure(figsize=(2 * N, 5))\n",
"for i, image in enumerate(dd.images[:N], 1):\n",
" plt.subplot(1, N, i)\n",
" plt.imshow(image, cmap=\"gray\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(dd.images[0])\n",
"print(dd.images[0].shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here creating a feature vector is just \"flattening\" the matrix by concatenating the rows to one long vector:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(dd.images[0].flatten())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Other examples: text"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0 1 2 0 1 1]\n"
]
}
],
"source": [
"from sklearn.feature_extraction.text import CountVectorizer\n",
"from itertools import count\n",
"\n",
"# map words to index in created vector:\n",
"vocabulary = [\"like\", \"dislike\", \"american\", \"italian\", \"beer\", \"pizza\"]\n",
"\n",
"vectorizer = CountVectorizer(vocabulary=dict(zip(vocabulary, count())))\n",
"\n",
"# crate count vector for a pice of text:\n",
"vector = vectorizer.fit_transform([\"I dislike american pizza. But american beer is nice\"]).toarray()[0]\n",
"print(vector)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Machine learning taxonomy"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}