{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Introduction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## What is machine learning ?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- Discipline in the overlap of computer science and statistics\n", "- Subset of Artificla Intelligence\n", "- Learn models from data\n", "- Term \"Machine Learning\" was first used in 1959 by AI pioneer Arthur Samuel\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## What is \"learn from data\" ?\n", "\n", "- Model examples: \n", "\n", " - Is the email I receied spam ? \n", " - Does an image show a cat ? \n", " - What can I recommend my customers ?\n", " - How will the stock market look like tomorrow ?\n", " \n", "Learn from data: \n", "\n", "- No exact model known or implementable\n", "- example data should contain sufficient information to build (approximated) models from this.\n", "- Requires data with sufficient \"encoded information\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Some history\n", "\n", "Rough Time Line\n", "\n", " \n", " 1812: Bayes Theorem\n", " 1913: Markov Chains\n", " 1951: First neural network\n", " 1969: Book \"Perceptrons\": Limitations of Neural Networks\n", " 1986: Backpropagation to learn neural networks\n", " 1995: Randomized Forests and Support Vector Machines\n", " 1998: Naive Bayes Classifier for Spam detection\n", " 2000+: Deep learning" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Features\n", "\n", "(Almost) all machine learning algorithms require that your data is numerical.\n", "\n", "A collection of such data is organized as a feature matrix:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "\n", "features = pd.read_csv(\"beers.csv\")\n", "features.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- columns are called a **features**\n", "- rows are called a **sampled** or **feature vectors**." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Other examples: images" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn.datasets import load_digits\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dd = load_digits()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "N = 9\n", "plt.figure(figsize=(2 * N, 5))\n", "for i, image in enumerate(dd.images[:N], 1):\n", " plt.subplot(1, N, i)\n", " plt.imshow(image, cmap=\"gray\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(dd.images[0])\n", "print(dd.images[0].shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here creating a feature vector is just \"flattening\" the matrix by concatenating the rows to one long vector:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(dd.images[0].flatten())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Other examples: text" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0 1 2 0 1 1]\n" ] } ], "source": [ "from sklearn.feature_extraction.text import CountVectorizer\n", "from itertools import count\n", "\n", "# map words to index in created vector:\n", "vocabulary = [\"like\", \"dislike\", \"american\", \"italian\", \"beer\", \"pizza\"]\n", "\n", "vectorizer = CountVectorizer(vocabulary=dict(zip(vocabulary, count())))\n", "\n", "# crate count vector for a pice of text:\n", "vector = vectorizer.fit_transform([\"I dislike american pizza. But american beer is nice\"]).toarray()[0]\n", "print(vector)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Machine learning taxonomy" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" } }, "nbformat": 4, "nbformat_minor": 2 }