Skip to content
Snippets Groups Projects
02_classification.ipynb 1.53 MiB
Newer Older
  • Learn to ignore specific revisions
  • schmittu's avatar
    schmittu committed
       "metadata": {},
       "source": [
    
        "As you can see both sets can be separated by a line now!"
    
    schmittu's avatar
    schmittu committed
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
    
        "#### Another example for feature engineering"
    
    schmittu's avatar
    schmittu committed
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "The so called \"xor-problem\" is a typical benchmark problem for machine learning. The following example illustrates this problem:"
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 168,
    
    schmittu's avatar
    schmittu committed
       "metadata": {},
       "outputs": [
        {
         "data": {
          "text/html": [
           "<div>\n",
           "<style scoped>\n",
           "    .dataframe tbody tr th:only-of-type {\n",
           "        vertical-align: middle;\n",
           "    }\n",
           "\n",
           "    .dataframe tbody tr th {\n",
           "        vertical-align: top;\n",
           "    }\n",
           "\n",
           "    .dataframe thead th {\n",
           "        text-align: right;\n",
           "    }\n",
           "</style>\n",
           "<table border=\"1\" class=\"dataframe\">\n",
           "  <thead>\n",
           "    <tr style=\"text-align: right;\">\n",
           "      <th></th>\n",
           "      <th>x</th>\n",
           "      <th>y</th>\n",
           "      <th>label</th>\n",
           "    </tr>\n",
           "  </thead>\n",
           "  <tbody>\n",
           "    <tr>\n",
           "      <th>0</th>\n",
           "      <td>-1.539782</td>\n",
           "      <td>0.950822</td>\n",
           "      <td>False</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>1</th>\n",
           "      <td>0.436266</td>\n",
           "      <td>-1.768324</td>\n",
           "      <td>False</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2</th>\n",
           "      <td>-1.466436</td>\n",
           "      <td>1.391890</td>\n",
           "      <td>False</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>3</th>\n",
           "      <td>-1.037642</td>\n",
           "      <td>-0.953587</td>\n",
           "      <td>True</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>4</th>\n",
           "      <td>-0.691444</td>\n",
           "      <td>-0.219826</td>\n",
           "      <td>True</td>\n",
           "    </tr>\n",
           "  </tbody>\n",
           "</table>\n",
           "</div>"
          ],
          "text/plain": [
           "          x         y  label\n",
           "0 -1.539782  0.950822  False\n",
           "1  0.436266 -1.768324  False\n",
           "2 -1.466436  1.391890  False\n",
           "3 -1.037642 -0.953587   True\n",
           "4 -0.691444 -0.219826   True"
          ]
         },
    
         "execution_count": 168,
    
    schmittu's avatar
    schmittu committed
         "metadata": {},
         "output_type": "execute_result"
        }
       ],
       "source": [
        "xor = pd.read_csv(\"xor.csv\")\n",
        "xor.head()"
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 192,
    
    schmittu's avatar
    schmittu committed
       "metadata": {},
       "outputs": [
        {
         "data": {
    
          "image/png": "iVBORw0KGgoAAAANSUhEUgAAApgAAAKBCAYAAADz6NuaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XdcU+f+B/DPySLsDbJBpqDgxAm4ravO0jprqbW9ttXuYW/vr1NbuxytvbV1t2rrbLVWrRsXoOJCBWTvlTCzSHJ+f3ChIAnJCVnA8369+nrdm3Oec74hMfnmGd+HommaBkEQBEEQBEHoCcvUARAEQRAEQRDdC0kwCYIgCIIgCL0iCSZBEARBEAShVyTBJAiCIAiCIPSKJJgEQRAEQRCEXpEEkyAIgiAIgtArkmASBEEQBEEQekUSTIIgCIIgCEKvSIJJEARBEARB6BVJMAmCIAiCIAi9IgkmQRAEQRAEoVckwSQIgiAIgiD0iiSYBEEQBEEQhF5xTB0AQRD6k5SUhMWLF6s8xuVy4ejoiL59+2LOnDkYP358u3M2btyIb7/9FpMmTcKGDRsMHa7ZCg0NBQAcOXIEISEhnb5eZWUleDwe7OzsOn2trqqj96Yq3333ncr3qLYWLVqE5ORkvP/++1i4cKHO1yEIQjckwSSIbmrgwIEt/5umachkMpSVleHMmTM4c+YMEhIS8Pbbb5swwp5h+/bt2LhxI/bs2dOjE8zWWr831XFwcDBCJARBGApJMAmim9qzZ4/Kx8+cOYMVK1Zg69atGDVqFEaOHGnkyMzfsWPHAAA+Pj6dvtaaNWs6fY3uRt17kyCI7oPMwSSIHmbs2LGIj48HAPz6668mjsY8BQYGIjAwEDwez9ShEARBdEkkwSSIHmjQoEEAgOzsbBNHQhAEQXRHZIicIHqgxsZGAICVlZXGcwsLCzFu3DgAwI0bN2Btbd3meEZGBqZPnw4ASE9Pb9c+JSUF27dvR2pqKmpra+Hs7IyRI0fi+eefh5+fn9Yxv/POOzh06BC+/vpreHh4YN26dbhz5w4sLCwQERGBpUuXYvjw4Srb5ubmYuvWrbh48SLKy8thZWWFiIgIxMfHY/Lkye3OV7XIp/n+69evh7+/P7777jukpKSgoaEBPj4+ePzxx5GQkNDS69m8YKpZ899o586dGDp0KICmhS87duxo+dvY2dkhPDwcc+bMwZQpU7T+2wBAQUEBdu7ciatXr6KoqAgymQwODg6IiorCokWLMGzYsDbnNy+C2bNnD44cOYLff/8dABAZGYmtW7eCxWrqf9DX69dZTJ+fOlVVVdi8eTPOnTuHoqIi8Hg8+Pj4YMyYMViyZInKuZ9VVVX46aefcObMGZSUlMDCwgLh4eGYN28eHnvsMX0/VYLoFkgPJkH0QGfOnAEAjBo1yqD32bRpExYuXIhTp05BqVQiJCQEIpEIBw4cwIwZM3D+/HnG17x69SoWL16MGzduICAgAFwuFxcvXsQzzzyD7du3tzv/1KlTmDFjBn799VcIhUKEhobCxsYGly9fxiuvvILXX38dCoWC0f3nzp2Ls2fPwtXVFS4uLsjKysI333yDlStXtpzn4eHRZjFLeHg4Bg4cCFtbWwBNyeuSJUtw+vRp8Hg8hIWFgcfj4eLFi3j11Vfx+eefax3TxYsXMW3aNOzcuRMlJSXw9fWFj48PqqurcerUKSxZsgRHjx5V2fbzzz/H7t274eXlBWtra7i6urYkl4Z4/XTRmefXWlVVFebOnYvt27ejoqICQUFB8PT0xMOHD/H9998jPj4eNTU1bdqkpaVh+vTp2Lp1K4qLi+Hv7w97e3tcvXoVK1euxLvvvguapg311Ami66IJgug2rl69SoeEhNAhISHtjkkkEjonJ4f+5JNP6JCQEHrs2LF0dXV1m3M2bNhAh4SE0C+//HLLYwUFBS3XrK+vb3fd9PR0lfc8ceIEHRISQg8cOJD+888/Wx6XyWT0d99913KsqKhIq+f29ttvt9xn1qxZLe2USiW9ZcsWOiQkhA4LC6Pv3bvX0iY7O5vu168fHRISQn/88ce0SCRqOXb+/Hl68ODBdEhICP3NN9+0uVfzfdLT01Xef9myZXRFRUXLsR07drQcu3XrlsZrKRQKesSIEXRISEibvw1N0/ShQ4fo0NBQOiwsjC4oKND4d5FKpfSoUaPokJAQevXq1bRUKm05VlFRQS9ZsoQOCQmhJ0+e3KbdwoULW2I7efJkS1xCoZCmaf2/fh29Nw35/Hbt2tXy2GeffUaHhITQK1asoBsaGloez8/PpydMmECHhITQ3377bcvjtbW1dFxcHB0SEkK/9957dF1dXcuxa9eutcS1bds2Rs+JIHoC0oNJEN1UaGhom/8iIyMxadIk7Ny5E15eXvjll19gb29vsPs319FctWpVm+FeLpeL5cuXY/Lkyaivr1fZ69gRKysrfP/99/D09AQAUBSFhIQEzJw5E0qlEj/99FPLuT/++COkUiliYmLw73//G5aWli3HYmNjW1Z4b9u2DUKhUKv7Ozg4YP369XBxcWl5bPHixfD19QUA3Lx5U+M1qqqqUFlZCXt7+3ZD9DNnzkR8fDymTp2K+vp6jde6e/cuRCIR3N3d8dZbb7VZmOTi4oIXX3wRAJCTkwOlUtmu/YABAzBhwgQAAIvFahkiNtTrB7R/bz76X21trd6eX2sZGRkAmqYrtJ4e4uPjgzfeeANjx46Fo6Njy+O//fYbSkpKEB0djY8//hg2NjYtxwYNGoRPPvkEALB58+aWaScEQTQhczAJopt6tNagTCaDUChEUVERioqK8Oyzz2LdunUIDg7W+73z8/ORmZkJFouldi7htGnT8Ndff+HChQtYtWqV1teeNGkS3N3d2z3+xBNP4PDhw7hw4QKUSiVYLBYuXLgAAJg/f77Ka40fPx6enp4oLi7G1atXVc7HfFR0dDT4fH67xwMCApCfn69VUujo6AhbW1vU1NRg1apVSEhIaPM6fPTRRxqv0WzgwIG4fv06JBIJ2Gx2u+PNSbVSqYRUKm2TZANA//7927Ux5OvXHHNHWj+Pzj6/1pp/BHz55ZfgcrkYNmwYLCwsAAATJ07ExIkT25x/+vRpAMCUKVNAUVS768XGxsLe3h5VVVVIS0tT+bckiJ6KJJgE0U2pqzVYUlKC9957D5cuXcKiRYtw/PhxvRe1fvjwIYCmHrGEhASV50gkEgBAXl4eaJpW+QWuSt++fVU+3rwYp7a2FkKhEBYWFqioqADQNP9RnT59+qC4uBi5ubla3V9VcgugJenU1IsGABwOBytWrMCnn36KgwcP4uDBg/Dw8MDIkSMRFxeHmJiYDhMldfdPS0vDvXv3kJ+fj/z8fGRkZCAnJ6flHFWxubq6tnvMkK8foFsdTF2fX2sJCQk4duwYcnJysGzZMlhaWmLw4MGIiYnBuHHj4O3t3eb8rKwsAMCuXbvwxx9/qLxmc89lTk4OSTAJohWSYBJED+Ph4YENGzZgzJgxEAqF2L17N5YvX67XezT34snlcty4caPDc5VKJRoaGtoMP3ZE3W44rVe319XVQS6Xqzz2qOah0oaGBq3uz+VyOzxOa7ngY/HixfDz88P27duRnJyMkpIS7N+/H/v374e1tTWWLl2q9euSkpKCNWvWIC0treUxiqLg5+eH6dOnq02OALT04LVmyNdPF515fq35+Pjg999/x6ZNm3Dy5EkIhUIkJiYiMTERq1evRlxcHD7++OOWHxHNf4fmRLMjdXV1Ojwzgui+SIJJED2QjY0NhgwZgtOnT+PevXtat1OVPDX3ZLXWnLQFBwdrtbqXCVX3A9BmaNrR0bFlJXTzsebV2+raaVOySd/i4uIQFxeHuro6JCUl4fLlyzh79iyKi4uxfv16WFtb4+mnn+7wGhkZGUhISIBMJsPgwYMxY8YMhIaGIjAwEDY2NsjJydE6AWtmyNePKX0/v169euGjjz7CBx98gDt37uDKlSu4cOECbty4gfPnz+OFF17AwYMHQVEULC0tUVdXh/3796Nfv34GfJYE0f2QRT4E0UM1z2fTNKzI4fzzO1Qmk7U7Xl5e3u6x5vqIhYWFKtsAQGVlJa5du4aysjKtYwb+Gb591IMHDwA0Dfna29vD1ta2ZfhXXRJN03TLMWPWdJTJZMjIyMD9+/cBALa2thg/fjz+85//4PTp05g1axYAaJU47dq1CzKZDMOHD8fOnTsRHx+PqKiolh7F0tJSxvEZ8vVjSp/Pr6SkBJcvXwZN02CxWIiKisILL7yA3bt3Y9u2bQCa3ivN77Hmv0NHGxIkJSUhKytL7d+JIHoqkmASRA8kEomQnJwMQP2cxmath6Rbz3dr1lxTs7WgoCB4eXlBLBa3FPB+1FdffYUFCxbg1VdfZRI6jh8/rrIXc9++fQCaFu40i42NBaB+zt+pU6dQVlYGLpfbUvxc35rnJrbu/f37778xffp0vP766+16hVksVkvRcG3mcxYVFQFoWpmtahHM/v37W/63tvU+Dfn6MaWv5yeTyTBt2jQ888wzuHXrVrvjgwcPbpn+0Hyd0aNHA2haTa6q9z4lJQWLFy/G1KlTUVxcrP2TIogegCSYBNHDCAQCvPHGG6iuroaVlRXmzJnT4flWVlYtO9t8/fXXLXPN5HI5du7ciUOHDrVrQ1FUy/zB1atX488//2w5JpfL8dNPP+HgwYMAoHYRiTplZWV4/fXXW+JQKpXYvHkzjhw5AktLSzz33HMt5z777LPg8/lITEzEJ598ArFY3HLswoULeO+99wA0zYdsXXZIn5qHm1snIKNHj4a1tTWysrKwevXqNnEVFRVhy5YtAP5JkDvi7+8PADh27Bjy8vJaHq+pqcHq1avbDHFLpVKtYjbk68eUvp4fj8drWSX+73//u82PJZlMhq+//hqNjY3w8vJCUFAQgKbqA46Ojrh27RpWrVrVZp7lnTt38NprrwEAxo0b1xInQRBNyBxMguim5s2b1+b/0zSNhoYGZGdnQy6Xg8vlYvXq1WpXRbe2YsUKvPzyy7h27Rri4uLg7++PkpISCAQCPP300zh48GC7RQ5z585FZmYmtm/fjtdeew1r1qyBu7s7CgsLUV1dDQB48cUX2/Q4aiMwMBCnT59GbGwsevfujdLSUlRWVoLH4+Hzzz+Hl5dXm3O/+OILvPHGG9i1axcOHDiAwMBACASClp6xyZMnG7QXLjQ0FDdu3MBrr72G3r1749VXX8WoUaOwdu1avPTSS9i5cycOHDgAX19fyGQy5OXlQS6XIyIiok2yrM4zzzyDI0eOoLy8HFOmTEFAQAAoikJubi5kMhnCwsJQWlqK6upqlJeXq1w1roqhXj+m9Pn83n77bVy/fh2ZmZmYOnUqfHx8YG1tjYKCAtTW1sLCwgKrV69umRbi7OyMjRs3Yvny5Th48CD+/PNPBAUFob6+viXZDQ0NbamnShDEP0gPJkF0Uzdu3Gjz361bt1BSUoLg4GAsWbIEf/75p1Z1H4GmYecdO3YgJiYGLBYL2dnZ8Pb2xtq1azusgfjuu+9iy5YtGDt2LJRKZcs8yVGjRmHTpk1YsWIF4+cVFxeHLVu2IDQ0FA8fPgSLxcK0adOwf/9+TJo0qd35EydOxOHDhzF37lw4ODjgwYMHLcXXN27ciHXr1mlcGd4Zq1evxtChQ0HTNHJzc1sSk/Hjx+Pnn3/GxIkTYW1tjczMTJSVlSE8PBxvv/029u7dq9XK7OaV0bNmzYKHhwdyc3NRUlKCsLAwvPvuu9i3bx9GjhwJADh79iyj2A3x+jGlz+fn4OCAvXv3IiEhAQEBASgtLUVmZibs7OwQHx+PI0eOtNvTfMiQIThy5AgWL14MDw8PPHz4EKWlpQgJCcGKFSuwZ88etZUNCKIno2hta2oQBEGY0DvvvINDhw4hISEBb7/9tqnDIQiCIDpAejAJgiAIgiAIvSIJJkEQBEEQBKFXJMEkCIIgCIIg9Mpkq8gVCgX27NmDQ4cOITs7GwqFAj4+PpgyZQqWLl2qcvsyVXJycrBx40Zcv34d1dXV8PX1RXx8PBYsWNBmJw+CIAiCIAjCOEyyyEehUGD58uU4d+4crKysEBUVBQ6Hg1u3bqG2thZRUVHYsWMHLC0tO7zOgwcPsGDBAtTX12PgwIFwdnZGUlISamtrMX36dHz55ZdGekYEQRAEQRBEM5P0YO7btw/nzp1DaGgofvzxx5Y6fAKBAMuXL0dqaio2bdqE119/Xe01aJrGW2+9hfr6eqxduxYzZsxoucaSJUtw5MgRTJgwQWXZEoIgCIIgCMJwTDKG3Lzzx6pVq9oUeXZycsIHH3wAAG12jlDl0qVLSE9PR3R0dEty+eg1du3apd/ACYIgCIIgCI1MkmA6Ojqid+/eiIyMbHesebut8vLyDq+RmJgIACp3kWgeLr9+/Trq6+s7HzBBEARBEAShNZMMkf/3v/9Ve+zOnTsAgF69enV4jYcPHwIAQkJCVB4PCAhAVVUVsrKyEBUVpWOkBEEQBEEQBFNmtcyapmmsX78eQNP2bh1p7uFUt+9s8+OVlZV6jJAgCIIgCILQxGRlilT5+uuvkZKSAhcXFyxdurTDc8ViMQCAz+erPN78uEgk0njfgwcPtswL1eTu3btQKpWwt7eHn5+fVm0IgiAIgiBMIS8vDyKRCN7e3jh8+LDR7ms2Ceb69euxefNm8Hg8rFu3Dk5OTh2ez2azAQAURXV4nlKp1HjvoqIiJCcnax8sAIlEgrKyMkZtCIIgCIIgTKGwsNCo9zN5gimXy/HRRx/h119/hYWFBTZu3IghQ4ZobNdcI1Mikag83vy4tbW1xmt5eXkhOjpaq3hTU1PR2NgIW1tb9OnTR6s2hGoPioSQNmr+AdAaBaCfn5PGHxZE15NfWQ9hvZRxO1tLLnq72zFqUyuSIae8jvG9nGws4ONiw7gdYXyivNtQSjWPYD3KKqA/WFzVI2P6RCsVkBTeg0LSwLgt3ysUHGtHA0SlG1reCFFuKmgtOnQAgM23Ad8ngnyOG8n9+/dRV1cHKysro97XpAlmQ0MDVq5cicTERNjZ2WHTpk1aJZcA4Obmhvv376OyshKBgYHtjldUVABQP0eztdmzZ2P27Nla3XfRokVITk5Gnz59SBmkTtp47A6OXs9n1KZ/gDM+XzjMQBERplIsaEDCd+eg69f65y+OhqeT5h+TzSpqxVi84QyUDLeZePGxCDw+xJ9Zo25KVlUAweVfIS3NApQKcBzc4Rg9C5b+A8wiccj8ZBIkxQ8Ytwv9+GvwnH0MEFETWqlExYnvUHFqM5T2tTpdw/+lN2EbHqfnyHRXfvxblP1xhUELAXq/vhLWgdp93xOd05y3GHtan8kW+dTU1GDRokVITEyEh4cHfvnlF62TSwAIDg4G8M9q8tZomkZ2djbYbLbK5JMwD9MGMX+zPz7YX/+BECZ37EY+OrOl2NXMjsuaPcrVzhLRwe6aT2yFz2VjXD8vRm26I3ldJfJ+WIb0/8Sg4q+NqE09htpbJyA4vxNZX8zCw8+mQpR7y9RhguvCPEmkuBbg2GrulNAVTdMo+vktlB35EkqxbsklAPBc/fUXVCfRNA3Bxd2M2wkSfzFANKopRDUQF6RBnH8HjbUVRrtvT2eSHkyZTIZly5YhLS0NQUFB2LJli8ayRI+KiYnBTz/9hNOnT2PBggVtjt24cQMCgQDR0dGwsSHDWdoqrKrH8dQC5FfWQ6Gk4WxrgbH9vBDl52yQHokAdzvEhnvgwr0Src4P8bDHsBA3vcdBmN6dfEGn2teJZIzbzBkWgKsZ2s+jnjzQF9Z8LuP7dCeS4gzkbFwAeY36hF5SkIbsb+Lh/+IO2ISYbrTBcdgTqLv9N6M2DoMfB4tnuOHxqrNbIby6r1PXsA4eBgtX81lgqmioRqOgiHE7cUGaAaJpqyErBVXndqAm9S9AKW96kKJgEx4H59jFsO071ix627srkySYGzZswM2bN+Hh4YFdu3ZpXNCTn5+PxsZGuLm5wdbWFgAQHR2N4OBgXLp0Cb/99hvi4+MBNG0V+eGHHwIAnnnmGcM+kW5CUC/BN0duI/lh+192J24WwtfFBiun9kNf345fJ128/ngUakQy3Mqt6vA8XxcbfPjUYLBZZlVZi9ATsUzeqfYWXDbjNpF+zlg2oQ82/31f47n9/Z2RMDZUl9C6BXHBXVSe3oLqlEMArbmvmW6UIO+H5xD6wTlwbJ2NEGF7dv3GgevkxSj5cYpdbLB4aIUclad+7PR1nEcv6XwwekQ3ql4HobGdnPl8a62vTdMoO/oVKv7aqOog6tPOoT7tHByGzYX3gs9AsXv2D0dDMXqCKRQKW+YuOjk5YfXq1WrP/fLLLwEAS5YsQVFREdasWdMyV5LFYmH16tV4+umn8f7772P//v1wc3NDcnIyampqEB8fj7Fjxxr+CXVxVXUSvLb9MkqrxWrPya+sxzs/J+HDJwdjUKB+h4/4XDY+nR+NfZezcPR6Hqrq2n7o2PA5mBjlgwWxwbDp4b1H3Zm1Rede2zBvB53azRnWG3aWPGw98wACFQuMOGwKk/r74IWJ4eBxmCex3YEw6SAKd735Tw+QlpTiWgiv/AbXif8yUGQdo9gc+CxZj5wN80HLNfdwu05+GVZ+7XeX05e6u2fQWK3daI06jiOfgl3/x/QUkX6wrR0BigXQzBZssm3032HRrOLEJtXJ5SOqr+4HxebCe8FnBoulJzN6gpmSktKywjstLQ1paeq7yZsTTHUiIyOxb98+bNiwAUlJScjMzISfnx9ee+01PPHEE3qNuzuiaRqfHrjRYXLZrFGhxMf7r2Pri6PhZKPfISQum4X5McGIHxGIa1kVKBI0QKmk4WpviWEh7uDr0DtFdC1Dglxxr1CoU1sfZ2tE+eneSzYhyhtj+nri0oNSXE4vQ51YBgsuG2FejpjU3xsO1hY6X7urq0s7i8KdrzNOHppVJf4MlwkvmGwY0jpoCPxf2on8zS9AIapWfRJFwW3qq3CbvMKgsYjyOjEvlaLgMnYpes161+yGdFk8Pmz7jWM+HWHgNIPE01hTjrKjX2t9vvDSHjiNmm/QHxc9ldETzIkTJyI9PZ1RmzNnzqg9FhQUhA0bNnQ2rB4pvbgaaQXaf6mLZQocTy3A/Jhgg8TDYbMwLITZwguie3hsgA9+vpAJBdNl3QDiRwZ2+kuXw2YhLsITcRGenbpOd0LTNEoOfKJzcgkAjVWFUDQIwTFgb5UmNiHDEfrJJVQnH4Lg4m5ISx+CVsjBsXeDw5CZcI5ZAJ6Lr8Hj0HUo2SYsBl4L1hh0ZXtnOccuYpRgUlwLOAyba5BYhJf3Mu5tF1zYBatFXxgknp7M5HUwCdNhWiIIAP68kY+nRgWBZWa/oomuzcmGj5nR/jhwNYdRu9nDAjAh0ttAUfVsDZlXIS1tX6WDKaVMt8RKn9h8GzjHLoJz7CLQ/5tDauyeQLa1bkm244gnzTq5BACbPrGwi5qE2lsntDq/1+NvgWOt27QWTaqvH2XcpubGUXgtXGt2vcNdHVkx0YM9LKlh3KayVoKaBuYrdglCk2fH9dG6DJCDNQ8vPhaBZeP7kC8FPaOVCsiqCiG8tLfzF6MogyUSuqIoqtPvmcaacjQ8TEZ9xhVIy3O1amMXNZHxfSguH7bhsYzbGRtFUfB5Zj1s+2pe9+A29VU4j33WYLHIdShDpJSKdCrKT3SM9GD2YI1y3Ya+ZHKFniPRHk3TeFhai9zyOsiVSjjb8NE/wLnHLsDoTtgsCm/OiEJfXyccTs5BXkV9m+McNgVfFxvMjA7AuH5e4LDJ72N9ktdVQXBpLwQXf9Gp7IwqtuGjwbIw7u4hTClENRAmHUR1yu+Q15aDYnPA9wiF46h5sA2PA8X657OlPv0Sqs5uR+2dU22mDlgGDIBz7GI4DJnR5vzW+B7BsA4ZjoYM7QuSO0TPBNvKXvcnZ0QsniX8XvgJNdePoOr8Toiyr7c6yIZd1CS4jHkG1kHa7ZqnK4rD06kdi6tbO0I9kmAaWXOCVF4jBgXA08ka/m62JonF3pqHQgGzbcooAHZWxv+HSNM0Tt8pwqGkHDwsbVug2N6Kh8cG+CB+RCBZad7FURSFKQN9MXmAD+4VCpFfWQ+5oumHxKBAV53KERGaiXJSkfv9s1DUd1wujCmn2EV6vZ6+CS7uQfH+D0HL2i50lFXkofb2SVi4B8J32X9h0SsYZX98gYoT36m8jjgnFYU5qai5fgS+SzeBxbNUeV6vme8g++t4rUr0sG2c4fbYS8yflAlRLDYchsyEw5CZkFXmo7G6FGCxYeHqB46ti1FisPTqg7rqUkZtLHoFkVJFBkASTCNRKJU4nlqAI9fy2u2BHOrpgBlD/DCmn5dR5zbG9PFgtMgHAIYEu8GSZ9y3jZKmseHPO/grtUDl8RqRDL9eysKV9DKsWTAULnb/rHIvrxHj1O1ClFWLAQro5WCF8ZFecLVT/QVAmAeKohDh44QIH9MtDukpJCUZyPl2EZRi5nuzd8QmPA62EWP0ek19qjy7DSX7PujwHGlZFrK/mguHYXNRdWaLxmvW3T2Dgm0r4bvsB5XD8Fb+/eH3/A/I+/Ff7ZLa1ti2zgh4cYfZz73sCM/F1yiLpx7lFLMQdWlnGbch9I8kmEYgaVTgk/3XkaKikDnQtJp77e/VSH5YgTdnRBlt6G9ClDe2nU2HtFH7Ie9pg4z/gbHzXIba5LK1/Mp6vL83BesTRqBW1IhNx+/iSkZZu/2md57LwIhQdyx/LALOtobbtYMguoKSA5/oP7kMGwXfpZtAmenGCJLiDJTs/1CrcxWiGq2Sy2a1t06gIf0SbMJGqTxuGzEGwe8eQ+WZLahOOgil7J+5f2xrRziNfArOo58B18G8K2ooZRLIa8tB0zS4dq5mMxXCtu8Y8Nx6Q1aerdX5bCt7OA6dbeCoeiaSYBoYTdNYe/im2uSytXNpxbDhc/DylH5GiAyw4XPxzJhQ/PfkPa3OHxrshiFBxt2qsbpBin1XsrQ+P7usFoeTcvF7Si4q61SvXlXSNC4+KEVGcTW+fHo43B3M44ORIIxNWp6L+nvn9XY9nlsAXCc8D8cfZXYZAAAgAElEQVRhc816yLHq/A6tdiTS/fo71SaYtKIRAA2nUfPgFLsY8voq0DIx2JZ2sPTrBxbXvH/0igvSUHVhJ6qTD7eUXqLYXNgPnAqnuMWw7j3IpPFRLDb8nt+M7K+fgKKh4xE6imMB32Wbu8w8166GJJgGdq9QiEsPtJ8PcvR6PmYNDYC3s3H2UJ8Z7Q+RVI6d5zM6PG9woCtWzR5g9PJEJ24WQq5g9kWw60IGZFosYCqvleD/fr2G756LAZtFViITPU/N9SN6u5bblJVwm/qq2a/qV8okqE46aNB71N45BWWjFCzuP0X6G4UlqLqwC8LLv0JeV9nyON+rD5xiF8EmdKRZJ5c0TaPixCaU/bG2/TFFI6pTDqM65TBcxi9Dr5nvmrT3mu8RjMA3D6Fg+ysQ595UeY6FeyC8F38Jq4CBRo6u5yAJpoEduZbHuM3R6/l4YWK4AaJpj6IoLIgNRqS/M35PzsXl9NI2xa77eDlg2mA/jOnraZJ9wJMfljNuo01y2SynvA4pD8tJgXeiR2qsZf7v61FcZx94zF4F+wFT9BCR4TXWlLUZljYIpQIKcS1Y3KatdesfXETe5uehlNS3O1VSdB/Fe1ZBkPgz/JdvN9uh8aozW1Qml4+qPLUZFIuDXjPfNkJU6lm4BSDord8hyr0F4eW9kJbnAEoluE5ecBw2B9ahI83+x1BXRxJMA6JpGpfTyxi3u5xearQEs1k/Xyf083VCdYMUxUIRFAolnGz58HKyNmocj6oXNxr8Hkev55EEk+iRdB3GtvSNhKVvX9hGToBt+GiznWupktI4Zdaaey9FubeQ+/2zGnfykRTeQ87GhQh84yDYlqapLKJOY00ZSg6v0fr8ipOb4DB0Nvgehtn1jQkr/yhY+UeZOoweiSSYBtSoUDJaQNOsTmT4pEodB2sLs9p72ZJn+LI093XcA5sgujq+Z6hO7bwWfAZLnwg9R2McHDtXgMU2aKLJc/UDi9+UJJbs+0DrbSKlJRmoPLsV7lNWGiw2XQgu7QUUDLdfTPwFnvEfGCYgokvoQj87ux4OmwVdpvaRWn//6Otr+DI1EpnpCsd3dTRNo1jQgPuFQmSV1kAiY/YlRJiW/cBpYPGZzfe29O/fZZNLAGBb2uq0qw4TTqMWgKIoiAvuQpRzg1Fb4cU9oBkmc4ZWk/I74zbVKYcNEAnRlZAeTANiURRCvRxwv7CaUbswL/PaWs2Upgz0xb4r2pWb0JWtJdnBgSmZXIFTt4tw5Foessv+KXxvyWNjfKQ3Zgzxh4+LcRaqdQUNkkY8KK6GWCqHNZ+LMC8Ho9eTVYXNt4bTyHmoPP2j1m1cxiQYMKKO0UolGjIuoyrxF0gK74FWNIJj4wz7QdPgODweHBtHra7jHLsYtal/aX9jNhdQaDeyxLayh+PweABAjQ77YjdWl6Ah6xpsQoYxbmsojTpsv6hoEIJWNJp1NYHuRCGpR3XyYQiv/AZZVQFA0+A5+8Bx+BMm+8Fi+k+4bm7aID/GCeb0wX4Giqbr8XSyxpi+njh7t1ir83kcFqNFPgAwLMS4pZe6uuoGKd7fk4IMFXvZi2UKHLmWh79S8/HWjP6Ii/A0QYTmo6CyHgeTcnD6TlGb6TJWFhyMj/TCnKG90cvRtGWy3B9/A+K822h4mKTxXKeYhbAf/LhW11WIaqAQ14FtaauXMjDSijzkb34ekqL7bR5vFBRBnH8bZUe+RK+Z78B5TILGxRvWIcPhOPIp7fZbZ7HhvXAtyv74Eo3CjrfQpLh8+C7b3JLo6pKYAbrtp21I6ra/7LgRBVDmPRpH0zSU4looGyVgW9mb9Sr+jtTe/hsFO15tV89W3CCEOP82RDmmeV4kwTSw2HAP7DqfgdJq9bs2tBbUyw4DehtnS62u4pVpkaioleBuvqDD82z4XLwwKRxf/n6L0fVJQq89aaMC/96TgkwVyWVrcgWNzw7dhJUFx+i1U83FtawKfLzvOiQq5mGLpHL8kZKH03eK8NGTQ4wyFUQdFpcP/5d2oGj3KlSnHFJZH5LiWsB14nK4TVnZYfKmlIpQnfI7qi7shKTwn/q6ln5RcI5dBPvB03X6EpdV5iP7qzkdJl60XIaS/R9BKW2A2+QVHV6Poih4PfUpKIoNwcVf1J/Hs4TPkvWw7z8JNqEjUfjLW6hPO6fyXL5XH3gt+AxW/v3/aa9j752u+2kbCt8jRKsfIK1ZuAea7eIveb0Awsu/oSrxZzRW/W8TDxYbdn3HNZWM6hPTZVaY197+G3k/LANo9R0rtFIJU8yIJAmmgfE4bHz81BC8uesqqhtkHZ7rbm+J/4sfbPRak+aOz2VjzYJobD+bjr9SCyCStu3upwAMCXLFsgnh8HGxQUpmOc7fK9Hq2mP7eiKwl/GK7BYJGlAiFIGmabg7WMG3iw0jH0/N15hcNlPSNL4/cQ+DAl173Hs6s6QGH/52TWNveoNEjv/sTcG6hJEmfS+weJbwWfIN3Ke/BsHFPWh4mAylTAS2lT3s+o6Dw7C54Fh3PHVHWp6D3O+WQFaR2+6YOO8WCnfdQsWpH+C/fDt4zt6M4ivY8ZrWvXplR76CTdgojfUNKTYHXvNXw3H4XFRd+Bk114+Aljd9RnMdPOA4ah6cRj4Frr37/x5zR8CLOyAtz4Hg0l7IyrJBK+XgOnjAYehsWPUe1C4p4XuFMXqeLe10XHxlKE4x8xknmE6jFhgoms6pz7iCvB+WQSmubXtAqUDt7ZOovX0SdpET4ZOwQe2e8uZCIapBwfaVHSaXpkQSTCPwdbXFumdG4tu/7uJaVvsPSRYFDA/thZcmR8DJpmt20Rsaj8PGsgnhWBQXggv3SpBbUQeFgoaTjQVGR3i2GWZ8/fEoiGVyJGvYPWlYsBtenR5p6NBB0zQS75fij5Rc3HmkFzbU0wHTB/thbD8vsy/2TtM047quRYIGpOZUYlBvVwNFZZ62n03XeqpGg1SOXy5k4t3ZAwwclWY8Zx/0mvEW43aN1WXIXjcP8uqOf9hJSzKRs2E+At84BI6ts1bXFhfchSgrhVE8lee2w1fLAtpWAQNhFTAQ3gvXQiGuBcXmgMW3VduDZeEWAI9Z72p1bcfoWSg9tEbrVeRA0zabFm7+Wp9vDHb9J4PjsAbyau02DWFZWMGmT6yBo2JOlHMDud89DbpR2uF5tbdPIv+n5fB74SfdpgcYiTDpIJSSBlOHoRZJMI3Ew9EKn86PRpGgAaduF6K8RgwKFDwcrTAhyhtu9ub9S8lcWPI4mNTfp8NzLLhsfPDkYPyVWoA/UnKRV9G2uHGAmy0eH+KPSf19DJ7UKZQ0vjl6G3/fKlR5PL24Gul/VONKeinemT0API75fpjllNehoIr5h9n5tOIelWAWCxpU/pDsyMX7JRDWh8PRxvglwmiahrT0IeS15aDYXFi49wbH9p9pOpKSDMjKc0HTSvCcvMD36dsu+Sr9Y63G5LKZrCIP5cfWw/PJj7Q6X3Bxj/ZP5n9qbxyD4smPGc39pNgccGz0O1WBbWUPpxFPNm1NqSVnEy6iUofFtYDfss3IWfeUVkXqlVIRMj8eB5uwGDjHLYZt5ASTDznTNI2iX97VmFw2q7t7BtUpv5v1PuXCy7+aOoQOkQTTyLycrPH0aPMa/uiqskprceJmAYoEDaBpGq52lhgf5Y2+Po5gs1iYNsgPUwf6IqOkBqXCpg9FD0crBHvYG+3DbvPf99Qml61dSi/DN0du462Z/U3+QayOpike+m7XVV3NYL65glxJI/lhucYfT/qklMtQffVAu/mSYHFgGzkBlp6hqLt/HuKc1DbtLDxD4Ry7GE4jnwTF5kJeL0TNtT8Y3VuYdADuM94CW4sSSdJy5lUkaEUjZFUFsDSDPaZ7zVoFcWEaRFnXNJ7r+thLsOs3Tqf70DSNhozLqL15AvJ6AVhcPiz9IuEQPUsvhdut/KPQ+7XfkL/1ZcjKc7RqU/8gEfUPEuEwZCa8F39p0hXloqwUSIofMGojuLDLrBNMqZavg6mQBJPockqFInz5x612w80AcPxmAQLcbPHa9EiEeDqAoiiEejog1NP4pZ+KqhpwODlX6/PP3C3GjOgAsy1TxWXrlvhy2eY50d9QanXcfapWbLxEXCGuRd5/n0ND5tX2B5Vy1N38C3U3VZfxkRano3jve6i9eRx+z29G7c3jLXMXtaWU1KPuzik4DJmpxcm6zS+jdWynbyweHwEv7ULRnlWoTvld5Xw5Ft8G7tNeh/OYZ3S6R13aWZTs/xjSsqw2jwuv7kPpoTVwil0I98ffBKuTi4csffsh5D9nUP8gEYJLeyHKuga5FtuNVqccBsXhwXvRF526f2dUJx9i3EaUcwPSijxYuJrrQtD2C/LMSc/65Ce6vCJBA17Zdkllctksp7wOb+y8irSCjledG9qfN3TZh555G2PxdbUFR4cpBYG97AwQjfnicXT7WOUbaYMFWiFH3ubnVSeXDNQ/SET+thWQCbUbGn9UY7V2Pb1cRw+drm9Oe3qzLKzgs2QdQj9KhOukF2EdMhyW/gNgEzEanvNWI2x1MlzGai6vpIow6SByNyW0Sy6bKWUiVJ7ajLz/LoWS4Q8BVSgWC7bhcfCM/wDyeu0/Y4VXfoMo92an76+rRl3fpzq2Mwauo5epQ+gQSTCJLkNJ0/jwt2sQajHkKm1U4IPfrqFBYrptNy890G5CfJs295m3MRZ7Kx5G9WH2Zc9mUUYd9jUHfby1K/b9qDAv3doxVXvrBBrSL+vlWnW3/9Z67uWjKLZ2A2gO0cyHKG3CYlpWf5sTnrM3es14C71f2Yugtw4j4MUdcI5ZADbfWqfriQvSULjrTa1WEdffO4/Sw5/pdB9VBJf2AkpmBbyrLuzS2/0Z03GxDsU233nxjsPmmjqEDpEEk+gyrmdVtFuw05FaUSNO3dY8/9FQakTMewtEMjkaFeYxtKfKrKEBYNLHMjrCE862PasyQpS/M7ycmCUMIZ72CPYwznxBfX/Jq+s508TCPVCr82zCRoHnFsDo2k6xi3QJqcupPLOFUZInuLgbCpF2ZcY00WWXoprrR0GrqLNqDNq+39qgWOC5+us9Fm3RNI369Mso2Pk6sr95EtnrnkLhL+9AlJMKmqab5kGbWc3U1kiCSXQZR6/nG6WNvuiypzyLonQahjaWMC8HLH9Mu32ogz3s8dLkvgaOyPywKApPjOjNqE38cB2+/HQgrxeiIeOKXq8pzrsNto12JYeacZ28YdMnRqtzKRYL3gvXar1AxH7QdNhFTmAUT1ckb6hGzfUjjNrQMjGESQf1c/+6SsZt6EYJlFLTlNVxGvkk4zZ2kRPAtTNNBQxR7i1kfjIBOevnofrqfjRkXkVDxhUIL+1B1hczkbV2BuQN1fB86hOTxKcNkmASXUZWKfNf3vmV9SbrEQzRYWFRqKfxVrjr6vEh/nh7Zn84WqsuqcOimnouP180FFYWPXMd4WP9fTBjiL9W586PCUJMuG7zDJmS11fp/Zq0ohGOI59i1MZ59NOM6gtaB0XDb/k2sDSsOm9arfyV2e4go0+SwnuMF1cBgCg3VfNJWtC158xUPW4W7oGwCY9j1MZ59BLDBKNBw8MUZK97EtKSTLXniPNuIfvLObDyHwCvBZ8BWk45MSbzi4gg1NA1UZTJFSZZyTx1oC+SMzWvsGzTZpC5rlZsa2w/L8SEe+DSg1JcvF+CGpEMPA4bwR72mDzAB+4Opt1f29QoisK/JoWjl6MVfr30UGWpJkseG6PCPBA/wji9lwAMttey22MvQZJ3G/UPEjWeaxs5AS461Hq07ROD0A8vQHileYu/pukvFJsLuwGT4RyzEFZB0Wb/A01flAyKt7dGy3Rr9yhL7wjUaVl4vZlFr6BOr2TvDO+FXyDri1ka95QHmkpG2YSOMEJUbSnEdcjbvAy0TPP20gpRNfJ+WIqQ/5yBbfhoCC7uRtWFXVA0CI0QqWYkwSS6DHsrHuOaijwOC1Y807zNhwS5wd/VFrkVdVqd72bHR6yRerL0gctmYXSEJ0ZHeJo6FLNEURRmDw3A9MF+OJlagANJ2SgWilq2+hbLFPj7diEupZdiUn8fPD06BJYGfq9yHXqBY+eq9baL2rD0iwLbwgp+L/yEot3vojpZzRAsxYLTyKfgEf+h1gt8HsWxdYbrxH/BZcILUErqQctlYFvZ6VxfUVaZD2HSQcgqm6bS8Fx84Th0Nnguvjpdz5g41rotCmPb6GcxmVPMAtTdPc2wzUK93FtXXAd3BL5xAHk//gtiNT25FIcH92mvw2XC80aOrkl18iEoGKzOl1XkofbOKfC9+kBS+tBskkuAJJhEFxLbxwO7KtQPGagS08fDZD0abBaFD54cjNd3XEZVXce7R9hacvHRU0N0mrdJmDdBnQS/XclCabXqHgmRVI5DSTm4my/AZwuHwoZvuGLUFJsDxxFPouL4t3q7plNsU9LA4vHhs+QbuE19BYLEn1GffhlKST3Ylraw6RMLp1HzGe9Brg5FUZ0qHi4TFKN4779Rl3YGeGTRSfmxdbDtOw5eT32ic4kkY7D07QeOQy+tt29sZhc1SS/3t40YDQv3QK0XebGtHeE4bI5e7t0ZXEcPBL55CKKsaxAk/gxxwV0oG6Xg2DrDfsBkOA5/Ehw9JeG6EFzczbhN+dFvICnNBJQKA0SkO5JgEl3G5IG+2H3xIRRK7VchThts2iFnD0crrHtmJDYcu4MUNXujR/o5YeXUfvB21ryrCdG1NCqUeH9vitrksrXMkhqsOZiKT+dHGzQm55iFqDqzVast/zThOnrBYdD0No9ZuPrBY/Z7nb62oUgr8pD99ROQ16ipw0nTqLtzCg8L7iLwtX1m25tJsTlwGjUf5Ue/1roN19kHtgznIaq9P4sNvxd+QtZXc6HQMLeX4vLh9/xmsC1NUxNXJiiC4OJuiHJuQCkTg2PlANvICfCct1rnElGGQCsVkBTdZ9yO6Q5FxkISTKLLcLblY0FMMHaez9Dq/PGRXuhjBrviuNlb4pN50SiqasCJWwUo+d8wqbuDJSZEesPfrfPbuBHm6dKDUkalta5lVSC9uNqgO09xHT3gs/Q75P+wDLRC9zqxbGtH+L+4DSyepR6jMyxa0Yi8Tc+oTy5bkVeXIvf7BASvOq7zkL6hOcc9jeqkA5BVaLdBg8fsVYwWV2li4d4bgW8eQuGOVyHKvq76HI9geC/6Elb+/fV2X20ppSIU7XkP1SmH29UKrUs7i9JDq1t2UDKHubu0glldUXNnnv9qeqgSoQjpRdWQyhWws+Qhyt/ZZKtw68SNyCiuhlgmh40lF2FejkbbaaQj82OCIGlU4LfLHQ/LxIV74JVpkWbxodHMy9kaCWPDTB0GYURHrzHfmelISh5CZxj2h5Fd37EIWPELivasgrT0ocpzOPbuTaVoVAy72YTFwPOpj2HBsD6lqdXe/ptR3U5pSSZq75yGfX/9DCvrG8faAf4v7ULuxoUt80hVoljwfOoT2A+YovcYLFz9EPjGQYjz70Bw+VfIynNB0wrwHL3gMGwOrIOHmeRzWCmTIOfbRR3uAa+U1KNk/4eQ11eh1+NvGjE61VhcC7D4tlBKtJu3b+5IgmkGbuZUYt+VbFzLajuEasljY3ykN+JHBMLN3ji9BLnlddh/NRvn04ohk//zi8+Gz8XEKG/MHhYAVzvT9VhQFIVnx4VhUKAL/kjOxZWMMrQeMe/v74zpg/0wIqwXWGaUXBI9j0JJ424HW5qqcztf/6WEVLEOHorg90+hIeMKqq/9DnlNOSg2FxaeIXAa8SR4zj5oFJZAeHU/pBW5gFIJrpMnHIfOgYU7szqf5qLqws+M2wgu7DLbBBP4X4L31h+oOrcdgku7Ia9pVbmCxYF9/0lwGbcUVgEDDRqHpW8/ePn2M+g9mCg9tLrD5LK1iuPfwipgIOz6jTNwVJrZD5oG4aU9pg5DL0iCaWKHknLw35P3VB4TyxQ4ci0PF++X4NP50QjsZdidPi4/KMWaQ6ltEstm9ZJGHEzKwek7Rfhk3hCdajzqU39/F/T3d4GwXoqyGhEUShqudpZGS8QJQhNpowK67FkilhpvmIyiKNiEjlBbjoXr6AG3yS8bLR5DU7dyuCP6qhtpSBwbR7hPexVuk1+CKCcV8nohWFwL8L3DwbV3M3V4RqcQ1UBw5TdGbarObjWLBNM5dlG3STC7fzVaM3YurVhtctmasEGG9/akoKpOP/XLVLmbL8CnB26oTC5bqxHJ8N6eZJRWd36BgD442lggzMsRET5OJLkkzAqfx9apF92a4SpyeV0lhFf2oeLv/6Lq/A6Icm+abDs+c6fUoQakUot6hOaCYnNhHRQN+/6TYBsxukcmlwBQnXJYqzqSrdU/uAhpea5hAmLA0ifC5OWc9IX0YJqIQklj2xntV34J66U4lJSDpeP7GCSerWceQK7l6uxaUSN+vZSFlVPNZziEMA6ZXIFLD0px4mYhSoQN/yxWivJGXLgnKbPUCouiMCjQRW31AHUGB2q3NZ20PAdlf36D2hvH2i3W4fv0heuE5+Ew+HFG9+7u2NYOjGoMArrXmyRMR1Kk26pqSXE6LNz89RuMDjzjPwQtl0GooRfWwqsPpDqsOjcWkmCayPWsCq1Kl7R2/GYBFsWF6P1LPLusFmkFzIqznr5ThGfHhRm0Zh9hODRN40FRNRIf2YVndISn2oVlt/OqsOZgKgT1bWt6ltWIcTtPgB//vo83Z/RHdHDP7DUBAIVSiaSMchy9nocHRU2L5JiapsVuTqKcG8j59mkoxbUqj0sK7qJg68uQFN6D+4y3zWqxmynZRU2E8NJexm2IjtE0jYaMy6i5fhTyuipQbC74PhFwHP6ESfbyVuqwhSYAnbbeNASKzYHXwrWwHzgFVed3oi7t7D/1Wv83r9Y57mk0ZF1DGUkwiUclZWouk/GoOnEj7hcJ0d/fRa+xXE5nHou0UYEb2ZVdaucZosntvCr8cPIeHpa2T042/30P0wb54ekxoW2217yZW4n3didDrlDfy10rbsR/fk3B/z0xGMND3Q0SuzkrEYrwn70pyK/UvizRo8b09dRYtkomKEbupgS1yWVrFSe/hzj/Llwfe9Ggq3lpmoYo+xqqkw837RLEYoPvEQLHEfHgOXkZ5J66cI5ZyDjBdIpdZKBouoe6+4ko+e3/2q3Or7lxFOVHv4ZD9Ex4PPGhUetN6prUckyQDKtDURRsI8bANmIM5HWVaBSWABQFrqMXODaOoJUKFOx83dRhdogkmCZSL9FtIv+exIewtuAi2EN/C37qxLr9aqvVsR1hOpcelGL1gRtqp0OIZQrsu5KN7PI6fPjkYHDZLEgaFfj0QGqHyWUzmgY+O5SKXSvHws7SdHsOG1tFrRhv7LiCyk7Mk+7n64RXp0VqPK/q7BZG28HVP0hE/YNEWHgEw336G7Dv/5jOMarSkH0dxXv/DUlh2/nktanHUP7XBtgPmAzPeavBsTZ9TVpL335wiJ6F6uRDWp3vMHQOLL3DDRxV11WTegz5W15Su4MMrWiE8Mo+SIozELByj9GSTPtB01Fx8ntGbTgOvWAdONhAEXUOx9YFHNu2HUt1986jsarARBFphyzyMRFda0rezK3CSz9dxMZjd6BQdrwgR1s8jm6xWOjYjjCNgsp6fHYoVau5ttezKvDj301DL+fuFqFWpP2PCUmjAidvFuocZ1f07bG7nUouAcDGkqtx+otSJoHwyj6dri8tyUT+5udReXabTu1VqX9wETnr5rVLLlvQStTc+BPZX86GnOHcR0PxWvC5Vtsl2kVNgtf8NUaIqGuSlmWjYNtKrbYnFOfdQtGed40QVRNLnwjGZZmcRs0324L6qtTdPWPqEDQiCaaJhPt0buL40ev52PDnXb2sFtV1t5tQM9glh9De4eQcjVUCWvsrNR+1Ihn+SmX+K/mv1A6KPnczpUIRkjLLNZ+oQVJGOSprO05Sxfm3oRDVdOo+Jfs/RN39xE5dAwAaa8qQt/l50HKpxnOlZVlNyYgZYHEt4Pvc9/BauBZ8n4h2x/k+EfBauBa+z30PFtfCBBF2DVXndzCas1hz7QhkgmIDRtSWxxMfgOLytTrXwiMELmMSDByRfonzbps6BI26TrrezcRFeGLz3/dRL9F9q7bjNwsQG+6BQVquOlVnaIgbXGz5jHpg+vs7w9eF7J3dVYikcpy+U8SojUyuxIlbBSisYj6nsKiqAUqa7hHF7v++XahTvctHKWkaZ+8W4YkRgWrPUYj1sMMHTaPi5CbY9onp1GUEF/dAKdH+vVF//wLEhffMYsiZYrHhNOJJOA6Ph6ToPmSVTT+ieC4+4Hv1YTxXtWkO6nWIclNBy8RgWznAtt84s5p/qk9KmRjCq/uZNaKVEF7aA/fpxpk3aOUfBf9/bUHeD8uglDaoPY/v1Qf+L24H27LrbNkrKckgCSahHp/LxpxhAdhxTrt9tdU5ci2v0wkmm8XCnOG98YMWNTmbzR3eNXfy6KnyKuoglmkeynrUg8Jq6DITg0bTly56QIJZItRfTdjy2o4rS7As9DOHrSH9MiSlD8HvFaRTe1qpgODibsbtBIm/wGvepzrd0xAoioKld3inkt7qlN9RcfJ7SB5dzfvb/8G23zi4T3vNLJJqfZKWZTP6cdFMlHfLANGoZxM2CiH/OY2qC7sguLQXivp/dsnie/WBU+wiOA6dDRava9VQrjq/E9DLz1rDIgmmCT01KgiFVQ2Me5ZaS8osQ61IBjurzi2omBXtj5yyWpy8pXnu3NJxYRgS1HNL0XRF0kbmySUASOUKuNjxGa+MdrKxAJtFZuAwpanH19K3H1h8G52+3B8lyrqmc4IprymHvIZ59Ymu0OvCROnva1Fx4jvVB2kl6m7/jfoHF+H/wk+wCRtl3OAMSJtpESrbNerWrjO4jh7oNeMtuE19BbLK/KYeZsQeGeEAACAASURBVGsHcJ28u2T5LqVMjOqkg6YOQyvkG8CEWBSFN2ZEIWFsGBytdZvro6SBCg3ztrRBURRenR6JhLGhsLVUXdvSzd4Sb82I6nAIjzBP6l5Tje34XIyPZD7MNz7SW6f7dUW9HKz0di1Pp457KNl8azgOnaOXeymluve8KnVMFJSNhtuNzNgEF3erTy5boWVi5P3wHKRl2UaIyjjY1k66tbPRrZ0+sDg88HsFwdK3H3jOPl0yuQQAmaCowyF/c0J6ME2MRVF4cmQgZg8LwAs/XEBhFfM3DktP/06aYgnCrKEBuHCvBHfyBZDIFLDmcxAd5IYhQW5g6+tmDClpGjdzqnD+XjGE9VJw2Sz0drfD+Ehv5JTX4sydIgjqpWCzKPi52mLKQF+N9QR7En83O7g7WKKMYXH/4aG9EOnnhF3nM9Go0G6snEUBUwf66hJmlzQ+0gu7EzM7PWDF47Awtq/mZN557LMQXt3f6S8ZdifKBnFsdFukyDFhgqFPtEKOsmPrtT5fKRWh8vSP3WZVOs/VD3zPMEiKme2Yo+8SWT2SQrcSh6ZAEkwzwWWzEO7tyDjB5LApve/BzeOwMT7S22x6oW5kV+K7v+6iUND2b3PxQSl2nm8/h/VmbhV+T8lFf39nvDmjP1zstFtJ2J2xWRSmDvTF1jPpWrdxsrHAiFB3cNgs/GtSODYcu6tVuyVjQtHLUX+9eubO08kaQ4JckcxwS8hHje3npVVPs4WrH/xe+BF53y+FUqZbLyTF5nZqyJZtZQ/r0BFoSL/MqJ1dN0kwau+cgry6lFEbYfIh9Jr5DthW+qthbCoURcEpdhGK976ndRuOrUu3ef1NyZyKwWtChsjNyGMDfBi3iQv3hHU33q7x4v0SvLc7uV1yqY2buVV4ddslVGhYONFTTB3kB08n7RO/hLFh4PxvN5+pg/zw4mMRGnvLl4wJRXwPnELx0uS+cLLRvaSNm50lXGz52J2YiRM3C1An7ri6hE3oSPR+4wBs+47VaSGV3YDJ4Np3bh61M8Mdblg8KzgO08/wvqnV61DmiZaJIcpJNUA0puE4bC74Pn21Pr/X7PdI2Sc94Ng6wyascxUgjIUkmGYk3NsRQb3sGLWZPljzvsVdVbGgAZ8fvgllJ2p9ltdKsOageXyoyxVKJN4rweoDN/D2rqt4f08ydp7LQHmNcRJgGz4Xq+cPhYcWvYvPje+DCVFte7AfH+KPn5aPxtzhvdv0tFlZcPD4ED9sfiEW80YFmdXcJpqmUVUnQX5lParqJHqpG6uKu4MVvlw8HN4a5lCqwmWzUF4rxs8XMrHjXAa+PnIb89edwtdHbqGqg9Jhlt7h8F++DaEfXoBT7GIA2v3dWRZWcHvsZcZxPsouahKsQ0dofb7742+Abcns881c6To9QaGHxVnmgsXjw//F7SpribZBUfCY+39wHDrbOIH1AM5xixmdT3FM0wlFhsjNCEVReHtmf7y6/YpW9TEXxgajj3fnCrabsz+u5TEqDK5OWoEQ9wqEqBXLkFYghKRRDhs+F0OD3RFmpGLx59KK8cPJexDUt10ckfywAnsuZiIuwhMrpvSDlYVh/0l6OFphQ8JIHErKwV+pBRA2/BMPBSA62A2zhwWo3e/ey8kaz43vg2fHhaFBIgcNGtYWXJPNzVWnQdqIv28V4ui1PBS0mnbi72qLaYP9MD7SC5Y8/f6tvZyt8cMLsbiSXoaj1/Nwv6gaskYFbC25iPJ3BpfNQkZxDeokjbDgsqBUApV1EpVzW2VyJU7cLMT1rEqsXTQMXs7qE1eeiy+8nvoY1kFDULDj1Q7naLEsrOD3/I/ge4Z0+vlSLDb8lv2AvO+XouFhUofnuk15Bc5drJB1R1h83WoAs3VsZ664dq4IfG0/BBd3oyrxZ8jKc/45yOLAfsBkOI95Bta9B5kuyG7Itt942EVNQu2tE5pPpihYuAUAlQ8NH9ijt6YN9ZO+m1q0aBGSk5MRHR2NXbt2GeQeueV1+HDfNRQLVM+v4rAoPD0mFE8M721WvUX6JG1UYN43p9Ag1c+EZj6XDYmKUj0hHvZYMia007VEO/Ln9Tyt5i+GeNhj7eJhek981GlUKJFWIEBNgww8DhuBvez0Pp/XFPIr6vDvPSko66Bn2NPJCp/Mi4aXDj2OTNA0rfLf6Po/7+DYDe12O/JwtML3y2I6fF+IC+6i6sIu1N+/CHldJehHVmtTHB7sBz8O14n/0rk0kTpKuQzCK/sgOL+z7aIPigW7fuPhPGYJbEJH6vWeplZz8zjyNz/PqA3Fs0Sf1UndYg6mKrRSCUlhGuR1VaA4PFh4BIPbheYLdjVKmQQF21Z0nGSyOfBZ/BVe3nDA4HmLKqQH0wz5u9nip3/FISmzHH9ez0dueR1kcgWcbPiIi/DAYwN84GTTvReulAhFeksuAahMLgEgo6QG7+1JxhuPRxlkUVNmSQ02/qXd4piMkhpsPHYXb83sr/c4VOGyWWp7Kruq8hox3v45qV1P8aOKBSK883MS1ieMMOi/JVXJZXmNGMcZbKVZIhTh9J0iTBvUfjqMQlSDgm0rUZd2Vm17m/A4eC/6Alx7d63vyQSLw4NzzAI4jZoPaUkGGqvLQLE5sHAPBPf/2TvvgKbOto1fJzsBkhA2SJgiCqgo7j2qdY9aV1s731a727fLfn277Hzf7r2Ho7a1dVvrXnWCgqKgONgbMoDs5JzvD4plhOScQwIB8/urzXme59xgSO7zPPd9XXL33LOrkaZMBk8eyqjRx3/ovB6bXAIAweFArEzp6jBuGDgCEZT/+gL1Fw6g9vBqNOQcAv7eL+RKZPAfsRCKsXdAGBQF4PcuidFjEsyNGzdi5cqVWLduHdLS0mjNsVqtSE1Nhdls3w81JCQEhw8fdmWYnQaXw8HIPqEY2Se0q0PpEsxWdsLgbKAo4L1t5xCh8HF5ycGmk/lgckZw8EIZ7p2UiAC/nv0A4S5+OHDJaXLZRJXWgDWHLuOxGZ37pbjzTBFIhudG2zMKMWOQskXCajPqcO3DpTAWO36Aacg5hPINryLyno9BuFH8niAIiML7QBTex2338BQILg8h0x9H6U/P0RrPEUoQOOlfbo7KC12M5XkwVxcBoMBX9IIoIrFbngYSHA6kKZMgTZkEm14La30NCJ4APFkIOLyOma+4Ao9IMDMzM7Fq1SrG865cuQKz2QylUokBAwa0uS6Xd059nRfXI+ugMxFTbCSFDcev4cVbXVcrVKc341BOGeM4dmUVY+mY3i6L40ZBozMx/n3vzy7FfZMT4SPsvCL4zPwaxnPyq+qh1Zshb2bIULHlLafJZRPaM9vhmzgKitFLGd/bi30Uo5fAXFvsVGydI2isexWGeO11uxKKJKFJ34zaQ6thKGjZ+CmKTELA2GXwH3ErCA63iyLsGFyJzON2yLs8wdy1axdWrlwJvZ65nltubqP36/z587FixQpXh+alCwmWidE7TIbL5dpOu+fxS5WoqTO6TDezqKYBVhvzEuerFXUuuX9XY7TYcOhCGfafL4WqvlEEPzq4UQQ/Ralw+Y7BsUuVjH/fRosNJy5VYlInar6yLf3QmazXE0yboQ6a478xml9z4Hv4j1rSLXdqPJXQOc9AFN7Hvhf53zWowTOf8EgvcmNZHvTXToM0G8CVyODbb6zbaiYpigJIKwhu13QzUzYLin98EtqMrXavG4svoHTds6g7twfK+z4Fh+89QXIFXZZgVlRU4L333sOWLVsgFosRGBiImhpmT/Y5OTkAgKQkJzIJXrodBEFgVloU3tvWed7FJEUhp0SNsf3CXLIeXeeb1qh0ne/X62oOnC/FJzvPo8HYMpnKr6rHgfNliAuR4v8WDGLVZFNaq8OfWcUormmAjaIQ6CfCpJQI1LDUO6V7pO4qfFgqBTSfp8nYxlhk3VSeB33+GW9Hr4uRD5kDWdps6PPPQJ9/ptHrWiKHX8okCBTMbVbdTd35/aje/Tn0V061eJ3g8iEdNB3B0x51SSMYaTFBm/kHag+vgSE/C6Bs4Ih8Ie0/BQHj7oA4OrXTHnbKfnmp3eSyOfXZe1Gy+qnGchLvg1iH6bIE84MPPsCWLVuQnJyMN954A6+99hrjBLNpBzM5mb7Yq5fuw4TkcOw8U4TcUk2n3dNocV1jEdtjfk0nJzyu5s/MIry/PdvhmKuVdXji+2N4/+6RtJNMVYMR72/PxqnLVW2u/XGmCP4+7H7fXG7nygGnxgQyfk/HBPu1eD+ZKq+yure58prHJZiUzYK6c3tQe3gtDIVnQZqN4Pn6QzpgKgLGLesWNZ0EQcAndrDH/W5bU73nS1RsesPuNcpmgTZ9C+qz9yF6xXfw6T2M9X0aLp9C0Zf3waZveQJFGhugObURmlMbIRs0E72WvQuOwL27hcbyy1D9tY72eO3pbQicdB8k0Z3TbNmT6TKh9djYWLz99tvYsGED+vRh/gFCURRyc3MRFBSEffv2YcGCBUhNTcXw4cPx5JNP4tq1a26I2ktnIuBx8criIegT3nm1tL4urMWLCfaDgMf8T6y6zggb2XH9z66guKYBH+6gWReoN+ON38/QEj+vqTPi8e+P2U0um1Dr7Df7OSMqqHO1CacNUjp1RGrNzLSoljsqLN8fFNl5zXN0MFVeQ96qKSj6egV0l46CNDYApBXWumqojqzF5demoGTdc6BsznWBvThGk76l3eSyOaSxAQVf3AtTVQGr+1Tv/Qr579/aJrlsjfbMdhR98yAoN3trq47QTy6bqD3ceVI+PZkuSzDvv/9+zJ07FxyWXY3FxcVoaGhAdXU1XnzxRQiFQgwbNgxCoRA7duzAggULcPr0aRdH7aWzkUkE+N+y4Xjw5iQoA1smAjwOgX69/BHXyv1IwOMgjYWupZDPRf/ogA7F2xyCICDgMS8Yt9jINkfL7kTdYMIvR6/izY2ZeHXDaXz0RzbOFtSycr3ZfrqQkfPSlYo6XChWOxxDURRe//0MKjWudzwK85cgNaZzpZqCZWJMG6SkPT7MX4JJKS2PWvn+7Mo42M5zB+baYlx771aYqxxvBqiPrkfxj0+C6qYPXZ4ARZKo3P4u7fGkoR41e79kfB/1yY2o2Pg67fH15/dBfWID4/swoe7cbuZzsmgImHtxSpc3+bClqf4yJCQEX375Jfr27QugUbro3XffxXfffYcnnngCe/bsgVDo2P9048aN2LRpE637Nh3Le+k8hHwu5gyJxuy0KBRU1UOtM4PP4yAywOd600NNnRGqBiO4HA5C/cWQCHh44MvDKKymb802ITkcvi72dfcV8Wi5MrWGx8IZh6Qo1OnNsNooSCV8p8mtwWzFZ39ewP7sUlhb6ebsOF0EZaAvHpqWRFsr02IjsedsCeO4/zhThGSlot3rOSVq5JQ4TkLZMmdINDhdUGu1YmoSautNOJFX6XBckFSE15cMbSOyLk+bjYotbwMMdiR5shD4MrB2dDelPz0Paz29sihtxlZIUyZDPmSOm6PqmTRcPAJzdSGjOZpTmxE6byVte09rgwql655lHFvtodXwH7nYbTWPNh3zzw7SWA/KZgXB7bYpkkfQbX97U6dOxcGDB8HhcBAS8o+YL4/Hw9NPP42TJ0/iwoUL2Lt3L2bMmOFwrdLSUpw6dcrhGC9dD0EQiAmRIsbOtUCpqE339z0TE/HyLxmgs5/mI+Jh4cg4l8TZnKggP1Qw3HkL8BMysoysqTPijzNF2JlZdL1hhcshMLJPKGalRaF/VNuObb3JimfXnkBeWfvHWEU1Dfi/dafwfwsG0dJjra03suqQLq5x/BCw4zR9UXImjOkbijlDo92ytjP4XA5evHUQNp7Ix5b0AlTXtXTeEfK5mJAcjmXjEuxqovL9wyAdMAV1mTtp31MxemmXdfG2xlR5FQ25zDSKaw+v9iaYLKnPOcR4DmnWQ3clHdKUSbTGq4/9CsrKvEzFWJIDY2mu2zrtCb4IMDFriCO4fKCbyhV5Et02wSQIAmFh9o97OBwOxo0bhwsXLuD8+fNOE8yIiAgMHTqU1n1zc3NRX1+P3BI1Zr6xEzxuo/TKjEFRGNsvDEK+903pKQxPCMEj05Px8c7zDsXOfYQ8vLpoiFtsA6elKnHSQd2gPaanKmk/zR+7WIE3N2W28Wy3kRSO5JbjSG45JqVE4IlZ/cFv1szy4Y5sh8llE1aSwpsbM/HlA2MR7uT3Y2OqHv43zrrt2UpVcQjC7nE9l9OoUHD/TX27ZPfynzg4uHVkHOYPj0XG1arrslYBfkKM7BPqdDc9bP4L0F/NgLWu2um9RJHJHiX0rWYosQQA+qsZMFVehTDE9Q+CPR1TBTsfapuBvmSa+vivrO4BABZVqdsSTEl0KurP72M0Rxw90NtF7gK6bYLpjMDAxmM9o9HoZGSjjub8+fNprdvkRW62krDYSFhsQG6JBrklGny3/yJeWpiGxAivwLunMGNwFCIDfbHh2FWkX6lusZsp4HEwITkci0bGIyLAPZ7UQ3sHI8xfgnI1vSdoAY9Duz4v/UoVVv12xmnN477sUlAUhWfmNn5oVmj0OHSBviC52UpiW0YhHpji+AtA7iMAhwBjlxpnuqNsXZ0+vGckjudVIiu/FgazFRIhD4NigzAtNbLLnZIoioLeZIXFRsJHxMew3iEY1puZraIgoBdiHv8ZBZ/eBUttcbvjJLGDEbX8G3BF7vVdZ4LZQbwO59UUexNMhtTnHGK8W9wEV0S/Ac5cy7w85h/cl8wpxtzGOMEMGHu7m6Kxj02vhfrE7zCUXABlNYPnq4Bs0ExI4tK6daLbbRPMdevWIT09HQsXLsTIkW3rikpKGt/soaGdZ7WoajDh2TUn8M6dI9A7zLMU9W9k+kcFoH9UAMrVeuSWqGG02OAr4mNgTACkYvc6BnE5BF68dTCe+vG40+NjggCemTuQVvJjI0l8sD2bdkPN/vNlmJgSgSHxwdh5pohW2UBzdp8txl0T+jjcofcRNiZKx53UFbZmYrJjrUC5j5BxmQGHaCxPSAiX487xjKa6Fa3ejF1ZxfjjTNH1hw4uh8CIhBDMSovCgOgARl8ootB4JPxnDzTpW1B7eE0LZx/fxNFQjL0D0pTJHldL5mnd7D0Vm16Lom8eBCO/2r8huHxIYgYxmMD4FtcRBNFvemOKX9J4iMITYSy7SC+WQCWkA6e5LZ7mkGYjyje93lheYGm5GVZ78AeIIvoibMGLHlU7zQTP+tRhQHFxMXbu3Ak+n98mwTSZTNi1q7ELbPTo0Z0al9Fiw383Z+Gr5WO79ZNHTyTMX4Iwf0mn3zc2RIp37xyB138/g+Jand0xMokAT87qj+EJ9Haxjl+qRE2989355mzNKMSQ+GDksThybjBaUa7WIzrYz+G4WWlRjBJMmUSA0X0dPwSOTgzFRYa6kUN7h3hcuUpWQQ1e3XAaulYKATaSwsXz56DJ3InMCD/MnZAGeZ9htJNCjkAMxajFUIxaDNKkB2nWgyPy9Ww3EpYJpiAw0sWB9GzUxzc0Sj+xQDZoBnh+LVU1KIqC7tJRaM/80eh7zRdCHJkM/xG3QhCohKn8MuP7iGNSIQpLYBUjHQgOF1ErvsHVd2+FVVPudDw/QAmbXguOLNgl96ds1kbJJg4XXLEUxN/KOaTZiPxP7mgjeN8cY2ku8j++A8r7PoNs4FSXxNOZdIsEs6ysDAaDAf7+/lAoGrtNFyxYgNWrV2Pbtm2YPHkypk5t/OVbLBasWrUKpaWlGDt2bJe4/BTVNCCroLbT5U+8eC4xIVJ8tWIcMq/VYGdmMUpqG0BSFAKlYkxOicDovqGMJI32Z5cyjiH9chXq9GaYLOy+3E00jqoHxQZiUkoE9tGIjwDw2IwUpz/3lIGR+PFgHiNnpFlpUbTHdgY5JWr8Z316m1rZvsZsjNXtR2/zpcYXNEDJBaBCHgrF6KUInHAPuGLHSX1zOEIJOMLOf4hiikXLrC4ZADhCH+/xOENUf/3Eah7BEyDwpgdavFZ/4SDKNrzSRlZKm7EVldvegSiS3XdtwNhlrOYxQRAQifhnNqPoh8ehzzvucKzu0l+4+s48xD35W4dkvQwlOVAdXgPNqc3XXbe4vgooRi6CYvRSVP35icPk8jqkFcXfPQLR//3Z7fzsu0WC+eyzz+LUqVN4+OGH8cgjjwAA4uPj8dxzz+GNN97Ao48+ipSUFISHh+Ps2bOoqKhAbGws3nrrrS6LeVdWsTfB9NICDkFgcFwQBrPQ6GxNTT1ztx8KjWUcbB2GZDTKCQiCwBOz+gOAwySTxyXw71kDMCrReQmLTCLAsvEJ+HYfvSOu4b2DMSjWM/72KIrCxVI1/rM+o2VySVG4uX4rJusaT1ootDxhtGoqULX9PWhPb0fMI2vAl3deqU9n4Ez70h6k2QiKorwnQzShSBtrx6fIez5u0XSjydiK4u8fAyj7D3mU1QxDfiZAcNodYw+/gTdDPmQuqxiZwpXIYammp0hhqS1B4Zf/QtwzW6/vONKFoihUbv0fqnd92uaarUGF6t2fo3rPVwCDQiXKakLtoR8RvvAVRrF0Nd0iwWyPZcuWoXfv3vjmm29w7tw5XLp0CeHh4Vi+fDnuv/9++Ph0XVF7hYaZLIIjbCSFzPwalKp0oCgKQVIxhsQHsRLx7gxKVToUVNXDYiOh8BUiKdIfXJaC+l7sw/bXyeUQGJUYimOXmNVJxoVIESIX0xrL53Lw9JwBmDKgF7ZlFOLYpcrrtaJSMR9TB0Zi5uAohDIoV7h1RCz0JivW/+W4GzYtLggr56d2aXd4EwVV9Xh361m7JQlj9AcwWbfremLZXrSm8jwUfHoX4p7eBI6A3u+/O0BaWNihUrbG5IXwzM89T4NtnSshkEA28Obr/28sz0PJj0/SSxwZJJc+fUYj6t5PGCdwbNGc3gqLmv7Jj6EoG7q8Y/BNZFZm115y2QKK+b+N+sRvCJ3zbLc4oWjCYxLMNWvat2ZydG3EiBEYMWKEO0LqGOwUW1pgtZHYeDIf2zIKUaVt2eQgkwhw88BILBodBx8X2ht2hFOXq/D7yWvIyq9t8XqgnwjTBykxd1i0x8Ta3VEG+iK3hFldopDPRZBUhBB5GL7cnYM6A30B+DZWhU4gCAIDYwIxMCYQRrMVGr0ZfC4Hch8Bq4cNgiBw14Q+GBgdgC3pBTiRV9miWz0xQo6Zg6MwMSXcIx5mLpdr8cyaE9DbaewSkkZMrd8OgF5fhLE0F5pTm6AYvdTFUXYdPL9AWFTMuo65PnIQXm1C2nB4AnB9FbA1qBjNEwS0bLqrPfA9M6tOggOCJwRlaacxj8ND6LznENTJsllsLSOZJJjG0ovOk0uWkMYGmCqvQqxMccv67sBjEsyeRoi8Y08ZJosNL/+agTPX7DtdaPVm/HLsKk5dqcJbtw+77mjTFVAUhR8P5rW7u1RTb8TqQ3k4lFOGN28b1uUSMT2BaalK7Mpi9gU9MTkcor8dYe6b3BfvbTtHa17vMBkm93fc6e0IkYCHUIFrPmqaktbaeiPK1HrYSBJBfmK3yUyxwWix4aVf0u0mlwAwyHAKIopZg1btodXwH7WkxxwPy1KnoWbf1wznONYz9tIWedoc1B78ntmcZkfWNmMDNKc2M7spRSJw8n3g+fhDfXwDzDWNDkKCACX8Ry6E//AF4Eo6V2WFIm0wFJ5lPE+fn8lovLs9zEmz6+1y3Yk3wXQTUwd2rNvxvW3n2k0um5NfVY+Xf8nAu3eNBJeFvaAr2HSqwOnRJQAUVjfghfXp+ODukR7X4dvdSIyQIyFcRkssvYnoYD/YSBJcDgdTB0ai3mDB13sdW5/Gh0qxavEQjyvHCPATsXpQoSgK5wpV2JZRiKyCGuhNf+tjxgRiVloUkpVtXY+YcuhCGWod1Mj2M2UzXtNYmguLqhSCgF4dCc1jUIy9g3GCqRh7h5ui6bkoxt7OKMEkuHz4j1x0/f9NFVeuN6gwwVR6CaHLv0bgxHsZz3UHlNXMSqqJSUJHkSQ06QyTcYZwffzdur6r8SaYbqBXgA8GxgQ4H9gOBVX1OMhACDu3VIP0K1W0JW5cicFsxeqDebTHX6usw77sUkynKSbuxT4EQWDlvFQ88cMxaHT07Nk+35WDDceuYWZaFBaMiMWCEbFIjJBj08n8FnWSABCukGDW4ChMHxwFUQ95GKgzmLFqw2mcK2x5ZFhvsOBQTjkO5ZQjNSYQLywY1CFP+u2nHXs+S0j7UlXOsOk1QA9JMIVBUQic9C/aSaZi9FKIe/V1c1Sdi7mmCOrjG2CqLgAoCnz/cPgPXwBRuOske0Sh8Qia+hDtY9vQeSvBl/7ThEiame20X59nYTfPXRB8EQi+EBTD2l+er4L2WNLUwFoSig7CkDgIQ+Pdtr478CaYLkbI5+LZuQM71GTg7AvKHlszCrskwdyfXQqDmZn/9Nb0AkxLjewxx31dhcFsw4CoABzOLaf9cF5Tb8QPBy7hXGEtXl6YhmSlAslKBVQNRhRVN8BsJeHvK0RcqNQjGmVchd5kxcq1J3GlwrH1XWZ+DVauO4n/3TH8ejkBEyiKwlUn9zAT7MpZelKTD0VR8E0aj7rz+2F20uksHzof4YtWdVJk7seiqUDpT8+j/sL+NrtqNXu/hE/v4YhY+obLJJlCZj0FymZFzd4vHY4LnbuyzY4jkwSrOVxfz9ppIwgC0gFToc3YymiedAAD7Uk3N59JB8/sdt+ZXV8N34OQ+wjw1u3DkBDeMavI09ecewu3JvNaNWsv6I5wgqFrC9B4rN+6ackLfUiKwld7cvDg10dwKId+ctmcM9dq8MH2f2owFb4iDIwJxNDewegdJutRySUArD2c5zS5bCKvTIufaJR82IOkKKd/h4WCGMbr8vwCIQjsGbv+uqvpuPzaTSj46DaHyaVPn1FQ3v8let35nsc5EbHFXFuCq/+b12hd2M4fru7yCVz933wYShyX5DrBpwAAIABJREFUr9CHAtdH3u7xKt8/HMp/fYGgKcvbXBOG9WaV6Mo6yQmHCQFjmNs/KsbcRnssRygBz41yYsKgaLet7S68CSZL+DwOOAQBIY+DhHAZnpzVHz8+MhH9enX8ya210wcdSAowMtxJdAX1DDqRXTHPC/DVnlz8fiK/w+vsP1+Gohr3Hel4CkaLDbuymHlf/5lZzMoDncvhOD1ePykeBRIEI6EJ/1GLQXC7vwJDfe4R5H+41KnjC08eisg734ds4M3dbtemPSiSROGX/4JF7bz8yabXoPDzezrc1EHZrCj69mFUbnkbNp3a7hiLugwlq/8NnR3Rb4IgoGCYmPFkIZD2v4lVvO5EEj+U0Y5kwPi7IAyib9hAEAQUIxezCa3H4k0wWdKvlz/++L9p2LpyGj6+dzSmDox0Wa2aWMB8HQKAiMW8jsK2Wcfb5MOO3BI1Np3seHLZxA4W5RjdjWMXK9DA8KFNqzfjZB5ztxkAGNvPsfuHmheAM+IhIEBPzYwj8mW1++JpWOqqUfTVA40NF06waipQ9O2DoNhsz3soDRePwFiSQ3u8RV0GzeltHbpnxZb/oi7zD6fjSJMOBZ/fC4u6rZWi/8hFEIUn0r5n2C0veOSOM0EQiLz7Q/j2G+d0rHzYLQi75T+M76EYvQQEj52RhTO4Ph07Ge0KvAlmB3DXk/WAaOYNQslKRZfo//VlsWMr9xF0iSd4T2BbhmsTQjpKBd0dtqYH5SznzRzsfNfjd9lSXOPHOdXBJARiRD3wVYcs6zwF9dH1IE30G5z0VzNgKMhyY0Sdi+rw2k6Z04RNr0XtoR9ojycNdag9tLrN61yRD6If/hHC8D6OFyAIhC9aBXnabIaRdh4cgRjRK75FxNK3IIpo2zQmiR2MyHs+Rq9l77JKkvnyUPRa9i7g4tyAI5bCN8ED9b6d4HmPGV4wKy2ascZhV3kvT0uNxC9Hr4BJ+ee0VCV4XO+zDVNMFhsO5dBXF6BDe1qNXtgTFyrF9EFK/HGmfVs6CyHAVwGPYEbdZow0HQfX1ra7VRI7GGG3vgxJVH93htspUCQJ1RHmvti1R9ZCEpPqhog6H30h82TZUHQOFEmycrtRH9/AuGtadexnBM94HBx+y0Y0vjwUcU9thOrwWtQeWQtLbbOSEw4PstRpCJx4b7f4tyK4fChGL4H/qMUwluTAoioFCA4EQVEQhfXu8PrytNkguDyUrH0WpKGdum8uH2AgXu8/4tZu2eTnTTA9kN5hMgyND8KpK/Sbfdb/dQU2ksLEFPaC2GwIkUswITnCoe90cyRCHmYM7hnNCp2NRmeC1ebaI0OJsOd/BISyND1gOw8AHp6WBLPVhr3n2v+7sBICkJOeRtK4SNSlb4ax9BIoqxk8aRBkabNaeEF3d2w6FSyatsevzjAWnXdDNF0DK8kfigJlNYMQMNd81V0+yXiOrUEFU8VliCOT21zjinwRNGU5AiffD0PxeVjra0DwhCD1GhhKcqBJ34L68/vh228sJLFpHl87SxAExJFJEEcmuXxtWep0+PUbD03GVmhOboRZXQaCw4UgOBqKUUvAEUhQ8NndAOn8AZ8nC0HQ5AdcHmNn0PO/Xbopz81LxXPrTtIW0s6vqsfbm7Ow62wxjGbb9S7tMH8Jbk6NxLh+4W6re3x0ejIqNHpcKLZfRN6EgMfBi7cORpC0+z2JeQLu+MBmU47R3RjZJwQ+Qh50DHZrpWI+hicEs74nl8PBU7MHYFSfUGzNKERm/j+lCASAIfFBmJUWjSHxQSAIAgHj7mR9r+4AK+9xAKSV3TxPhOergLm9Ha12aNJvZIONQTlCc0iT49IQgsOBJKo/NOmbUfXHRzC1UgKo2vkRRBF9ETLr3x7Z7NNZcIQSKEYthmKU/cafyLs/RMkPjzu04eTJQxHz8Grw5Z0vQegKvAmmh+Ij4uN/dwzH6kN52JlZTPsos7UPuKrBhAvFany99yKemzcQg2OD2pnJHpGAhzdvG4Zv9uViV1YJTJa23bd9e8mxYmoS+nRQwulGxt9XCLGAx1h31BF06gW7OyIBD1MHRmIjg+aom1OVHXYvIggCIxNDMTIxFFVaA6rrGh/6QuWSG84ulefj31iXxrBph+fXcx6ApAOmOtWibE1Huui5Yj+W86ROx1T+8SGqtr/X7nVjaS4Kv7gP4Yte7fEPT2yRD54JYUgcavd/C83prS3KGbh+gVCMXISACXe3EL7vbngTTA9GJODh/pv6gSQpbDpV0KG16vRmvPDTKby2ZCgGx7n+DSvkc/HQzcm4c3wf7MsuRUFVPSx/i3aPTwpDXGjnes/2RPhcDib3j3BZo8+YvmGIDmb3JdTduH1cb2QV1OJapfMdpN5hMiwd41rHjGCZGMGyG3fnniOUwC9pAurP72c0ryf5jweMvR01+75ilGR3xB7TL2k86rL+ZDSH7x/u1C1Gk7HNYXLZnLJfX4IgOBZ+fccwiuNGQdyrL3oteweht7wAY/F5kGYDuBI5xFH929TBdke8nRYejs5kwc5MZhp+7UFSwKsbTrtVL9NXxMecIdF4bEYKnpozAPdOSvQmly5kVlqU085jOvSPUuCp2d2/eYQuPkI+3rp9GJKVjp1J+kcp8MZtQyFm4eLjxTFMkyWCL4L/8FvcFE3nIwhUImDCPbTHywbNgCR2MOv7ydPmgMNwF1Mx5jaH3dMURaHqz4/pL0hRqP7zE0Yx3IjwfOTwTRwNaf+b4BM/pEckl4B3B9NtkBSFrPxa7D1XgkqtARwCCPf3wc2pkUiMkNM69qiuM+Dp1SdgtHPkzBajxYbvD1zCiqmuL2z24n6igvywfGo/fL6Lvp5ec+Q+AkwfpMSS0fEdPgLubsgkAryzbDiyCmqxLaMQWfk10JuskAh5SI0JxKwhURgQFeDxzQndFb9+4+GXPKnRxYYGoXOeAVfiuQ+nFGkDwXH+N2QzNkB3+SRsei0ksWmwaqugdaJv6Zc8Cb2WvefwvUjZrCDNBnCEPna7zDlCCYJvfgQVm95w/sMA4PtHQDHasXON/mo6TGWXaK3XhO7yCRjL8yAKc53HupfugTfBdAO5JWq8s/UsSmpbFlmfK1Thz6xiJITJ8PTcgVAG+ra7Rp3ejOfWnES5mp0WnyP+zCz2JpjdmLlDY8DncvDF7hyYraTdMSEyMZ6aMwDlaj1q6ozgcAj0UvhgWELwDZdYNocgCKTGBCI1JhBA446MN6HsHAgOB8p7P0Hh18vRkHPI4djgmU8y2u3rDCjShvrzB1B7eDV0l0+CshjBEfrAL2k8FGNuh0/CiBbvJXNtCar3fgnNyY0gjc0cswgOxNGpoKxmGEsutLiHWJkCxbhl8B92i93klbSYoM38A6rDa6C/drrxRQ4PfknjETD2Dvj2Hdsi2QycfD8s2krU7v/W4c/Gk4ci+uEfwHPiIW7P7YcOuivp3gTzBsSbYLqY7MJaPP/TqXa/+AEgr1yLJ384hneWjWi3Bm7t4csoUbHrAnSG0WLDpTKNt+GmGzNjcBTG9AvDnrMl2J9ditp6E7hcAspAX0wfpMSIhBDwuBz0j+o5TRLuwJtcdi4coQTRK76DJmMrag+vhiE/s9lFLqQDpiJw/F3w6T2s64K0g0VTgYLP74WxuKVsEmnSQXtmB7RndsA3cQyU//oMXLEU+oIsFHx6l317RoqEoSAT4PAQMnclxBGJoCgSAkUviMLbT8JM1YUo+PQumKuutbxAWlGfvRf12Xvh03s4oh746vrOL0EQCF/wIiTRA1Gz92sYis61mMoR+kA+dB6Cpz0CPg0fbWcd5u3Pc893mRfPxptguhCd0YJXNpx2mFw2UW+w4JUNGfhmxbg2DjwGsxW7zzITWmfK6avV3gSzmyMVC3DL8FjcMjy2q0Px4oU2BJcH/2Hz4T9sPkzVhbBqKgAuD8KgKPD8Ars6vDZYG1S49sFimKscqxA0XDyCgk/uRMQd/2s/uWwOaUXllrcR/dAPkCZNdDjUoqnAtfcXwepES1R3+QTyP7kTsY+vbyHMLU+bDXnabBiKsmEoPg/SYgJfGgTffuPAFbV/ktYaOh3mrpznpXvjTTBdyN5zJag30FfnL1PpcTKvCiMTWz45nsirdKkUjT10RguMFhv4XKJLLCa9eHEHWr0Zu7KKsfdcCaq1RnA4QLjCB9NSlZiQHO5t3vEwhEFREAZ5tlRWxea3nCaXTejzz6DkxyecJ5dNUCQqNr/VeLTtYDe9/PfXnCaXTRgKMlGz72sET3u0zTWxMgViZQq92Ozg228csPlNZpMIDnz7jmV9Ty/dF++nrQvZ4cAarj22nylqk2BW17FwfGDIlvRC/Hai8UOz6Vj1pgG94Cviu/3eXry4g11Zxfj4j/Ow2FqeIOSVaZFXlo1v913E87ekukUL1kvPxKbXQpO+mdEcQ2E2o/HGkhwYCjIhiRlk97pFWwlt5k5Ga6qO/ISgKQ+y8tN2hLhXX0jihkB/NZ32HGn/myBQhLs0jhsVymaBoeg8bHotOEIJRBF9WeuddgbeBNNFWG0kCqsbnA9sRb4dXT5OJ9SFNf8SLqppwBe7c7DmcB5eXDAYA2M875jKS1sKqupx4HwpahtM4HEIRAX5YVL/CEjFgq4OrdP540wRPtzh+Iu9wWjBf9an47UlQzEo1vse9+IcTcY2xn7eAHM717pze9tNMDUZW2lZCjbHoilHQ95xt+hPhsz6N/I/ug0gnaubEHwRgqe33Un1wgxrgwq1B3+E6uhPsGqrrr/OEUggHzoPARPvgciJfmlX4E0wXYSVZOcR3Xq3BQB6Bfh0NBxW6IxWvLA+nZZeoJeu41plHT778wKyi1Rtrn23/yImpUTggSn9bpjj4EqNHp/spOdZbSMpvLUpE2seneg261QvPQeLyr218E3YdBoHMZSxWtOiKmUbjkN8E0Yg8s73Ufzjkw4TX4IvgvK+z+z6mnuhj7H8Mgo+WQaLuu37gDTrofprHdQnf4fy3k88zprTW3znIoQ8DiQsvtD9fdoKqg6JD0JgF1nJWWwk3tl6FiRDSzcvncOFYhWe/OGY3eQSAMxWEjszi/H06hPQGenXA3dndpwpgo3BA55Wb8bhHHr1bF68dAYcYfsuT2x93OHG2nr5kDmI+/cG+PW/CSBa3YfDg2zwLMQ9vQnSlEmM19YXnkPJmqeRt2oyLv5nFK68NRNVOz+CpdnO3Y2CRVuF/I9vt5tcNoeyGFH09QrortAvXegMbowtjk6AIAiMTQrDnwxdd8Ylta1N4XI4mJUWhe8P0Be0HZEQghN5lSwOZ9pSrtbj9NVqDIkPdsFqXlyFVm/Gy79kwGB2fjR1uVyLd7aexUsL0zohsq6DoijszmK+y7Qrqxg3Dejlhoi89CQEgZ3TgGTPsYeyWVGx+U2oj/3Mak1hUExHw3KIJGYQopd/A3NtCXRXToE06cAVS+GTMBx8WQjj9az1tSj67mHoLh1r8bqltgSGomxU7vgQQVNXIGTGk3aF5Xsi1Xu+aFRZoAFls6B80+uIf5pZzbA78SaYLmTW4ChGCSaXQ2BaaqTdawtGxOJcYS1OX6txuk7/KAWevyUVF4rVWHMoDxeKaXYwOmDP2RJvgukmytV67MwsQkFVPawkBYWvEBOSwpEaG2i3/paiKFwq0+LjP7JRx0Cl4NilShTVNDgU9O/uGC02qHXMd3jcYWDgpechGzwD5b+9CtJM//1C8EWgLPQbNXmy4DZHmxRpQ9G3DzH2Em9CGBIHSVznPFxSVhP4smCA4EAYHMMuudRpcO39hTBVXGl/EGlF9c6PYdNpEL5oVY/XsCXNBqiPb2A0x5CfCUNRdoeUAlyJN8F0IfFhMswYrMSO0/S6ye8Yl4CAdo7CeVwOXl6Uhg+2Z2Nfdvu1NOP6heHJ2QMg4HGvO5RcrajD6WvVaDBaYDTbsCW9gPHPUqU1MJ7jxTFavRkfbD+H45fa7jTvOVuCcIUEj0xLadGAYjRb8d/NWTh6qZLVPXecLuzRrk1sKzkol+z1e+npcMVSyIfNh+rIWtpz/IfNh+rozwDlXA8ZAIImPwCC21K9o2bv16yTSwBQjFvm1gSMIm3QnNrcKJZfkPXPBYKAb79xCBx/N/ySxtNer/zXlxwnl81QHV4D3z6jIEudxjDq7kXDpWMgDW2bgJ2hzfrTm2D2VB66OQlWG4ldTo7tloyOx+JRcQ7HCHhcPDN3IJaOicf200U4c60aOpMVEkGjd/LMwUoog9pKFMSFShEX2ihsW1hdzyrB7OlPh52NRmfCv3883sY+tDllKj1eWH8KLywYhJF9QmGxkXjp1wxk5deyvm9OScd3sz0ZsYALPzGfkf4sAATL2q958+KlOaFznoHuyimYyvOcjvVJGIGwha9AFJmMsvXPOx3vP2oxAibe2+I1ymZBzYHvWMfr1/8mBIy9g/V8Z5BmA4q+eRD15/e3vUhRaLhwEA0XDiJg4r0Iu+U/Tr9LLNoqaE5vZxRD7cEfenyCaWuwX2fvrnnuwJtguhguh4MnZvbHmL5h2JZRiFOXq67vlfA4BEb3DcPsIVFIiqTfpd0rwBfLp/RjFU+QVAw+l2O3W90R4QpJm9fK1XoczimHRmcCn8tBbIgUIxNDbmhva7r8d0tbb3p72EgKb27MxNcrxuFIbnmHkksAMFmc12t2ZwiCwE0DemHjCXpC2E1MGWC/NMWLl9ZwJTLEPv4zCr96wKH+o3TAVETe9QE4PAECxtwGviwYFZvfsrszx5MGIXDy/Qic9K82CVj9+QOwatmdWPgPvxXhS9+w62PuCiiKQvEPj9tPLltRu/9bcMVShMx43OE4zcnfGcsw6S6fgKnyGoQhPdfFjOCza/RlO88deBNMN0AQBIbEB2NIfDA0OhNq6owgCALBMjH8xJ0rZC4R8jC2X5jDY3Z73JyqvP7fBVX1+GZfLjKuVLc5WJRJBJidFoUlY+K9jkDtUFBVj9NXq2mPN1tJbMsoxJHcjnc6+90AmpgzB0dh04l82ofeviIeJiZ7hZ+90IfnF4DYJzdAd/kEVIfXoCHvBEhTA7hiKfySxkMx5g5Ioge0mCPtfxP8UiZDd/kE6rP3XRfHlsQNgXTAFHB49v82DSU5rGIMmvYoQmf9m9VcuujyjjE6uq/a+TEUo5c4rMs00jwab01PTzDZHnN7yvE44E0w3Y7cRwi5HSmizmT2kGhGCWZMsB+SI/0BNMrivLA+HXqT/SdMrd6MNYcvI69ci//cOhh8rjfJbM2OM4WM5+w8UwRdO79zJoxIYF5w392IUPjg3smJ+GbvRadjCQD/nj0AohtEI9SL6yAIAr4JI+CbMMKtcyirmU144ElkrOYxofYw/VpUAABphfrYL3ZtK69jY/c5RzHc9exuCIOj4Zs4Bg0Xj9Cew/Xxh2zQdDdGxQxvNnADkBghxx1je9Ma6yPk4bl5qSAIArX1Rrz0S0a7yWVzTl6uwtd7cjsaql3qDGZsyyjAV3ty8OWeHGxJL4BWz+5DuCu4Us68UNsVyaWAx8GUgTeGFM+C4bG4/6a+Dl2whHzu9fpWL148FZ6UnZUpT+pedyrKZkXd2d2M5zmzueT7h7GKhy9nN687ETj5fkbjRb36gTQ6L8XqLLyP8TcIt43tDSGfi+8PXGpXlDpULsZLC9MQHdzYOLTjdBGj5okdZwqxdEy8y3Zs6wxmfLv3IvafL4XZ2rKG9Os9uRifFI77Jid2+Q6xM8zWrqmDXDI6/oaxjSQIArcMj8XoxFD8caYIe8+VoqbeCA4BhPv74ObUSEwZGAmZ5Mb4fXjpvsgG3ozy31fRsmJsgiOQwC95ohujAmyGesa1kkCjvqUj5EPnoXr354zWFIbEQRzVn3Es3Q2/fmMROnclKja/SWu87tJR5K2ajOgV37ZrPdqZeBPMGwSCIHDryDhM6h+BPzOLceB8GdR/N+vEBPth+iAlhieEgPf3EbfVRmJnJj25pSasNgp/ZhZj8eiOe6KqGox4evWJdhtjLDYSe86V4HyxCv9bNhxBUs/tCu6KBHju0GgsccG/Q3cjRC7B3RMTcffERNhICgQBh7uaXrx4Gnz/MEj738So1lE+dC64YqkbowI4fHafY87micL7wCd+GHRXTtJeUzH2jhtG6SRoynLw/AJQvuVt2Oqc1/LbGlTI//gOxD21CaLwhE6IsH28R+Q3GApfEZaO6Y2vV4zDb09NwfonJuON24ZhdN+w68klAJSpdFA1MBewbs/CkAkkReGVX0/T6rouV+vx8i8ZjKwCO5sxfZkfyaYo/RHCQkqnXy9/vHjrYKyYmnTDfAC3B5dDeJPLHoJFWwVjeR7MtcWgGOzsdVdC5zwLLs2aSp48FMHTH3NzRABHKIEwxLG0nj3EUQOcjglfvAocET1DCEncEChGL2UcR3fGf8StUIxcRHs8aWxA+W+vujEienh3ML3YxcBS3sZg7njtYGZ+DS6WamiPv1JRh/QrVRjuoQ0t45Mj8PXeXDQY6f9uZqZFo1JjwHf7nTeuNDEyIQQvLerZ1pBebhxIixHajG2oPbwGhsKz11/nyUOhGL0UitFLwWdZr+jpCENiEf3wGhR8fjdsDo6Y+YoIRD/0I/hy19UVUySJhktHobtyEqRJf71TXhw1AIoxt6P8t1cYracYc5vTMaLwPoh5dB0KPr/H4c/r02ckov71Bevd1O4KaTVDfewXRnMaLh6BqSofwmD3WoY6wptgerGLr5CdnJKvqOMyTNszmHddb8so9NgEU8Tn4l+T++L97dm0xg+MDsCYvqGwkRQyrlbhXKHzXeFwhQSPzfQceQovXjqCRVuFgs/uhrH4fJtrVk0Fqra/h9r93yJq+TfwiR/aBRG6H0n0ACS8sBu1R9ZB9ddPLTyp+QGRCBh7OxSjltDe6aSD+sRvqNr5MczVBS1er9rxPsTKFAROWQGur4K2mLdY2R8+vYfTGiuJHog+Lx2A+sTvUB1ZC1Pl1cYLBAHfvmMRMHYZ/JInuE3j05PR5Z2AlcbxeGs0GVsR0gm72+3hTTC92CVMIUG4QoIyFTPPZlf4l7M5ZnfF0bw7uTlVCZ3Jiq+cdNr3j1LgxVsHg8vhgMsBXl08BG9uzMTJy1XtzokPleKVRUM8vtnJixc62IwNKPhkGYyljv9WbHotCj69E7FP/gZxpGfYoZqqCmAoygZlNYHrq4BvwghwBOzrw3l+gQiZ/hiCpz4EU3UBSKMOXLEfBEHRIFysO1yx5b+o3vVpu9cNRdko/vYhBE55EKqD34M0Of5u4PtHQHn/l4xKdbgSGQIn3oOACXeDNNSBNBvBlcjAEXiOeHhXYK1r//Pf4Twtu3muwptgerELhyAwc3CU04SoOWIBF5NSIjp8b6OZ+fG8yWIDSVEeXXN3y/BYJEX6Y/OpAhzJKYe1Wd1ofKgUs4dEY1JKRItaWLGAh1cWpSGnRI3tGYU4daUKDUYrxAIuUpQKzEyLQlpcMLgcz/25vXihg0VdDtVfP0F9YgMsanomA6RJj7INLyPuyQ1ujs4x9TmHULP3KzRc/KvF61yJDPLhCxB003LwZewfvgkuD6JQ9zXtqY9vcJhcXoeiULP7c0Tc9hZUh9fAUGT/VMYvaQIibnsbfDm7UyWCIMCVyFy6O9udIbjsUrXWHvedjTfB9NIuNw+MxLaMQpSr6e1iLh4VD4mw428pXxEfah2zBiOJkOfRyWUTiRH+eG6ePx6cmoRSlQ5WGwmFrwjhCkm7T/oEQSApUnHdXpSiqBu+gcdLz4GyWVC24RWo/vqJkTRPE/orp2AsuwRReB83ROecql2foXLL23av2fRa1O7/FnWZOxH9yBq3JolsoUgSVX9+wmQC6jJ3Iv657dAXnIXm5O+NDwQcDoTBsfAfuQjC4Gi3xXujQFrNqMvaBfWxX2Asz2O1Rlf9TTThTTC9tIuPiI/XlwzFc+tOokprcDh2zpBoLBrFvMPQHkPig7D7bAmjOUNdcDTfmUglAkhZajJ6k0svPQWKtKHom4dQd3ZXh9bRpG9B6JxnQFEUdJdPQnX0J5jK8kDZLODJgiFPmwP5kDkdOq62h+r4r+0ml82xqMtQ8MkyxD+3HTxfBe31rQ0q6K+dAWnSgSP2g09cmsvliBouHW1Tc+mM+pyDMNcUQRI9oI1FppeOo7tyCkXfPszakx4AOCJfyNJmuTAq5ngTTC8OiQjwwUf3jMLPR69g99mSNq4+vcNkmD8sBhOSw12W+MxKi2KcYM5Ki3LJvb14cQVavRm7zxbjYokGZqsNfmIBRvQJwYhmWrNegNoD33c4uQQaa9RMVQUo+vZBGIsvtLhmqrgC3aVjKN/4OiIWr4J8yNwO3w9o3Hmt3PJf2uMtqlLUHl5Dq+nCWHoR1Xu+gPb0dlC2f8wuCIEY/kPnIXDyAy7bJWSiP3kdioLuSjoEgUqXxODlHxryTiD/49sBG32TE3v4j1wELk3pJ3fhTTC9OMXfV4gVU5Nw94Q+yLhaDbXODAGPg9gQKXqHub5GJiFcjlGJoTh6scL5YABD44OQ9Ld3+o1IldaA/dmlqNQaQPztXDMpJQL+vt6mn87GbLXh67252HmmGBZbS/epfdmlCPAT4r5JfTHRBbXK3R2KtKHm4PcuWYs0m3D13fkOJW5IQx2Kv38MpNkIxajFHb6nNmsX485e1ZF1CJ76oMPauLqzu1H07cOgrG3LhCizAaq/foImYyuiln8L3wR6HdqOcNas0/48z7Ek7CmQZiMKv7yvw8mlJC4NobOfcVFU7PEmmF5oIxLwMLpv5/i/PjN3IF76JR1Z+Y5txpKVCqycP+iGPDau0hrwxa4LOJ5XidY689/vv4ix/cLwwJR+PbK7vEylw87MYlytrIPFaoO/jxDjksIxPCEYXBd317aHzmjBvuxSXKnQwmwlIRULcLFUjUtl2nbn1Nab8PbmLGj1Zswb1nX6dJ5Aw8W/YKkOufb+AAAgAElEQVRldlLRHvprGQ6Ty+aUrn8ekri0DtdD1mfvYzzHqq2EoTin3WNl3bXTKPrmwRa7lvYgjQ0o/PwexD2zBaKw3ozjaA7bI3euxL3OQTci5RtfB2moZ78AQUCWNhu9lr7lEZ333gTTA/E2cTRqR762ZCg2n8rH9oxCVGha1oAGy8SYOViJecNiIODdeLpopSodnl59HLX19puhrCSF/efLcLFMg3eWjUCAX9d/2LiCOr0Z728/h2OX2tYmHcopR6BUhIemJmFkouuEp1tjttrw7b6L2JlZDBNLQ4Ivd+cgPlSKlKgAF0fXfTCVX3bNQlwBLOoy+uNJG1SH1yB8ITPBcAAw1xRBdfRnGEpyoL92mvF8oLHxpz0qt73jNLlsgjTpULXzIyjv+ZhVHE34JY1H1Y73Gc0huHz49BnVoft6aYlFUwnVkTWM5xFcPsTRA+Dzt8ORJ5UteBNMD6Gwuh7bTxfiSE4FtPpGj/C4UBlmDFZibL+wGzKJ4nM5uHVEHG4ZHotzBbWo0OhBAQiRSTAgOuCGleax2Ei8uD693eSyOWUqPV759TQ+vGdkt39oqdOb8e8fj6OopqHdMTV1Rry64TSemjMAk/v3cnkMZqsN/1mfjqwCertl7UEB2Hgyv8cmmDa9FuoTv6E+9zBIQz04Il/49hkJ/xELrze5ULaOu34BgCCgF8xV1xjNUZ/4DaHznqftCGPTa1Gy7jnUZe0EqI7Z0nKE9huNjOWXobt0jNFadZk7Yamr7pCjkThqAMTKlHYlh+whHTS9x7oodRWqo+tZvbcomwWxT/zqkQL03gSzi7GRFL7YfQFb01u615isJHJK1MgpUeOHA5fwyqI0xIXemJpgHILAwJjArg7DYziaW4ESFf36p0tlGmQV1CK1m/8O39t2zmFy2QT199jeYTJEBfm5NIbPd+V0OLls4kReJarrDAiSurazuSuhSBKVO95Dzd6vQVmMLa415BxC5bZ3ETD+LoTOeRa8DuhCNiGOTqW949cc0tgAq7aS1m6PTa/FtfcWwlhG37a1PThCH4gi+tq9Vn+e+ZE7ZbOgIecQ/IcvYB0TQRAImfUUCj67G6BIp+M5AgmCpz7M+n5e2kJRFNRHf2Y/n7R5ZILpbWfsQiiKwoc7zrVJLltTXWfE06tPoLC6A7UZXnoM20+zs9LszpTW6nA8j75kh42ksDW9wKUxaHQm7M4qdtl6JAVcq6xz2XpdDUVRKF33DKp3ftwmubw+xmpGzd6vUPz9Y/BLngiOQML6frJBMxHz6DpaSZHdWGjuoJasfcYlySUAyIfOa7ez16Zr/+jcETadpiMhAWg8Jo+47S3ASZLCEUigfOAriMITOnzP5tj0WtTs/w6X35yOnKcHIOfpgbjy37lQ/bWedRNSd4I0NsCioWcu0BqeXyA4PHaSd+7Gm2B2IScvV2FXFr0id53Jine3nnNzRF48HYqikFOiZjwvl8UcT+KPzCLGc/Zll8Jods0xLADsyipu4b7kCsxWdsmRJ6I+uh7q4/QcdbRntkN9/FfIh85jdA+urwKBk+9HwiuHobzvU3BFPuDLWLjFEBzwpM539E3VhS6RUQIAgi9C4MR72r/OsimDcJG2p2LkIsQ+/jP8kiYArcppCC4fsiFzEPfMFvj1HeOS+zWhSd+C3OeHofy3V2AsvgCbTgObTg1DQSZKf3oOF/9vOOovHHTpPT0NioXBQBPyYfNdGIlr8R6RdyFMd1gulWlwqUyDPuFy9wTkxeOxkhRsLJIcNvabnsTVCuY7fQazDWVqPWJDXNPtmlvS8Z2i1shZiu17GhRFoWbfN4zm1B74HnFPb0J97iFa3eQ8eSjin9kCvrxlA5d86FzUXzjA6N5+KZNodU+rWdbFtYbg8qG891MIQ9o3o/CJHcxqbbbz7K4VPxQ+8UNhrimC7moGSJMOXLEUvomjwPNzbYmNWVWKsl9fQv25PQ7H2fRaFHx+D6JXfAe/pPEujcHu/YwNMJbmgjQZwJXIII7s53bLRa7YDwRf1O7OvyMUY253Q0SuwZtgdhE1dUacvlbDeN7urGJvgnkDw+dyIORzGXcv+4m71pO2o7TWlHT3PHuYra5N0hW+QvTt5X79VtKkR132Pli0FSAILoSh8fBNHOXSmi3d5RMwVV5lNMeiLoOh+AJiH1uP/E/udNioww+IRMzDP7ZJLgFAOnAauH6rYKun/3kaMPYOWuMMrUTb2SCOSUXY/P+DT9wQh+N8EkZCEBzLqGFJEjcEoojEjobYBkGg0q3dyLWH16Dsl5cAiubfFGlD8fePIvH1E+AI2ZdVOMJUeRU1+7+D5uRGkOZ/juV5shAoRi9FwLhljFyYmEBwuJCnzYb6+K+M5vklT4QwyHNNRrwJZhdRqWVXV9JarsfLjcfw3sE4lMOsXmdYQvey0myNvw+7nT5X7hD6iV272zgtVelWVx9rgxpVOz+C+sSGNtp6/IBeCBh3JwIn3AOC2/GvAWNJLst5OZCmTELv5/+A5tRm1B5eDWNJzvXrwrAEBIxbBvnQ+eCKfOyuweELEbHkDRR9/QCt3Ub5kLnw7TuWVnyU1UzvB7EDP1CJqPs+g1iZQms8weEgaMpylK6lL5AdNGUF2/C6jNrDa1H28wuM59n0WmgytkAxaonLY6o7txdF3z5kdwfRqq1E1Y73oT7+K6If+rHDuqPtETBuGbMEk8tHr7s+cEssrsJjajA3btyIPn36ICMjg9G8yspKvPjii5g0aRL69++PqVOn4tNPP4XZzP6DwZPp5kozXlwAG1vMmYM99ymXDmNYCPwnRsgRInfdbseIPixq/dohXCHB3GHRLluvNRZ1Oa6+Mw+1B76zK9xsqS1BxcbXUfjVAyA7kEQ1QdnYrdGUwHEEYihGL0H8yj/Q9+3TSHj5EBLfykDvF3YjYOwd7SaXTcgGTkXkXR86PcqUD52HiDv+R1uyi9uBHStxRF/ayWUT/iMWInDSfbTGhs59DtKUSWxC6zIsmkqUbXiJ9XzVsV9cGE0juivpKPp6udPjaYuqFPkf3wGLtsrlMQCAWJmCgPF30x4fsfQN8CSerSzjEQlmZmYmVq1axXheRUUFFi5ciF9++QVSqRTjx4+HTqfDRx99hHvvvRcWS8fsltxJiIzdF1+oC78wvXRPkpUKDOtNf0fypgG9XC7X09mMSgyFgqH1pauT6lGJofB3gStShMIHby4dBqmLd0SbIC0mFHx2N8xV+U7H1mfvZbWb1BqeHztNRKu+ZV0rQRDg+QVCGBwNvjSIkXarfMgcJLx8AIE3LQfXp1npAYcL6cCbEfPoOvS6831GHbfywTNpj22NKDKJ8RyCIBA6/wWEL1oFXjvNS4JAJXrd9UG33L1UHV0PdED/1FxV4Lpg/qZ84+u0pa6smnLU7P3S5TE0EbbgPwgYd6fjQQQH4Ytfg2LEQrfF4Sq6/Ih8165dWLlyJfR65kfGL7/8MioqKvDYY4/hwQcfBADo9Xo89NBDOHbsGNasWYN77mm/a68rCZSKkBYXhIyrzLxspw6MdFNEXroLBEFg5fxUvPxLhlNNxpF9QvDYDGa7KJ4Ij8vBg1OT8NrvZ2iNT1EqMD453KUx8Lkc3DspEe9sPUtrPIFGTc4mQuRizBgUhZmDlfARua8mVntmB4yl9I+s1cd/RfDND3eo5k7afzKrJgXV4bXw7TMasoFTWd+7OYKASITNW4nQ2U/DWl8DymYB10fhdAe0PaQDpoAnC4aV6a4VhwvFSHZ+5wRBIGDcMihGL0HduT3Q5Z2AranZpu8Y+PUbD6KT7FBdjfrEbx1bgKUkVXsYirJhKMhkNEd9fANCZj3tEitGq04Dq7YSIDjg+4eDK/JB+KJXIUubDdXhNdCe2XE9+eWI/eA/7BYIQ3vDVHUNJeueBVfkB9++Y+GbONoj3xNdlmBWVFTgvffew5YtWyAWixEYGIiaGvpF2teuXcPBgwehVCqxfPny669LJBK8/vrrmDx5MtauXeuxCSYAzB4SxSjB7BshR+8wz94S99I5iAU8vLZ0KLZnFGJbRiFKWwmvxwT7YfaQaEwdGNljHI/G9AvDE6YUfLjjPEgHtXYpSgVeXpQGvhvqG28a0At1BjO+2uM4gesV4IMXFgyC3mSFyUJCKuYjJkTaKf8WqiNrmU2gKNQeWYeweStZ35MrkbFqUgBFovj7RyB+6QAEigjW928NweXZbQhivg4f4be+jKJvHmQ0T542G3x5x0oqCC4fstTpkKVO79A6ngJFUbCoSju2hs0KymZxWVe3NutPxnNsei0a8o5BmjyR1T0pikJDziHUHlqN+gv7r9cNE3wR5GmzETD+TvjEpcEnLg0Rt70Na30NCC4Pddn7UL3rM1gO/tBivZp9X0MQFI2QmU9CPmQOq5jcRZclmB988AG2bNmC5ORkvPHGG3jttdcYJZh//fUXKIrChAkTwGmVuYeHh6Nfv37Izs7GlStXEB8f7+rwXcLQ+GBMH6TEH2eca/z5ivh4cvYA2mtbbSSO51XiZF4V6o0WiPhcJEX6Y1L/CPgIu3dHsZdG+FwO5g2LwZyh0cgtUaNKawABAmEKCRLCZN3eGtIeN6cq0Sdcji3pBdh/vqxFN31CuAwzB0dhYkqEW5LLJm4ZHoveYTJsPJGPk5cr0Vw1KsBPiOmpSswdFgNfN+5StofNqGPlkd2QexjoQIIJAMEznkD9hYOw1jHb7aMsJqiOrEPoHPrNLZ2JbNAMRNz2Nkp/eo5WE5FYmYLwxa91QmTdEILToV1I0qSD6ujPtFUAnGFrUHXqPMpmQcnaZ6E5+XvbaxYj1Md/hfr4rwid9zyCbnoAHIEIgoBeqNjyX1Tv+rTddc3VBSj+/lFY1OUImrK83XGdTZclmLGxsXj77bcxe/bsNgkiHa5cuQIA6N3bfkdXbGwssrOzkZeX57EJJkEQeHhaMkR8LjaebL9eKkQuxisL06AMtO8A0Zo9Z0vw/YGLbbyqD14ow7f7LmL2kGjcNSEBXA/cUvfCHA5BIClSgaQbpHoiJkSKx2f2x/039UOZSgeLjYS/jxCh/p1Xn9w/KgD9owJQXWdAfmU9zFYbZD5C9Osl79K/K9LIzu3LZqcRiCkCRThiHl2HK/+dA8rMrORJdfRnhMx8wu16g2xRjFoMcVR/lP/2KnR5x+0PIjiQp81G+JLX23XruZEhCALCoCjGclatqT20Gooxt7vkAZrgsaupZjOPoiiU/rTSbnLZmopNb4AjEDd2lp/c6DC5bDFv85sQhvX2mOavLksw77///g7Nr6pqfEoODrbf7BAU1Fh0zmRXtCvgcgg8MKUfZgxWYsfpIhzOKYdGZ4KAx0V8mBQzBkVhVN9Q2jsyG45dxTf72rc1M1ps+PXYVZTWNuD/FgzuMcenNzIanQkVGgMoikKwTIwAv47XBnUHJEIe4ru4ZCRIKnapl7ix7BJ0VzNAmRtFnn37jWXkVMMRsqs1bJ4QURQFS20xbHotCL4IgqAo2o0xovAECINjYCxhph9pa6iFRVMJQUAvRvM6E3Gvfoh9/GdYG9RQHf8FDblHQJmN4EhkkChToBi1GHx/5moHNxL+IxehYtMbHVrD9P/snWdgE1fWhl+NerNkufdKNcUY03vvNbSQAElINr3spvdN/5LNpuySsulAKAkJJJTQA5hmjG2MARv33qtsq5f5fjgGG0vWzEiyZaPnH9K9dw6yrTlz7znvW5ENTfEViMKG2R2PkOEaTOap81MoO10Brc1HsvjFqDnyOa3r1Bz+zJ1g2otG06oHKRBYvpm2vU6leWj37t3Ys2cPpetmZjLTe7NFsJcED84ejAdnD2a8Rkp+TZfJZXvOZlVhx+kc3D2FmqesyUzicmEdqpRqsAAEeIoxNEwBog8ew/YW0gprsTepEOezqzvUJMZFemNqTCAkAg50BjMkAi6GhCog4vfaP/c+T/O1E6g+/DnUuUkd3yA4kMXOge/8JyEIHGBzHbZQCmHoUGiKr9C6vnjAeJj1GjQk/oK6hK3QlWfdXFPiBc+xKyAKHw6wCBA8IQQhMeB6WOkcZ2h7Z4/mZHfCkXjCd9ZD8J3lOkeRvQXPcatQdeBjkHr79JwN9WWAAxJMWdx8VPzyBi0/d8mgyYzEzesTttIaTxq0KPnhKegqcmjNU+enQFOaAWEw81zCUfTaOw6b3epCYWub3Gy2Xe9RVlaGpKQkm+NcnV/PU3eAAIDfLhZi5fgo8LnWHT30RhN2JxbgQGoxqpUdvxQCPEVYFB+GJaPCnSoY3RtpaNHhUFoJMkrqoTWYIBVwMaa/H6bGBHb5eVOBJEl8e/w6dln5eafm1yL1FpcoIY+NmcOCsWJcpFvqysWoOfYVKne/Y/lNsxHK1ANovnoCYQ99DcnAiTbXU0xeR0usG2jtls77YCm05Z0fUE0tdZ2lWQgOZLFz4T3zAYjCYzu8xfHwBsppXR4AULb9RXjPuB/SoTP7ZP2wm9bkPGT9v1H87aP2WXCyHHO/IbgCeE25B9V/UBcs957xAO3rkCYDlJf+oD2vhaYFahvqvGR3gmkPQmHrsZRWa1kWo+11kcj2zTQoKAijR4+mdN3MzEw0N9tfr+RoyutVtK0nmzUGnM6swMxhlo+lVDoDXtuZjKvFlguaKxrU+OpoJlLyavD6qni7E6e+gN5owheHM3AkrQTGWzzDz2ZV4aujmdgwtT8WjwpnfI1tp3OtJpfW0OhN2JdchFPXyvHWnaMwMMj5FoVubNOYst96ctkOs16Nov89gKjn90Hg33VNuTx+MWqOfEFJBxNotVos3/EydJW5lMa3BmSEMnU/lGkHEXTnu1BMuCnJI4tbiJbrZ6iv9ReqnESochKhmLIegSvfcEnZFTf2I4tbgFAWgdKtz8CsbWG0Bt833GHxCMOGgcUTUaob9lvyPKSDqblAtcekburWHXozzRpoZ9FrE8y22ktrNZY1NTUdxnXF8uXLsXz5ckrXXbdunUvuduZUKBnPs5RgkiSJ93Zfsppcticlvxb/+v0yXlkRxyiGvoLBZMZrO5NxqcB6ot+iNeCzQ9fQqNJj/VRq5QntqW3SYlsCvSOT9jRpDHhlx0Vs2jixW5ti3HSGJElU7fs35fFmnRq1R79E8LoPuxxH8IQIf+QHFHx6JwwNXW8livuNBd8/Ck1pBynH0TEoE8q2vwCORAGP4bMBtAqeV+x5x6KDEBXqT20BW+gB/8XPMovJjcsjGzEPkoETUXfyB1Tt6/r3+VaE4SMolYtQoTF5H0q+f8J2Zzubg8CVb8Br8t2MrsPidG/zGttFHH567SNiW/d4Wzf5reTltXaq9e9P/ybeG9EbmUk/tJd5ac+V4npczKWu0Xk6s4JxkttX2Hwiq8vksj3bTucgKYe+5dgfqcVdakBSoVljwE/n7OvkdGM/qqyz0FfT24luTN4LI4V6Mb5vOKKe/Q2eY1eCZaFBhy3xgs+8xxH28Le0Gg8sQpKo2PMuyL/KkQi+CAF3vGrXkjVHvoChscq+uNy4NGyhFL7zHocsbgGteV5TbTjdUERbkYPSzX+nJptkMjKS/2qDEEjBdaDOa9cXY0MaM617rmWDXptgTpo0CQBw4sSJTnWW5eXlyMzMRFBQkMtKFDkamYiZ7dylgjq8uvMivjqageLam8cV+5KLaK+1P4X+nL6CRm/E/hTbeqbt+fUCveQCaE3kHcGfV8qg0rqulertQHPGKdpzSIMOqpwLlMZy5X4IXv8hBr6bhKC178F33hPwXfgPhGz8DAPfOQ//Rc9AU3yl1UnETvTVBR2OxRXjVyNgxWsA01pKswn153baHZcb50GaDNDXFkNbkQ1jc9eOYl0RuPpNyi5S8tHLIB+1lPG12lN38gfKFpEA0Jj8OwyNlYyuxWKxoJhwJ6O5dPEYPtshJgOOoFckmOXl5cjLy0N9/c3j2pCQEEyaNAn5+fn49NNPb7yuVqvxyiuvwGQy4d57qRvH93aGhXsxEnaubFQjKacavyYW4IEvTuGlbRdQ26RFMo3dyzaY7Mj1FU5eK4dGT89jN62gDqV19GqQGlQ624MooDWYbNpMunEuTLUn6WpdciSeUExcC79FT8Nv/pOQj1wIgtuq42dscpyMW9Plwx3+7T19I6Ke2wv5aGrlR53Wu8Tw2N6NU9HXl6Py9w+Q+eIYZL02CTlvzULm83HI/2gVGpP3gaTpNc6ReiPyH7sgDOvaSMRrygYEr/vQIQ1gJm0LGi/spjfJbEL9WeYPPZ4T1oDgObcsieCJ4DvvSadegw69IsF8/vnnMX/+fGzbtq3D66+//jp8fHzw5ZdfYtGiRXjiiScwe/ZsnD17FpMnT8add3bPE4MrIOCyMTvWfg25lPxaPPX9WahpJksAbusdsbzKJkbz8qvoJQuOdKhp1vQOWZi+ClN/bKZal5YgSWaSQpYwqRo6vSYKG4aAFcyOy40W1nPTszRdOY7sN6ej5vBnMLV0fEBV5V5AyXePoeA/d8GkplcuxZX7I+q53xHx5HZ4jJgHjtwfbJEMPJ9weM/8G/q/kYDA1W+CxXZM24iuKp9RI4ymKJ3xNbkePgjZuAkgnNP6QvBFCH3wKwiDBzllfSb02iYfoHUXc9euXfjPf/6DhIQEFBUVISQkBOvXr8eGDRvA4fTq/x5tVo6LRMK1CtQ2W+6sp0pNkxYsAHQr/QS82+vzbo+BYQ2swUjvBh/t74EkBrvLlhBwb9+flysg7j8etce/oTWHxeZCFDnS7muTZhOqDnyMuuPf2r1WGyyeZcF5wsrrtiC4t4dhQG+hJTsRRV/9DbCxQ6nKSUTRlw8g/IkfKQv0A63HyJIBEyAZMMHeUG1CGpjdI80M57XhMXQGIh7bjNIfn7Pbl70NFpcP+cjF8J71IAQBlp0NewqXucNs3WpdhLSr9wICAvDee+85I6Reh0IiwHt3jcZL25NQ02TfHwKTNpIhoQq7rmmNmiYN8quaYDCaIRfzMaiH7fgsIRczq4GVi+lZji0YGeaQBJMFYGCw3O513DBHGjMVXEUwDPWllOd4jJgHrsy2MkZXkGYTSr57AsrU/Xatcyu36mG2QfCE4Af0oy0YzdRlxY3jIUkS5TtftplctqHKvYDGxF+gmLjWyZExgy1hdq/iSL3svrZk4EQMePM0mq/+iYYLu2FoqABp0EJbRt/ExW/Jc1BMWAuOxDVl51wmwXTjGEJ9pNh0/0TsSy7CH6nFqG9xTM0eFRbF03c36IrLhXXYnZiPpNxqtJeU9PYQYEFcKJaMCoeYQd2pM5g8OAA7z9LrzJaLeRgaRu+LblS0L0K8xCipU9Ga12mdfr5uwfVbyC5vxIHUYuRVNsFoMkMm5mHK4EBMGxIIoRN251kEG77zHkPZtheojWdz4TPrQbuvW3P4c4cnlwRfDPnoZVbfV0y6GxU/v05rTa/J6+wNy42DUGWfo6eTCqAuYSs8J9zpkqL5fL8o8P2jaf+fZLFzHXJ9FsGGx7BZ8Bg268Zruf+3CJpi6kfwgqBB8Jn9iEt+vm241jaQG4cgF/Oxbkp/bH1iOj69bzxevoOZPiWder9BQXLEhtv/dNfGrnN5eG5rIhJzOiaXQKsW5OaT2Xjyu7Od3IV6iih/GQYH03uKnBsbAh6Hnjg9m2Dh9VXxjFUDgNbG3lXjIhnP72vUNWvx9ObzePzbszh0qQQ5FUoUVDcjraAOnx64grWfHMehS/QUAqiimHAnfGY/Ynsgm4OQ+/4DYcgQu65nNuhQe+I7u9awhGLyug5+5rfiOWY52DR2f4ThIyCKGuWI0Nw4gMbkvbTnaEszoKtkrtnrTFgsFhQ0H2A4Mt8bWq/OwGfuo/TGz3Ht5BJwJ5h9Gg6bwMAgT8SEMNs+l4t58Jfbrp8K8RLj9VXxDvtlP5xWQslTvaROhZe3J9Hu3nYWD84eDB6H2p9UoEKEOxgmeSHeEnxy73gMCGR2xP3YvCEYGua4h4HeTF2zFn///lyXhgJqnREf77+Cl7cnobLB8Q4Z/kufR/D6j8D3i7L4vrjfWEQ+uROyEfPtvlZT2kGYWmybJ9BBOmQG/Bc/0+UYttAD4Q9/R6lBiesVgrC/fenyN8/bCaOSmUKIsckx9eLOQDF+NQQ07BQD7ngVLLbzTsxksXPht6jrv6M2fOc/CXn8YqfF4ijcR+S3AVIhFwSLRVugWyER4M018fjqaCZOZZTDaOo4n8chMH1IEDbOHAgPIfMdtfbojSZ8SyG5bKO4tgWHLpVg2ZgIh1zfHgYGyfHP1fF4a1cKNHrrzTvBXmK8s3Y048+soUWHXefzUVjTuQOdQ7BAECyLwvuh3hLcO20Axg90DY00V+Dfey+jiuIueHJeDTZsOoHR/XzxyJwYBDjQCclz7B2Qj1kOVfZ5qPOTYdZpwBbJIB06HYIAx5lFqO3ogr0VQiCB1+R18Fv0NKUbryg8FlHP7EbZ9hehLkjtPIDFgsew2Qi88x1wPXwcFqcb+2GaWDkzIbMXgidE+KObUfjZBmhLM6wPZBEIXPVGtyR0vvMeB1cRhOoDH0Nf2/nUhOsVDN/5T0IxbpXTY3EE7gTzNoDHYWNsf1+cy6InqDxpsD/kYj6eWxqLv80ahJPXylHVqAFYQIBchKlDAh2WWLZxJrMSSjU9+Zz9yUVYOjrcJXY8Rkb64H8PTsa+5CIcSitBs+amdFOwQowF8WGYGxsCEZ/Zn15FgxrP/5jY+nOwgNFMAmYSUX4eGBTsCb3RBKmQizH9/DAsTOESn5GrUFTTjJR8+jqQSTnVyCprxAfrxiLcV+qweFq7aMdDHD0KTelH0ZJ9HjVHvgRbKIVk0GRIY6aCRdArqbgVUs+s+c971oMg9VoYVQ0guAIIw2MhH7UEbIEEhoYKGFvqwOLwwfMO6bL7WxA0EFHP7oGm5BoaLvwKY2MlQLDB942A57iV4HmFMP2vuXEigsABneCMWAIAACAASURBVHRObUJwwPdz7VIcrswXUU//ivoz21GXsBX6msIb77HYXHiMmAfv6RutNrA5A88xyyEftRQtmafQnHkaZm0LCIEEkgETHPId0J24E8zbhIXxYbQSTC6bwJzhN7/s5WI+lo52/i4h3SQYAErrVSipbUGoj+Nu9vbgJxfh/pmDsH5qf5TUqqA1GCEV8hDsJQZhR4KnM5jwyo4kq8lle/KqmhAd4IGnF3ctXnw7c/BSCeO5SrUer+5IwtcPT3GYPBdJkqhP2IrqQ5s6uevUnfwBXK9g+C18Gp5jmAmXAwCbYbepOHoMPIbOuPFvs1EPZfI+1CVshabw0s31RTJ4jlsJrykbunRnEYbEQBgSwygWN92P5/jVqD60iZqt4l/IYueAI/V2YlSOgeCL4D3jfnhNuw/asgwYm1sflgQB/RzSNc4EFkFAGjPNZSwfmeJOMG8T4iK8MWGAH85STOCmxgSiSqmBVMjt1l0vpuLfTRrXE3nncdiI8vdw2HonrpahlEb3+JG0Uqyd2A/+XRzlmkkSl/JrcSitBBV/1Rf6yYSYHRuM+ChfsIm+u+NZZKHEgA7VTVqcvFaOuSOo2dx1BUmSqNz9dpe6mIa6UpRu/jsMDRXwpdkQ0IYsdi5qDm2iNYcQSiHpP+7Gv42qRhR9uRHqvOROY01qJWqPf4O6U1sQcu9/IBsxj1GcblwLnlcwPGLnounSH5TneE3rXU56LIKwu4nOTUfcTT63CSwWC88tG4Ex/ahp6B1NL8Vj35zBg/9LwL7kQhhMzITE6cLnMtv+ZzqvN0HXH54EcCDVevdzdnkjHvj8FF7anoSEjArkVCiRU6HEmeuVeG1nMjZ+fhLXShzbEOJKmG6VJ2AA3Z+JNRoSd1EWXa/a+wGa0o8yuo4wdCiENI/7PMeuBMFvfUgxG3Qo+uI+i8lle0ijHsXfPtbBn9xN7yZo7Xvg+0dTGuu/9AWI3SoAtz3uBPM2QsBl4/VV8Xh+aSxlSZ2imhZsOngNL29Pglrn/G7tgUH0O6NFfA5CvK1LpPQFmjUG5DKwo7xUYLnG8HpZA57dkojSeus7ohUNarzw4wWkF/VNz3KFhJ7IvSVyK5ugp+nGdCskSaLm8Be05tQcoTe+PQHLXgIoWu5xZH7wmfXQjX83nN8FdX4KtQuZjSjb+QpIc/c8nLo6JEmiJescyn95E6VbnkHZzlfQePF3mA3dp1VsDxyxHJH/2AVJzFSrYwiBBIF3vguf2Q93X2BuXBb3EfltBptgYfrQIEwfGoSKBjW2nsrG8Su2LasuF9bh7V9T8fado+yqI7TF3BEh+DEhh9bu0uzhwRD08R1MtY5ZCYClhwK90YQ3fk6B1mA7MdIbzXhrVwo2Pz6dcWOSqzJtSCBOXC23ex2twURbz7Q9qqyz0Ffn05qjzk+BpjQDQhoyK22I+41B6MbPUPLd4yCN1ktSOHJ/RDy2BVy5H4CbNaJ00FcXoCXrLKSDJtGOsy/RdPkIKn/7P+iqOpox1CdsBVviBZ+ZD8B75oNguZhD2a1wJApEPLoZ2vJs1J/+EZriKzAbdeBIvCAbMR/yUUtu7Hb3FgyNVTA214DF5rU2qTG0NnXTmb51x3BDCx6HwMlr1G+wKXk1SMmrwaho+6zqukIhEWDW8GAcotiAweMQWBwf7rR4XAURn5nch6Wk8NS1CloOT00aA/68WoaFIx3r1NTTxEf5wl8uRCWFpilrECxATCHxJkkSquzzqD+7o9U9xGwGR+4HzzHLoauil1y2oc5PYZRgAq21mPwXDqD2xLdoTPqtgzczW+oNxYQ18Jp6Twe5IF1lDrTl1CXE2lAm7+1TCSZpNkFTlA5jcy1YbC4EgQPA9QywOr7u9DaU73jJ6vumlrrW5LMyD0F3f+DySSYACAL7I3D1mz0dBmNIkxHKS3+gLmEr1LlJN15vc6TymrrBofJgtyvuBPM25uClEtp1aPuSi5yaYALAI3NiUFanwpUuxK+BVs3HF5ePQJCXbfHm3o5UyEW0vwftY3JL7koHGbjS/JFS3OcSTDbBwhMLhuKV7Rdpa8S2MSraF2wbCYG2Igcl3z7WOTkrv46WjFNgcZntmJj19rlYCQL7I/iu9xGw7CVoSq7BrNeALfKAMGw4CE5n+TGmotk9LbZtUFbD2FQDFocHnlcw4x0qk1aF+oStqDv9Iwx17R6AWQSkQ6bDe/pGSAaM7zBHlXsR5TtfobR+Q+Iu8AOiO5QkuHE8Jm0Lir9+GC2ZCZ3eM+tUqD/9I+rP7kTQXe/1Gr1JV8WdYN7GnM+qpD3nYm419Eb7jgRtweey8e5do/HNses4lFYCnYWj3Eg/Dzw8ZzCGubgjDUmSKK5tgVKtB5dNIMRbAglD//RF8WH4eP8VyuNZgMWksLCafvd0YU0zSJLsczqaIyN98OqKOLy355JFcXpbLIrvOunWVuQg/98rYFI3Wh1DGpglimxx1/XKJElCnZsEXVUeSLMJXLk/JIMmg+B2rD1li2SdEiNLsCwknVRgOs8eSLMJTWmHUHdqC1Q5iTdeJ/hiyMcsh9eUDRAE9KO8nkFZjcJN66Ety7R0MTRfOYbmK8fgt/i5Dh3+Ncf+R0vap/b4N/Cadp/FBN+N/ZAmo9XksgNmI8q2Pgs2XwxZ3ILuCa4P4k4wb2OYSPuYSUClNYIncW7NI4/DxiNzY7B+an8cTy9FXlUT9EYz5GI+Jg8OwKAguUsnOzqDCYfTSrAvuQjFtS03XudxCEyNCcTS0eGI8pfRWnPqkCDsOpffZWNOe2YND7YoUWRkoAhgMpMg0Zq09jXGD/THt49MxYGUIuy+UEA50YyN8MLIKOuOM6TZjOKvH+oyuWQKi82FdPBUK9c1of70NtSd/KFTzR9b4gXFhDXwmf0Q2EJ6Elp8vyiw2FyQJnrfG4KggbTG24tZp0bRNw+j5dpJC++17kLWn9lBeYfKrNei8PN7LCeXt1C19wNwJJ5QTFwLfX0Zmq8cpxW7sakGTZePQD5yIa15bqihvHTQdnLZjvKfX4d02Cx3ws8Qd4LpwpTXq5CQUYEGlQ4cNoFwHykmDQ5wWEMLVd/sW+lOSSCJgIsl3SDw7kgaVTq8suMiciqUnd7TG804crkUx9LL8NTCoZgTS925RMBl4+21o/H81kSb9obxUT54fL5lTTeFVHBD85IqCgnfqc1dPY2vTIh7pw/EXZOj8e6vaTif3bVebEyIJ15dMbLLz6Tl+unWeksn4DFiHriyzqUqpMmA4u+esKpXaGqpQ83hz9B05RgiHv/R4hrW4EgU8BgxD8rkvdQDZRHwHL+G+ng7Ic0mq8llB2jsUDUm7Ya25BrlGCp/ex/y0cuhKUyjtXvZhrog1Z1gOgm6TWruhN8+3AmmC1JU04yvjmYiOa9z7dKXRzKwYGQolo+JQGmdCjqjCR5CHiL9PGiLYg8MktMS7gZa/ayFvL7dsW0PrW47lpPL9phJEh/tS4eYz8HEQdYbBG4lwFOET+4bjy0ns/Hn1fJO5QNeUj4WxYdj5bhIcNiWHyCmxQRi+xl6ic/UIYG0xvdWeBwOXls1EsfTy/BbUkGnmtcATxEWjAzFklHhNstE6s9sd0qMBF8M33mPW3yv/Od/UhLD1pVnoeiLjYh6djctv2jvafdCmbIPoFizKhsxHzxF9/3uNKUdsp1ctqP8p9e63KEiSRJ1p7bQisGkboQydT+tOe0x6+g9/LmhhkFZBVXuBdrzlMl73QkmQ9wJpgNRaQ04dqUMCRkVaGzRgcshEOXvgQUjwygf6V4va8BL25KgsqI52aI14Kezefj5XF6H73g/uRAL4sKwcGQoxBRr/BaODMOxdNsSRR3nhLr00XRPc+Ryic3ksj1fHMnAuAF+NhtF2qOQCPDUwmG4f+YgnMuqRG2TFhw2gRAvCUb387G51ry4UOw8m0ersWVhXN9p8KlsUCOrvBF6oxlSIRex4V4d7B4JFguzhgdj5rAg5FU2oaxeBZOZhI9MiJgQT8o7ubqKHIfHTggkCHvoW4sdrvq6EtSf2UZ5LU1xOpRph2ndPEURcQi44zVU/PKGzbH8wAEIWvsu5bUdQR3dHarmWjSlHYI8frHF9w11JZSOxm+lKe0wPCcw27nl2KitdcMMY5NlTWDb83q2Sa03404wHcS+5EJ8c+x6J23BgupmHEsvw6AgOV66Iw6+MusdjI0qHV7dmWw1uWzPrblBVaMG3/15HUfSSvDOXaPhL7etRTYwSI4hoQpctdGt3YZczMPMYcGUxt6OkCRJ29mltkmLCznVGD/An/b1JAIuZg+nfsTehq9MiPVT++OHE1mUxq+ZENUnOvUvFdTg+z+zkFXe8QFAxOdg9vBgrBwXBW8PwY3XWSwWogNkiA6gVyvbBmlmZkzgEbcAzelHO2hUEjwR5KOXwXvm38D3Dbc4r/70dso7izfmnNpCe3fGe/p9YAulqNj9DkyqBotjPIbNRvD6D8EWMfvsmGBoqoEq+zzteY3Je60mmEYVs/pZo6oe4n5jQAgkMGtbbE9oh3TYLEbXdNM1LA6z5sqeaFLrK7gTTAfw09k8fPdn1/pwmWWN+McP5/DJvRM63MTa80dqMZrUzLy42yitV+GlbUn49L4JkAq7/oNisVh45Y44PL35PMpsNI6I+By8uWYU5d3R25GSOhWKaujdTADgdEYFowTTHtZMiILBaMa2013vsq0YF4kN0wZ0U1TOgSRJvLv7EhIyKiy+r9YZ8VtSIRIyKvDu2tGI8HOMfzzHwxf6GnoPHCwODyEbPoZZp4a6IBVmnQpsoRSiyJE2m3KaM07SjlGVewFmnZq2OLbnuJWQxS+CMuUAlJf+gLGlDgSHD2HoUCgm3QW+b/fXTTtjh4rgWv6utgXBFYItkEA+ZjnqaRyxC4IHQxQRx+iabm5Cmk1ovnoCjcm/w6isBovNAc8vCiyeCKSeXgmCIGiQk6Ls+7gTTDu5XtZgM7lso6ZJiw/3Xsb/3T2m03smM9mlbzQdyupV+P1iIe6ebFuGw1PCx8f3jsemg1dxJrPS4rHpkFAFHpsb47Abb19FqWJm+aa086GCCSwWC+un9seY/r7Yd7EIJ6+V3/Cb57BZmDwoAAvjwxATouj22ByJmSTx3JZEm5qqAFDfosPLO5Kw6f6JUEiYJRbtkY9aCnXeRVpzZCPmg+DyQXD58Bg6g9Zck4a+lWjrvGZG7isEVwDPsXfAc+wdjK7raJyxQ8XzCQVbJINJTb3sBQCE4cMBAD6zHoIy5QBMLRTsVlkE/Je+4C5BspPmaydQtuNlGOpvKf+6fobReopJax0Q1e2JO8G0k9+TCmmNv1RQi6KaZoT5SDu8XtWoRm2T1sos+vyRWoQ1E6KsNnq0Rybi4eU74lDbpMWRyyUorWutOfP2EGDG0CBEuhNLSnAZaoMynecIBgTKMWCJHI/Ni0Fdiw4gAYWUDyGvb3w1bD6RTSm5bKOuWYd7/nsCAZ5iTB0SiLmxIfBk6FkuH70Ulb+9R+uIVDF5HaNrAa3NP4zmCXp/+QMA8BTBjI6kBYHWd+gJrgCe41ah9vjX1BdkEVBMuPOvmIIQ8dhmFGza0HWSSXAQfPcHkA6eQv06bjqhTD2A4m8fY9S9bwnJoMluRx87cH1PKhemWWNAQqblY7euOGjBBlGjt+0LTYe6Zh2ul9GrH/L2EGDtpH54bmksXlw+Ag/MHOROLmkQ4iUGn4H0U7R/z3/GAh4HQQoxgrzEfSa5bNYY8Etinu2Bt6AzmlFY04wfTmTh7k+PY9e5PJAMnH7YAgkCV1G30/OccCfEUfG0r9OGOHo07TmC4MFgCySMr+lKEDwBPMfQ301VTLyry/e9pqwHi4b7jyx+EXheN2vVhaFDEf3CfnhNvRfErZ81wYEsbiGinvnVZXaCeyv62mKU/PCUw5JLnk8Ygjd85JC1blf6xp2kh6hsVMNoon/jaS+83Yatekkm2FvP6YYeYgEX04YE4VAaNR91oLVjee4I+o06bmxzNL2U0d9ne4xmEt8cvw6d0Uyp5ORWPMfeAdKoQ9nOVwCz9YdIzwlrELTmbXtChdfkdbR1/rwmr7frmq6GYsp61J3eBlBssBIPmABhcNc1djzvUIRu/AzFXz1oU2ReGD4CQXe+13kNRSACV/0T/kuegyo3CSZ1Iwi+GMKw4bS0SN1Ypy7hxw6NcfYgGTQZwRs+AtfDupGCG9u4E0w7MJmZPSmZLDip+HgIEOYjYdQkYg0uQyF1N8xZMjocR9NLKXu8T40JgI8HM2/k3kBtkxYnrpWhtkkLgmAhWCHG1JjAbmkWS813nLzI1lPZiI/ywcAgahIy7W01FRPXQtxvDOpObUVD4q6bR7gEB7LYOVBMXgdxv7F2194JAgfAY/gcNF0+TGk81ysE8lFL7LqmqyHwj0bw3e+jdOszNjvquV4hCLnnY0rregydgYgnt6P859ehLc3o9D6Lw4N06Exw5X4o3fo0QJLgeYfCc+xKCAJvHrESfBGkMVNp/Z/c2MZs1KPh3E+050kGTgIhEN/wqhcEDoRi0lr3sbiDcCeYdsC0EcBL2nkei8XCovgwbDpI3TGiKwgWy3283QNE+nng7wuH4d97L8NWitkvQIbH5w+lfY3immZkVyihN5rhIeQiLtIHIr5r/SlXKzX46mgGzl6v6tQ49tXRTMwaHoz7pg90atwqLTOZIGvsvViIgUGxFt8jSRJXiuuxL7kIyXk1UOuMEPLYGB7ujUXxYYiLjGzdwVr2IoxNNSDNJnCk3mA7uP4xeMNHKPjv3dAUXOpyHMfDF+GP/sCoucfV8Ry7AgRfjPKfXrXaIS4eMAEh93wMrsyP8rri6NGIfvEPqAtSoUze15qUcPngyv2hykuyKHBfe+wriPuNRdBd71uVl3JjP8bGSkaWrCZdCyKe+NEJEbkB3AmmXfjKhBgaqqDVRAAAM4YGwUySyChpQGWjGgSLhQBPEWYODcLvSYUooemuY4nxA/wsJrJunM+s4cEQCzj44nAGqi1YOhIsFqYNCcRj84bQSrAu5FThl/P5SC/q+Psm5LExc1gwVk+Icond0OLaFjy/NRH1LZa76rUGE/YlFyGztAHvrxsLiZN2Mx2dvJ7KKMej82Ig5neMt0VrwDu/piI1v6NMjkZvQmJ2FRKzqzAoSI7XV8XDU8LvUJ/naNgCCSKf3IGqfR+i/txPMGuaOw4gOJCNmAf/ZS+BpwgESZLQFKVDW34dpNEAjocPpIOngOD17u8O2Yh5kA6dgabLR6BM3gtDUzUIDh+CwAFQTFzL2B+dxWJBHDkS4siRAABtZS7yP1rVZQOPKicReR8uQ+Tff3LvjDkJM8OjcdLATPnDDTXcCaadLIwPo5VgBngKUVDdhP8evNrJDzrUW4JpQ4Nw9HIJKhq69pruChaA5WN7l393X2P8AH+M6eeHi7nVrc5Oaj14bALRATLMjQ2xqoVqje2nc7D5ZLbF9zT61oTtzPVKvLt2dI/uXGsNJry286LV5LI9uZVN+L89l/D2nfSbU6gQG+5l0W6VKUYTiRqlFmLfmwmm1mDCy9uTbDbUZZY14rmtifj43vFOS6jbIHhCBNzxKvwWPg1l6gHoqvJAmozgegZANnIhuDI/kCSJhgu7UfvnN518ttkiGTzHrYLPnEfAkfRemSqCw4N85EKn2fyRJgOKvthISYLI1FKPoi82ot9rx63aUrphDkfixWyeu8bSqbgTTDuZNCgAJ/qVITGn2uZYNgsQ8bj4+phl3czi2hZsOdla6zWuvz+OppeiWdN1UbklHpkb0+v1C/sCbIKFsf39MLY/9WM4SxxOK7GaXLanoUWHV3Yk4bP7JzGW1rGXU9fKOz04dcXF3BrkVCjRj6FbTlfMjg3B5pPZN/Q9HcGtx/0/nc2lrNZQXNuCH05k4bF5QxwWT1cQfBE8x63s9DppNqN858tWvdJNaiVqj3+NpvQjiHhiG3he7iY0SzRdPgJ9TSHl8fraYjSlHYY8fpHzgrpN4Ug8IRk4ES00tS7lI90/C2fi7gJhCEmSUGkNIEkSL94Rh/EDuk4i+JzW3au8KttiyMl5NWjS6LHtyRl4Y3U8nlwwFM8sHo6P7xmHRfFh4FrRtvT2EODFZSOweFQ4k/+SGxfEaDJTtnQEWuWpfr9Y6LyALFDZoMaVojpcLa7HngsFtOfvp2mvSRWZiIclo8Mdth7BArzblZ0YTGYcTKWuGAAAx9JLodLRf2h0JNV/fGI1uWyPvqYIhZs2wKyj53xyu0DX9xwA6k+76/2cBV0NWUIkAz+gP9QFl6CrLmAkReama9w7mAy5UlyP5f86AqDV03tBXChmDQ/G4bRSJOVUoa2J2EvKx/wRoYjwk+LNXamU1z+WXoaV46I67X4NDlFg/ZT+OHK5FNfLGqEzmuAh5GLCAH+M6e8LNuF+ZuhLnMuqonTc3J6Dl4px1+R+Vh9EHIGZJJFwrQJ7kwtxrcSyHzVVrtKsYabDfdMHoFqpsWoTSYcx/fzgIbp5vJmcW4MGmu5NGr0JZzIrMSe2Z3YFjapG1Bz9kvJ4XVUeGi78Ci87BOD7KpqidNpz1EWXnRCJGwDwGDYLkpipaLl2ktJ40mhA3gc3Pej5/tFQTF4HxbhVfbL5rSdwJ5gMaf+wc72sEdfLGhHgKcJba0bhxWWxaNIYwGUTkIl5IFgsvPsr9eSyjX3JhRa7jD1EPKwYF2lP+G56CUm5tksvbqVRpUdOhRKDgz2dEBGgN5rw/p40nLle6ZD1NAbHdnu3h00QeHH5CAwIlOO3pALU2OGWtSg+rMO/KxuZ7ewxnecIGhJ30W5sqEvYCsWku90WhrdgZtAgQhp0HSSs3DgOFsFG6MbPUfzNw2jJOGVz/K2e5LrKXFT8/DrqT29D+KObwVMEOitUq5jUSjSc34WW7PMwa1tACKWQDpoE+ejlYAulthdwMdwJpgOpaFDj2a2J+PTe8fCTd3wCukChRvNWEnOq8bijgnPTK2lhUINrzzxbkCSJf+9Nd1hyCcD5TS8sFlaMi8SyMRG4mFuNgupmGIxmaPQG7E0uoiTGPjc2BHGR3h1e6405AtXdnfboyrNgaKjokRuuK8OReFqVQbI+R+FOLp0IWyBG+MPfQZl6AHWnf4Q6N+nGeyw2F6TZZNPpR1eRjcJN6xD17B6whd3TMEmaTaja+y/UnvgepKHjQ3Bz+lFU/vY+vGc9CN+5j4PVi04p3Qmmg2lo0eF/RzLw2qqblm9GkxlaA30rSGclCW7sx2Q2o6ZJC73RDLmI1+Ho1JEIecx8ypnOs0VGaQNOXit36Jqjo7vHycRS09WYfn5485eULjUzF44MxSNzYzolBv5yZsdoAZ49d/xmUtuuAbeEWdMEwJ1gtsdjxDzUn9pCb07sXCdF46YNFpsD+aglkI9aAn19OYxN1WCxuSjd9jy0xVcoraGrzEXtn9/Bb8FTTo62temu5IenoEzea3WMWadC9f6PYGioQNDa93rNQ4o7wXQC57OrUK3UwFfWqknIJljgECwYKbq7tGEmSWj0xj7jDW0PRTXNSMmvhVprgIDHwfBwL6d0HtuiWqnBgZQiHEorQaPqpvba8HAvLBoZhvED/RxaBzskVIE/r9JL6IQ8NqL8nfPZ7HNwQw4LwIKRYTbHOYvYCG9sfmw6jqaX4kBKEUr/0qAVcNmYOiQQC0eGWf09i4/ygULCp1UjK+SxMXFggENiZwLT2jJ3TVpnvCato51gumtZuxeeIhA8RSDURemUk8s26s9sh+/cR8FiO/eEpe7Ed10ml+1pOLsDovBYKCascWpMjsKduTgBMwmcuFqG1ROiAbSK8w4O8ewkkG0LvdGM57Ym4v27x7qcU0t3kV5Uh62nsi1+dgOD5Fg7KRpj+tknA0SVxOwqvLv7EnQWdqMvF9bhcmEdYiO88NqKkQ6zQpw+NAhfH7sOjZ56neKMoUFO+X0xkyTOZDruaBwA5o8M7dEdPQCQCrlYPiYCy8dEwGAyw2gyQ8Bl29wl4LAJLIgLxdaEHMrXmjU8uFv/lkmShKYwDXUJW6HKPg9js23NxlvhKoLAVQQ5IbrejSCwPxST7qbcGe454U7GAu+9HW3ZddSf2Q5tZQ5gMoEj94M8fgmkQ6aBRTjntKU9ypT9tOcYlVVQ5aVA0n+sEyJqhTSbUPvnt7Tm1P75DTzHr+4Vu5i95zC/l3Grg8ui+HBG62SXK/HJfvrdin2BP6+U4fmtF6wm5tfLGvHazmT8lkRfGocuaYW1eGtXisXkssO4gjr88+dkGB2kvSjkcbBsTDjl8XwuG0tHO0dkX6MzOlRTcuJAfzwyJ8Zh6zkCLpuAkMeh/OW9cnwU5WaqCF8p7pk6wJ7waGFSK1G4aT3y/rUUjRd+haGhHKSRfmOKYuJd3ZIE9EYCV70B+ehlNsfJRi1B0Jq3uiEi18LQWIn8T9Yg5505qDu1Gaqsc1DlXoAyeS+KvtyIrNcmozkjwelxGCmI4VucR7PGli7N107C0EDvhEpXkQN13kUnReRY3AmmkyCIjjeo8QP8EOLFzHc4IaMClTTEq/sC10rq8eHey52ErS3xxeEMnM+qclosJEniv39cpVzikF5Uj2PppQ67/t2T+2NqjO36Ny6bwMt3jECIt8Rh1+6wPscxXxeh3hI8Pn8IXl4RB44TpZS6Az6XjbfXjsKo6K4dQWJCPPH+urEO29m2hUmrQv6na9GSad/Nmy316jXHcT0Bi81B8IaPEXr/5xBHj+n0vih6NELu24SQDZ84/ajV1TA0VCDvX8ugyj5vfUx9KQo/vwfKtMNOjYXpZ09wnWtYoS29ZnuQBTQlzOZ1N7fnuWs3EOjZMZnksAm8dedoPLP5PGqb6UmlkAAOpBZj44zb53hl++lcmGjUrP6YkI2x/X2dcmyQVlh3ozaPKvuSizAnNsQh8bAJFp5fFotIPw/8llRgD/DI9wAAIABJREFUseZvaKgCG2cMxCAnSRMBAI/DRpiPBEU1LbTmDQqWY25sCAiChSCFGIODPXvF8Q5VxHwu3lozCplljdh3sRAp+bVQaQ0Q8jkYHuaFRaPCMDzMq1v/z1X7/w1tyVW71iCEHgh/+HtwpMxs+G4XWCwWZHELIItbAF1NEQx1reL7XEUw+L7hPRtcD0GSJIq/fZTa7pzZhJLvn4Dw9RNOUyoQBg8GE7VeZ5c0MPZQZ3AS0RO4E0wnwGUTmDG0c81SgKcIzy+NxbNbE2mveb3MPjFrZ6MzmFBS2wKd0QSpkIcQL3GHG2qTWo/Dl0uQUdIArcEEiYCLMf18MXlwAHicjsdv5fUq2h7SuZVNyCpXYmCQ3CH/n/acuFpGe05uZRPK6lUI9nLMbiLBYmH1hCgsHxuB81lVyC5vFdmXCXmYMNAfEd3kP75gZBg+P0Tv6Xnd5P4YGdW3PX9ZLBYGB3s6TXuUDiatCg3nfmK+AIsFacx0+C9/CQL/aMcFdhvA9wkD36fnmtZcBU1hGtT5KZTHkwYt6s9sg//iZ50Sj3z0UlTseRekXmN78F9IBk8BzzvUKfG0wZF62x5kcV7v+D51J5hOYPrQQKuyNWIBs49cZ3Bc7ZsjKa9XYW9yEY6klUClu9mIEuwlxqL4MMwYGoQfE3JwIKW4U/1eQkYF/nckA+un9u9Qo3q5iFm9zKWCWqckmHSddNrPc1SC2QaXTWDy4ABMHtwzncgzhwZhW0IOlGpqT94RvlKMiGT2JWoJM0mitkkLjd4IMZ8LLym/T+2GOoKmtIMwa+ntMgOAx/A5EEXEQTZygdt/3I1d1J/ZRntOw9md8Fvwd7DYjk9L2EIPKMavQd3J7ynP8Z6+0eFx3Iosdi4qfnkTMFOXMWRxBfAYNtOJUTkOd4LpYEK9JXhg5mCr70uFzPQSPUSuV7+TmF2Fd35Nhd7YOfktrVPhi8MZ+OFEFjR66388TRoDNh28hvoWHTb81QCh0TFzdlEznGcLprJDbKLvJT5iARf/XB2PF3+8YFPb1UvKx+ur4kE4IAFsUutxKK0EB1KKUNl4cxciwleKhfFhmDk0CAK3nBcAQFfNrOlNMnACvKZscHA0bm5HVLn0m1CMzbUwNteCK/d3QkSA/7IXoC3NgCr3gs2xvgv/AengKU6Joz1cuT88hs9G06WDlOfI4xeBLep+iT4m9O4KexdjWJgC/1o/FlKh9WTQx0OAaH/6x5njBzjnj44pV4vr8dYvKRaTy/Z0lVy2Z/vpXCRmtzbqMJVxETtJ/iXch/4uJIdgOXz30lUYHOyJf28Y1+XvcWyEFz65d4JDJIhyKpT42/8S8O3x6x2SSwAoqG7Gf/+4ise+OdOjFowuBYXGOIvTzK55SuJIzAYtGhJ/RdHXDyH/kzUo/PxeVB/8LwxK+k5rbixDkiTtzugbcxnWJFKB4AoQ/tgWeI5bCVhRRWCLZAhc/Rb85j/ptDhuxX/xc5QTRo7UG74L/u7kiByH+5GfIXwuGzIRDwIeGzHBnlgYH0apeYHFYmHxqHB8tI+69JCYz8H0Ia7jokGSJL44fI2SxR4dfk3Mx9j+fogN9wYLrc1NdLjVys9RzBsRip/O5tGKZ8JAf8ic5O7jCkQHyLDp/om4XtaIo+mlqFFqQLBYCFSIMXdECMJ8HOObW1anwovbLqDZhqtVSZ0KL/x4AZ/eN6FPf+5UYKpZyevjWpf1Z7aj8vcPYFJ1rGdvvvonqg58As9xKxG46p8guIIeirBvoMpJZJYoslhgi51bw0zwBAhe9yH8Fj2D+rM7oS5IhVmvAUckh3T4LMhHLgbB696fP98vEuGPbUHh5/fB1IWcEkfuj4hHN/eqv1N3gsmQgUFybH16FqO504YEYn9yEbIrlJTG3zNtgEsd/2WVNyK3kpnlXFekF9WjpLYFId4SjIr2QVIu9Uaf/oEy9A90fP0lAPh7ijBugB/O0ZBCWjI63CmxuBIsFguDgj2d2rn+9bFMm8llGxUNauw8k4sHZ1svUelO9EbTjVpVuZgPbjdJMsniFqDilzdAGqjXDrOl3pB0w5FgT1F98L+o2veh9QFmIxrO7oC+Oh/hj211ujxNX0aZeoDRPFHESLCFjnkwtQVX7t8tNpBUEYXHot/Lh1B/ehvqz26Hsd2OOlcRBMXEtVBMXAuORNGDUdLHdbKW2wgeh40314zCKzuSbCZq66b0x+JR4ZTW1RtNIFgsp2sLnsqocNraeZVNCPGW4M5J/ZCaX0tJe5KF1k5lZ/LUwmEorjmH0nrbckUbZwxETEjv+iJwRaqVGlzIoadveuRyKTZMGwABt+eEwfMqldibXIQTV8tvCPMLuGxMHxqExfFhTu/454jlkMcvQcP5nynPUYxf3WeTqubM010nl+1Q5VxA3ofLEfbgV71qp8iVMDbXMponGTjRwZH0LrgyX/gt/Dt85z0GXVU+TNoWsAVS8P2jeq3RgTvB7CE8JXz8e8M47E0u6tS4wAIwKtoHS8dEYGRk13IEZXUq7E8twvH0shu7JX5yIeaNCMXc2BB4Shx/02hk2FVNBb2p9YY8ONgTzy6NxQe/pXWph8kC8Oi8IRjdz9dpMQGATMTDv+8Zhw9+S0NKvuUvUBGfg/tnDOxRb+2+REJGBWhIoQIAWrQGpOTVYMLA7q9ZJkkS2xJyLFpHag0m/JFajD9Si3HvtAFYPSHKqd3v/ktfgConEfraYptjBSEx8JnzqNNi6Wlqj39Na7y25Cpy3pmH8Ee/hzhypJOi6ruwOMxKVERRfe+z1lXloS7hRyhT98PYXAcWhwdh8GAoJt0NWdx8i+UYLDYXgsDuc/xyJu4EswcR8DhYNT4KK8ZFIqusEQ0tOnA5BMJ8pPCVCbucS5IkdpzJxZaT2Z1qA6saNfjhRBa2n87Bs0tiHS5p4yhHF0u0r5+bGhMIHw8BtiXkWEzqhoQqsHZidLdpLMrFfLx71xgUVDXhQGoxciqU0BvNkIt5mDQoANOGBELoQqUMvZ36FnqGBDfn9YwI8c6zeZR8yb8/kQU2m4WV46KcFgtH6oWIp35C0ef3Qlt+3eo4UdQohD34NdgCZi5jro6+thgtGadozzNrlCj87B5EP/cb+H7O+zn1RYTBg6G8+Du9SSyizyRVQKvHeOWed1F7/JuOr+s1UOenQJ2fgsrfP0D4w99AGDKkh6J0Pu67oQtA/FXLRocdZ3Kx+WR2l2P0RjPe/TUVbGKkQ3d0ovxlABxnhdiGVMhFbHjHRp2YEAXevWsMyupUSMmvgUpnhIjHxrAwr24TF7+VCD8PPDav734puAochvJQph7ohq5sUGPLySzK4787noVpMUHw9nBeQwFPEYjoF/ej6fIR1CVshSrnAkCaAYID6aBJUExZD+ngKb32+I0KmtJMxnPNmiZUHfgEoff914ERdS/qonTUJ2xB05XjMKmVIHhCiCJHwmvyekiHTHPKz95z7EpU7f0QpIla7TQAeMTOAVfm5/BYugOSJKHKuXBzl5LNhb6uBJqC1C7nGRsrkP/xakQ9s7tPJdftcSeYvZCimmabyWUbJICP9l3GyEhvhzUKzRgahG+PX79RX+YoZg8PBt9K7VyQlxhBDL3c3fROwn2ZFfxXK6m7dTiKA6nFtI7zzSSJg5eKsW6Kc2uHWWzuDRtD0mwGadCCxRNSOp43qhrRkLgLzenHYNI0geAKIIqKh2LiXZQsEEmShCr7PJqvnYRZ2wyCL4K431hIh0zvtqTWXtmbpksHYVBWgytzbgmOozHrtSjd8jSUqfs7vq5tQUvGKbRknIIgaBDCHv7W4bWmHKkX5GNXoOHsDspzvKc5X9TcGbRknUX5z/+EroLa/fhWzNoWlGz+B6Jf2N8nDSPcCaYLkVepxJnMSjSq9eBxCPQPkGGSBSvF/SlFtNZt0Rpx4lo55o1wjO2VRMDF3NgQ/H6x0CHrAYCfTIhV491HUW5uMnGQP/71OwtmmrqOqVZqZJ3Jn1fo24kev1Lm9ASzPSyCAItvW5eUJElUH/wPag5/1qkTXV2QitpjX0EWtxBBd39g9WhdmXYIVXv/BV1lbofXa49/A64iCD5zHoVi4lqn31Q5HvZJl5EmA5qv/gnFhDUOisj5kCYjir5+EC3XTnY5TluWifyPViHq2T0OT6ADV7wGbfl1aAou2RwbcMerEEePcuj1uwNl2iEUf/MoYLbP4ENbchWawksQRcQ5KDLXwZ1gugAZpQ34+mgmMko7+41/eSQDi0eFY+2kaLAJAmaSxPF0+jezo5dLHZZgAsD9Mwciv6oJV4rrbY7lsFldamb6y4V4d+0YyMV9s4vVDTN4HDYIgpaLGoBWFymSJLttR4AkSUb1onXNzGpMnQlJkqjY9U/Unfyhy3HK1P3QN5Qh8skdIHgd68VrT/6Aip9ftzrXUF+G8h0vQV9TCP9lLzn15ySOigdH5ttB9oUut+pmujr1Z7bZTC7bMNSXomLXGwi9/zOHxkDwRYh4fBvKd76CxuTfLf4Rs6XeCFj2IjzHrnDotbsDXXUBSr57wu7kso36cz+7E0xHc+7cOXz55ZfIysqCwWBATEwMHnjgAUyePJnS/IqKCkydOtXq+3Fxcdixg/o2fU+QlFONN3eldPLpbqNJY8CPCTnIr2rCKyvioNGbOnh+U8XRx4Y8DhvvrB2Nzw9dw9H0Uoud3jIRD/dOH4DhoV7YdSEfJ6+WQa27+UXjJxdiQVwY5seFdul+5KZvUVjdjCOXS1DZ0Oq84+cpwpzhIRaPxFttJuntYPZEDSbBor/TyrTG1Jk0XfrDZnLZhqbgEir2vIug1W/deK058zQqdv2T0vzaY1+B7x8NxfjVDCKlBovNhWLCnaj+41Pma7io8LpBWYXGi7/DUFcKsFjgeYdBNmoJ6k5uprWOMu0QDI1V4ModWwPJFogRcs/H8F/yXKuoeVEaSL0WbIkCsti58Iid61LSWGadGsq0Q63KCyQJnncIPGLngi3o7MhWd3IzSKPjmgkNdSUOW8uV6LEEc/fu3XjxxRfB4/EwduxYmM1mXLhwAQ888ADefPNNrF5t+0snIyMDADBgwAD079/5qCkiIsLhcTuSsjoV3v411Wpy2Z5zWVX4/s8s3DkxmtG1nLFLwOey8fdFw7B+an8culSC62UN0BpM8BDyMH6AHwYGy3H0chn+fuIcGlWttVBsgoWhoQrMGBqE6UODnK7Z6cZ5kCQJg8kMLpug9PtVXq/CJweu4HJhZ7eK3YkFGBamwFMLhnWotfWSClDRQM8CUiEVdGs9E4vFQoi3BAXVzbTmhXi7npVo7YnvaI1vOL8L/oufBVvY2nBXc+RzWlaVNYc/h+fYlWA5Mdn2nr4RypT90FXlMZovDBvm4Ijsw6CsQsUvb0F56WCnHbSKPe8AJpobEGYjGpP2wGf2Qw6M8iZczwD4LXRde0OTtgVV+z9Cw/mfYdZ0/Bsmfn4dnmNXwG/hP27YOZr1GjQk7uqJUHsdPZJgVlVV4fXXX4dUKsX27dtvJIfp6em499578c4772Dq1Knw8+v6iSozs7VD8P7778fixYudHrej2ZNUQKtRZm9yEVZPiIJczLuRsFElUNGx9qq8XoUDqcVIyqlGi9YAAY+NISEKLIwPwwCajjheUgHumtyvw2unrpXjwS9Pd0qeTWYSaYV1SCusw9WSejwxf6jFJLOwuhmpbV3jfA5iw73+6l5305OQZOvPb9/FQlzMq4HeaL7x0LAwPgzj+vtZ/HkW1zTjmS2JN7RaLZFeVI+nvj+Lf60fd2M3c8bQIPxIQfqnPTOGdr9A9vy4UHx26BrNOSFOioYZ2opsqPOSac0h9Ro0XvwdXpPXQVeVB1XWOVrz9TWFaLl+BtLB1E6tmMAWyRD++FYUblrfqSbUFoLgwS51dKmvK0H+R6thaLBSJkU3uWy3rj3o68tQf3YH1PmpIPUasMVyeAybBVn8EpeWwDK2NKDgP2uhLc2w+L5Z24K6kz+gJescIp/aAY7UG7rqApi1LQ6Ng+vlWt8FjqJHEsxt27ZBr9fjwQcf7LDzOGzYMDzwwAP4+OOP8dNPP+GJJ57ocp22HcyYmBinxusMNHojjqXTk/rRGUw4fqUMc4aH4Kdz9J7G58W21l8aTWZ8duga/kjtLMBcXq/GkculiIv0xovLR8BDyEww93xWFd7bc8nmRsbhtFKQJPCPRcNu7DhdKqjFjwk5uGqhtnNQsBx3TeqHUdG9q6Ozr6DSGvDWL6m4VNCxiab9Q0O4jxRvromHn/zmA43RZMbrPyd3mVy20aQx4PWfLuKbR6aCyyYwb0QodpzJ7VJsvz0EqzXZ625mDAvC5pPZaNFSk2bxEPEwNSbQyVHRQ1vOrBNWW94qz6TKT2E0X5130akJJtDqsx713O8o+/H5Tp3VXeE9828u091Lmgwo/Pw+68llD2DWa1C242U0Ju1plcBqR/PVP1Gx+x34LXwaXtPudZnPsQ2SJFH89UNWk8v26CqyUfTlA4h8+leY9Y5XqVCMX+XwNV2BHjmfPH36NABg5syZnd5rey0hIcHmOpmZmRCJRC5/FG6JgupmaPT0ZX6uFjdg/shQsAnqf6wKCR8TBvnDZCbxf3suWUwu25OaX4vnt16ASkddx6wNvdGETw6kUz4lO3K59MaR6eG0Ery47YLF5BIAMksb8eqOi9iXTK+L3o396AwmvLwjqVNyeSuFNc14dmsiGtqJnZ/LqkJ5PfVj7spGDc5mVgIAvD0E2DhjIOW5G6YOgL/cdqe0oxHzuXj5jjhw2Lb/LrlsAq+tiHOYbJijoKNbaGmeWUevlKENs57ZPLqwBRKEbNwEz0l3UxrvPfNv8By9zMlRUafp8hHGcji24DHYQTPrtSj47zo0Xvi1U3J5Y4y2BRW/vEHZqrM7UeUkQpWTSHm8uiAVLddPO9wPXBAyBMLwEQ5d01Xo9gSTJEnk5uaCIAhERkZ2ej88PBwEQSA3NxdkF1lKY2MjysvLERERge+//x6LFy/G8OHDMXHiRLz66quoqqLnYdzdaBkklwCgMxjhLxdRFvrmsgm8dEccuGwCBy8V4/RfN25b5Fc14dvj1h1ArHEms5L28f2+5CJcLqzDx/ttJ6YkgM8OXsXFXOZdoW46klOhxM4zufj2+HVsP52DayX1nf72fk3MR2ZpI6X1qho1+PrYTYHrAzRltYCOUlzLx0Tgvum2k8z1U/pj9YSek7qKi/TGu2vHwFtqvSnEx0OA99eNwdAwr26MjBpMpWraBLLbatTownQeE1gsFoLWvA3/ZS+CLbZcCsSWeCFg5T/hv+ylbouLCnUJW52zMMGBnEEiXfnbe1DnXaQ0tubQJjRd/ZP2NZxJPYPPs+7UFvB8wsEPcIy8GCGUImTDR2CxWDC21KPu1BZU/vZ/qPztfdSf+wkmBx/Fdzfd/gitVCqh1+uhUCjA43U+guVwOPD09ERdXR1UKhUkEsuF8G31l9euXUN2djZGjRoFf39/XLlyBT///DNOnDiBLVu2WExiXQGmXdNt+yPz40LBYbPw3z+uQm+0/PQoF/Pwyh1xGBqqAEmS+D2pkNa1jqWX4b7pAyERUI/1xFX6xzfnsqqgVOsp73qSALadznEfldtJcl4Ntp7KxvWyzoljpJ8H7poUjYmDAmAym3EgxbandXtOZZTjb7MGQS7mI7tcSTu27Iqbc1gsFlZPiMKYfr7Yn1KEY+ll0Ohba80EXDZmDAvCwpFhiOwhZ6f2DA/3wubHp+F8dhWOpJWgsrH1OC3AU4S5sSEY098XbBfsHgcAcfQYcGR+MCrpPZzL4lvr36WDJoHF5tLeCZUOmUFrvL2wWCz4zHoIXlPugTL1AFqyzsKsbQEhlEIycCJkI+a7VHcz0LoxQ7c+liqy2Lm0O8hNmibUn/uJ1py6P7+Fx5DptOY4k5bs87TnqLLPg8ViwWvKepTvfMWu63PkAQh/+BuwJQqUbHkayuS9nYwBKn55E57jVsFv0TMuXctqjW5PMDWa1i9codC617ZA0LoD0FWC2VZ/2b9/f3z++ecICWnd4ler1Xj11Vexf/9+PPPMM9i9e7fNmHbv3o09e/ZQir8tsbWXSD8pvKUC1NLUwruQW4Nnt5zHmgnRmD08BOP6++Po5RIcSy9DTZMGbIJAoEKEeSNCMSXmpkh7ZlkjimvpPQ3pDCacvFaOhSPDKM+paaKv7WcmSUp6mu3JLG1EboUS0QHuxh8mHLxUjE/3X7EqAJRf1YS3fknF/TMGIsLPg/bvqdFE4tS1ciwZHQG9kf5uvd5g6qRlGe4rxWPzhuCh2YNv1HPKRDyXUyLgsAlMGhSASYMCejoUWrDYHCgm3YXq/R9RniPuPw4C/1ZlC47UGx5x82n5UIsiR0IY0jM19ARPAM+xd8Bz7B09cn1amI2MSxi6gqsIRsBK65ql1mhM+g0kzVrElutnoKsupOQC1R0wadQx61QgzWZ4jl2B+jPbKdVvAgAh9IBZpwbB5UEQPBiKSXdDNmI+jE01yPvX0lapKSsx1p34DqrcJEQ+ub1bd/sdQbcnmASNp/eujsjvuecezJ49G2KxGArFzZoIkUiEt99+GxcvXsS1a9eQlpaG2NjYLq9TVlaGpKQkynE5AjZBYF5cKLaeol9Tk15Uj/SiJDw8Z/D/s3feAVGc6R//zvZdFthdepGOooIFEbFhT0xsCbFFYzuTGC/tkl/KmXIpl7tccmmXHjXNkmKMxqgxJmpiFxRQURGlIx12WVi278zvDwIBt80sS5/PX7rzPjMPsDv7zPM+z/fBHcmRSEuJQlqK40xteX2zS34ytWNSG9pZzhfXswGmC5wvrsP/9tsPLtuz+fBVzHGxaab6D+1VL4kASg0zzTgvicBuUwCPy4GPg21oFtfxnb4WjVk/QV/hvDyGI/RA8KIXO7zmP/thNF08BNJA477B4SFg/pMuejqwILh8cIQSl+tcbdE6KtKV0gh9uWuJFn3F1V4TYHJEnrBorCXTHNtIWyZiCcSIePALFL+/yunvIvCu5+A34z6r10mzEcUfrrEbXLZHX3YJpZ8+hIiHtvS6ZilHdHuAKZG0FOAbDPa/cPR6fYe1tuByuW1Zy5sRi8VISUnBnj17cPnyZacBZkhICJKTk525DqAlg9nUxEzvzh7zk8Lxy/myti9ipnx08Ar8vMSYGBfodC1TEWhX7Qb5SpFf1cjIhs/l0NICvRmtC4LzLMA3JwqYSBUi47pr9a6tN8JJQwPx41lmdZiThjp/Tw80DDVFMKkqABAQ+EVAoHB/FzpXJEXEw1tQ/OFfoC+7ZH+dhxzhD2yGKKRjbawoKBbh6z9DycdrHWeIuDwMWvUOpIPHu8v1fo/n8OmMOuABwGvUbeCKpWi8eAgWrRocoQSSqDHwSV0Jz/hpLs+Ep8wuNoR1cja8O/EcOhkNZ39gZCONm9T2b753AKL+73soj2+F8vj2FoH2VjhceI28Bb7T1todg9l4/iCjpi1N7jHoSi5AEuE4nulNdHuAKZVKIZFIoFKpYDabweN1dMFsNkOlUkEoFMLLy/WaKl/flhm0rVvyjkhLS0NaWhqt865YscJt2U4viQCvLEvGM9vTXdpaBoAvf8/DhCEBTp9qfL1cy/gwtbttdBh+u1TByGZoqAwXS5htkQOARNi7unD7AjfqNU47wW+m1sWRhkHylgfEuWPCGQeY8xiUZfRnKNICdeZe1P/+JbRFWR2OSYdNgc+UVfCMn+7WrAbfOwDRT+xque6xrdAVn//zmCIEiknLoZi4FDxP241K0sEpiHl6L2p/+QgN5/Z0nGfO4cF71K3wnfUAJL1MwLy3o0hdwTjA9L/9UYhDh7rdF1dnvPO8/NzsiesoUlcwDjB9pqzs8H+uyAN+sx6A74z7oSvNgbmpDhy+EMKg2LbmN3u41GR0bCsbYDqCIAjExMTg4sWLKC4uRkxMx8k0RUVFIEnS5mSe9rz//vu4du0aHnzwQQwZMsTq+I0bLWnnwMDenQkJ85Xi3bUT8d3pQhzMLkWzgVm9WkmtBjmlSoxw0pU6KsKHcc0nhyAwbTgz0eoR4QpEBXihsJpeFpNDEFg8IdqlADMxyrWb3EDGld8zAHiK+GiiqfEItEx5atV5DPfzxNwxYdhHs1HottGDENkLGnZ6GtKkR9lnj6DxwkGbxzVXjkJz5Sh8pqxC0KIX3ToNh8MXQp6yEPKUhTA11sLS3ACOUAK+LIjWdYQBUQhd8V8Epj2L5uvpIHWNf2TPktw+knCg4BE7Dp7Dp6Hp8m+01nuPXdAlwSUAeI+Zh9pfPmJkw/MOgEe07WxeTyCJGgPpsCnQXDlKa73H4PHwGDzB5jGCw4EkYiTta1OkBc0FzBNVmqsnGNv0JD1SHT958mQAwKFDh6yOtb42ZcoUh+fIy8vDwYMHceDAAatj9fX1OHnyJPh8PsaNG+cGj7sWhVSEdbOG4cHbElyyP1dQ63QNl8NhLEA9YUgA4wwmQRB4Jm00vGh2yT9023CMjfHH6EhmweLwQfJe0TXc12jtvmZKdCCz3/WMhJAO6gN/nT2c1oSdafHBtCW4+jMUReHG1iftBpftqT/6ZZfqDPK9/CAKioVAEcI4iOV5yOA96lbIxy+Cd+IcNrjsBARBYNDa9+ERm+J0rWf8dITe83qX+SIeNJzxhCPF5OUguL1n14kgCISt/YDWzyEOG4Hw+z9x204BadQzGqnairmhCkXvr6T9kNHT9EiAmZaWBqFQiE2bNuHSpT/rfHJycrB582aIRCIsW7as7fXS0lIUFBR0qH1snVX++eefIzPzzwkSzc3NeOaZZ6DRaLBw4UL4+fWelLwzTC502wL0axHvSonE4GB6TTEKqRDrbhnmkj+DfKV4c/UEhPvZn7UsEfLwxPyRmPPHVujy1FhwaH54CQJWoylZ6OHhYlnBqAhfjImm91mK8PO0EkekAINfAAAgAElEQVTncjh4csFIPHdXIkaEWwsVJ4Qp8EzaaDx9x6he1xXeE2gLM6E+9yPt9bW/fASjkllpCkvfgyuSIuKhLQi88xmb4wWFAdEIWvwSwtdtAofftY1wQYteBEHzGsKgWPhOW9Ol/rgCV+yJyEe/hv/tj9rcvudKfeB364OIeuxbt3ZwcwRiwMX6V82Voyj+YDUqd7/qsBG6N9AjjxOhoaF4+umn8fLLL2Pp0qVtWcb09HSYzWa89tpr8PH5c8t39erVKC8vx6uvvtpWKzlp0iSsWbMGn3/+Oe655x4kJiZCLpfj3LlzUKlUSEpKwtNPP90TP57LuDrZQ0zTTiTg4V/LkvHyjkyHskBBcgn+uXQs/L3tS0k5I8xXio/XpeJ8UT1+yipBSa0GZpKEQirC9PhgTE8I6eB3QpgCT8wfgTd+vOiwsYgggEfnJGBMVN95cOhNjI70BQHQ6iBvT3KsH9JSIvHW3ov4/bL9QCY+TIHnFyba1E4lCAKThwVh8rAgVKq0qGpo6YgN8BYjWNH3NN66Esb1WRQJ5cmvEDjvia5xqB9CURRIXSNIsxFciTc4PNdG43Y3HL4QfrPWwXfGfWjOT4dJWY6Wxq8wSKKSuq3LWBIxEhHrP0XJxnUOG7pEwXGIeOhLcMW9c8eJIxAhYO7j8Jv9EJou/QZTfRkoUBAoQuEZP71LNFEJDgeeQ1M7lYms+/Vj8Dxk8LtlvRs9cy89lq9evnw5goODsXnzZmRlZUEgECAxMRHr16/H+PH0Ogv//ve/Y+TIkdi2bRuuXLkCkiQRFhaGe++9F6tWrQKf75qYeU8RP0gBDkEw7ty2lRGyh5dYgNdWpOBsfg32nitBZkFtW7AxONgb85LCMWVYMIR8156u2sMhCCRG+dKulZwxIhT+3mJsP55vsxFlRLgCyybHMt5OZ/mTAJkE42L9cYZBZ/iwUDmiA1ue3jekjcbiCdHYl1mCs/k1aNabIRJwkRCmwLykcMSHKWh9wQXJJW1NQAOFVrFsXdklUGYjeJ4+8IyfAZ5UbrVOfd669McZjVk/sQEmDUyNtVCd+hbKE1/9EZyhrflIkboCHrEpfUIKhuBwerwLXxo3CYOfP4T6Y1tbJs80/XnfFoUMhSJ1BeTj0loydr0cDk8A71G3dtv1FKkrOr3VXb3/bSgmLeu1+pg9WhAxbdo0TJs2zem6I0fsj5i67bbbcNttt7nTrR7D10uE8UMCcPIqvXGOQMsXNd2ty1a4HAIpgwOQMjgAZgsJraElSGgVZe9JEsJ98J9wH5TVtXQ7aw1miIU8jIrwQbifZ0+71y9YlhqLc4W1MFucP8gQBHDPlI7lCNGBXnh0jmv1wgMRiqLQcGYnag9vgqEir8MxgieAd9J8BMx5DAKfUAB/iDmbmOmGAoC5WeUWf/szTVeOonTTemudTtIMddZ+qLP2w3vsAoTe899eN82nt8KXByFwwVPwn/M3GOtKQRl14HrIwFeE9olAvafwHD4VkuixtMdt2oIyGaA6/R18Z9zrRs/cR++puGUBACyZGI30a9Uwk/SymMsmx9CuXbQFj8uBl6T3bQ0N8pVikK/9Gk4W1xkSLMOGO0fj1d3ZDoNMggAemzuCLUfoBBRFoeLb5+1ueVNmIxrO7ETT5d8Q+fA2iEOHuRzYcHiu2ZEmPRrP/wxd6SWQZgN4nr7wHn0bRG6at9xb0Fw7g5KP1jqdiKM+uwewWDDoL++5tTO/v8PhCdqmOrE4h+BwEb5uI4reW+FQc9YZ6vM/swEmCz2GBMvw5B2j8PoP52FxEmQum9QyLpKFxRlKjR6/XihHSW0TLCQFhacQj80dgeO5Vci4Xo2b32pjonyxdFKMU/krFsfU/vIRrXpKS1M9it9fhdhnD4Dn6QtR6DDaY+haEYcxyypTFjNqDryH+qNfwnJT9rNm31vwiE1B0F3PMT5vb4QiSZRvf4r2uEV11j54J83v1i1TloEHT6pA1GM7UPvrR1Ae22b1OaSDKzbdBRtg9kKmDg+GQirElt+v2WzGCfOVYunEaMwYEdoD3rH0JTR6Ez78+TKOXq6wmRWPC5HhxcVJaNAa0aw3QSzkYUSYD0J82KabzmLRN6P24Adt/ydBoIErh4EQQkTqISNVaL/3YG6sQf3x7Qi4/VEoJi1HxTfPMrqeIvUe2mspiwklm9aj6eKvdtc0Xz+DgjcXImL9px0mmPRFNLnHYKxlJvavPLaVDTBZuhyuyAOB856AYsJS5D0/kbE93U7+noANMHspI8J98Maq8SiuaUL69Rpo9CaI+FzEhykwIpxeIwXLwKZRZ8RTW86gqMb+aNOr5Q34165svHL3WDZb6WYazv4AUq+BjhDjrGQ8Tkkmo473pw6kn7ka45uPYazuNMRUywAE5fHt8L/1r5Al34Gan96BudG5xi3Q0qkrjZtM27fK3a86DC5boUx6lHxyP2KfOwiBDVmcvoIqYxdjG83V4zCpq51OZGFhcQd8eTD4ipA/G89o0psn+7AFJr2cCH9PLJkYjbUz4rA8NRYjI3zY4JKFFv/94bzD4LIVg8mCF3ecQ0Mz88YSFvtoco+hiheIN32fwY9eCzsElwBQywvAj96L8Jbvs6jmtUwcM6uroa+8Dq5IivAHPgVH6DyTzPMOQPgDm2jXC5o1KiiPb6P9c5CGZtT//iXt9b0Rs4p+42QHOzV9tQVHGOtKoc7aD9WZ79F0+TeQRucjjFkGFgSHA8WkZc4X3oRiMv2di+6GDTBZWLoIC0mivL4Z+ZVqVDVou1UUt7imCRn59LJfANCsN+NAdlkXejTwqG224BPFo2jgOc4Mq3g++ETxCBo4MgAAqWt5KJBEjET0E7sgjhht11Y6NBXRT/4AgS/9KV2q9J2Mu9RVp3e0TB/pq7jarOOiGHYrmryTKPpgFfJeSEXp5r/ixpbHUfzBalx9Zhwqdr4Mk7q6U+dn6V8oJi4Fh4FeqHTYlC4bB+oO2C1yFhY3o9IYsD+zBD9ll6K+6c8v8nA/KeYlhWPWiFCXRfXpsi+TWb0ZAOzPLMGSidGdUiVg+ZN95jFo4tLTp2vkynDQcy6WqLeBI/ozaykKiUPMUz9AW3IRDWd2wqiqAEFwIPCLgGLiEggDohn7pc1nLoti0aphqLreZxt+hAHRaL52mpENweVDoHA+3tQetYc3oer7V2wes2jVqD/yKdRZ+xH58NZ+17HP4ho8T1+Er9uE4g9Xg3KS5RYGDcag1f/rJs9cgw0wWVjcyOUyJV749hyadNbdqiW1Grx/4DL2ZBTjX8uSESDrOqHxvPIGxja1jXoomwyM58+zWNOoNeKsYVDLvGGaAXu2OAl3kEchtBFsSMJHQBI+wi2+WWlA0sSid82uN6CYuJRRWQAAeI+Z67KAtSpjt93gsj3mhioUvbcSsRv2gefJDpBgAaSDUxD9+Hco/+Y56IrPWy/g8OA9Zg5Clvyz1wqst8IGmCwsbqKouhHPfpUBndHxTPmy+mZs2J6Bd/4yAV7irtEgNbg4195gcs2uP9CsN+HKDRW0BjMkQh6Ghsptjrykw6m8KpgpAmCQDDYTAhTGrURSF48sdPVLqbd/mTlCHJbAWNTaZ+pql65FWcyo3vM67fXmhkrU//4lAub9n0vXY+l/iMMSEPPUHuhKc6DK2A2zugYElwdhYAzk4xf1mcYzNsBkYXETGw/lOg0uWylXNuO7U4VYOyOuS3xxNXDtjaL7XU15fTN2ninE4ZzyDgG2kM/FtPhgLEyJoi36T1EUtIXnUHTsFADmotOm0GTGNkzxjJ8OddZ+RjZ8RShEwX17G3fQ6rdR8N87aXXmB8x/yuXu3KZLR2BSVTCyUZ78Gn63Pdxn5qGzdA98eTB8Jt8DjkAMnndAnxP+ZwNMN6HWGpFdWIemP+SEhoXKWS3BAcSNeg2yCq3npzvi4PkyrJgS2yUjOicMCbCpoeqIEeEKeIpdy9j1VbKL6vDSjnM2HwwMJgt+zi7D0csVeH7RGKcTjUyqSpRsXg9dUTZMHrMAL+YBpkDa9eNQvRPnonLnP2HR0i+jUExeDqKTDS89jcBnEKKf2IWSjevsitgTfCEC79gA32lrXL5OY84hxjbmxlroSnPgETXG5euy9A9IkwHqzH2oP7YVuuLsttf5PqFQTFoOxcSl4EkVPeghfdgAs5PcqNfg6xP5OHq5EiYL2eHY6EhfLJkYjdGRnautsZAUmg0mcAkCEiGPlSnqhRy7UsnYRq014nxRPZJj/WnbkBSF65VqqDQG8LkcRPh7wsfTumZy1shB+OK3PBjMpI2z2GbumHDaa/sDhdWNePHbc9A7KQvQGS14aUcm3l49HtGBtreJTepqFLy5ECblDQBAoJlZBquVSH/6HaSuwhGI4D/3MVTueIGmAa/PC623IvANQ8yGn9B87RSUx7dDX34VpMkAnpcfZGPmQpayEDwPWaeuYdGqXbNrZl43zWIbiqJgUpbD0qwCwRdC4BveJ2bLm9Q1KP5wjc3Rkab6G6je8xrqDm9CxPrPIIm0ry7RW2ADzE6QU6rEP745C63BbPN4dlEdzhfVYf2tw7AgOZLx+QuqGrEvswRHcsrbvgQVUiFmjx6E2xPD4Ocl7pT/LO5DqXFNQ1KpoSf9ojeasTezBPszS1Gp0ra9ziGAcbEBSEuJ7CCU7inmY3nqYHx25Cqt8w8fJMfEuEBmzvdxth695jS4bMVgsmDL79fw0tKxNo+Xb3u6LbgEgCGGK5CZ651KFLUnUCZm9DBqNFuQcb0GVQ26NvvkWH9aGXGfKatgaqhC3S8fOb8QaUbJx2tb5JA60VXdWyAIAtIhEyEdwnxqCh04Atfuyxxh1zX9DRRIkx4NGbtRf2wr9GWX217nSmSQj18EnykrGUl6dScWvQbF76+EvjzX8TqNEkXv3YPoJ3b3+rIVNsB0EYPJghccBJetUAA+PHgFPp4iTBoaROvcJEXhs8NX8d3pQqtjSo0BXx3Px45TBfi/eSMxPaHv3/D7A3yua7UxdIIBlcaAZ7/KQEF1o9UxkgJOX6vG6WvV+Mv0OCyZ+KdszeIJUWjSGW2+j9ozNESGF5ckgefiz9AXqVHrcOYaMw3C9Os1qG7QWnX/G2qK0HT5tw6vcUBhkvZ37PO6i3Yn+YLkSHA5ztfpjWZ8c7IAP2WVQq01djjmLRHg9sQwLJ0Y7VAKiyAI8L3oZ87N6hpUfvcSwtdtpG0zUJFEJaEhYzcjG4Ivgjh0WBd5NDAwNdai5MM10JXmWB2zaBtQd3gT6o9vQ9jaD+CVMKMHPHRM3eHNToPLVki9BpU7X0LkI9u72KvOMXC+UdxMbaMOzU6Cy/Z88VsebaFte8Fle8wWCq//cB7Hc5lvzbK4nwh/12rnwv0c2xlMFjz3te3g8mY+O3IVP2WVtv2fIAjcO3Mo/rl0LMZEW9cPhio8sO6WYXhtRUqXdbP3VjLya2BjNLtDKLQEmTejOvWtzfWpzUeQoMtqCS6dfPYnDw3CHckRTn3Q6E14cusZfH0i3yq4BFrKLr4+kY+ntqZDo7eWymqFIknUH9vi9Hrtabz4K4xK17b+BxKy5DtoTWDqYDN2QZ/u0u9pSIMWxR+sshlctocy6lCy8X40X0/vJs/oQVlMUJ74ipGN5uoJGKoLusgj98BmMF1E1WwEE6GAsvpmXCipx6gIx1tg1yvVToPLVigA7+y7iLHRfl0u3N3XaNKZ8OuFMpy+Vo0mnQlCPhdxITLMGROOMJodwUyYMiwIn/xyhdFDx9AQGaIDHdfcHc4pR36V8+Cylc+OXMWMhBAI+X9mRpNj/ZEc648qlRZl9RqYLRR8PIWIDfIesPW8tnRK6dBoI6jTV+XbXMsBhXsaPsM+sgGnJKmw2Ljd8jgE5o+NwL0z45wK3FMUhVd2ZuFahfMav7yKBryyMwuvLk+2+TfWFmXBWFPk9DwdHSDRkLEL/rMfYmY3wOCKpPCZuhq1Bz+gtZ7gCeA7/d4u9qp/U398W4ctcYdYzKjY8QJinjnQa+5/zdfTYXZhqlPD2R8RMPexLvDIPbBRiYuQTNMfAM7m1zoNMPedYzaBRaM34/fLFZg9unfWlXQ3FEXh25MF2H78Oow3NbhcLW/ADxnFmDAkAE/MHwkPFzUObSES8HB7YhjthwMAuHOc47pciqIYvx+adCYcu1KJWSNDrY4FyiUIlLN1XgA6BOCM7AQ27Cz2Hyq4ILGgcSemaw4iXTIR1wVx0HNEEJE6jEsahfkzJ0Iupdd8kFOqRHYRfaWC7KI6XCpVIiHcug7UpCynfR532A00AuY+DkNNIRqzDzheyOFh0Jr/9fpaut4MRZKMRfT15bnQFp6DR7TtmuruxuTizHtzo2t23QW7Rd6NaJxkTcwWEr9dZr4Fdegie9NvZeOhXHz+W55VcNmeU3nVeGrrGaf1s0xZOXUwRkXSa+q4IzkCqcMc1+RWN+hobY3fzMmrVYxtBhpDQ1zrFB4WKrd6jS93XlvtSTZhpuZnrFe+g8fq/oP1yv9h6YQo2sElAOxl+LDh0MbVzA3BfmXQgeDyELb2A/jPfRxcD+v3DACIw0Yg8pFt8B59ezd717/QlebAWMv8s6E+t7cLvHENgutirs9Vu26id3vXzxALHf+6m3Qmlyap1DXR60Tu75zOq8auM/S2/fKrGvHJr1fw2Fz3jN8DWhp2/rl0LD44cBm/XLgB0kbdnYjPxd2TYrBkYrTT7Rm1zno7lg6NLtoNJOJCZIgO8GIUwEf6e9oMMGXJaYzrp8SRoyH0j2Bkw1RnFQAy7dgI/Jhdu82ul3bg9kYIDhcBtz8Kv1nroM76CbqSiyBNevA85PAaNRuSiJE97WK/wNzE/HMBtDQF9RZEwUNcs+vlM+zZANNFXEkAJIQ5Fkel00FqC2e1WwOF3RnMasoOXyzH2ulxbp1eI+Bx8di8EbhnSiwOZJXhUpkSeqMFUhEP42L9MXNEKO2teaGLAuyubv+2QlEU1FojdEYLpCJ+vxRfJwgCiydE49Xd2c4X/8HiCbYfCiTRSRCFDKXdAQoAPqkraa9tRWtgXjdqL0svDktg7DPB5UM2Lo2xDwMdDl8E+bg0yNnfXZdAcF27P/WmqUmi4CGQRCZCW5RF24YjkEA2dkEXetV52ADTRbwZBiW+niKkDHYsCyIV8+EtEdjsDnUEOzGoZdzfheJ6RjYmC4lDF28gLSXK7f74eYmxcmrnni6DFRJIRXyH3cC2GBzkWjdqs96EXy7cwL7MEtyob257fegfzVFThgd1ydShnmJqfDCKa5vw9QnbTTrtWTwh2q4kGEEQCFn2KgrfWQLK5FwP1XP4NMiS5jP2VyLkQaNnVtYhEdr+exEEAZ8pq1D+1d9pn8s7cQ74Xo6nGbGwdDei4MEtpRsU/aESAKDOPgBd2SXIxi6AfMJS8L3py3Z1BT7T10L7Kf0AUz5+Ebjirh/M0BnYghoX8fMSg8cg47hkYjS4TuaIcggCt44axNiX20Yzt+lvlNQ2uWS39dg1/Pv7LFworqctI9VdCHhc3DrKulnHERwCuD2R+TZmYXUj7v/4GD7+5UqH4BIAcssb8MaPF/C3z06hvp+VY6yeNgSPzkmAr5f1NCQA8PEU4pHb453OjJdEjkbEg1+C4+SG7zliFsLu/dClmquRThoEmdrIJyyG16jZtM4j8ItA0MJ/ML4+C0tXw5cFwithJmM7ymyAoSof1XvfRN5zE1B35NMu8I4+3olzoJhCb2dDHDkagXdu6GKPOg8bYLqIRMjDkwtG0dqeviM5AvOS6I3hm5MYxmirPEAmxjgGowb7K2YXuvoBQGuw4OiVSjy19Qwe2nwCVQ1a50bdyPykCAh49D+mqcOCrYTAnVGhbMbT29Kd1vIWVDdiw3bH+op9kdsTw7Dl4Wn4x6IxmJcUjhkJIZiXFI7nFyZi6yPTMYfmCE3p4PEY8tJRBN6xAXyfdg99BAdeI25BxENbEb5uk8sTW+jeQ9oz34ENweFi0F/eg3z8YofnEEeMQtTjO8DzpD+ViIWlO/GZvrZT9pTFhMqdL6OWzmSrLoIgCAQvfhn+cx4D4WD73jtxLiIf3u7yxKjuhN0i7wRT44MhkwrwxW95yL1hPUc2UCbG4gnRuD0xjLbeVqBcgkfnJOCtvRedrhXxuXjurkSnmdGBgI9n5+fM5lc14vEvTuGdNRPh7907PryBcgmevSsR//wu02kQPTjYG4/OSWB8jU2Hcm3qO9qipFaD704VYM10xxm9vgaXw8HEuMBOj8vkSRXwu+UB+M5aB4tWDcpkANfDGxy+7QwpE0ZF+CA+TIFLpUpa6+PDFBgZ4Tgo5PAECF3xX/jOvB/K49vRmPMrLM1qcIRiSKLGwCd1BTwGT+g1eoEsLLaQDk5BwIKnUb3ntU6dp+qH/0A6bEqPTVUiCAIBc/4GnymroDrzHZouHoJZ2wCOQAKP6CQoJi+H0J/52OmegqB6275gL2fFihXIyMhAcnIytm7d2vZ6fqUa6ddr0KQ3QcTnYlioHGOi/Vxu3DmSU453f8qBzmi7qzzAW4znFiZicLBrciv9DQtJYc0Hv6H6j7nMnWFEuAL/XTneDV65j4sl9fjw58soqrEuBeBxCcxMCMUDtw6DmKHgfo1ah1XvHWE01cZbIsC2R6f3q3rMvoJaa8TTW8/YfB+0J9LfE6+tSGFcK87C0pdRnvgaVT/8BxatdcKHLopJyxCy7FU3etXz2Itbuho2g+kmYoK8EeNic4UtpieEIGVwAA7nlOPwxRuobdKDyyEQ6iPF7aMHYfyQADZz2Q4uh8CcxHB8duRqp891sUSJgqpGp1N2upMR4T746P7JuFymwtErFVBpDBDwuIj098SskaGQebiWwT16uYLxyES11oiswjqkDGYyy4rFHXhLBHhz9XhsPXodv5wvs5oc5SHk4ZZRg7BiSiw8hP2v+5+FxRGKSXdDlnwn1Fn7oD7/M7QFZ2FpZhZsqjJ2I2jRC27ZdRjosAFmL0Yi5GFeUrhLtVcDkQVjw7E/swTV6s5nMX8+X4oHZ8e7wSv3QRAE4sMUiHcid8WEeo3zrmdbKF20Y+k8HkI+HrhlGFZPHYwTV6tQ9UfWPlAmxqS4QHZsLMuAhiMQQZ6yEPKUhbj+79sYB5iUUQdzYy0EPmzzbGdh70Qs/QaRoCUg33y481nMsrpm54v6Aa6WcLhqx+I+RAIeZo5gpjLgLtRaI47klKNc2fI58fMSY3pCMPy8ekftMgsLAMDVCkC2ctAtsAEmS7+CaQe1PSwkM021vkqYr7Rb7Vj6No06Izb+movfL1XAZOn4GfnitzyMHxKAB24Z1mua5Fh6DxZ9M9Tn9kB58hsYqgsBygK+LAiycWmQT1jSJRqrfEUIo2ECQItwO8+TuSQYizVsgMnSrxgd6QsBj+NwFjkdBkomZsqwIHz8yxVGc9kj/T0R5+Isb5a+S0OzAU9uOYPSOo3N4yRF4eTVKlwtV+G/K8cjRNH/B0BYtGqozuyEKn0XTKoKgOBA4BsGxcS7IRs7n63j+wPN1RMo3fygVfONoboA1T/+FzX730HQohfhk3qPW68rT1mIppxDjGy8x8xzWUqMpSNslwhLv8JTzMe0+OBOn2eGnakt/Q2RgMdYqP+O5AhWtmaAQVEUXv4u025w2Z76JgOe//osjGbbChh0r6evvA7NtTPQFp+HRefaIIWuRJW+C7nPjEPlzpehL7sEi0YJS1MddEVZKN/2JC4/Ho/q/f8DZXGsG0uRJKh+vGOiuXoCRR+sctjZTVlMqPjmWdT9/oVbr+01Yhb4siBGNj5TVrjVh4EMm8FkacNCkjidV43fLlWgtE4DkqIQ4C1GypAAzEgI6TNdqUsnxuBUXjWadK4JggcrJBgdNXC2SFZNHYKr5Q24XKZyunZGQohL06YcUd+kx/HcSiibDOBxOYjw98T4IQHgc9nn397CpVIlrfdHK+XKZpzIrbI7XtMepFEH1ekdqD+2FYbK622vEwIxZGMXwHfqGohCel6DVXl6B8q3Pul4kcWEmv1voeHsD4h8eCsosxGkSQ+ehxzgcKA8+Q1Up3fApCwH0LKdKx+/GIqJS8H37h8KDaTJgLLPHwUs9HZIKr97CZ7Dp0Ho557GVoLLQ+jqt1H03j20fPCdeT8kkYluuTYLG2CyoCVbsC+zFFt+z0PjTUHZjfpmZBbWYeMvuZg/Nhxrpsf1+i/+YIUHXrl7LJ7/+qzVz+MMHpfA43NH0JrQ1F8Q8rn497JkvLX3Io5eqbS5hsshcOe4SPxlepzbspeVKi0+PZyLk1erQd5UVC/3EGJeUjiWTIwGr5e/3wYCPxxzPvjhZvZlljAKME2NtSj+YDX0ZZesjlFGHVQnv4Hq9E6Ervgv5OPSGPvjLozKcpR/RX9Mn7GmEHn/mHzTrGwCQMf3vKn+Bmr2vYXaA+8h+O5/QTFhiXsc7kHU2T/B3FRH34AioTy+HUFpz9hdYtGqoUrfBW1hJkijDlwPGbwSZsJrxCybI1ilg8cj4q9foHTzepAOMuF+tz6IgHlP0PeVxSlsgNnFWEgSGddrkV+lhtFMQuYhwMS4QAS6qRmls1AUhY2HcrHrTJHDdSYLie/PFKG4pgkvLR3b64PMuBA53r93Er4/U4RfL96gVWMoFnDx3MIxSAgfeCPxRAIenrkrESunarA/sxQ5pUrojGZIRXwkx/hj9uhB8PF0Xz1ZQVUj/r493e4EIVWzAVuOXsPVchX+sTip17/f+jOaa2eQU1ABcJnV3V4pU4GkKFoPa6RRh+IPVkFfdtnJQjNubPk/cMVe8BrBfP60O1Ae3047I9cGdfMWuP0uZcpiQvm2pwCCgMLJGM/ejur0DpdsAu/4O4ibdJ4piwlVP7yG+mNbQZk6jrVtOLMTPFkgAhc8bfPhw3PoZMT98yRUZ3ZCeXw7DNUFAACuhxyysXdAMXk5RKzDX7IAACAASURBVEGxjH1lcQwbYHYRJEVh15ki7M4oQl1jxw/Dpl9zMTbWH2unxyHC37OHPGzh4Pkyp8FlezIL67D5UC7W3zq8C71yDwEyCf46ezjWTB+Cy2UqaHRGVDZokXujAecKamH5Q2Hc31uM2xPDMHvUIMilnR852ZcJ9ZFi3S1dOyatUWfE899k0BpPmXW9Ap/sO4cH549l6z57AJO6BiWf3Aej1/OMbSkARpOFli6n8uQ3zoPLthOTqPjuRXjGTwPBoTdNiqIot7x/KIpyKWhyhYqvn4VX/PQ+3dFsrC1hbGNpVoE0aMAV/znogrKYUbLxAYcNO+aGKtz48jFYNEr4zrjX6jhX4g3f6WvhO30tKNICirSA42DmN0vnYQPMLsBCUnj9h/P4/XKFzeMUgIzrNcgpqcc/705GghuFs5lAUhS+PVXA2O6nrFLckzoYnuK+UZMpFvCQFN1RAsNotqBJZwKfx4GniM8GL93Iwewy1DfZF2r3sDQhWXcK47Qn4WupA6qAy79LIU++Az6pK3pFDd5AQXnya5C6RkikWug4zLrC+VwOhHznASBFUVAeYza+zlRfhqYrR+EVP93uObX5Gag/vg1Nl38HqW8CR+gBj9gU+KSugHRoqlWGjA6koRnmxlrGdq5AmY1QnvwW/rMf7Jbr9SpuKpmp3vcW7W7wyu//CVHoMEiHTLC7huBwaT+csLgOu+/UBWz5Pc9ucNkendGCF749ixo3TJ5xheyiOlQotYztjGYSv14o6wKPug8BjwsfTxG8xAI2uOxGSIrCvkz7WY1h+ot4pvZ5zGna0xJc/gFl0EB5fBuu/+tWVO5+tV933TLh5tpVd0KRFihPfAUAGGqwrot0RnKsP63PlqEir23LkgnqrP02X7foGlH8wSoUvr0Y6nM/gtQ1AhQFUq9BU84hFH+wCgVv3AmTuobxNbtbgFt1ZqfbzmVUlqN675so+mAVCt9ZitLND6Ihcx9Is/OdBFcRKJgPAuCIvcAR/bmzRxq0qD+2hdE56g5vYnxdFvfDZjDdTLPehN0ZxQzWm7H3XAnWzuj+rMwVBl2hN3O1nNn4LRYWAKhV69pGG95MnP4yVqk2ggvHwWPdrx8DpAVBdz3XFS72akiKQnZhHfaeK0F2UR30JgvEAi5GR/piblI4Rkf6uq1BzaSqhLmhCgAwofkYTnhMawmwnJ6fAkDQHnFr1tS75J+lydqONOpR/P4qaIuyHNrqis+j6J2liHpiF3ge9GtLOSIpOGKvlqC1GzApb3T6HBa9BuVfbYA6c59VLag6ax94Xn4Iuut5yMYu6PS1bkY+fhGa89MZ27TPLjdk7nXYnGOLpsu/wVh/AwKfnpl0xdICm8F0M4cu3oDBxEz/7eD5sk5pxrkKUz/dZcsycNEZbb9vuJQJi9VbnAaXrdQd3gRt8Xl3utbrUWuNeOLL03jmqwycvlYN/R+fQZ3RglN51Xhmewae3HIGahq1rXQg2zVS+Fuqkaw91RJcOsriUS3B5ZgoX4yKoNcsR7hYB0fwreulaw994jS4bMVQXYDqPa8zuyZBQD7uLkY2naNzDwsWvQZF79wN9bkfbTQatWBurEXZ54+gnmGZAh28x8wD10NO34Ag4DN5eYeXdCXMFQxAUdDZUCNg6V7YANPNXChRMrZRa40oqdV0+H+FshkNzQZQXbglIxW5XkPpKWGLo1mYIxHa3jRJ0J+HF8ksS9EVX4i9lWaDCU9vPeNUi/JSqRIbtqUzmsxkj5sze2nqrxGvP+84g0kQiOFW49mFibRLT4SBsS4FmeJBHRsNKYsJyuPbGJ1DlbELFobZSIWbp804QuAX1in7im+eh66UXoBW8e0/oC2+0Knr3QxHIELoqrcAgl6oEbjgaQgDoju8Rpns12s74uZOc5buhw0w3Yze6NqNvVFrxM/ZpXhw03EsfvNXrPngdyx56xDu//gYfjxb7JYvjJsZF+vvsu3EIYFu9IRloODnJbI5xzxJx2wbDUBLfd0A+RLZduw6imroBeAF1Y3Yfvy684VO4Hn6dhCd5sGClapNuEv9FQJM1jXmCnMd5jTuwrPjCEZDGXgeMniPmcfMOQ4P8pt0Iptyj8PMsK6SMurs1nLaQxQY0216iTf/jEwwNVSj4dyP9A0oEvW/feby9ezhFT8d4es2gSN00CRGcBB45zPwnfWA1SGulEEGtIPdwJOb622wNZhuRuLitJt3f8qxWZtWWqfBBz9fxs4zhXhl6ViE+blP1igywAvxYQpcKmWWdfX3FiO5E8Epy8CFIAjMTQrHhz93lKSRWZjXA1NmI8xN9RAo+vdYT73RjIPZzJrqfs4uw8opg2l1cTtCkbqiw5YzBxTGa08gRXsCpfwI1PH8QYGA3KJEpDEfXIEIARPeZnwd32lr0JCx2+427s3Iku+wmnZjrCtlfN0WO+YNi36zHwJFWlCzn/nPShdCIIY8ZZHL9qrT3wIks8SEOms/gha9AJ7UvcomXiNmYsgrp9BwZieUJ7+GoaYIoEjwvQMhG5cGxaRlduslvUffhrpDGxldjytVwCNmrDtcZ+kEbAbTzSRFM9cs4xCw2/jQSnWDDk9vS3d7x/nqaUPAZVjms3ZGHLgctvOaxTVuGRmKYEXHQQOUi7VmA0Fq5PS1ajQz3MHQ6E04fa2609f2HjMX4ojRVq8TAMJNxRijy0CSLh3RxuvggELAnL910C+kizgsASHL/k1vbfhIBC9+2dqnblSDIAgCAXP+hpgNP0HgprGGN10Ag1a+yagB6WZ0dHVF20FZTDBU5bt8TUfwPGTwnXEvBv/jMOLfK0D8e4WI+/cZBC54ymEzjjhiNESD4hldSzFhKTh89w2GYHENNsB0M1PjQ+Bhp87MHiTNMkulxoDPj1x1wSv7JIQpsCEtEXQHpTw4ezimDg92qw8sAwuxgId/3Z2MAG9x22t1XD8HFrbhiKTgefb/bTBnD5/2qHbRrj0cngAR6z+FOCzB6Vq/W9bDd+Y6l6+lmHg3wu79EHxZkB1nuJAlpyHy0a/BFVlvt/J9Brl0XYGv63WO4kHDMeSlY4h55gDk45dA4BcOnqcv+L5h4LqYBeQIPRB274fwTpzjsl9AS4a/O+2YQBAEbR1SgiBaFCM49L5X+T6hNoXWWbofdovczYj4XNw9OQabD9ELBK0n0jrmWG4l1t0yDDIP902cmTwsCEHySfjqeD5O5VVZ+UMASIzyxfLUWAwf1DOi8Cz9i2CFB/73l4nYfvw6Dl28gQzJBCQYmDUYyFMWguD2DbH/zuBqXs5dCT2epw+iHtuB+mNboDy+3WorWho3GT7T1sArYUanr+WdOAdeI29FY85hNGb/BLNGCYIvhDgsAYoJS8CX2a/99hyaCp53AMxq+plbjkDS6UAOAMShwxC6omNHukXXhPLtT0Od/ZPNznuCJwRXKgepbwYACHwHQT5+MeQpd7mUBb4ZVycA9cbaReng8Qi79wOUffYIKLP9ph++zyBEPrx1QDx49gXYALMLWJgShbpGPX5woofpIeSi2cBM7sdsoXA8txLzkiJcd9AGMUHe+MfiMVBpDMgpVaKwWg2SAqL/qNN05xxqFhYAkEuFeOi2ePxlehwyrg2HcdseCJqcDygAABAcKCZ3XzdvTxIolzhfZMtO5pqdLThCCfxmPQDfGfdDW5wNs7oGBJcPYVAshG7eIia4PHiPuhXeo25lbOeTeg+q975J20Y2Lg1ccdeM6+WKPRF274cw1JZAeXw7dCUXQBp14Erl8B45G7KxC8ARuu9vdDPeiXMYj7UUBkT32klZ3qNmQ7hhP+p/+wyqjN2gjH9m6PmyICgmL4MidWWnygpY3AsbYHYBBEHggVuGYUiwDN+fKUR+VUcZDCGfi2nxwVBIhfjqOPN6F0dj9jqLXCpE6rAgpA6zs03VD7lW0YC950pwoaQeOoMZHiI+xkT5Yu6YcEQGdD6TwOIYiZCHqQmDoHtwIwrfWgzS6Hy6VNDCf0AUFNsN3nUvNWodDmSV4nhuJdRaIwQ8LqICvCAWcO1qiNrCWyJAymD3N+IRHA48osa4/bzuwnfm/Wi6cgzagrNO1wqDYhG44Cm3XNesUaLh7B4Ya4pAgYJAHtLSiCQLhNAvHEFpz7jlOkyQDk2FwC+c0TxwReqKXj3ZTBQUi5BlryLwzg3Ql+eBNGrBlcggHjQcBJcNZ3ob7F+kiyAIAtMTQjAtPhh5FWrkV6lhNJOQSQRIjvWHVMTHnowil87NYxts3EKz3oT/7M5GRn7H2cKNOhP2ZZZiX2YppgwLwuPzR0LUyW5cFueIwxIQ+di3KN24DiaV7UwmwRciaOELVmLMfR2SorDl92v49mT+TTXZJtQ1MZdimj1qEAS8gfee5fBFiHjwC5R99jCaLh2xu04SNQbh6zaCK/Hu1PXMzQ2o2vUKGs7usapdrPrxdXiNvAXBC18AX979D+wEh4PgxS+h+MO/0OrOF4clQDFxaTd41nm4Yi+2S7wPwAaYXQxBEIgLkSEuxDpt76rkkDuligYqeqMZG7ZnIK/C8cjLo1cqodYZ8crdyeDT7YRicRlJ+AgMefkYGi/8AuWJr6CvygcsZvC8/SFLvhPylEXguaiL11uhKAofH7yCPWeL3XK+IcEyLEvtf9ldunBFUoSv/wzaoiwoj21F05VjIHWN4Agl8IhNgc+UlfAYMrHTmTpzUx0K31psf446aUFj9gFoC7MQ9dgOCP0jOnU9V/AcPg2D1vwPN758HJTFZHedOGwEIh78HByB2O4aFhamsAFmDzIywgfBCgkqlM63BFuReXTN1tdAY+ux606Dy1bOF9Xj+9OFWDoppou9YgEAgsuHd+IctzRf9AXOFdS6LbhMjPLFs3clDviMO0EQ8Iga02Xb+RRFoWTjA/aDy3aY1dUo/nANYp/9GRwb4y3pYjRbkH69BpUqLSgKCJCJkTI4wOnfWpY0H6KQoag/+iUa0neBNDS3HROFDIUidQXk4+4CR8DW2bO4FzbA7EE4BIE7xkbgw4NXaNvMHRM+ILe+3IneZMHP2cxEmfdllmDRhChwaUprsLDQxZXgcmyMH65VqKE1mCER8jA60hfzx4ZjWKi8V9fQ9Re0+Rm06jxbMdYUovH8z5CNXcD4WnqTBV8fv44D2WVWc+alIj5uHRWK5amxDqcniYJiEbL0FQTesQHGmkKQJgN4nj4Q+EWw7xeWLqNHA8xTp07h448/Rl5eHkwmE4YPH4777rsPqamptM9RVFSE9957D5mZmWhoaEBYWBgWL16M5cuXg9MHgoG5SRHIKVXieG6V07WJUb5sFs0NnLpaBY2emXB1baMeWYV1GBvT/dljkqJgNJMQ8jjsl0E/o7ZRh3M31QDTIcxXilfuTu4Cj1joUM9w5jkA1B/byjjAbNab8OxXGcgtt73botGb8P2ZImQV1uE/94xzKl/HFXnQ0jTt79Q16nHwfBmKappgtpCQS4WYOjwYI8IV7D3WjfRYgLlr1y5s2LABAoEAKSkpIEkS6enpuO+++/Dyyy9jyRLnM1ivXr2K5cuXQ6PRIDExEQkJCUhPT8crr7yCCxcu4I033uiGn6RzcDkE/n7naCikudh7rgSkLb00ADNHhOKROfH9ug7Qoteg4eweaIuyQBq04HnI4JkwE57Dp7p1Yku5stn5Ijt23VVWbjRbcCK3CvsyS5B7QwWSAvhcDlIG+2NuUjhGhvuwN8J+QKVKy0gHt5VyBmU1LO5Hm08/e9lKc0EmNv16GQEyD0wdHgwvicDheoqi8OrubLvBZXuKaprw8neZeGPVeHDY+4JdmvUmvHfgEo5errT6rv0pqxRhvlI8dFs8RkawOpruoEcCzOrqarzwwgvw9PTEV199hcGDBwMALl68iDVr1uBf//oXpk6dioCAALvnoCgKTz31FDQaDV5//XUsWNDyZKhUKrF69Wrs3bsXs2bNwq23MtNS6wl4XA7+Ons4Fk+Ixk9ZpcgqrEWzwQyxgIeRET6YkxjmshZeX4AiLaje9xbqf/8CpF7T4ZjyxFfg+4Qi8I4NkI2Z65br2Qri6dm55fJOuVGvwfPfnLWqzTVZSBzPrcLx3Cokx/hhQ1oiJAynRrH0Llx8K4Jy1ZDFLdCR0roZAiR+PJUHI0eIjb/mYlp8MNbOiLObdbxa3oCzDLLbl8tUyCqsQ1I086lYAwGN3oQnt5xBYXWj3TWldRo8sz0dzy8ag5TB9uMPFnr0SDps+/btMBqNWL16dVtwCQAjRozAfffdB4PBgG+//dbhOU6ePIm8vDwkJye3BZcAoFAo8OKLLwIAtm7d2iX+dxW+XiKsnDoY7/xlIjatn4J3107E2hlx/T64LP30QdT+/L5VcNmKqf4Gyj59EHW/f+GWa/p5udYp6e/V9UXw1Q1aPLnljNPGr4z8Wrzw7VkYzba1ES16DRpzDkOVvgvq7J9gUlV2hbssncTPxfeUvzfb7duTuCJvZAYPRqIla2mykPjlwg089sUp1DXalqHae46+fmWbjZuaxfoKpXUa/HrhBvaeK8GxK5XQ6O13yr/14wWHwWUrZpLCv77PQlUDu0vQWXok/XH8+HEAwMyZM62OzZw5E2+//TaOHTuGRx55xKVzJCYmwsfHB5mZmdBoNJBKpW7ynMXd1Bx4D43ZB2itrfzuRYiC4yAdnNKpa04eGoSPD16GwexcG64VLzEfybFdX3/50cErUGroCelfLFFiX2Yp0sZFtr1mVJaj9tePW7pF2wfsBAdeI2bBd9a6Xi2UPdAIVnhg+CA5LpepGNnNGhnaRR6x0MEzfjrqGT7wXhHFW83vrFBq8cK3Z/Hu2kng3qRvnF1Ux9gvV2z6Imfza/Dd6UJcKK7v8LqQx8G0+BDcPSmmQ2KmvL4ZJ/PojxA1mknsO1eCe2cOdZvPA5Fuz2BSFIX8/HxwOBxERUVZHY+IiACHw0F+fr7DbaD8/JYJOO0zoO2JjIwESZIoKHAuI8HSM5BGPep/+5y+AUWh7vCmTl/XU8zHtIQQRja3doNwdXWDFunX6d8EAWBfu7pdXWkO8v8zD8qjW6yzwRSJxgsHUfjWIihPOd4dYOle5jMc+zo42BtDgtlxeD0JkzGlrd9ipyS2m1fzqxpxNr/G6nWtgVkjIgAYzCQsJP0H577IjlMFeO7rs1bBJdDy8/98vgwPf3qigwzd/izm2eCD58vs7hCx0KPbA0y1Wg2j0QiZTAaBwLrImcfjQS6XQ6fTobnZfjNGTU3LB9LPz3a9SevrdXUD44muL6LO2geLlp4WZStNlw7DqCxnZKMrzUHFzpdRsukBlG5+ENV738Q9I6UIoll6EOnvibsnd333/uGccsZ1nuXKZuTeUMGoLEfR+6tg0VjfdDtAWlC+/Wk05hx23VEWt5I6PAiT4gJprRULuHhs7ogu9ojFGaKgWMjHL3K6jkJLk2aeYCjyBUPsrrO1He5KfbWQx+nXUmqHL97Ap4evOl3XqDPhua/PokbdMq/8WoWa8bUadSZUN+icL2SxS7dvket0LX8wsdh+DZFI1FKX1NzcbHd7u/U8rWvtnUOrdV5HsWvXLuzevdvpOgDIzc2ltY7FOdri88yNKAq60hwIFPYzkBRFQVtwFrWHNqI571QHYeE2fn4Pjw6bj4997kBxvf2byNAQGV5ckuRQY85d1NqpxXJGdYMO8lOfOA8uW6EoVO15DZ7x09lO9F4AhyDw9J2jINh7EUcu2R6RCQByDwFeXDIWUQFe3egdiz2C7/43LNpGNF44aHcNAaCQH40t8nuttsfbk1Ni/dkdFeHj8P1gi1GRvozW93ZMFhKnrlbhp+xSFFc3Qa0zOjf6g0atEbvTi7DulmEwMiiHag+bwewc3R5gMtGmdLRFzuW2bFc6+4IkaWwXlJeXIyMjg7ZfAxHSpIc6+wC0RVmgjDpwJTJ4jbwFkuixLgcplMm1gMqRnb4iD2Vf/A36G07E6ykKvMt78IjPedTM/wQ/5TYgp0QJCi1f+KOjfDE/KRxjY/ytaqN6GxyTFqr07xnZGCryoM3PgEfsuC7yioUJAh4XT90xCvPHRmDvuRKcyK1sqxGOCvDCnDFhmB4fwqoG9CI4PAHC7vsIyhNfo/7oFzBUXu9wXMn1wSlJKk54TIWZcPyA2rK1TXW418xNCmccYM5LCme0vjeTX6nGS99ltmUhXeGXC2VYNW0IvCWuJQi8Ja5PXmLpgQBTImnZljQY7Dcy6PX6Dmtt0ZoBbV1r7xweHh5OfQoJCUFyMj3R4tzcXDQ1NdFa29MYqgugr8wHSDN43gGQRCaCYLh9QpEkan/5EHVHPoVFo+xwrO7wJgiDhyDozmfgOXwqY/+4Hq7NlLZnp7txBYVvLwapo//3IetLMOi3DXj9yd0gKcBgskAk4PaIllyIwvl71RYBTbkw2+nAd0RjziE2wOxFEASBoaFyDA2V48kFI6E3WcDncsDrx9q3fR2Cw4VP6j1QTF4OXXE2DDXF+PDnSyg3eaJQEAOKoPe3kwh4Vg+yw0LlGBPli8xCemVeQ0NkGNNPJIoKqhrxxJbT0Bk7l0HU6M24ekOFSUODkMFwoEFciAy+3aAc0p/p9gBTKpVCIpFApVLBbDaDx+vogtlshkqlglAohJeX/a0gf39/5Obmoq6uDtHR0VbHa2tb3kz2ajTbk5aWhrS0NFr+r1ixwuVsp0lVCeWJr6DJOwlS3wyOWArpkElQTLobfBm9GixnUBSFxvM/o/63z9Gcn97hmMA3DIrJy+EzZRU4AucyJxRJ4saXj6Hh7A921xgq8lD84RqErngD8pS7GPnqNWo26g5tZGTDlXjDI8Y6KKIsJpR8ch+j4LIVXXE2tAVn4RGT3KMZohkJIfj8yFWYGRRiRgV4IVBUixsuXM/SzKz+tb/TqDWiQqUFSVHw9RT1qBQQQRAQC9hsZV+BIAhIIhMhiUyEqDoaBReYfSKTYqy/pwiCwDN3JWLD9nSnNYQRfp54cUlSvxBZpygK/9md3engspUmvQlThgdj46+5DmWMbqY/ZYN7im6/gxEEgZiYGFy8eBHFxcWIienYPFFUVASSJO12h7cSGxuLo0ePIj8/H+PGdQw4KIpCYWEhuFyuzeDTXVCkBbrSHJib6sHhCyEKiQPP07oGhjQbUbnjRShPfQOQHT802oJzqPn5PfhMvgdBC58HwXW91o+iKFR+96Jd+QxjXSmqdr8KdfYBRPz1C/CkjjOItQffdxhc/nlhEje2PQVhYAwkESNp+yuJTIQodJjz7ex2yMcvBkdg/VTZeOEXmOpdCbNaqD+2FR4xPTt6Ty4VYsrwYBzOod/ENH9sODhgnr0EAI6w/+qrMuFymRJ7Mopx4moVLO2C+4QwBeYmhWPy0KBeXybB0nuYlxSOXxgGmLaCGZKiUNeox5ppQ3AkpwKnr1mPuPUQ8nDLqEFYkRoLD1HX14l3B9lF9Sitc+2eZguJgAcRn4u1M+Lwv/05tGyGhcoxZXiw23wYqPTII/LkyZNx8eJFHDp0yCrAPHToEABgypQpTs+xefNmHD58GMuXL+9wLCsrC0qlEsnJyV2mgWlUliPvH5Nhat/RzOHBe/Rt8J2+FpLI0QAAymJG6ab1aMo5ZP9kpAX1R7+ESV2NsHs/dHksYs3+d2hps+mKz6Pkk3sR9bdvQXBtvwVIox51Rz6lf3HSjLrDmxC29n3aJgRBICjtWRS9v9Iq8LYFTxYI35n32Tzmymzg9uhKLnbK3l2su2UYrpY30BpnOSkuELeOGgSLWgBwuLR+h+2RDHA9TIqi8NXxfGw5es3m8ZxSJXJKlfh9cAU2pI2GkN+1MlUs/YPBwTJMjAvEyatVtNaPifZDQpii7f/NehN+yirF/qxSVKr+bFL1EPKQHOOHMF8ppGIBArzFmDAkAKJ+luk+eL7MbecS8DiIDW4Rxb89MQzNehM2O+lCHxoiw0tLkvr1WObuokd+g2lpaRAKhdi0aRMuXbrU9npOTg42b94MkUiEZcuWtb1eWlqKgoKCDrWPycnJiI2NxcmTJ7Fjx46215VKJV566SUAwJo1a7rsZzDWlXUMLgGANEOduRcFb6Sh/lhLwFN7aKPj4LIdrVvbrmBuqkftwQ9or9cWnHPY/ajO2s94C1WdfQAmtbWemyOkcZMwaPX/nGZuebIgRD68FXxv2+O79OXOpSscQbrYcORuvCUCvLEqBUNDHOsczh49CBvSRoNDEODLAuGVYD1wwBE8Lz94jZrdGVf7PLsziu0Gl+05fa0ar/9wnh3PyEKbpxaMxCga86yHhcrx7F2j2xolK5TNeOjTE9h8+GqH4BIAmg1mZOTXYn9WKWKDvDE9IaTfBZcAaD1c02Xq8GB4if+UQ1w0IRpvrhqPyUMDrcoJwnyl+Ovs4Xh9ZYrTOfEs9OiRd2doaCiefvppvPzyy1i6dGnbFnd6ejrMZjNee+01+Pj8+eFcvXo1ysvL8eqrr7bVSnI4HPz73//GqlWr8Pzzz2Pnzp3w9/dHRkYG1Go1Fi9ejOnTp/fEjwdQJCq+eRYcsSfqj37JyLTu9y/gM20N4yym6vQOUBb69SUAUH90C7wT59g8pi3MZHQuAABphq40B/yEGYzMZEnzIAyMRt2RT6E+9yMo859SFDxPX8gnLoXvtDU2yw9aoczMfvab4fBFLfJHvmEujYFzJwqpCG+vmYCLJUrsPVeC3Bsq6E1meIoFGBfrjzljwhHm2zEz73fLA2jMOUQ7i+k7415weAP3JtqkM+HzI/QfSk5crUJ2UT0So/qXDAxL1yAS8PDKsmT8kF6EvedKUH1TJ7SvlwhzEsNwV0pUW2ZcrTViw/Z0VDnRXtQZLXhpxzn8d2UK4kJca5TszbjrQU7A4+CuFOthLvFhCsSHKaDSGFBWr4HJTEIuFSLS35OVbXMzPfb4s3z5cgQHB2Pz5s3IysqCQCBAYmIi1q9f8Wq9XAAAIABJREFUj/Hjx9M6x4gRI/Ddd9/h3XffRXp6Oq5fv47w8HA8/vjjWLTIuQhuV1O540VYmpXOF7bDVF8GzdUT8BzmuETgZhov/MJoPQA0Xz8Di64RXLF1MxVpdE0agjS4Nr9VHDoMg1a+iaC7noe+7BLIP6SQxBEjaQVCPC8/GPWud/cba4uR/5+5IHgCeCfOhc+0NZCE95ygNUEQGBnhg5E0siBASz1ryPL/oHzbU4CTG7R8/GL4zlznDjf7LL9cKGOsjbfvXDEbYLLQhs/lYNGEaKSlROFCcT2qGrSgKAoBMglGR/pYCaLvPF3oNLhsxWgmsfHXXLy1ekJXuN6j+HuLkV/lfGa4M6QiPvZllmDumHBE+HtaHZdLhZBLWRmirqRH8+vTpk3DtGnTnK47cuSI3WMxMTF499133emW22AaXLair7zGOMC0aJlPKmi1aw0wSYMWDWf3oOHcHujL6DfetIfr0bkRdjwPGaRxkxjbSeP+n73zDG/iyvr4f9RlybYsV9wbYEwzxhib3nsJJJRQU0hIIbtpJJtset9NNlkWNm/apkBogdBCIITewdiYaqpx75YsWZKtPu8Hx8RglZmxJMtmfs+TD9Hcc+9FljRnzj3nf4ZAWX2rTWsDAGk2QpW1BaozW9Hl/tcRNOrRNs/pKeSZs8HzDULlto9gKL/W6jrPLxhBox9D0JjH7/kn9aN5FbRtTl6vhtFscXvLUJbOBZdDOH0wMZottHMPL5fUIb+yHglhnUt4f2yfSJyg0TfcHkqtAb9kF+GX7CIMT+6C56f1hYjNo/YonS+BoxPA5LiXsFFZTYVmuaK601tQ/tMbjGR+muH6+EOSkMbYnin1lw5AefIn5wPpQJKo2PwOOEIJ5IPnunZuN+LXaxR8e45syrG9sBeWBhU4Ah/4xPeHX8r4e/pYvCWqBuodQZqxkiQ0jSYE+rI3KRbXcr5QATWDz+TRKxWdzsEc2C0EIf7iNgms383hvAqoG4x4b146W7zjQVgH0wuxV8jiCJ+4VOhLLtOyEQRFgysNhOLoWpSvf5X2mncTkDmLkr6mK2koPIfir54AzPaF+9tCxc/vQpY2rUNJ+hAEAUniAEgSB7T3VryWu28yMosSweYqcEkL1FwZKngRNlv78XnszYnF9TBxLgFApXPP7157wuVw8OK0vnh17WlamsDOOFeowKYT+Zg3tKvL5mRxDOtguhuCA5DUc70IgRh+fcfSXiZw6AIoj6yhZSMfugCGihso3/Aa7fXupun49fE2z0OXym0fgXSTcwkAVr0WqjPbIR/yoNvWYPE88aF+KK7VopshD0N1B9HdkAcO/ryZVfK64ITPMJz2GQTLH23+QvzF8O0kWoMs3gXTqFpnTdfoGxuIdx4cgPc3n4XOYLY7TsDj0Mql3plThNmDEtjuWB6CfZfdjCgymdZ42YD7bBbdOF0nIgm+PZ3nszbDlcoRMGhOU5U7DQfYFjy/YMQuWw2+jH7ktS3oK25Ad/2k29dR5fzi9jVYPMuU1ChMrN+Gx5Wr0MNwGQTujJSEmSsws34jHleuhMjadFQ3KTX6ns9dZXEPTI+5O9vxeEv6xwfj+2dGYunYHogK/LONrkTIw9S0GDw2pgftQj2FxoDsfHotI1mYw0Yw3QjB5SNywcco/PwhmNXOk5b5AREInfIc4/WiHl6BW/+e67QzDkckReyT/wOHL4Iqayvj9ThiXwRkzELwmMfBD+jCeB6mONLxdCUWjcIj69zLmNRVqD//O8xaJTg8AUSRPSFNGgKC455n4NDrmzBa9ztIAMQf/90NCSDBeBOL677CmrBnMbFflFv2wsISGShFSmwgzhVS/62RCHmdvtuMn1iAmRnxmJkRD7PFCouVvC3rtO7oDUZzulJnk8UxrIPpRgIyZ0MclYy4v65D4X8XO2xlKAiOQezTPzDKv2yG6+OP+Oc2omLzO1BlbbOpiynpmoHw2W9DFJEEQ3UBrAb6XzZ+cAwiZr8NSeLAds1NtOjqPLIOwRbGuA1DdQGqdnwM9bk9gPXOozBBUDSCRi+BfNgil0YOzToVqn/9DIBtx7IZAk1OZlfjNbzeTwuZhJU0YXEf92fE03Iwp6TF3FNV0TwuBy0zAqwM8zOZ2rHQh3Uw3YSkawa6zHoDACAKS0TXv+9B3anNUB5ZA0PlzdvjhF26IXD4IsjSZ4IrktibjjJcsR8iF36CsPteQV3WFhgqb4K0mMH3D4VswH0Qhf/Z45202M9tcQRP7EfrON5dEHxmlfN0EUXRS3PwdoyKUhgVpQBICAKjIAiMbJd9NBSeR+GqhXYltoy1xSjf+AYaii4gcsHHLotm1p38CaSJWt5uswMacG07MH62S9ZnYbFFetcQLBjWFT8ecR6ZS0sIxqLh3ZyOs0eDwYz9F8uw93wpqtQNIECgS4APJvSLwvCe4R3CcQ32Z1ZQytSOhT6sg8kQjkAEoHXlH8EXIiBzNrrc/xo4LRwgrkiKoBEPIXD4Ypjrq2HVa8ERScHzC3FLXhfPNxDBox+DsbYYDUUXQJr0MCpKwJdH3HZkeX7BTZWyNDsn8NoQZXUlPrEpHlkncOgCj6zjTkiSRP35PVAc/gG6ayfuuCbpPgiBwxbBL2WCx3IMTepqFH7+MCX9VtWpzRDIIxA65XmXrM0ktUJ79RgsjRpwxa0Fm1lYXMXC4d0gkwjxw6Fr0DS2PoHicQlM7BeNpeOSGReqHL1SgU9/uYCGu4pn6nQG5JXW4et9V/C3Gf2QlhDMaH5PMSQpDP/97TIMJmrdywBAKuIho5t33L/uBVgHkyHimL6I+8sTUOfuhlmrAIcnhDi6N2QZD4DnQGycIIimY3A3O2na6ydRs/cLaPMO3+FAckTSprzJcU+ALwuDb8+R0FyyL2RvC1n6DFdv1ylWkx6aSwdgUpYDBAFBcCykSUPBDwiHqa6c8jzimL7Ql18DSbH3uKRrBsTRvZlu2ysgLWaUrfsb6k5usnldd+0EdNdOICBjFiLmfwSC6/6fBeWRNbBoqR8H1u77GkGjH3OJg2fRMkutsDSoWAeTxe1MTYvB+JRIHMmrwKnrVdA0miDic9EzWo5xfSPblKpxJK8CH/x8Fo5CCppGE97YcAZvz0nDgMQQxmu5G4mIj9G9I7DrbDFlm3F9ozpEdLazwDqYDCEIAtKkIYy6zrib2oPfoWLz2zYjk1a9FopD30F9didil62BfNhCWg4mzz8E/injXbldh1gaNaj+bRXqTmxslXPJk4VBFJlMy8EMmfgMSKsVxd881Srn7274gVGIesQ7u0TRoXzz23ady5bUndoEQiBCxNz33Lof0mKC8vh6WjZWYwNUWVsQOHxxm9dn2pTAUykZLCwCHhdj+kRiTB/Xpa+odAZ8vP2cQ+eyGYuVxEdbc/HjX0dDLPBeN2HxiG7ILahFRZ3zFsXRQVLMH8ZqYHoSVqaok6HK2YmKTW85PfY219egcNUiiCJ7wj9tGrXJCQ4i5n0EgusZLUCzRoFbn85C7d4vbBb0mFWV0F460HTUT4HQqS/Ar89Y+KeMR+zT34MfaL8qWJo8HAkvbmlT0ZU3oK+4DuXh1ZTHK4+sgb7iuht31CQvZa6nLxWivXrcJev7xPSlbcOXR4AnpdYXnoXFG9lzrpSWrI9Wb8bBS9Qf3tsDmUSIfy7MQJyNXuMt6drFHx8tGAgpq2PrUbz30YSFNqTVgsptH1Eeb66vhuLgt4hc9C+AIKA+s93uWIInQJcH3kRjyaWmIgmzETzfIPj3n+oWORnSakHRF0ugL7vidKy5vgbCLt1gVlfZzOnj+YcidOoLkA+ac/s13x5D0f3tI9BeOQxV1jaY6qtBcPkQhiVCPmQeRGGJLv33tBfKIz8ysgmf844bdtNUwa0vu8rI1qLXumQP8qHzoTy2jp7NkPluk0xiYfEEv52jfpTczO7cYkxKjXbDblxHiL8YK5cMwYmrldiZU4QLRUoATQV6fWMDMTUtBpndQ8Flv78eh3UwOxGay4dgUpTQsqk7sRGhU55D1EMrIM+cDcWRNai/sBewNiVOc6WBkA2cCVNtMcp/euP267ftT/4EXkA4Iud/BN/k4S79tzQUnKU83lBxHQnLt8NQeQO6G6dhMejA9fGDb/Jw+PUZazPqSnA48O050isq4t2F+txu+ja5u1zqYJIkCc2lA1AeWQNN3iHaRWXNcEVSl+xHHNUL0qQh0F49Rmk8R+wH+eA5zgeysHgpVpJEhdL5MfLdlHcQzUg+l4PhPcMxvGc4zBYr9CYLxAIu61S2M6yD6WHIP26ud1frmnUqqLN3wKgoAUgSgqBo+PefCp40gPLcdIt1gCYtyYaCXEi7Zd7OKbUaGmDWKkBwBSB4AhSsXAB9ySW7c5jrylG4ahECRz+G8Pvb3nYSAO22lwBQd3IjIuZ9iIDMWS7ZQ2fAzEAk3qxVumx9q8mA0jUvQp29o81zuTLfOerh/+DWp7NgqMp3OI4QiBGz9GvwfINctjYLi6chSVDKvbybjigZyeNyIGVbQXoFrIPpAUyqKiiPr0fdqc0wKcuaqqCDoiEfNAe+fcahdt+XUJ3Z1kqbr2LLe5ClTUPYjFfBk8qdrkNF8oWKHUfoA8EfAurF/1vm0LlsiWL/1yBN+jYXiZAkCc2Vo7TtNFeOtGndzgiHL6Ivpm+1omrnpwgc8TCtB5y7IUkSpT8ud4lzyRFKIBs4s83zNMPzDUT8i1tQvuE1qHN3tYrMA4A4ujfCH/wAPjF9XLYuC0t7wOUQCPITobaemnpGMyF+rGYkC3NYB9PNKI+tQ9nG14GWouYkYKwuQOW2j1C57R+w92xJmgyoO7kJuvxsxD+70Wmvbw7D6liOwHY3HqOiBOqzO2nNpTyyBqKIHggcOp/RXgCANDY6rfC2hbVRw3jNzoo4ujd0N07RtCJRvWsFVFlbEbtsDYQhsYzW1l077jCvlw5BY5e67Ii8GZ5EhuhHV8FUVwHlyZ/ubEqQPgM+sfSLgVhYvJWxfSKx/thN5wNb2vRtnyYM3gJJkrhapsLhvArUaQ3g8zhICPXD6D4R8BOzHd6cwTqYbkR5bB3K1r3iZJTzMwhjdQGKvliChJe2Oyw08EkYQEmOpiUET2BX51F5bD2jfLnqnZ8iIHMWOAxbLBJ8EcDh2owqOYLjYgekPSBJEmZVJSyNGnBEEvBlXdpUXCIfOp+Bg9mEsbYYBSsXIPHlXxhFMhUM0hxsETB4LkImPOOSuWzBD+iC0El/ddv8LCzewKTUaGw8ng8rxd90AY+Dcfewg3mpWIn/23MZNyvr73h9L4BvD1zFuL6ReGxsMqur6QDWwXQTprqKpsili2gsvgDtlcMOC1JkadNQ8fN7sDbW2x1zN47yPBuLL9LeJwCYNbWoP7cHsrSpjOwJDgeSrhnQXaMnSyPplsloPW/AotdBdXozFEfWwFDxZ6s4QXAs5MMWQJ45G1wff9rz+qVMAD8winbxVzMmRQkUh39A6ORnadlZDQ1NxWJtQBiagKDRjyFg8FyPdRjqrJAkiStlKhy6VA6FRg8el4OYYCnGp0Qh0JfV97wXCPEX4/GxPfDF73mUxg/sGoLs/Bpkdg/1ai1Md3D6RhXe2ZQDs8W2M240W7Ezpxi3qjT4cH46RPfY+0MV9l1xE8rj6+88FncBisOrHTqYHIEYQaOXoHrnp5TmI7h8BI1eYvc61X7NttDmHWbsYAJA4LCFtB3MwGGLGK/XnhhqilC4ahGMNYWtrhlrClH583uo3f8N4p7+AaKIJFpzc3gCxD75LW59NtumligVlMfWIWTC07T0T81aJe0INABwpXKEjH8aoqiekHTNYB1LF3CltA6rdl9qFYkBgDWHb2B4zy5YNrEXqxF4DzBjYBxIAF/vzXNawHP0SiWOXqmEj5CHsX0isXB4N/iKO/9npLKuAe//nGvXuWxJXmkdVu6+hOXTPdO2uKPBllq5ibpTm10+p+5mltMxIROeoSaczuEh6uEVEEcm2x3C9XVeWGQPC40oqi38+oyFyMHe7kaaPLxD5syZ6mtQsGKeTeeyJWZVJW79Z16TygBNROHdkPDiFvgkpjPao1ldhYbC87RsCB6zGxHfPxRBo5dA2i2TdS5dwNlbtXhpzSmbziXQJF9z8FI5Xvj+JOobjR7eHUt7MHNgHL57eiRmD0qATOI8janBYMb2M4V4/vsTUGjoFQl1RHZkF9Lqb37gYjlq6hvduKOOC+tgugHSammqFncxVoPutsyRPQgOB1EPrUDotJfAtdN5RBzdG3HPrIZ/6mSHc/n3m8R4rxyhhLEtABBcHmKf+g6CkDinY8UxfRH96Ko2rddeVO9aAZOylNJYi0bxR1EYfYSh8Uh4fhMk3ZlJ/dCNfvJ8g8BlIO0jDO9G24bFNgqNHu9syqbUvaWwRoOPt9N7iPAWLFYrTt+owpbTBfj51C0cyaug5SDci4QF+ODR0UnY+PxYZHSj1q2suFaLNzacgcVKvRtQR8NotmDPOWq/x81YSRIvfH8SR69UwGzpvO8NE9gj8g4EV+xHKapDcDgImfA0gkYvQf2539BQeA5WYyN4kgD4pYyHTyy1cL5fygRwpXJYGOgiSroOpG1zN3xZGBJe3IKqHZ+gLmtLU3V5C7g+/ggYNAehk58DR2i7Et6bsTRqoDq9hZZN/bnfYFJXg+8fwmhNpnbq3N3w7T2GclSR4HAhHzQHNXv+S2udwCHM1QdY7mTX2WI0Gqk7Wlk3qlFUo0FMsOO2e96CyWLF5pO3sDO7CLV3RdakIj7Gp0Ri/tCukLBH/3a5WaHGqetV1MdX1mPLqQLMGpTgxl21H2UKHbR6E227KnUj3tt8FjHBUrwzdwDCZB3vfuQOWAfTDRAcLviBkTAp6D0JOYNuxxkOXwjZgOmQDZjOaD0OT4DwWW+i5Dt6FbYcsR/jNe+GJ5UjYt4HCJvxN6jP7oKprhwAAUFILPxTJoAj6Lg6bZpLB2hrVJIWE9S5uxA04iFGa/rEpUCVRc+pBQDV6Z/BEfgg4kHqGqfyofNRu/8bkGZqubyiqJ6Mj/FZ7sRiJbHrLP3WgL/mFOOpCT3dsCPXojdZ8NbGbOQW1Nq8rtWb8POpAuTk1+KjBQMRIBV6eIcdg505RbRtvj1wFanxQUgIo1906O0YaPRqt0VRjRbLfziJfz8ymC2eA3tE7jYCMme7fE75cM8XscgG3IcQmhIuwWMec7njxxX7QT54LkKnPI/QKc8hIH1Gh3YuAcBUX83Izlxfw8iOtJiaUhcIZl975dE1TaLkFBHIIxD10GeU1uP5BiHmsS/YvEsXodDoodTSL9K7Xq5yw25cz6c7ztt1LltSWKPBGxs797FuW6DyHt6NlQQ+2prrNF2rI+LngiKm6no9vtp7xQW76fiwDqabkA+eS6vq1hm+vUbDJy7VZfPRIXTK8+gy601KjkJAxiwEj1/mgV0xw6xVQnvtOOovHUBD4XmQDCqdXQXBYXaAwORz1VhyCdfeGoHS1S8AJPObbdUv/6I13j91MmKe+AY8B0fz4th+SFi+FYKgaMb7YrkTpjmIbY3geILCag0O51VQHn+9XI3T15k9zHV2GgzMlE6Ka3W4UOS6lrKuQKUz4OdTt7By10X8Z9dFbDx+E9VqesU3XQJ8EOuCFJGjVyqg1Hb+gihnsEfkboLvH4qI+R813dDbiKRrBqIeWdmu0Z2gkY/AJz4NlVvetynczZdHIGjUEgSOfNgro1ANRRdQe+Ab1J/dBdLyZ44NPzASgUMXQD50Abhiz+ae0ZUcum1HsxCmsTQPtz6bA6tey2i9lhgqb0JfdpXW3v16j4bveydQf/53qLK2waSuAsHlQRiWCPmQeRDH9KX9mbGa9FDn/Ir6C7/DolOB4AvhE5cK+eC54MvC6P6zOh1+PsyaHLgiguNumBzr7sguwqCk9v9c1NbrsTu3GPsvlkGp0YPL4SAqSIpJqVEY0SvC46LdYiEP9Y30cw4BYM+5EvSNtV1I6knUDUZ8+XseDl8uh/ku7aXvD15DZrdQPDG+J0L8nZ94EQSBKWnRWLX7cpv2ZLGSOHCxHA9kxrdpno4O62C6kYCMBwCCg7J1r4A02X6aIYQ+8E+ZCN2N062qifnySAQOW4DAkY+Aw2//HCKfmD6If24jDFW3UH9+D8zaOnD4QohjU+DbcwQIjnd2NFAeW4+y9a/ajNyZFKWo3PYR6k5tRuyyNRDIwz22L0niQAhC4mGsvkXZhucXDN/eYyiPJ61WlHz7jEucy2Yaiy/Sdo4JLh/+qZOdKhdQQXlsPSq3/6NVZbs27zCqd/8HAekzET733Q6fQtEW/H0E6BUtx6VielGmwV7ghDkj5xb9FJFzBbWwWK3gtqErVlsgSRI/nyrAtweuwnKHE2TFtXIVrpWr8L8D1/DGA6noHeM5p61fXBB+y2XWhKFS1eDi3dBHodFj+epTKFPazmW3ksDxa1W4Wq7CxwszERHoXN1kbN8o/JpTjILqtrUephs97YywDqabCRg4E749R6Lu5E+oO7XpD/kiAoLgGARkzkZAxv3giv1AWi3QXT8JY23Tl10QFAVJt0zaTpuhpgjKoz9Ce+UoLI0acEVSSLoPQuCwBRCGuqbyTxgaj+BxT7pkrrZiNTZCl58Ni04FjtAH4pg+4PsF376uzt2FsnV/czqPofImClctRMLybR6LZBIcDoJGPYLyDa9RtgkcvohWC07d9RMwVNLrP+wMaxsE+NtK9W//RdWOf9ofYLWg7tQmGGoKEPfMWnAE926i/dT+MbQcTBGfi9F9Im7/f4PBjKwb1VDqDOBzCcSG+KFXVEC7n1Do9PSPdUkAjUYLpKL2cTB/OnEL3x646nBMfYMRr6zNwj8WDkTPKOYaxHSY2j+GsYPZ3imYJEni3U05dp3Llig0Bryx4Qy+eGIY+FzHnwERn4v3HkzH39dlobCGuZPphQd5Hod1MD0ATxqA4LFLETx2qd0xBIcLaRIzjUKg6aZfvuHvrXqRmwDoy69CcfBb+KdNQ+SCf3aKyI5JVYna/V+j7uQmWBrUf17g8OCfMgFBYx6HOLoXKn6mXvVsqLwJ5bF1Dv9OrkY+ZD50+WegPrPd6VjfXqMQPO4pWvMrj29gujW78Hzb51hMe+24Y+eyBQ352ajY8h4i5lL/+3c2hvQIQ68c6lHMxSO7QyLkQ6nVY+2RG9h/sayVzFF0kBQzBsZhYr+odnE0SZIEj8tsXbGgfU5YCqs1Tp3LZkwWKz7ckosfnhnpkWhrYhd/pCeGIOsm/RzVMFn73kfOFylwpYx6UVqpUofjVyoxopfzU6ogPxE+fTgTO84UYXtWAep09JsQsFJFbJFPp4C0mFH81dJWzuXdqLN3oPDzh9s1AuUKGkvzcPOjKajd/82dziUAWM1Qn92J/E9mouLn92kL3iuP/gjSgxWnBIeDqMWfIWjMUvvFOxwu5EPmI/rxL0Fw6T0TGqoLXLDLPyG4fEh7DHXpnFSp3f8/WuNbPXzcY/C4HLw5uz96RMoojd93oRRrj97AX/53HDtzbGtoFtdqseLXi/jXjguwejiEda1chWXfHINCQ//3q3e0vN2Ox3dkF9IaX1OvxykPFiW9en8/Rrm3uQUK/HPbOVwprWuXivKd2fRluH6hkb8rEfLx4JBE/PjX0Qj2o3cSwudyMKp3hPOBnRw2gtkJqN3/DTSXD1Iaq7t+EjV7/ovQKc+7eVfuwVRXgcKVC2HWOJHXsJqhOEjPIQEAY20x9GV5EEf1YrhD+hAcLrrMfBXBYx+H8viGP9Ib6sERSSHtlgn5kHnMC1faUDFuC/+0qeCKpC6dkwpGZTk0lw/QsiFNetSd3oKgkQ+7aVfej59YgH8uzMDu3BLszC5Cca39XNz8ynrk22kpeTd7L5RC7ivEI6OYFarR5UKRAn9fl0WpK5EtpqTFuHhH1DBZrDhwkX5Xt9/OlXgsH1Ys4OHlGf3w93XOWxG3pE5nwP6LZdh/sQwpsYH4+/2pjIvLmHC5hH4Ve15JkzNMJ/rO43IwKzMen+/Jo2wzomc4/Cm8FyRJ4lKxErtzS1Ci0MJqJRHsJ8boPhEY1D203R6KXAXrYHZwSKsFisM/0LJRHF2L4PFPe0XhEF1q9n3l3LlsI2YtvbaIroLnG4SQCcsQMsF1Mk/8gHDoS6n/MDqCI5QgbPrLLpmLLvqyK4ySvvSlbasG7QwIeFxMHxCLyalRePTzw6hUuab4YOvpAjyQEe92p0LdYMRbP1FreWmLuBDfditeUuuMtLopNVNZ59kCmrSEYNyXHottWYWM7M8VKvDSmlP41+JMj3VO0jOQ4rKSJEwWKwQ8eukSU9JikH2rFlk3nEeWI+USPD62h9NxxTUafLj1HG5V3flQd7OyHievVyHIV4Tnp/VB//hgOzN4Px3bPWaB9sqRP7rbUMeiqYXm4j437ch9WA0NqDvlOA3AFXD4nacwJCDjfpfMwxH4IP7FLe0mAUSa6edAAYCVoV1n5OPt513mXAKA0WzFnvPMCkTo8FtuCaPCHqBJ1/CduQOcFnawAEvHJWNWG2R1Cqo1+Gb/n7mmFqsVx69W4vX1WXj4vwexeOUBLF99EnvOlTByDu/Gl8GxvoDHYfRZ4HI4eP2BVIx0kr/ZI0KGjxdnOH3oKqrR4PkfTrZyLltSq9Hj9fVnaLXy9DbYCGYHx1CZz8yuiplde6K7eRrWxrZJRziD4Atp60x6M359xoEv6wKTirowdUsIngD+qZMRdv/r4LdTcQ8A8PyCmNn5MrPrbFTU6XDoMrPPgCNy8msxK9N9falJksSvZ+nrXnIIAuNTIvHQyO6QSdp+UmM0W6DUGmC1kgiQCiEWULt1+ksEEPK5tIXvQ11YQEOSJKwk6fS4lUMQWDKmByb0a5LpOXipjHZxy/6LZXh0dBLKlDq8v/ksqu6S6qlUNeJCkRJf7b2nLBV/AAAgAElEQVSC56f2aVNkeWDXEOw4Q++zMbBrKOPiNAGPi7/N6IdZmQnYmVOErBvV0OhNEAu46Bklx9S0GKTEBjqd32Il8c6mHGgo6I9arCQ+3JKL75eN7JDtTlkHs4NDWpk92ZOW9utgwxSzzv1t7GRp08D16Tw9dgkuD5GLPkHBqsUAhc+K/4D7IEkYANJsgDA0AdKkIbQLi9yBT2w/8APCaUfrZf2nuGlHHYt1R10rVdWMTs9MpJsq6gYjqhhEXSMDJXh2Sp82r19co8GO7CLsu1CGRmPT94fLITA4KQzT0mLQK1ru0KHgczkY1Sscu2lKAY3rG9WmfRtMFhzJq8CvOUW4XqGGxUpCIuRhSI8wTE2LRdcu9n/jIgOlWDouGUN6hOH570/SXnfDsZvYkV3k0KnW6k14d1MO/jazH0b0ZKY9PKV/DG0Hc6oLcnETwvzw18m9Gdtn51ejVOFcWqkZvcmC3bnFmDe0K+M12wv23KCDw5d1YWYX4P2Cyi0x1VVAc36vexfh8BA48hH3rtEOSJOGIPbJb5r6kDsgcNSjiFr8KQKHLUDQqEebxPO9wLkEmhxl+ZB5tGxEkckQx/Zz0446FsevVrplXrHQvZ8PpnmXZhcoQew4U4jHvzyCX7KLbjuXQFNU6UheBV5cfQr/2XXJaZ9zuk5NoK8Qg7qHMtozANyqqsejnx/CJzvO40qZ6rawu85gxp5zpVj2zTF8suM8TBbH+6bjBLVkZ45j57IZEsAn289DoWHWUjEm2Bfj+kZSHp+eGIw+MZ7RF3XErrP000p2nS3ukL3fWQezg+Pbeww4NKt6Cb4I/v0muWlHroW0mFH+05u4+vpgqHN/ZTSHMDTR+SCCg8iFH0McmcxoDW/Ht+dIdH/3GMJmvAJB8J83PI5ICvmQ+Uh8dTfCH3jDa7sxAUDgiIcg7EItfYHg8hE+++12FwX3BgwmC3QMe047o6+bu874iflg8hekUsHriN9yi/Hf3y47rSvbdbYY/+ekujghzB8Lh1GLPvE4BF66LwU8hjmjxbVaLF99CjX1jp22vedL8fG2cw6lppg6NHSKmkwWK3afpS831MxfJvfGYArOeJ8YOV6ZmeoVvweF1dSUGlpSU69Hg9E932F3wjqYHRyuSNLUkpIGHeUYmLRaUfL9s1Ac+h6wMjvS50rliH9pK+TDFoKwUzUvCI5FzBPfIGDgzDbs1vvhSeUIHvsEur99BD1XXEfyp3lI/tclRMz7oEM41lyxL+KeWQNRuGNpHEIgRvTjX0KSmO6hnXk37rqncjkEJqa27SjXGSIBD2mJ9KtohyQxO9kBmo79nTmNLfkluwhXnQh+zx/WFQ+N7A6Og7+FVMTDuw+mIyWWed7wv3degJZi2sLhvAocybOflxtMoXe3K9idW8LYmeVzOfj7A/3x18m9ERvcugNbuNwHS8f2wPvz0uHj5mg7Ve7ul04Vi6XjRTC94x1naRMhk56FJu8wjBREtfnySIROW+6BXbUd5bF1UOf80qY5gkYtAU/sh4i57yF0yguoO70ZjUUXQJoM4Erl8O83qSnPsIPrjdGFwxcCHVCmii8LQ8Lyrag7tQmKI2tgqLhx+xrXxx8BmbMQOHwxBEHR7bhL70LA40IuFUKpdW2DhUmp0ZBL3a+4MKV/DM7cpN5/XMDj0Do6vZt9F0ppVznvzC5CUoR9QXuCIPDgkESM7BmOX88W48DFMig0enA5BKKCpJiUGo3RfSIgETKX+MmvVONyCT2JtR1nCu3mQKbEBiLIT4RaJ9HQtlKr0UNvslAunLobLofApNRoTOwXhWvlapT/0ToyxF+M5KgAcLwgatkSuVRI+z0V8DiQiDqeu9bxdszSCp40AHF/WYeizx+Gvtx+SzJBSDzilv0Avn+IB3fHDJIkoTj4bZvmkA24746e6TxpAIJHP9bWrbG0MxyhDwKHL4Z82CIYawph1irBEYghDI3vVBJTrmR8ShTWH3Ndoc/AriFYOs551NtotuBoXgX2nC9FZV0DSDS1GBzXNwrDkrtAyLefktFoNCP3Vi2UOgNiQ3xRWE1NQWLBsK5t0uY8eIleIRkAHM4rx3NTezut1A4L8MGjo5Pw6OgkWEkSBOCyY9u9F+gLul8uqUOZUocIeev8bC6Hg8mp0fjh0HXK8wl4HEZ5sxaGUb2WEASBpAiZQ0ffGxjZMxzXy+l1GBuW3KVDiq6zDmYnQSAPR8LLO1B78FsoDvwP5voWT/wEAXFcf4RNf7nDRHYa8rMZSylxJTIEjVqC4PFP33ORyXsJgiAgDImDMCSuvbfi9UxKjcbG4zdB5z7OIdBqvFwqxNS0GMwZnOD0hnf2Vi3+sS0XqrukbqrVzVI1eXjpvhQMSLzzgVeh0WPj8XzsvVCKBpq5o3MGJWD2oLbJJikYRHqNZiu0ejOt3E9XR9aqVMzE2avVjTYdTACYmRGP0zeqnaYAAECQrwj+PgLkO9B2tIWPgOc1x9eeYGzfKHx/8BoMNBxxV1S/twf3zl/1HkB5ZA2qtv+jdccTkkTjrWwUfDYLQWOfQNh9f/OKZGdHGCqZRVt8e41C9GP/x0ayWFhaEOIvxjOTemPFrxcpjX9xWl+kxgfh2JUKKLQG8LkcxIb4IrNbKKUClJz8Gry+4YzDyFR9owlvbMjGW3P6Y2DXpkKNohoNXl2bhVoalcUEgPSuIZieHuuSridcR4mSDuAxtHMVTFd3ZCfic/Heg+l4Z1M2LhTZb80YIZfg3bkDkH2rBp//Rq971qje4V53jO1OfMV8LB2XjP/sukRp/KTUaCRFBLh5V+6BdTA7CYrDP6Di53edjqvd+wUIDhdh01/ywK6Yw1TfUxiWyDqXHRir2Yj6c3tQd2IjDDWFAElCII+ALON+yNKmgSPwTOFBZ2RSajQIAvjv7st2JWqEfA5endkPGd2aZMymp9OPDjcYzPhgSy6lY08r2SQkveYvo2ElSfx9HXXnctqAGAxOCkOEXIJgP9d9LmKCpKig2aoxyFfU7lG4LnaikM4Ik/k4vO4r5uMfCzOQk1+DndlFyLpZc7v6PDkyAFPTYjCkRxgEPC5kEgG+O3CVViX5lP4dMzrXFlLigjAhJQq/nXMsWTQhJQrLJvb00K5cD+tgdgLMmlpUbHbuXDZTs+e/kKXPgKiL9wq3Mm1JyPdnrh/H0r7obp5B8bfLYFbdqdloUpZCd/M0Krd8gMiFH8Ov77h22mHHZ2K/aGR2C8WecyXYe74U1epGEASBCLkEE/pFtbnQRKUz4N87L1KuZAaaZG32XSiFzmB2Kq/TksOXK/DYmB60+0o7Y2JqNE5R6Dl9t017nwqN6xuJzSdv0bJJiQ1EWIBjBxNoOs4fkBiCAYkhsJIkGo1miPjcVmkSEhEfyyb2wsfbz1Naf86gBMSF+tHac0fm5LUqbMsqwLlCxR2vE2jSBQWa3uvM7qGYlhaDvhQ6A3kzrIPZCVCe+AmkhV5HDeXRtQif/ZZ7NuQCpD2GgisJgEVHoyqSw4N//6nu2xSL29DdzELBf+Y77DluaVCh6KuliF7y3w6j4+qNyCRCzBmciDmDKejD0uBisRJv/5RNqQXe3ezOLabdb1zdYMSxK5UY1TvC7pgGgxnnCmqhbjRCyOOiW7g/IgMd6wYPSAxBhFyCMiU1oXEBj4OJ/dwr10SFmGBfpMQGtnJeHDF9QCztdTgE4fAhZEyfSFisJFb8etFhFHv2oAQ8NKo77fU7IiRJ4su9V7D1tG2ll+Z3KS7EF2/O7o8uAcyi0d4G62B2AlRntjGw2erVDiaHL0LAoDmo3fsFZRv/lPHgy9gIZkfDatKj+OsnHTqXtyGtKPn+OUgS09k+417EjQo1XluXRVvep5lShY5RJfGpG1U2Hcya+kZsPJ6PfRdKWx3XpsQGYtagBKQl2M7X5HIIvDGrP57/4YRTp5cggL/N6IdAX+9Iy3luah88++1xSj3EJ/SLQmYbOgY5YnxKFPrGBGJnThH2nCtB/R8PHUI+FyN7hWNq/xgkOmhX2dlYf+ymXeeyJQXVGny8/Tz+uTCDsdi+N8E6mJ0As7qKto1Fp4LVpPfqfMWQ8U9Bc2n/HVqH9uD5BSNsxqse2BWLq1Gf3QWzppbyeNKkh/LETwgZ/5Qbd0Ufi14Lk6IUpNUCvizU7Q6wsbYYquxfYFJXguDwIAxLbGqiIG4tOO1uVu2+xNi5BOCwo4wjSmtbRxlvVdXj1XVZqLNTDX6uUIFzhQo8MioJcwbbrjiPDfHFp4sH4YMtZ1FUo7U5Ri4V4rkpfZDe1Xtk38JkPvjX4kF4c+MZlDho9ThjYBweG9PDrcevYQE+WDKmBx4elQSd3gQrSUIq4ncKx4kO9Q1GrDtKvWj1ckkdTlyrwrBk5s0CvAXWwewEEBxmf0amdp6C6+OPuL+sReHnD0NfYr8ykS+PROzT30EQyFxcmaX9UB5fT9um7vh6r3EwG4svQnHoB6hydoA0/enUSJOHI3DYQvj2HuPSG7mhuhAVm9+B5vKBVooRlT+/h4BBsxE2/WVwhM5z61zBjQo1JRkbR8h8BJSibndzd0GQUqvHq2tPU5rr2wNXIZcKMdaOKHtsiC++XDoM5wsV2J1bglKFFhYriWA/EUb3icTgpDDwvdBZigiU4MsnhuH0jWrszCnGjXIVDGYrZD4CDO4Rhin9Y+zKErkDLodoky5pR2fP+RKnfd/v5pfsQtbBZPEOhGGJtCJAACAIiQPB9f4/P98/FAnLt6E+dxcUh1ej4VbO7WvC8O4IHLYQsvSZ4Io6R87KvYixil5hAtAUvSMtJhBc5gUprqBm75eo3PqBzWvavMPQ5h2Gf+oURC7+tKl7UhtpLM1DwYp5dnOTrcYGKA59j4bCc4h75kePRDMPXqIv8H03Y/tGYfPJfFo6nUBTHmaj0QyxgIdShRbv/3yWlqP6/cFrGNU73K6mJ0EQSIkLQkpcx0rH4HI4GNQ9DIO6MyuWdDdWkoRSY4DBZIGvDx9+4s7rgJ68Rv+E8UKRElq9CVJR+/6+tRXv9zBYnCIf8iB0N07RtJnnpt24Hg5PANmA+yAbcB8sjfWwNGrAEUrA9fHv0BV2LE0wlaQirVYQri0gpoXiyBq7zmVL1Gd3Alwuoh5a0abPq6WxHoWfP0yp8K2x8BxKV7+AmKVfMV6PKgpN21pQcggCU9NisDOniLawOgBo9SZcK1PhzY1noDfRixTVavQ4db0ag5O80xHrbKh0BuzOLcGvOUV3KAb0jArAtLRYDOkR1umO0JkUvQFNR+sd3cHsXH/JexS/lIng0ZDn4QglCMiY5cYduQ+u2A8CeQR4EhnrXHYS+AG2eyE7giuVuyQiyBRLgxoVW96nPF59Zjvth8C7qTv1cysJJ0fUn98DfQX1Nn9MYSpM3sySMUkI8RdDLmX296xWNeKtn7JpO5fNnL5BP8LEQp+LxUo8+vlhfH/wWis5qssldfhway6Wrz4FdQP9VAlvRsBj5mY5aqPaUWg3B3PXrl2YM2cO+vfvj/T0dCxduhQXLlygNUd2dja6d+9u978XX3zRTbv3Ljh8IWIe/xIEFRFqDg9Rj6wET9oxOwMwwaxTof7ifqjObEf9xf2wNNDrA8viXmTpMzxi40rqTm8BaWykZaM8sobxeiRJMrJXHl3LeE2qxAQ7lv2xBwFgyegkzBzYJObeNzaQ9hzRQVJsySqgJex9N1qa8kgs9Ln5h8qAM33UvNI6vLaeuRqBN9Ijkv69NlQmRgDDBy5vol2OyFeuXIlVq1ZBIpEgIyMD9fX1OHz4MI4dO4bPP/8cw4cPpzRPXl4eAKBfv36IjGydqJ2amurSfXszPnH9EP/cTyj539Mw1hbbHMPzC0bkok/hmzzMw7trH/QV11G796tWxRcEXwRZ2jQEjV0KUZhrtQBZ6BOQORtVv/wLpImiyDZBIHDoAvduygnq7B30bc7tYazcYNGpYKjKp22nu5nVei4rCZ3eBBCAVMRvc5u+sX0j8cOh67RkhkL8RPhg/kBEBf3pnE7pH4Nfc2z/dtljVK9wrD7sXGXCEaJOECnydlb9Rl1l4Hq5Gjuzi/BAZrybd+UZJqdG45fsIpo2MZ2ifabHHcxLly5h1apViIiIwPr16xEa2nS0e+jQITz99NN49dVXsW/fPojFzqNxV65cAQAsX74c/fv3d+u+OwI+MX3Q7a1D0Fw+1KLVnhV8eQQCMmbBr+84cHidN5m6JZrLh1D09RM2o0ykSY+6kz9BnbMT0Uu/gm+Poe2wQ5ZmeBIZwue8g7IfqbUvDZn8HISh7XvzoVtUBwCwmmHRqcGR0XcwrQZqot+t7f5seVhQVY+dOUU4cLEcDcamqJ2/jwDj+kZicv8YdKHQ0cUWcqkIw5O74MClcso2yyb1usO5BID4UD8M7BqC0xS76AT5iuAj4jGWOGqmV7S8TfYsjrlZocaVUnoqAztzijAzI65TOFlxoX5ITwxG1s0aSuMlQh6SImSoVjci2E/UoVPBPO5gfvfddwCAZ5555rZzCQAjRozAzJkz8dNPP2HXrl24//77nc6Vl5cHDoeDHj16uG2/HQ2Cw4Vf79Hw6z26vbfSbjQWX0TRV0udRsSsxgYUffkYEl7cAnFksod2x2IL+aA5gNWCsg2vAVb7kY6Qyc8hZOJfXLKmoaYIuhunYNXrwBX7Qpo0BPwAatIgTKvXCYYPeFwfZqLUXIkMJEnixyM38OOR1pE+dYMRm07ewpbTBVg2sRcmpUYzWufpib1wq0qDwhqN07EPZMZjYFfbOeMv35eCl9acws3Keodz+In5eGfuAJy9Re2mbQ8fIQ+jetHPAWahzqHL1B88mqmoa8C1MhWj42Vv5KX7+mH56pMoqHb+/dAZzHhpTVO+dlyIL6akxWBMn8gOGWn3eA7m0aNHQRAERo0a1eramDFjAABHjhxxOo/RaER+fj7i4+Ph4+MZvTeWjkHVzk8pH7eSxkZU//pvN++IhQryIfPQ/a1DCBr7BLiSP28sHJEU8mEL0fW13xE6+dk2P9Hrbp5BwapFuP7mMJT9+BIqNr+N0jUv4urrg1H05eNoLL7odA4RgwcSniyMuaMo9oVPYjptO99eo7D26E2bzmVLmlv7/X6+hNH+pCI+Pl6UYbc7DtBU7PDQyO5YMjrJ7hiJiI9PFmdiSv9om0UOBID0riH498ODkRDmB5GgbTfdGelxEAlYMRV3orQjeO8MhYZ6X3pvx1fMx78WZ2Jsn0jwuNR/vwqqNVi56xKe+eYYqtX0cr6Bpgr2/Eo1GhmoM7gCj36zqquroVarERYWBn//1j+08fFNx17XrzuvfLxx4wZMJhMiIiLw2Wef4ffff0dZWRmCgoIwfvx4PPnkk/Dz83P5v4HFuzHWFkNz+SAtm/oLe2FUlkMgZyMZ7Y0gKBpdZryCsOkvw6rXgLRawfXxA8FxzdN73anNKP3xJdtRUqsF9ef3QHP5IKKXfA6/PmPtziMfMg/qnF9orS0fMg+EHb1FKgQOXYAGGzmVduHw0JB8H9asuUTZZNWuS8joFmpTl1DTaELWjSrU6Yzg8ziID/VDr6iA2w6/n48A789Lx62qevyaU4SrZSoYTBb4+QgwqHsYxvWNpCS4LRbw8Myk3nh4VBIOXCxDyR8C50G+IozsFXHHUX6PCOYRrhE9w7FgeFfG9izU4DBUGehsckUSER8vTu+LJWOSsPdCKYprtFA3GJFzqwZmi+M0j+JaLV758TQ+e2QQJc3QyyVKbM8qxLGrlbBYSVRUtE9hq0cdzJqapuOM4GDbT7nNrysUCqdzNRf4HD58GGfOnMGAAQMQFhaGixcv4ttvv8WBAwewfv16yOVsfs29RP2l1t1NnEJaobl0AIHD2rdwhOVPCA6HUrTPUFMEzcV9MOvqwBH4wCcuFZKuA21GObVXj6F0zXKAdCxnQ5qNKP7mKcS/8DN8YvrYHCPplglRZDL0pXmU/j0cgQ/kg+dSGmsPv34TIT7QF41F5ymNDxr1CLZds93m0B4GsxX7zpdiZsafOa419Y348cgNHLxYBoP5zvcuOkiK+zPiMD4l6vZ7Hh/qh2cm9aa1ri2kIj6mDYh1OCaxiz+SImS0OglxCAKLR3TD7MEJnSLHz9thqjIQHcTMztuRSYSYldnUovTVtaedOpfNlCp12HziFh5xcAJAkiRWH7qOdceot6Z0J212MF944QVcvmy/jV8zY8eOvV0dbq+ARyhsKstvaGiweb0lzQU+6enpWLFixW1HUqlU4vnnn8fJkyfx5ptvYuXKlU7n2rJlC7Zu3ep0XMt1WbwTi45ZyzpLQ9ta3bF4loaiC6j65RNo8w63uiYMS0TwuKcQkHFnHnfVzk+dOpfNkGYjanavRMwTX9u8ThAEYh7/EvmfzIS53kkeIIeHqEdXgU9Dq9b2NALEPPk/FK5a5NSxlWU8gNDpL2P/Zwdor7P/YtltB7OwWoNX1p62e8xZXKvFZzsv4kqZCn+d3LtdHLY5gxLw9qYc5wP/4K+Te2FCP2a5piz0GdsnEt8fvEbZkQKAfnFBCPdgO8v2oEyhQ84tesWCv50rwYLhXSHg2T7R2Xg832ucS8AFDmZ5eTkKCgqcjqupqQGH4vGQ1er8JvDKK69g4cKFCA4OhlT655OOXC7HP/7xD0yYMAF79+5FdXU1QkJCHM5VVlaGrCwaR08sXguHihYoBTvSYoZZqwCsVnClAYykZVjcQ/2lAyj+6gmQZttOj6HyJkpXPw99+VWEzXgVBEGgseTyHW1GKa1zcR+MyjII5BE2rwuCopHw4haUfP+s3bn5gZGInP8PSJOG0FrbHny/YMQ/vwm1+76G8vg6mNV3VlyLIpMRNPIRyDIegMFsZdRFpFkEu77RiNfWZ1HKofsttwTBviIsGN6N9nptZVBSGBaP6IYfDjlPrZqVGc86lx5GJhFiZK8I7D1fStnmvvRYl6xdWK3BzpwiXCmtg95kga+Yj8xuoRifEgWZpH11Jg/n0S9+UjcYcb5QgQGJrX0ahUaP1Yfd31iBDm12MNevX0957NWrVwEABoOdG8Mfr1Mp2uHz+YiLi7N5LTQ0FMnJycjOzkZeXp5TBzMiIgLp6dQS6K9cuQKNxnklGItrIEkSpNkIgiegVNzhE89M+9QnvknmylBTBOWRNag7tel2NJTg8eGfOgWBwxfBJ+7e0Vb1RvQV11H89ZN2ncuW1O77CoKgGAQOWwDtFeeFg60grdBePdZU4W6HZiezsfgilMfWw1CVD9JqBl/WBbL0GfDtOcJl+aPNcEVShE55DiETl0F77SRM6koQHB6EYYkQR/e+/T1h2mCnuTPP7rMlrTquOGLNkRs4dLkcw5LDMTE1CsF+zB72mDBvaFeE+Iux+vB1VKlaF0ME+Ykwb0gi4yp5lrbx5Phk5FfW41aVY3UAoEllIKNb26L9Wr0J/9x2zqbk1ZVSFVYfvo65gxOxYFjXdpMBYlr8ZM9ud24JLS1aT+DRHMxmR6+21nZY2FmOJh2CgoIAAI2NziuvZs6ciZkzZ1Kad+HChWy0082QFjPqL+yF4sga6G6cBqxmEDwhfJOHQz58EaTdB9stlvCJT4MoPAn68quU1xNF9YI4pi+UxzegbP3fgbt6Y5NmE1RZW6HK2orA4YvRZdabLncaWKhRu+8r6oLsAKp/Wwn54LmwNDi/sdnC0kjNThzdGxHz2p53aNYoYGlQgeCLwZeFOvycEVy+w6YJAh4Xof5iVNGsPo0MlMBiJfHrWXri0ABQotBh7dEbWH/sJuYOTsCiEd08dgMf0ycSI3tFIDu/Gmdv1UJnMMNHwENKbCAGdgsBtw0FVixtQyLk458LM/DxdttOH9CkMjB/aFfMGZzQprV0BhNeWn0K+Q6cWbOlSbpL3WDE0xN6touTybSIiW/H7jADOSh341EHUy6XIzAwEJWVldBqtXccbQNAfn5Tp4pu3Zwfs7z77ruorKzEO++8g8DA1i3GSkubwvFhYWEu2DmLpzAqy1H0xaOtcsxIswH1F35H/YXfIemWiZjHv7RZBEIQBILHP4WS76hrJYaMfwqqM9tQtvZlp2MVh38ACA7CZ79FeX4W12DWqaCi2UHHrKpE/YW94AiZSZlxhe7PA7OaDFCf/RWKI6vRWJB7+3V+QDjkQ+ZBPuRB8HyDGM09oV8UpaPjlkzsF40ypc5mJJAqVpLEumM30WA048nxPRnPQxcuh8DArqF2dTZZ2g/fP7RLi2o0+DWnGFfK6ppUBsQCDOoeijF9IylVSDvjq9+vOHQuW/JLdhH6xgRiaDI1/VtXEhfiy8guJti2nUrHLCLqTjz+SDd06FBYLBYcPNhaSmbfvn0AQKlVZG5uLvbt24cDB1onsV+/fh1XrlyBTCZDz56e+3FzFVZjI5THN+DWp7Nx9fUhuPbmMBSsWgR17i6QFvo5VR0Fs0aBghVznRYw6K6fRMGqRbDa6QUtGzAdwROWUVozZNKzkCYPR/mG1yjvU3HoOzQUUqvkZXEdDQVn72j5SRXt9ROQdM1gtKak60BGdlQx1dfg1qezUPrDc3c4lwBgqitH1S+f4Prbo6HLP8No/on9oiHgUf+ZD5AKMaRHGBoMrvmd2ZZViDM3qXXmYbk3iAn2xVMTemLlo0Pw1RPD8cniTMzMiHeJc6luMGL/xTJaNtvOFLZ5XSYMT+4CiZBejC8pQoaEMNvyi94o6+TxHT344IMgCAKffPIJSkr+FPU9dOgQtm7diuDgYEyZMuUOm/z8fOTn599x3D1nTlNe1GeffXY78gk0VZG/8sorsFgsWLJkCQSCjtUaUX1uD66+OhBla1+G7uZpmBQlMNYUQZt3GMVfP4lrbwxDw103os5C5bYPYayhdizXWHgONb9/Yfd62LTliJj/EfgBtrUt+fJIRCz8GKFTnoMqaxusenpyLsoja2iNZ2k7dP9Gf9rp4Odjq4AAACAASURBVJPQlDpBB0n3wRCGtu24zhEWvQ6FqxY5lR2yNKiaxlGURGpJgFSIl6angMoBoIDHwesPpELA40LsQvHx7e10A2e599h/sQwmCzWliGYuFStRTKEDlasRCXi0c4JnpNuuOwGa5MG8DY+3MEhJScGjjz6Kb775BlOnTkVGRgZ0Oh3OnDkDHo+HTz75pJVTOGnSJADA6tWrMXBgU0Rh1qxZOH78OPbs2YPp06cjLS0NYrEYp0+fhk6nw8SJE/HII494+p93G6vJgPrze6AvuwrSYgLPLxj+qZPtVqQCgCpnJ0q+XeZQx9FUV45b/56L+GfXd6qCE7O2jvbxp/L4OoRMXGa3bZ988IMIyJgFzaUD0F47DoteC65ICmnSUPj2Gnk7v011Zhvt/apydiBi/oeMWway0IcrZnakxBVJQRAEQib9BcXfPEXNiOAgZMLTjNZrhrRaob16FMqja9FYehmk2QSebyD8+0+FfNAcKI+vp6yjaTU0oGLT24h/biPtfQxN7oI3OP3xr18uQKu3HZkM8hXh1fv7oWdUk9xbZKAEQb4i1Lqgm0r2zRpUqxsR4u+5oh+WexOmjmKJQodoO0fP7mTRiG64XqHG+ULn2t/TB8RieE/7R/mTU6ORnd+21qmupl16ZC1fvhyJiYlYs2YNTp48CYlEghEjRuCZZ56hfKTN4XCwYsUKbNy4EZs2bUJubi44HA4SExMxe/ZsPPDAA+2SuEtaTKjevQqKI2tg0d75oanc+iF8e49GlxmvtIqMmNRVKF39PCWRcNKkR9HXT6L7O0fBYdjb2NtQn91J+/jTrK6GJu+Iw77rBJcHv77j4Nd3nN0xJlUlrXUBgDQZYGlQM86NaysWvRZmjQIElwe+f8g94ej6xPcHIRCDtJMaYQ9pj6ZCGP/UyQid/jKqtv/DsQFBIOLBDyDtPpjpVmGoLkTRV4/DUH7tjtfN6iroS/NQvfNTEDQltXQ3TkFffh2icPpSQIOSwpCaEIzDl8vx+/lS1KgbQRBAhFyCCf2iMah76B1HbFwOBxP7RWGNkxaTVCABVKoaWAeTxe0wraI204x6ugoBj4t35w7Ayt2XsP9CKWxtX8jnYu7gBDw4JNGhTzOwWwjC5T4oVzrXEfcU7daEdcaMGZgxYwalsdeuXbP5OkEQmDt3LubObVuHDFdhNRtR9OVj0F4+ZHsAaYXmwl403MxC7LI18Inte/uS8vgGWg6WWVWJ+nN7IEub2sZdewcmJb28mbbatYS0MOvT6mmnjiRJaK8cheLIamgu7r8tGs6VyBCQORuBwxZCENR5ZVi4Yj8EpM+A8tg6yjZ8eSR8e428/f8h45+CMDgGVbtWtHL+AEAc0xehU56Db8+Rra5RxVhbjPx/zYRFYz8qQVpMIBloVKrObEPY9JcY7UvE52J8ShTGp0RRGj+5fwx2ZBdB3WBktF5LrF4mn8LSOQn0ZaZXzNTOFQj5XLw4rS8WDe+G3WeLcalECb3RAqmYj4FdQzCmTySkIuf3Gi6Hg7dmp+GFH04y0r91B+3mYHZGKja9bd+5bIGlQY3C/3sY3V7bC55vIEiSRN3xDbTXUx5f12kcTFDKErNl1rYotebyQZjV9COYPL9gcESeO1KxmgwoXfMi1DbSCCw6FWr3fQXFwe8QuegTyAbc57F9eZqgMY9DdWY7rAYdpfGhk59tJfXjnzoZfv0moeFmFrQ3TsGq14Ir9oW0x/A7HvqYUvLDcw6dy7ZgrvdcwUyAVIh3HxyAV9dm2T1ap4onNTFZ7l1G9grHepqdbMJkYvSIZN7T3lWE+IuxeGT3Ns0RE+yLzx4ahH9uO4fr7dR/vCWsg+kiTKoqKGk4iRaNAsrj6xEyYRlIkx6mOvoaVoaqW7RtvBVBcAxDu1jGa5rqKlD89VP0e5cDCBg8164Wp6shSRKlq1+AOucXx+MsJpR8/yw4Ah+HKQEdGWFIHGKe+AZFXzwKq8HxUVDIlOcRkDnL5jWCICDpOtDlVeKNxRfRkJ/t0jlb4umoefdwGVY8MgjfHriGk9eqYGXwXUmODEBEYOdu+8fiHcQE+6JPjBwXipSUbSb3j7ndXKAzEBUkxX8eHYxr5Srszi1BuVKHehEP7SFi5H117R0U5YkNrQS6ndocXQvSagFptTBblKmdF+KfOhkcAT2tQr48EtLugxivqTiyBlYj/XwVgieAfPA8xuvSRXP5oFPn8jYkibL1r8Jqbvuxprci7T4ICcu3wa/fJMCGELk4NgXRj32B0El/BUmSsBobYTW2vViFCnQeMpkg7OL5VoyRgVK8Mas/1vxlFJ4anwy5lF6LvalpzB4eWViY8PSEXvChKP/TLdwf0wbEundD7QBBEEiKCMBzU/rg40WZSAxrrRntCdgIpovQ3ThF28ZUVw5jbQkEwTHgiP1gpdg1pBm+rPOIyHOEEki6ZzblFlIkcNhCxh11SIsJdSfoV+QCQOTCTyCQ25Y/cgd0JZHM9TWoP/cbZGnT3LSj9kcU3h0xj/0fTKoqaC4fgEWnBiEQQRLfH+Lo3jDUFKFiy/uoO7UZFm1TNIPnH4KAQXMgHzzPbX8/Q3VBm+wt4OCqsCfK+FEwEzxIrVr0bsxFgLUOBF+EgIHUOo65gyA/Eaanx6FXdCBe+OEEGo3OH3AHdQ/F8J6e+66wsMSG+OLD+el4Y0O2w/zh5MgAvDUnDSI+25XNXbAOpotwdlxn304HgiAgS78PysOradnKBt7PaE1vQ3VmOyp3fAyTosT54D+QJg1B4CjmMlSmugqYNbZbljpCEBIP2YDpjNeli6VBDc3l1k0JnKHK2tapHcxm+LJQyAc/eMdrNfu/RuWWD24XQTVjVlejZvdK1Pz+f4iY+z7kg91QHMjwVMEKAkcko3BUMgpq7p35YL/4zkSy4SIe7Ga12b3K0ySE+eGjBQPx5sZsqHT2b+DDk7vgxel9O9Xx470ASZKo0xnQaLRAIuTB30fQbv26mZIUEYBvnhqO38+VYmdOESrq/rw/94mRY2pabCvlBBbXwzqYLoLLsOCD69Mkjho4dCEtB5Mj8GnXaIarqNn3FSq3vE/Lxq/fJEQt/rRNEk1WGv2sW8IReLba0FRfwyhH1OiC6vqOSO3+b1D583uOB1nMKFv7MggO126OJlPsCfs7wgoC62QP4Zx4gM3rJAhcFvXFh1VcvFdah2QvKEhIigjAt0+PwIGLZdiZXYzCP/QH+VwOBieFYWpaDHpGBXQ4x+ReRqc34ffzTQ5ZqeLPIrrEMD9MTYvByF4REHagaJ+fWIAHMuNxf0YcVDojDCYLfMV8SChUZLO4BtbBdBG+PUdAe/UoLRthaAL48kgAgCi8G4InPoOa3Ssp2YbPfc8rohltQZN3mJZzKY5LRcTcdyGO6tXmtXlSOUO71n3v3QnBYfYVZVI01tExKkpRsfUDyuPLNrwG395jwJO6zmELyLgfqqwttGx+D12Ic5wBTQ8SthyyP17TGSx4c8MZfLF0WLvKqjQjEfIxNS0WU9NiYbJY8f/snXdgVFXaxp87vWUymUnvPbQAKXQIHaSqoFgoArrquu6nLnZXxXWVXeuubV11bYiggChFBUQ6hBIg1BDSe51MJpOZTL3fHzFISDJz782dyUy4v/+Ye849b8Jk5r3nvO/zWGx2SEUC8Lik0ucortXjr+tPdCusX1Cjx9vbz2FzdjFeuXukz+mZEgSBAJp1wxzswO0Ps0TAmNtBCOl96KuzlnZ6wg+Zu8q1hzZPgIjF/0DAaN8/Hq/f9R9a423NtZBEDGRlbYFfIGQJ3e8YOUOZNouV9akiDAgFT6KgPc9h0qOtOt8NEXkv2kNf0zqiJq1taMreyGoM8uSxEAXHUx5vJKQ4IPjNJ51CYqY3WbHtJDU7VU8i5PMgFwu55NIHqWky4qmvjrl0bSprMOCpr7KhZ0EXlePGgEswWYIv80fQ9AcpjxcFxXY5niMIAqHzn0Disz9BPX5xp65qvjwAgdMfRMrqvV1qznyRtpoCtOYfpTXHqq1ECwWdUapoJi6jNZ4nUXhcY5InlMCfYc2n9iB1QfL+QFP2JtpzdNmbWY2B4PEQufR1EBTLNy6k3AcLTRORn06X0fZb5uDoiU/25FEW06/SGmnrTHLcuHAJJosEz34E6vGu5WuEmkjEPvwl+D3sTEkjByHi7lcx6M1zGPjPUxj4ei4G/vMUwm59pt84tZhKzjCaZyzKYS0G/7RZkCWOpDw+9JanwZd4Xs9PmTqd0TxT+XmWI/FeSLsNtuZa2vMsbiglkCdkIvZPn4PnwjtdNWohyoKzaN9f12pBWb2BaXgcHFdpbGnDkcv0jCZ25Vagzdp/JPI43AeXYLIIweMh/K5XEbnszW6PcnlSP2gmrUDikz9ATEFYnOALIPDTQCBXeUzU21Mw7rpn2JzTHQRfiNgHP4EsIdPl2JD5T0KTtZS1ta+HtFthbaqGpbG8y+9GFBDG7J40vd19GoZHs+5qQlGkjEPKSwcReuuznUwECIEIqhG3IH7VJkQuexMmK7OdSJOFmb0pB8e1HLhYTdu/29BmxckCzzlKcfguXJMPyxAEgYDRt0E1aiFMJWfQVpUHh9UMoX8w/AZNAk9MT0y8v8KXM2usYLuxiS/zR9z/fY2mI9+g8eBXnf2peXwoh06HZtIKKJJHs7puB+a6EmgPrkXT0Y2wG3+z9uIJoBw2A5qspZAnjwHfj1ljEd+PWSOTL0Lw+BAFRsPSUEZrnig4zk0RAQJFAIKmP4DAafeDtJjgsFnAl/p10m6VUxSEvh6m8zg4rqXRRd1lj/MMN9DDKwdjuE8plrA2VcPSUAaSJCFSh0MUGA1ZXBpkcWl9HZpXohg4AYRQTHuXTTmUfQtEnlAMzcRlUGcthbnqMqz6ehB8QXuXv38w6+t10HR0IyrWPd3VAcphg/70j9Cf/hEBY25HxN1rIEsYAWPhCVr390+fw2K03k/A2DtRu/U1WnPUY92ghXkdBEGAEMu6fbjMSAjC4cv0jvYDlRJEB9Fv/OKgTr3ehOz8WjQbrRALeRgQrsKQaHW/k11iqgMpYEnb1O5wIDu/DjtOlaGoRg+r3QGVXISJg8IxKz2KdQ/7gupm7MwtR5XWCBJAiL8U04dFYmCEqtP/bV2zCVqDGUI+gdAAGeRiTtqICVyC2QtIkkTLhb1o3Pc5DBf3d7omTxwF9cRl8E+b3W+Ot0mShK25FnaTHjyxAkJVKOOfTSBXQZU5H01HqXfxyhJGQBrJThd5dxAEAUnEAEgiBtCea29rhbHoJOzGZvDEcshih0HgF9jjeN3JbahY+7jL+7b/fgios5bSSjB5UiVUGfMoj+8PqMfdibqf3gFJsYyCL/P3qGh+d0xJjcDHv+TROvKekx4Nfj/5TOmguFaPqt/EsEP8pUgIVfZJMldS14Iv9l1Gdn4trj85jg5U4Pax8Zg+NLLfJJoxDB9UooOY6T5fS2l9C1Z/exJV2s4lQYY2K9YdvIL1hwqwJCsJd09I7PXvu1Lbije35uJCeVOXaz+eKkNiqBKPzElFRWMrtp0sxcWK38eJBTxMHhKB+SNikRCq7FUcNxpcgskQkiRR9e0LPYqjtxYcQ2vBMejT5yJy+du9EgXva+xtrdAd24yG/V/CUnPl9ws8AYTqcAROXgH1uLvAE9F72gy66c/Q5+76/WjYGXwBQm9+kmbk7sfSWIGGPR+jKXsTHG2/N14QfCGUabMQNP2BLrqdDosJVRueo7xG09Fv4T/iFsiTRlO2JA1b+Ffa/x++jsBPg6h73kLZ//7kWpyeJ0DUyvf6vGRFKhLgrvEJ+PTXy64HAwj0k2BORv/w9naQJPacrcTWEyXIr+78GRAX7If5I2Ixc3ikx5Lps6WNeGHDiR4tMMsaDHhz61kU1bbggekD+0WSOW5AKJRSIfQmK+U50YEKDInqnXZseYMBq744ihYn6zpIEl/uz4fZasfKqfQf+jso+20tZ/JKBTV6PPLp4S4PFQBgtjnw85ly7Mwtx8OzhmBuP/n78wT81atXr+7rIHyJLVu2oLKyEsESB0Y073c53lydD6u2Cv7DZ3ogOnawNJSh7uf3UbvtTdTv+g9qt7+BlrO7r3o6X4V0wGFshuHifjTu+xzioFhIwpIpryOQqyBPGgX9mZ1Od50IgQjRK9+F3+BJDH8i92AsOYOitxeh9Uo2SNt1H16kA+aqy2g6uhGi4DhIwlOuXmo69h2ac7bTWou0mhG14l8wFp2C1ZlLD0EgbOHztCWY+guSsGRIwpPRcnF/1/+T3+DLAxDzwEfwG0S/g9sdDI4KQLPRgvwq5w9aAQoxXr17JEIDfL+O22p34B/fncGGwwXd1vPpWi04dqUOV2r0GJcS6nZLv5omI574MhtGCv7qeZU6KCRCDPQCR6XewufxYDTbcL5M63rwbyyblIyUcBXjNUmSxF83nOhk3+iMC+VNGB6rQYiK/vve7nBg1edH0aB3fapBpdXp+JU6RKjliAvxrZ3MjrwlIiICCxZ4zgGQ28FkiEVbBVDsD9Ad2wzNxHsgix3W63WNJblozT8Kh7kVPKkf/AZmMTrS7Q6HxYTKdU9Dd/IH2vaEjjYDyj55CJH3vE3LwlIWl47EZ3Z0vwsoEME/fS4Cp93v1qNxJlgaylDy/nLYW7seuVwLabei/PNHIfDTQJEyFkC79zpdms/8jMhlbyD2/76C7thmNB5Yi7byC1evE3whlOmzEThpxQ1f9+ufNhuKgVnQHf8eTdmbYNVWAGjXnlWPvQP+GfM8bvnpDIIg8KebBiMlXIXN2UUormvpdF0s5GPykHAsnpDkcy4qPfHeT+dx8FK1y3HHr9Thja25eHZBmlt3DL87VoxWM/UyhfWHCjAnIxoige9YJ/bE4qwkXKpowpmSRpdjJw8Jx+z03knlXa5qdvkwdT0/nChFagz9Zsdj+XWo1La6HkiD/+y8gPEDQyn/3zfo2/DL2QpUNxlBgkSIvwxTh0YglEHC7GtwCaaH0B5Y26sEU392N+p+fAemsrOdXq/BK5AljkTInEehSBnH+P4OaxtK3l9O+Qi2Jyq/ehLyxJEQaSIpzxFpIhG+6CWEzH8SxqKc32o8ZZDFDmds6ehu6na+7zK5vIrDhpofXkPik98DACO9RjhssBm0EKkjoB53FwLG3glLXTFs+noQAiFEQXGsWh76OnyJApqsJdBkLenrUChBEASmD4vEtKERuFSpQ2GNHlabHSq5GCOTgqHoR/7JpfUt+Pl0OeXxBy5WY+HoeAyIYL5r5gyTxYbdZytozWk2WnDoUg2mpEa4JSZPIuTz8Lc7R+CdH89hz9nKbnfy+DwCN4+MxX1TB/barWnnGer/9x0cuVwDvdECpYxeqdn2U/RUJaigN1lx8GI1pg51/h3XZDDj/Z8v4HBeDRzXbdis3Z+PUckh+NNNg/vNQ2N3cAmmh2g+/SMil73R7TXSYYfDbARPLOskYdJB/Z6PUbP57z3e21hwHMXvLkXkktcZW0jWbn+718kl0L5jpz30NaN6Sb5EDsXACTAWnkDjgbWo2vA8HBYTBHIV/FKnQZO1xCuE5u3GZtq7kKaS0zCVnYM0OpWxvzjB/30eQRAQh8RDHELdlpDD+yEIAoMiAzCoHxy/9sT2HPpWl9tPlrotwcyvaoaRxu5lB6eLG/pFggm075I/cfNwLM1Kxo5TZThb2giTxQaFRIiM+CDMSo+CWsHOrj+THUW7g0Rts4l2gllYQ2+nlCr7XSSY9XoTVn1xFLU6U7fXSQDZ+bXIr9LhjWVjEKHxvIGHJ+ASTA/hMLfCYW0D7ze/ctJuQ8v5X9F4YC0MeYcA0gEQBORJo6HJWgrlsBkg+EI0n9npNLn8fQE7KtauAl8RAOWQKfRis5jafZxZQnvkG4TMe5x2h7lVX4+yjx+EsfBkp9fthkaYawvRsOcjaLKWIey2FzolW57GcPkwSEv3HxzO0OfugjQ6FeKwJLRV5dGay5cHQKBgpofJweFNHKEpy9Q+pwZA70uMuoOpaD2TpNTbCQ2Q4d5eNNRQgaRZftWbeRabeyxVm1p7ltdzkCRWf3Oyx+TyWrQGM17YcAIfPpgFoZvrjPsCLsH0FAQBgt/+9GXV16P0w/u62iWSJFrzj6I1/ygkkYMQ8+D/UPfjv6ivQZIo/c+9CL35SQROf5ByzVLzqR/hMOmpr+MCe0sD7MZmWke2NkMTit5aBEtdUc+DSBKN+7+AzahD1D3/6jP5J3srs6dim1EHoF1OpzlnG625AWMW9WlS7es4rGYY8g7Bpq8DwRdCHJbcvpvcDzqBfQ1nncM90Wq2we4gwWdJf/FaZAxF65nOu9FhciRMAIw0MVVykVseBJwlgzmF9Sioof59WqFtxeG8GkwaHM5GaF4F9xfiISSRg0DweLCb9Cj+990wV+c7Hd9WcRFFbyyAVee6EL4TpAM13/8DdqMeobc8RWlKm4tYmEBeLx7uguqNq50nl9fQfOIH+A2cyLgcoLcQDBtEeML2D0h5yjiIw1M6uwY5gy/wmVpCb8NubEb9rg+hPfIN7IbOTQySqMEInHwvVKMWcImmBxELeDDT9LIW8nlwQ24JAEgO84dMLKCdiKTF9axzy9Ez04dF4pezTpQwumFEYhACFGLaa00YGIZvDhfSnueKeCdd5Ntz6Nd9bj9ZgtggP+iMZogEfMQEKiDvB3XX/W9P1kvRTGj3sa778R2XyWUHtJPLa6jf9QFaLuylNphmMugKQiiGQE69XsraXIfmUztordG4/wu6YbGGLJZZl7YsPh1Ae51dzB/+Q9kuM3LJ615Re+prWHU1KHxjAep3fdAluQSAtvILqPjyL6hc9xRIh3uO0ji6wkTeZ8B1TitsIhEJMGMY9aZEoH1nbPzAULfE098ZFqNBdCA9gfd5mbGM1pqTHu2WB5M5TjrpL1VQbP68hnNlTXjgvwfw1NpjeOyzI7jr7V/w1rZcFNWyd7LYF3AJJkPoyJwIlEFQjbgZDosJTUe/dWNUnWnY+xmlcQIlu3aIqoz5IPjUn750x78Daad3bGYqzYWp4iLd0FiBL1OCENGTmBCqwqBMnXb13+KQBCQ8vhmSiJ7ll/jyAETf9wEt2SeOdjpUEcw1BS7HNh35BrXbum/A42CfKA1995i5me4Vt751ZBwtf/e7xif2C4mivoAgCDx+8zCIhdR+fzOGRWJEYhCjtUJUMiwam8Bobk+kxwc61cFso7k73x1mmwM7z1Tg4U8OYXcuPYUDb4JLMBkiCR/g1AqwA55EgZg/fgqeWAb9uT3UXGtYwnBxPyyNrt+c/hlzAYK9t4I6aymt8ea6EkbrWOqKGc3rLeWf/hmkhZpIcAeB0+7vUkMpDklA4rM/Ie6R9fDPnA9J5CCIw5KgGDABkcvewoBXst3mJ25prIDh8mEY8g7B3Ee/R3eiO7kVbZWXKI9v+OUj2Fpc6wBy9I5Dl6qxKZtaKUwH4WoZxg1w725haIAML905AlKR66Rn4eg43Dwi1q3x9HdSwlVYs3gklDLnGxFzMqLx6Nze1UrfMzkFt4yMZTz/WsICZHjy5uFOxyil7B1t2x0k3tyai6MMGuO8Aa4GkyE8kQQJT36PirVPoDX/aLdjpDHDELnktatC6E4dWNyEubbQpSalSB0BZeo06M/u6vV6mskr6et9ksyOJ/viWNNUdq69658G0tg0aCav6PYaQRBQpIy9KsLuTkiSRMu5PWjc9zkMeQc7XZPFpUM9cRlUmfO7lcryNbT719IaT9qtaDr6LYJm/NFNEXGYrXa89kMurTl+EgH+dscIj3TYpkar8e+V47B2fz4O59V20S6MDfLD7WPjMc2F/iEHNQZHqfH5w5Px67lK7Mgpu2owIBMJkDU4DHMzYpAU5t/rdXgEgT/OHIyRScHYerwEx67UddL6TI8PxLyMGBAE8P7PF1Dfg+vPiMQgPD5/GFRy57Wgo5NDsO0kfSmuniABfLjrAkYlB/dag9TTcAlmLxBpohD/6Aa0VeVDe2QDLPWlAElCqA5HwOjbuyZafdD1TNqp1VeGLngOrYUnqIuHd4Nm8kqELfwr7XnCAGbdcyKN5zXoGg9+RXuO/bfu8b6EdDhQ9c3z0PYQv7H4FIzFp6A/8zOiVrwDnpB+Qb23YGtp7GJIQAX9uT1cgulGNmcX0W7uGRKjQRTNer3eEBPkh7/eloEGfRuOXamF3mSFWMBDcrgKg6MCuGYwlpGLhZiXGYt5mbGwO0jY7A7KR+d0yYgPQkZ8ELSGNtTqTCABBCklnbrTRyYF49iVOuw9V4nyxlY4SBLBSiluSovC+IFhlNaZmxHDaoIJADU6E749XIgJA8N8SjOTSzBZQBKejPDbXnA5ThxE0VuSRYT+1OorxcGxiPu/dSj5YIVzpxmeoN1Gkmz/oiAEIvhnzocmaxljpyLVyFtRt+NtWnNEwfGQMmy2aaspgKWhvdNPFBgNSWgi5bnG4tO017PUFbfLNtFofGKbmh/+2WNyeS36Mz+j4qsnELX83z77Zcq0DMXOolQXR1eYCKwfv1IHi83u8XrHQKUEczLcW/fJ0Rk+jwDfA6cnaoWkR9F4i82B4toWXKzQoaGlfSeztN6AE4X1SA7zxy0jYzElNcLpZ2NssB9mDo/EzjPs1k5+tvcyPtt7GQMiVJibEYMpqeHg95FUH1W4BNOD+A2eCIF/CC2rQL5cheA5j6H62xdprycOSYAkagjl8dKowUh+fjeasjeh8cDaTjWO0ujU349Q+ULYW3UgHTbw5QHgCei5K3SJMygGisGTYLiwj/IcTdYSWgkQ6XBAd/IHNO7/AqbrkkRpXBo0E++BKvNml9qaTATWr87rowTT0liOhl/+S3l884kfEDhpOWRx6W6Myn3wxMye8Hk0G7c4qNNmtUPb0rM4dU/YHSR0rZZ+bafH4R3oWs147uvjPWpY5lc3umhgLgAAIABJREFU47UfcpFb2ohH5w51elz959mpMLTZcDivhvU48yp1yKvU4cDFKjx3WwYkbtrxZQMuwfQgBF8ITdYS1G57k/Ic9bi7EDhpOSShiSj97/1wmKnbbKmzltLeheLL/BE45V5oJq+ETV8Hh9kIvlQJgV9nF5nr/91bIu54GQWv3dKtnMz1yJNGQz2Bui6kw2ZBxeePofnU9m6vm4pPo6L4NFrO/oLI5W87TZj5CjXQQF/njC/rfS0RU7SH1rfvOtOgcf9an00wBcogiIJi2ktWaCBPHOmmiDjqdMZuPa6p4A5xdQ52sNodsNockIr4PnviAQA2uwMvfnOSkkD6zjMV8JeJnToeCfk8PLcwHbtzy7H1RCkK3SA3dLygHv/cchov3J7htb97LsH0MIHTH4Th8pEeG4OuRRqXhuDZjwIAFAPGI/6xb1D45kKQVtc7AbKETKjH38U4ToIgIPQPYTyfLqLAaMQ/ugElHyx32gylGDQR0fd9QKtGsGr9cz0ml9fSfGo7eBI5Ipe81uMY5dAZXR2YXKAYNBE8cd/tjjWf/on+nDM/IZJ8y2s/uJxB8HhQj1+Mmi2v0phEQD1hcbeXbC0NaLl0EHZjM3giKWTxGbTKKjjadyKZwCMIqOS9OyHhYJdWsxW/nK3EjpxSlNYbAAAiAQ8TBoZhbmYMBrpRs9RdHMqrQV4l9Vr5zdlFuHVUrFN/dj6PwE1p0Zg5PAoFNXrUNLU/ZMklAry44SSs9t43qR65XIszJY1eK/rPJZgehicQIfaPn6Ji7eNOxcX9UqchasW/O+ltSqNTEfunL1H63z84tXaUJ41GzAMfXfU99xUk4clIfmEPdDnboN2/9vdGDZ4AytSp0ExcBnnKOFofXqaKS7S0R5uOfIPAySuvdv5fj3rcHajb8TYt3U4Njd1Wd0BlV/h6SIsJpLUNhMg3jyYDxt6Bhj0fw6avpzTeP2MexEGda+7aagpQ/9O7aD61o8v/tzx5DIJmPAS/QVmsxexrkCSJ2mYTWtuskIgECFXJetxtZOLCAgChKqnX15ndSFwo12L1tznQGy2dXrfYHNhzrhJ7zlViamoEHps31Ke8tbfTbMqxO0j8fLocd09IcjmWIAgkhfl36ojPGhSGPefYUZXZdrKUSzA5focnliH6vg9gqrgE7cGvYLh0APY2A3hiORQpY6HJWgppdGq3cxXJo5Gyei+0hzdAe3AdrE1VV6/Jf5urHDrDZ32reSIp1GMWQT1mEUi7FQ6LCTyxgrHvOJXGlutpPLAWEXe90u01gV8ggmY+hLof/03pXvLkMfBLnUo7BjYhGHaEE72sre1LBHIVYh/6DMXvLHbZ9CNLHNll19qQn43SD++Fo83Q7ZzW/KNozT+KsNteROCUlazF7QsYzTbszi3HtpOlKG/8vWQn2F+K2enRmJUW1UXKRSUXIy1Og9PF9B52bhkVy0bIHCxwpboZz6477lJIfM+5SljtDjyzIM0nZHVazVacK9PSnpedX0cpweyOW0fFYe/5qi5SWEw4erkWVrvDKxN638xC+gnSyIE9JjLOEPgFIvimhxE04yHYWupBWs3gy/z7tM7PHRB8Ifi9FK3V5+6kP+fMz07/X4LnPAZ7q86lXaUkYiCi//Bhn+tKSmOGoeXsblpzJFGD+zzu3iKNTkXCE9+jevPL7bap132Y8yQKqMfdhZD5j3fa7TfXFTtNLq+letNLEKpC3CaI721UaVvx3PrjqNJ2NRqoazbh872X8f3xYrx85wgkh3duapufGUsrwZRLBJiTznVyewMkSeKtbWcpu9QcuFiNrIFhmDCImrRPX9LaxswquaXN4npQN9gdJJoMZsQGKVD0m/Znb3CQJFrbrC71OfsCLsH0YQgez6N1kr6IzUD/ydTmQguUIAiELXoJ8pRxaNz3WY/1tG2Vl1D8zmIEzfgjVBlzacfBFpoJi2knmJoJ9NyYvBVxSDxiH/oMloYy6HK2w9ZcB4IvgDgsCaqMed3Wxtbv/pBSctlB7bY3oUyb7XN1Z3TRtZrx9LpjqNU5V1LQtVrwzLrj+NeKsZ00LEenhGBcSggOU3QlefLm4RB44a7MjcjFiibavtjbckp9IsFk2oUtFdJPn6q0rXjp2xyU1Pc+sbwWocA7/068MyoODpZgUodKZQ5BEPAfPhMh81aBcCKL01Z+HuX/+xNqfui5ccjdKAZOhDg8hfJ4gTIYqhE3uzEizyMKjEbwzIcQvmg1whb+Feqxd3SbXNqNzdAd/57Wvc21hWi9fJitUL0Cu8PR5fhu/aECl8llB4Y2Kz7Zk9fpNR5B4Klb0zDehe0jnwc8syANo5O5h2dvgYkfdm5JI+qamcm6eRI/qRCRDMTLB0UF0BpfqzNi1RdHWU8uw9UyyETeuVfonVFxcLCENHYYWi8foT2HCpbGcpT+516QFKSj6ne+D6E6ApoeOpXdCcHjIfbBT1D45m0uNVh5Uj/EPvRpn3a99yWtBcdBWru3inNGy8X9UAwY74aIPEdZfQu255Rh34UqNBst4BHtzjaz06MxbkAodtFMMrLza7HvQhUmDf7dqUss5OOvt6XjREE9tueU4vg1tn1KqRAzh0dhbkYMQgNuzPeft9KTfaIr6ppNXq9hShAE5mbE4MNdF2nNm0tTiP9fO85Ba6CvBUslDm89PeESTDdB2q3Q5+5C48GvYCo7D9JmhsAvEP5ps6GesATi4Ni+DvGGQDNhCe0E03/4bErjGvb8j5ZrTN2P/4J67CIQ/N7VlTJBFBiNhCe2oHLd0zBcOtDtGFlcOiIW/wOSa3Y7HVYzjEU5sLc2gRBKII0e0q/LMuwmZrsLvuwC5CBJfLonDxuPFl33OlBc14L3f76AT/fkwUTT5hEA1nx3GoU1eqycknL1S5AgCIxMCsbIpGC0mq3QtVog5POgVoi5I3EvhakUKc9HNExnDIvEt0cKKSeAY5JDEBvsR/n+ZfUtOFXUwDS8HvGTCjF9WCTr92ULLsF0A21V+Sj98N6rdoQdWLWVaNjzMRr2fIzAqfch9NZnfb6RwttRDpsBUXBcJ1ciVzTs+wyqUQvAl/R8bOIwG9GUvZFWLLbmOuhzd/VZQ4hIHYG4P6+FubYQ2iPfwlJfApAkhAHhCBi9sJNyga2lAQ17/gftkQ2wX1vHyhNAOWwGgqb9wWeF2J3BdOeWqXuQN/DR7kvYcsz53weT5LKDb48UQiLkY3FW145buVgIudjzD1wc9AhXywFQk/zqgEcAYSrf2ImWS4R4+c4ReHrdMbSYnEvQJYf544lbup5yXa7S4cecMhTUNMNic0AlF2HCwDBMHRpBe/efCmIhHy/engGl1HvVPrgEk2XMtUUoeut22I3ORVsb9nwCh9mE8Lte8drt7f4AwRciauX7KPzHHICil4ilthBN2RsROGl5j2OMJWdoNYJ00HLpQJ93HItDEhB26zM9Xm+rvoKS95Z1ksC6isMG/ekf2zvt734V6nHMxfypYmtpRNPRjTCWnIbD2gaBPADKYTOhHDqddTkuWVw6wBMADnqdpYqk0azG4SnOlTa6TC7Z4KsDV3BTWhQ0fr6lzcvRzszhUfj+eAmtOaOSQhjrn/YFiWH++NeKsfhw10WcLKjv8m0hFvIxfWgE7ps2ENJrah4bW9qw5rvTXaSOyhqAs6Va/G9PHsJYLvlICFHi0bmpXZQavA0uwWSZirWPu0wuO9AeWge/1KlQ9rFOYn/HVHoGVJPLDrQH1kIz8Z4ek3+mR6kOhvM8ha2loefk8lpIByq/fgYChQbKYTPcEovD2obqTS+j6cg3XYTOdce3QKAKRdiC56DKnM/amkL/YPgPv4mS89PVOaow+A2ZwloMnmQrTYFppjhIEj+dLseSbnYxObwXs9WOxpY2iAV8DI4KwIVy5wob1zJ/RKz7AnMTkRoF/n7XSFRpW7HvQhUaWtog4PEQFSjH5CERUEg677Y3GcxY9cVRVDd1le3qoM1qRzFDOaIn5g9DaYMBFY0G2B0kApUSTBsa6TNuSVyCySKmsnMwFuXQmtN44EsuwXQzLef20J5jrimApb60x1pZvlTR7euu4EmYzfMUDb9+6jq57IAkUb3lVfilTmMshN8TDqsZJe8vd2qpatPVoPzTP8Nm0DrdbaZL0IwHoc/dSdmtKeimP/mksUGr2YrDeTUeW2//hSouwfQRimr12HayFL+eq7yqfcnnERAKeLDaXFsc3jYmHunx3ukuQ4VwtZySiPpb2886TS57y8CoAEzz4hpLV3AV1SzSdJReTR4AGC7uh1VHTReOgxl2E/VGnE7znDTwSKOHgieif+yhSBnLKBZP4LCaoT3yDa05lrpiGNwg0VOz5VWnyeW1VG9cjdbCk6ytLY1OReTyf7UflbtAM+VeqPvYCpQpjS1mxh7hTGg2MhOm5vAsm44W4aGPDuLHU2WdhNXtDtJlcskjCCydmIz7pnZvtdufqGg04PiVOrfdf3BUACLUvlvbDXA7mKxibmBw3ESSsDSWQ6jqv525fQ1PyEwmgyfueR5f6gfVqAW0rCj5Cg2Uw2cxisUTGItPw95Cv9NRn7sTfgMnsBaH3dgM7eEN1CeQJBp+/R/kCZmsxaDKmAuBXyBqt70BY+GJLtdFQTEImvFHBIy90yeOqrrD01F7o5UdR2e2nSzBx79cojQ2VCWF3UHCYnPAXybCxEFhmJUefcPU2f58utyt95+X6fsuVlyC6RV4bhfhRkSWOAKGvIO05gj8AiEKinU6JnDqfWg6thmkhZqYcPDMh8Bj6AvuCajWDneZ18psXk80HfuOthalPncnrM11EPoHsxaHInk0FKs2wVRxCS3nfoHdqANPJIMsYQQUA8azXhbgaQKVEgj5PFjtro88ryUmSIGyegPtT634UCXNGRyeRG+04KPd1JJLAKjRmfDefeORFNa/LIqpUtpAv8mTKuMGhGLiNfqxvopvf0J6GSI1s1oJYUAEy5FwXIt67J2UjjuvJWDsHeAJnMs/CFWhkIQlU7qfZtJyaKbcSysGT8PE9QgAeCJ2dyxMZefoT3LY0VaZ53ocA6SRAxE8688IW/g8Quatgt+gLJ9PLgFAKhJg4mD6Vn5/nDkYK6ZQd4bqYE56NO05HJ5jZ245LBTqK69le45nmsS8EablJX5S57JcU4aE4+lbh4Pnoycj1+L7n5JeRMCYRbTnKAZMgEjt+08q3oxQFYKAMbdRHs+T+kGT5dyL29pch8svToSpNNf1DfkC+GfM8/qjVGn0EEYi8GzrYTJx0gEA0sa+S0Z/Z15mLK3x0YEKDI/VYG5GDJQuviivJVIjx4hE9naXOdhn33mKzX3XzbneUvRGQcNQgun1paPxyJxUJF6zoy8W8jFtaAT+vXIsnrxlOESC/qGPzR2Rs4gsdhikMcOoJR2/oZm4zI0RcXQQvuglWBrKXLr6ECIpYh74GMKAnnd2rLpaXFkzm3q9ot2Gyq+fRtJfd3t1kinwC4QybRaaT26lPIcnUcA/k13fcr6fhtk8hZrVOG4EBkSosCQrCV8duOJyrFTEx9O3DgdBEJBLhHhxUSaeWXfM5a6XUibC6kWZ4PuIq8uNChMbwzarHSazDXLJjSeWP3kIfQH1AREqxIUoEReixOz06PbGKbsDYgHPq78bmMLtYLJM5NI3wJNSs5BSjb4NfkOnuzkiDqD9+Df2oc8ROO3+HqWC5ImjkPCXjVAkj+nxPqTDgdIP76PdDGOuvoLWK8dozekLAqf+AaDhLqWZeI9TxyMm+KdRs+q8FmFAOGQx1DzkOTqzJCsJK6ekOD2SC/ST4PVlY5AQ+nu93ZBoNd64ZwxignqW3hoUGYB/rRiLqEDvlufiAOMHgBvV3jMtToNIDb3Pvusbd/g8AhIhv18mlwC3g8k6kvBkxD+6ASX/uQ82XXWP49QTliB80Uv99o3ljfCEYoQteA7Bsx9Fc85WtFXmgbRZ2j3iM+ZBEu66ntKQdwimsrOM1tcd/w6KZO92fJHFDEXkktdQsfYJgHSxMzVsJkLm/oX1GORJoyEOTYS5poDyHPX4u31Si9IbIAgCd4xLxNTUSPx0ugx7z1dBa2iDgM9DbJAf5mREY9yA0G6P7VLCVfjvA1k4V6bF7twK1OlN4BEEItRyzBwedcM2gPgiscF+qNfTK08JVUkhFvaP41y6EASBR+ak4pl1x2Czuy4TyEgIwuQhnimHs9jsqNe3wWZ39KmbEveJ7AakUUOQsnofmk/tQOPBtWgrvwDSZgFfoYZ/+hxospZCEk6/SJ6DHfgSOWOLQ+2BtYzXteo8J2rdGwJG3wa+PAA1W17tNsnjSf2gmXgPQuY85pakjiAIhN32Iko+WA44XHtgi0MSuFITFghUSrB0YjKWTqTWuNYBQRAYGqPB0BhmpQ0c3sHstGicKKDnNz473TeldPQmC349V4nSegNsdgc0fhJMGhyO2GBqp48dDI3RYPWiTLyy+RRMlp4/q0YmBuHZhengu7k5sKLRgG0nS7E7twKt5t/tbg21ereu2xNekWC+++67eO+997B//36EhobSmltcXIx3330XOTk50Ol0iI6OxqJFi7B48WLw+rDTkyeSIGD0QgSMXgiSJAGS7Bedpzc6rUXMBb0JGkfPfY0ydSr8hkxB65Vs6M/shK1VC55ICllsGlSZ88ETs+utez1+g7IQtfzfqPjiMaeOOuKQBMQ+/CX4Mm6njIOjN4xKDkZYgIyyM41ExMf4gaGw2Ow+05Ristjw0e5L+OVsRZfa4fWHCjA0Ro0/zhyM+BDqklojEoPxv4cm4cdTZfjxVFmnWtbMhCDMzYjBqORgt3eF786twNvbz3bb3d5iouZKxjZ9nmD+8ssv+PDDDxnNzcvLw+LFi2EwGJCeno7U1FQcO3YMf//735Gbm4s33niD5WiZQRAEwB2F9wscZua2YOKQBBYjcT8EQUCRPMZpTao7UWXOgyQ8BY37PkPT8S2d9EZFgdFQT1gC9fi7wadY88zBwdEzfB4Pz9+WgSe+PNpp96s7CAAWqx0r398HAEgMVWJuZgwmDw6HRNTnaUW3tLZZ8dRXx3ClumeHtrOlWvzl8yN4dfEoDIoMoHxvjV/77v/dE5KgazXDYnNAKRNCLvZM89PBi9V4Yyv15mJP0afvhHXr1mHNmjWw2Zy/mbuDJEk8+eSTMBgMeO2113Dzze2drFqtFsuXL8e2bdswffp0zJw5k+2wOW5g+DJ/2JqZyeioxzM7lr+RkYQnI+LuNQi99Vm0VeeDtJjAV6ghCR/AnQhwcLBMQqgSb94zBq9+dxplToTESQDXqhMV1Ojxr+3nsO7AFbx85wjE0dgB9BRvbs11mlx2YLLY8eKGE/jkoUnwlznXQr4ePo/wuJORxWbHuz+d9+iaVOmTT+jCwkLcf//9+Nvf/gaFQgG5nH4X6uHDh3H58mWMHDnyanIJAGq1GqtXrwYArF3LvF6Og6M7/IZMYTRPMWiiz+1gehN8qR/k8RlQDBgPaeQgLrnk4HATcSFKfPRgFv65ZBQmDQ5Hcpg/EkKUlHRP6/VteHJtNiobWz0QKXXKGgw4fLmW8ni9yep2K0i2OHSpBs1GS1+H0S198im9evVq7N+/H+PGjcN3330HlUpF+x4HD7Zb/02bNq3LtfT0dGg0GuTk5MBgcI+dk93YjObTP6Hlwj7YWhrdsgaH9+FKgL07+H6BiFzyuhui4eDg4GAfgiAwPC4QzyxIw7v3jcfMtCjoKdbx6U1WvPezd+2o/XiqjPacHTmlPiEiv+8CfYF8T9EnR+RDhgzBihUrMGUKs90gACgoaO9uTU7uvuMxLi4OjY2NKCwsxLBh7OvjmSouoezjBwEABF8IZfpsBE39A6TRqayvxeE9SKMGwz9zPmUxcp7MH4lPbYNQFeLmyDg4+hab3YGjl2vx4+kylNS1wO4goVaIMXFwOGalRUEl7zu5FA7mkCSJbSdKaM05VdSAikYDIjXeoX96sbyJ9pzaZhO0LWYEKj175E0XJgL5nqJPEsynnnqq1/eoq6sDAAQFBXV7veP1hgZ6gthMIO1WNJ/4Ac05OxC59HUEjFrg9jU5+o7Ipa/DYWpBy4W9TsdJooYg7tFvIJB6x4csB4e7KKxpxksbc1CrM3V6vdloQXHdZXx1IB/3Th2IBaPi+ijC7rHY7DhXqkWz0QKRgIfEUH+EBrhXIcHXuFzVjHIGR957zlbinsneIcdntrqWO2NznicReLFDVq8TzFWrVuHChQsux02fPh2rVq3q7XJXMZnaP8gkku6fLjpeNxpdd/1+99132LJlC6V1L1261PNFhw0VX66CwE8Dv0ETKd2Pw/fgCSWIefATaA+tQ+O+L2CuLex0XRQUC03WUqgnLgNPQK9InIPD1yiu1ePxL7NhdNJ5bLOT+O+ui7Da7LhjXKIHo+seXasZm44WYeeZ8k5HvwSAzMQgLBwdj7S4wL4L0Iuobza5HtTdPJqi7e7Ej0L9KJvzPElssB8uVer6Ooxu6XWCWVVVheLiYpfj6uvpCbi6gs9v191y5YTjcDh3IwGAyspKHD9+nJW4QDpQ892rUAzM4lx6+jEEXwDNxHugzloGY1EOLA3tNT4iTSRk8ZmMm1AsDWXQHvkG5qp8kHYrBP7BUI24GfLksdz7icPrIEkSa7acdppcXsunv15GRnwQEvvQ4aeysRXPrDuG2m4SJxLAiYJ6nCiox33TBuD2MVxjHo/hDpk39eGNTg7BuTItrTmDowKgpNlF3hfMTo/GT17akNTrBHP9+vVsxEEbqVQKAGhr6/4pqeN1Kh3qERERGDlyJKV1L126hJaWFqdj2qryYCw6CXnCCEr35PBdCIKAPCET8oTMXt3HZtCi8utnoM/d2Vn/A0DTkW8gDk1ExF2vQp40qlfrcHCwSW5JI0rr6TVSbjtZisfmDWU1DrvDgbrmNpitdihlQqgV3Z9s6U0WPPt198nl9XzySx5UMjGmD4tkNVZfI0JNX+WlN/PcwYxhkfhi3+Uu4urOmJvBvkuR3eFAs9ECkgSUMhGELPi4J4erMDgqABcY1Jm6G+9URKVAcHAwLl26hIaGBiQkdH3K7Ngx7alG81oWLFiABQuo1U0uXbqU0m6n/sxOLsHkoIStpRFFb93e5aj9Wsw1BSh+ZzGiH/gISoZSSRwcbMNk52Tv+Ur8ceYgVgS5G1vasD2nFD+fLu/U7DAgQoW5GTGYODisk8vM9pOlqNFRP/L9bG8eJg8Jh4CFRMBXiQ32w4AIFfJoHMPyeQSmDfWexFwpE+HOcYn4cn8+pfEp4SpMGBTG2vplDQbsyOls4SgW8jF5SDjmZcT0ekf/6VvT8NhnR9DQ4j1lCUAfyRSxQVJSEoDfu8mvhSRJFBUVgc/nd5t8egJbq/c9TXB4J+WfP+o0ueyAtFtR/smfYG2q9kBUHByuqdLSb/4w2xxobOl95+vp4gbc95/9+PpgQZdO2rxKHd7YmovHv8iGrrX9mt3hwA6acjWNLWYcpaGf2FusdgdqmowobzD0mb1fd9w8IpbW+AkDwzwuOO6Kuyck4paRsS7HJYYq8bc7M1nZXQSALceKcf+H+/H98ZJODklmqx0/ny7Hnz45hC/2Xm63lGZIsL8Ub68Yi8FR1N2HPIHP7mBOmDABn3zyCfbs2YPFixd3unbq1ClotVqMHDkSCkXfdPDyhN71x8XhnZgqLsFw6QDl8Q6LEY2H1iF03uNujIqDgxpMvxJ7qy+YV6nDCxtOuDzyvFylw3NfH8eb94xBWYMBDQwaT7Kv1LK6m9Ud1U1GbDtZgp1nKmBo+z2xzEgIwjwPeVk7Y/KQcJwqasDusxUux0ao5XjopsEeiIoeBEHgwRmDkBqtxvfHS7rUZAb7SzEnPRo3j4yFlCW7y20nS/Dhrosux319qAA8HoGlE7uXXaRCsL8Uby0fi/wqHX481S4VZrU7oPaT4PQpBa7UMb41Y3wiwSwrK4PVakVwcDD8/Np9h0eOHImkpCQcPnwY3377LRYtWgSg3SrypZdeAgCsWLGiz2KWxaV7bC1bSyN0J7fCqq0ECAKiwBioMueBL+u7QnoOamgPfkV7TtPhDQiZ/SgIvk/8+XLQoGMXw1cauoKVEkr2e9fC5xFQ+/VOE/P9n89TrqcrqNFjW04p4hnaF7p7J3Hf+Sq8vvUMbPauSXdOYT1yCusxOjkEzyxIg0TI7+YO7GO1O3Akrwb7L1Sh0WCGgM9DTJACk4eEY9/5qh4fLAZFBuD529NpWyx6CoIgMH5gGMYPDENZgwFl9S2wOUhoFGIMilKDz6Lkj67VjP/ucqI6cx1fHbiCyUPCe60dmhyuQnJ4Z/OapTv6RoPWJ76hli9fjsrKSqxZs+ZqrSSPx8Orr76Ke+65B88//zw2bdqE4OBgHD9+HM3NzVi0aFGvhNx7A1+mgn/GHLevY9XXo+a7V9Gcsw2kvfOHYPV3f0fAyFsResvTXKLpxZjK6Tte2PT1sOpqINJ4T41TX2HRVkF7+Gu0nNsDu1EPnlgKWXwmNFlLII0a0tfhUaK1zYpfzlXip1NlKG8wwEGSUCskmJIagTnp0V6tyzhtWCQtCz4AGDcgFHIxc/mXy1U65FfRS2p35JRh1XxmjUViNyZ12fm1+Mf3p6/v6+t23JrvTuPFRRlu38k8nFeD934636Xs4PxvO34DI1WID/ZDTlEDWs1WSIQCDI5SY15mDAZHBfjMw1F0oALRge474dx5phxWO/WmIqD9ffrAjEFuisjz+ESC2RNDhw7Fxo0b8c477+DYsWO4cuUKYmJi8Je//AW33357n8WlmbLS7UfkFm0lit6+A9bG7ovsSYsJ2kNfo7UoB/GPrIfAT+PWeDiYQVqZ1aKRNu91b/AEpMOO6u9eQePezwCy84e4ufoKmg6vh2LQRESvfNerH7Byiurx6uZTMLR1lvlpaGnDt0d3/ofRAAAgAElEQVQKsfFIIZZNSsZd4xO98ot7VFIwgv2lqKOhlTgvs3fduUys8aqbjLDZSUiEfLTRFM8eFOmeujab3YF3fjznMrnsIDu/FofzajBhoPuO6/ecrcDrP+Q6LX24VKFDXoXu6pgWkw06o7m9OxrtWqIcwJ5zlYzmcAkmy/z666+MrycmJuKdd95hOyTG+KfPRfBND7t1DdJuQ+kHK3tMLq/FXHUZpR8/iPjHvvXKL6gbHb5CzWyenNm8/gBJkqj4chV0x52bIxgu7kfRv+5E/GPfgi/181B01DlT0oAX1p+AzdHz1zkJ4It9+XA4SCzpRX2Wu+DzeHh8/jA8u+6Y05+jg3mZMRga07uHXS3DBiGj2YYpqRG0fKnFAp7bZIqO5tfSbnbanlPqtgSzotGAt7adpVRXe/2YM8WNOFPciNFJwXhmYbrHjvK9mUYGHd3NRgusdgdrDUZ9Tf/4KbwAnlSJ4NmPIGrlOyB47v3j0p/djbaqPMrjjQXHYSxgSUieg1X802bTniNPHgOBwru6BT2JLnuTy+Syg7aKi6jZssbNEdHHZnfgte/PUErKAGDtgSsorNG7OSpmDIvV4G93joBM7Hy/4paRsfjjzN43fwj4zB6UBXwCt46Kg0hA/WtvTmYMFBL3uLnsPU9/J/ZMcSOa3OQ9ve1kKeX3Y09kX6nDms2net3E1R9gWsrQl81cbOMVO5i+iFAVAv/MNPBEUsjiM6DKnA+eSOqRtRsPrKU/Z/+XnEi3F6IaeQtqvl8DRxt1sWpN1lI3RuTdkCSJhr2f0prTdGwzQm95yquOyo9cZrZ79cicVDdF1DsyEoLwxZ8nY3duBX7MKUPFb/JFMpEAk4aEY25GDBJCmTXZXE9sMLPd6JggP4SqZHjm1jS8svmUy2RqVFIw7p0ygNFaVNAamGkWag1mBCjYbdqw2OzYneu6Q5wK2VfqkH25FmMHhLocqzdZ8MvZSuRX6WCxOeAvE2H8gFCkxQf6fKIVFaigLX4eoZaz2mjU13AJJkPEwXGIXvmux9clSZLRbmRrwTE3RNP3WJtrYWvRgicUQ6iOAE/YN91yTOFLFAi95WlUbfgrpfHylHFQDr/JzVF5L23l59FW4Vr241pIaxuajm9B4KTlv7/mcDC282SDXbn0Bcr3nKvEQzcN9trjM6VUhIWj47FwdDysdgfsDhJiAY/10pzpQyPx+d7L3XZd90RmQhBCVe3NUmMHhGLNklH4aPelbjvg5WIB5mXGYOnEZLcKrAsYvv+Y7uA6o765rZNGY2/ZllPqNMG02Oz4+JdL+Pl0eRc1gB9PlSFcLcMD0wdhdHIIazF5mtnp0bQTzFnpUW6Kpm/gEkwWcZiNMFw+ApuhETyhGNLoVIhD2BV6J+3WLh3jVGPrL5B2K3Q526E9sBbGopyrr/NlKgSMXQRN1lKIAqP7MEJ6aLKWwm5qQe0P/3Q6Tp40GjH3f+j2Egxvpq2mq7ECFcw1hTAWn0Ljga+gP7sbDpMehFAMWVw6NFlLoRw2AwTfPUeh3VHTRP/v0Wy1o7nVgkCl92vsCvk8uKsMTyUXY2pqBHaeob7jduuouE7/HhqjwXv3jcflKh0OXqyG3mSBSMBHUpg/Jg4KY8VlyBWxwX60/bElQj5C/Nk/KbPY6TU+ueJUUQN0rWao5F0f+C02O55ffwJnShp7nF+lNWL1tyfx+PxhXuUIRIesQWH4ZE8e5ZIGqYiPmcO4BJPjOqzNtajf9SGasjfCYersUy5PGYugaffDb/BkVtYi+EIQQglIK73jFb6UneOpvsZubEbJh/d1u4trN+rQ8MtHaNz/BaJWvAv/4TP7IEJmBM98CPLEEWjc+xmaz+wEHL/vJkiiBkOTtRSqUQvBE3invpzHcNCT/ejAcHEftAe+7PQaaTWjNf8oWvOPQhySgJiHPoM4iH3/4e7gGu56x4MzBqOwRo8CCnWpd49PRGZC95bBKeEqpFynGegpZqVFYdvJUlpzpqRGuCX5PZJXw/o9da2WbhPMj3ZfcppcdkCSwFvbziIu2A8Jod5T3kIVkYCP529Lx9NfHXOp2cojCDx9axqUXqofyhTvPGvxIdqqr6Dgn/PRuPfTLsklALRePoKS95ej7id2jtMJgoDf4Em05/kNYSfB7UscVjNK/rPSZYkAaTWj7JOHYMg75KHI2EGeMALR932AgWuOIf4vmxD3yHokvbAHiU/vgHrcXVxyCUAY4LquqzssDc47h821hSh663ZYtPQbL5jARNtSKuLDX869BwBAJhbgtaWjMd7JMaxUxMcD0wdi2STv674HgIRQfwyNoa4GQRDA/F5KPHWH2WrHluMlrN+3u1IOvdGCn2n419sdJLYcK2ExKs8yOEqNfy4djWAnu84quQgv3zXCp8sBeoLbwewFNoMWJe/dA5vO9dNf7bY3IFAGQj3url6vq8laCv2Zn2nNUU9YAqA9SbPp6wHSAYFfIHhi7xVxvp6m7E0wFp6kNthhQ+WG55H84q8+t1sk8AuEwC+wr8PwSuSJoyAMCIe1if1E0NZci+qNqxHzwEes3/t6Zg6LxHGa3m1TUyO8tv6yL5BLhHj+9gxUNrZix6lS5FXqYLbaoZSJMDYlFFNTI1x2tvc1T92Shkc/O4x6ChaWf541BHEM3YicceBiNetuRTKxAEH+XUs5duVW0BYf33ehCvfPGAil1DcfrgZFBuDzhychO78OP58pR5W2FSCBYJUU04dGYvzAUIgE/bPsybv/+rycxgNrYW2iLqZau+1NVo455SnjoBgwnvIOnWLwZDhsFlRu+Ct0x7dc7Vgm+EIo02ZBk7UU8sSRvYrJ3ZAkCS3N7nlLXRFaLx+GYsB4N0XF4WkIvgDqCYtRu/V1t9xff3Y3LNpKiNQRbrl/B2NSQhCklFBKLDqYlxnrvoB8mAiNHPdP901x6kClBG+vGIs1353usSHETyrEQzMHY0qqe96Tp4rqWb/njGGR3SZN+VU62vey2h0orWtBai/1U/sSPo+HcQNCMY5CZ31/gkswGUKSDmgPrqM1x6avh/7MTqgy5/VqbYIgEP2H/6DkvXtgLD7lcrzhwl4YLuzt8jppt6L55FY0n9wK9cRlCL99tdc2kJhrrqCtkrqvawe6k1u9JsEk7Tboz+1B0+H1aKu5AtjtEKhCoBpxCwJGLfAqGR1vJnDKvdCf2QlT2Vn2b046oDu2GcGz/o/9e18Dn8fD07em4emvjlHa0Vk5JYWxPA+HdxOklOKt5WORX6XDjpwyFNe1wGp3IEAhxuTB4cgaFOZWu0o2u8eBdq/5uRndH+WbKfrHszWPo2/hEkyGOMxG2JrpefACQMv5Pb1OMIH2pp24R9ajYc/H0B5cB6uuulf30+7/EgTBR/ii1b2OzR3Y9Myesm3N9I4h3YWp/DxKP3qwi/uSVVcNU8kZ1P7wGsLueAnqMYv6KELfgSeSIvbhL1H63z/AWHiix3F8eQDsrfRkQgDA0siOHqArhkSrsWbxSPxt0ynojZZux/B5BO6dOgALruuC5uh/JIerkNwHDUdslhEQAB6bOxRRPXh8+8uYKTUopZ5TeOBgD66ghyGkndlTn93YVXeNKTyRBMGz/oyUlw8h9uEvETD2jl7dr3HfZzCVnWMpOnYh+MzKCggvaIwxlV9A0VuLnFp7OixGVK59gpGI/o2IQBGA+Ec3IPr+j6AYMKHTNUn4AITf+QrCFj7P7OYerNlNjdFg7Z8n47G5qUgJV0EmEkAs4CFcLcPSrCR8+ecpWDg63ufqiDl8h+Gx7Bw9B8jFeO62dKfWmmNT6B8Rh/hLfbKLnIPbwWQM06Nknoj9phqCL4A8cSTK/td7D/TGA2sRueQ1FqJiF3FIPMATdJLvoYIkwn1OHFQgHQ6U/e9hOMytlMZXffMCFCnj2n9eF9gMWjQd2wxz5WU47BYIlUHwz7wZspihvQ3bY5AkCbtBC4fFCL5USatMgOAL4D98JvyHz4TD0ga7SQ+eWAa+pH33hOnDkkjjWQ1ViUiAm9KicVOa72i3cvQfJg2JwEe7L9E6Ko8L9oNMLIDNTl49yh83MNRlE9qIxGCE+EtR22yivNacjJh+5W5zI8ElmAzhiWXgSRS0LP4AQJaQ6ZZ4dCd+gMPUe69i3cmtiLh7jdfVYgr8NPBPm4XmnG3UJxG8Xu/q9hbDpQOw1BVRn0A60HjwK4Tf9kKPQ+xtraje/DJ0xzaDtHU+Wm3Y8wmkscMRvuglyGKHMw3b7diNzWjK3oTGA191+v3IEjLbhc/TZtNqhuOJJOCJOnetSqKGQBI5iJ7zD4+PgNELqY/n4PBxJEI+bh+bgM/3XqY0Xi4R4KU7MhGior9ZwucRuH/6QLy8yXXvAABEauSYm8E9ePkq3BE5QwgeH6pRC+jNEUnd9uWlO/kDK/chLSbaSbO7sTSWoyl7E4Qqescr/mmz3N4N7ArtkQ205zQd/bZHtyZ7mwHF/74LTYfXd0kuOzCVnEHR23d4rQ6oqfw88v82DdWb/tYl+TYWnkT5Z4+g6I2FsDKsu+2AIAhoJi6jNUc5bCbt9xkHh69z57gEzEpz7SIjFfHx0h0jGCWXHYwfGIZH56a69BqP1Mjx6t0jIZdw9Ze+CreD2QsCJ69E09GNIC3Utvs1E+9xm6MOq80sPO94W7QW5aD+5/fRcuHXdlsHGojDkhFx9xo3RUYdcy2N3cvfcJhaYGvRQqjqKrxb+dWTMJXmurwHaW1D6UcPIPmFPV6VMJlri1D878WwG53LlZjKzqLkvWWI/8vGq0feTAgYswgt5/dCn7vT5VihOhLhi15ivBYHh69CEAQemZOKxDB/bM4uQpW2s5UpjwBGJYVg+WR21AxmpUUjPkSJLceKcfBiNWyO3z/fg5QSzMmIwfzMGK9KLh0kiYoGA1rarJAI+YgKVPRb/Uq28I5MwkcRB8ch+r4PUPbRAz3uJnWgHH4TQuc/4bZY2PJRFgaEe4X4uu7E9yj/YhXtmksA8BsyFZH3vOUdsj8OZh6/ZDc/t7m+FM2ndlBfus0A7cF1CJm3ilEM7qBq00suk8sO2iouomHPJwiZ8yjj9QgeH1Er30Xl+mehy97U4zhJ5CDEPPgJhP7BjNfi8B2qtK04V6aFyWKDXCzE8DgNgpTse3z7EgTRLi80Oz0ap4sbcKWqGWabHSqZCGNSQp260TAhJVyFp29Nw4MzBqGkrgVmmx3+MhGSwlReVXPZarbip1Pl2J5Tiuqm3xNvhUSImcMjMWlIOApr9GgymCHg8xAX7If0+CCv+hn6Ci7B7CXKIVMQ9+gG1GxZ061kCl+hhmbScgTf9LBb6xrF4cmMdCKvRz3+7j7vWDXkZ6P8i79QS84IAuLQJAjkAZBED4F6/N2QhCa6P0iKCAPCYa4poDWH4AshUHTt7KSruwoA2sPrETz7ERD8vv9TtzSUwXBxP6052kNfI/imP/XqAYonFCNq2ZsImvoHNB5YC/3Z3bAbdeCJpJDFZUCdtQR+gyZ6Xd0xB/ucK9Ni/aEC5BR2Lr/gEQTGpITgrvGJSArzggdTADa7A0cv1+J8uRZtFjsUUiFGJgZjaIzarZ/RPIJARnwQMuK7929nG5VcjOFxXT3LvYGaJiOe/fo4KrVdmzQNbVZszi7G5uziLtdCVFLcMjIOt4yMdVkK0J/p+2+dfoA8PgMJqzbBVHER+tM/wWbQghCKIY1OhX/aLPCEXS2z2EY97m40n+hdHSYhkiJg3J0sRcScuh1vU9/5I0mINFGIfehT9wbFENWoBTBcOkBrjn/GvC4NKwBgLDlNe32bvh4WbSXEQex7GNNFd+IH2qUOtuZatF45xopYviRiACLuegURd73S63tx+B67csvx9rZzcHTzHnSQJA7n1eBEQR2eW5jep77QJEni++Ml2Hi0EI0t5k7XNh0tQnSgAiumpDCS/OGgjt5owdPrjnXataRKrc6E/+66iLyKJjx1a9oNu5vJNfmwiDRyEELmrULEXa8g/LYXEDDyVo8klwAgTxoFcUgvdu54fESveAdCpWeeWnuirSofrVeyac1pufArLA1lboqod/inzQa/m91IZ2gmLu32ddJC3Vaw8zzqkiDuxMrAmAAArLoaliPhuNHIKarHW9vOdptcXovF5sArm0/hSjV7esV0IEkS7/10Hh/uutglueygrMGAv32bgx05pR6O7sZi09EiRsnltey/WI1Pf81jKSLfg0sw+wkEQSCCoX4lIRAh9o//g3LYDJajok/LxX30J5Gk13ZM84RiRC59HSCo/alpJq2ALC6922t8RQCjGPhyZvPYhmDYPNZxvG8sPYuKdU+h4LVbcGXNHJR8sAJNx7fAYe3+i5iDo4O1+/Ipb55bbA6sP3jFvQH1wNaTpdie4/phmQTw7k/ncba00f1B3YBYbHb8fKZnYww6/HC8BM09OHX1ltY2K3bnVmDDoQJsPFKI7Pxa2B3eY6vJHZH3I+QJGRBHDISZZi1m6IK/wm/wZDdFRQ87Qy1Pu7H3GqDuQpk6FdH3vY/yzx8Dae15F1Iz5V6ELXiu5/sMnU67hlEaM6zbbvS+QMywNpYn9UfhmwthLDzZ6fW2cqDl/K+o3vQyIu58Gf7pc9gIk6OfUVDdjEuV1BrLOjiaX4u6ZhPrjS3OsDsc+PZIIeXxJAlsPFKIoTHsOPFw/M7ZUi1rSaHV7sDOM+VYNDaBlfsB/8/eeQdGVaVt/LnTezKZ9N6pIYGE0DsWlKKggAIitt21fK6Lrq5tratbdFdX3V0LSBFUBESq9E4gCSG0kEZ6z0ySyfR2vz9ikJAy997MZCbJ/f3n3HPuOSZh7nPf877PCzTpzFh/rACHLlXBbO2YTuavEGF+WhTumxALLsezMUQ2gjnACJj1GK3xHJEMyvH3uWk39OEKpYzmeUPle0/4jL4LQ946jsC5fwDfN+TG5+15r/Ev7ULofa/3WGjim34vODR/PqqpbcftdpMO6uMbUPzBfcj/81QUvDkTZZ//Bq1Xj4Hsozde37HzaXeyEoUNQ9WmP3USlzdj16lR/uWTaOqhSpylZ0wWG84V1uPgxUqcuFqDuubeHQ16E1nF9P1UHSRwobTRDbvpnrMF9WjU0kuDySxqQG0vj3FZOtOsd+2pSE6J6/6WapsMeHbtKew5X95JXAJAo9aENYfz8cb32bDYmLmYuAo2gjnA8EmdB/XxDTCWXqA0Pmje8+CKmIk6dyBNGMdw3ngX78T18H2CEHTXswic839wmA2AwwaOSEa5epkrkiFo3mrU/PAWpfHiyFHwSZuPpowfUP39nzsZ6JvriqG9sA/C4HhEPv5fiEISaP8/0YErVkA54X6oj62jPMdhNcHWXENpbOXGFyGJGQ1hkOsiBQOdRq0JW84U40BuZYdWgQSAsQmBuG98LJJd1KvaU9BpgXgzOhOzeUy5WtlEew4JIK+qCcFK737B7m84a3lJFwPDv8FbMVvteGXzOdQ1O8+rP1dYj0/3XsFz8zzXOpiNYA4wOHwhon+3BuLIJKdjA+9+Dv4zVvXBrqgjjh4NUcQIWnOk8eMgCk10045cD0EQ4Iqk4Ep8aFvjqGY8goA5zzgdJ4oYgagn16Ap4wdUrl/dY3cmc20Rrn9wH0w07ZSYEHzPSxBTbGEpT5oNS31nC5BucdigPraB4c4GHyV1Wjzz1Un8eK60kwgj0faAenFDBnZklnpkf65CLGBmP8V0HlNMXUSj3DmPpXvigl3bEEUqdE0s78jlKlSqO1smdcfPFypQ68HTCFZgDkB4chVi/7AFwQtfgeBWexqCgHzkTEQ/s7FXBtbugiAIBN7pXEDdNAEBdz7lvg15GQRBIHje84h+ah1kw6d1us5XRSD4npcQ+9wW2A0tqP72VUr3tRuaUfHlUyBp2gjRhSOUIOaZjVCk3NntGILLR8DtvwNX7k/7/k0ZW+DoIc+VpQ2NzoRXNp+DRtfzUSAJ4LN9V3D8KrUosjeSxDBHMSnSz8U76Rk5w641Mi/qdjNQCFfJXBq5Hx1D/7usK3Zm0XMOIAHsplA05i7YI/IBCkcgRsDsJ+A/8zEYyy/Cpm0AweVDGJLg8f7czvAZPQfB97yE2h/fdzo2dPGbkHchtAY68hHTIR8xHZbGcphqCkHareApAiCJTrkRFa07vgEgqedXmqqvQV+YAVniBKdjHVYzrJoqkDYLuHIVLXsrrliOqCf+B1NNITQnNkJfnAmH2QiuxAeKpFlQTlwCvk8giv5+D+V73tiXSQdrUy2EgdG05w4mtp8t7dYGpyu+OpSHycOC+6Vp9MgIJaID5ChtaKU8Z0ysP8JVzFuUMmFcYiA2naR3iiDkcVwmXlg6smh8DHJLe1+lz+dycHuK8z7vzmg1WlFUS7+Y1ZX5n3RhBeYAh+BwIKF4JOlNBNz+Owj8I1G3+18w1xR0ui4KH46guX+AYtRtHtid9yDwj4TAP7LT5w6rmVHRi+bkph4FprmhDJrj69F0pi1C2o40fhz8pq6Az+g5lLsGiUISeu79bWeWt0TarYzmDRYsNjv25dCLatQ2G5Fd3ICx8f2vlSZBEHhwSjz+so1aowKCAJZO6vtuYENCfREfrKAlImYkhbERTDcxLiEIy6Yk4JteWlbdkx4NH4mg1/sxmJl9r7kq/5MJrMBk8Vp8xtwNxei7YCg6B13+aTjMOnBEcsiGTYEkZkyndmlWbQOaTn8Pw/UsOCztEbHZ3XbGGcjYtPU95l12h7nuerfXWs7vRsXXvwdp62zfoS86C33RWWiGTELUE/8DVyynvfat8BTMxAyPwdH6YCKvshlaI/2HVUZBXb8UmAAwbUQoqpsM+PpIfo/jCADP3p3kkcImgiDwyKyheHVTplNDeKDtaHyJC61vWDrz0PRE+EoFWH+sAK0M/s1MHxGKVTOHumQvEiGzFwmJkAfPtA1gBSaLl0MQBKQJ43qsLndYzaj54S00nf6uU/RKe2Efara+jaB5q6GattLd2/UaGFsPddOis/XKUZSvecZpC099/imUff4EYp5e36v+4UCbrVHr5UO05siGTwOPoSH9YEFnYhYJYfKA9SYemByPUKUE35woRFlD55evIaG+WDEtwaMiOjU2AM/PH4UPdl6E3dG9yJSJ+Hj7gbEI9fMeB5CByvyx0bgjJQLHr9bgTEEddCYrRHwuogJkqG024kx+Haz2jt+3IUoJ7kmPxvyxrutFLhfzERUg6/JvtydSolU4Rs8+2WWwApOlX+OwWVD2n0ehu3ai2zF2Qwuqv3sdtlY1gub+oQ935zl4chXA4VLv6d4+rwtTdtJhR9W3r1C+lz7/NJozd/TaX1WRMgdc2Vuw66jnQbX7frJ0j5DPrDpa1MdV1e5g2ohQTB0egsvlGuSWaWC02CAV8pAWF4DEUF9Pbw8AMGtUOMJUMmw5XYzT+XUdopkiPhezRoXh/glxCGGtifoMIZ+L25LDcVtyeKdrWoMFZwrqoG41QcDjIiZQjtGx/i7NV27Wm/HR7ku0xSUB4O7UKNBwhnMprMBk8UpIhx22lno4rCZwpUrwpF1/+dft/KBHcXkz9Xs+gjgqGYqkWa7cqlfCFcmgSL4D2pw9tOYp0xd2+qz1ylFY1ZW07qM+vrHXApPDFyJs6dso//JJSuMVyXdAPnLg/257S0KID3hcAjY7PceA4eEDIzJMEASSolSMq8v7gqFhvnjt/lQ0ak3Iq2qCyWKHTMTHqCg/SNmcS69CIRHgDhcU8XSHRmfCH74+w6gv+m3J4R59EWEFJotXYW2ph+bUZmhOfANbS92Nz6UJ46Ga9hAUyXfcKCJxmA3QnNhI6/6Nh78aFAITaIvm0RGYXLl/l/ZBLVk/0V7bWJoDS2N5lwVIdPAZczfCH/oAlRtfBBzdJ6srku9AxKqPQXi4NVp/wEciwLThoTh0qYryHKmQh+kjvdt9ore0W3TdmtvtSfwVIkxRhDgfyDIgIUkS727NYSQu0+IC8MxdI92wK+qwApPFa9BdO4myz3/TZXGKvjAD+sIMSBPGI+o3n4Mr8UFz1k+0C1n0+adgri+BMDDGVdv2WiTx4yAbNgW6PAoRXoKD8GV/BYcv7HTJqq1ntL5V29BrgQkAyvH3QRIzBurjG9p8Lo2/2s3Ihk+DaupDkI+cyYpLGiwaH4NjV6ph6yHP72buHRcDEcOjdW+mtsmAXdllOHKlGppWE7gcDiL9ZZgzJhKzksIgcZFBNgsLE/Krm3G5XENrjkTIw+KJcbh/Qix4Lu5IRBf2Xw+LV2AoOY/Szx4BaevZm09fmIHS/zyKmP/7BsbKK4zWMlVeHfACsyVnL2q3/wWWRud2NARfiIiV/4Ri1OyurzMs1uHwem/N0Y4wKBah9/8Zwfe8CGtTLUi7BTx5wKAr6CFJElUaPdStZnA5BMJVUvhKO78UOCMu2Acv3JOCv26/4LRiefqIUDw4xb1tRPsakiSx+WQR1h8twM3/9w67A8V1Wnyy9zLWHc3Ha/el9vtWmSz9l11Z9E3S5SIelk6K84pIPCswWTwOSZKo2vyKU3HZjqE4s61ivAu7HCo4rNQNpvsjmpObULXpT07HETwB/Gc9DtXUFeAruz+GE4UNg+4qvTJEgi90SfTyVjh80aA0UbfZHTh0qQo7s8pQWPOr6QiHIDBxSBDuGRdDu/PM9BGh8JEI8OXBvC69F30kAtyTHo2lk+P7pcF6T2w4VujU37DVaMUrm87hveXj+ryrDwsL0BbBpEtdiwmtRisULvDe7C2swGTxOIaS8zBVXqU1R318A+QMTdYHsk+ioeQ8qja/QmksabMApKNHcQkAfpOWovHAf2ntwyd1HrgSH1pzWLrGYLbhrS3ZXXbkcJAkTl6rxclrtVg5PZF2pHF0jD8+eWwyrlU149S1WrQarRDyuRga5ovJw4Ih4A28Y/HCmhbK5tlWuwN/+/ECvn56OrhsCgZLH3Or/Y+ecfQAACAASURBVBFVzDbv6E/PCkwWj9OSuYP2HHNNAQLvepb2PK7cv0dPzf5Ow8EvaLWHVB/fgIA7nwFX1L2fnjAwBvKk2Wi9dJDaTQkC/tMfprwHb8FYmdfWurLgDOwmHbhieVuO55TlEAbFemRPdgeJd7eep9Tubd3RAkiFPCxIp5f+QRAEhoUrMWyAVIk746fMUlrj61uMOFtQj4lDg92zIRZK2B0ONLSYYLHZoZAIGKWG9DcUYgHtAh8CgFzs+eglwApMFg9hqi2C4Xo2HBYjDKUXGN2DK5JBEpsKw/VsynP8Ji7pspBlIGBtqYM292dacxwmHZozf4RqyrIex4Uv/xuKP7gPlvruO/20E3L/GxBHJtHahyexm3SoXPeHTj87W0sdzLVFUB/+Cr7jFiHswff6/G/nbGEdsoobKI9fczgfs0eFD3orm0q1Dmfy69BisEDE52JImC/GxAbAZnfg6JVq2vf7+UIFKzA9RH2LEbuzy7DvQgWa9b+mRSVF+mFuWhSmDAsesNHlycOCaR+Tj00I9JqCPFZgsvQprXkn0PDzp9AXnOn1vQguDyH3vY7rHy6mlL8pCIiC/6zHe72ut2KqvErbWB0AjGW5gBOByZOrELf6B1Sse67bfEyOWI6geS/Af3r/6ZjksJhQ+slDTl9Sms9uhU2nRvRvv6Lca90V7MoqozXeZLXj4KUqLBgb7Z4NeTkF1c1YeyQf5693jvgG+4pxe3IELDb6x451LUZXbI+FJucK6/Hu1vMwWTt/r10q1+BSuQa7o/zw58VpA7In+x0pEVh/tIDWUfm81Cg37ogeA1P2s3gljYfXoPTfy10iLkEQEAbFQRKdgqjffgmOsGczWUFgLGKe2Tigq44dFmYPQYfVRGkcT65CzNPrkfDqAaimPwxRdAp4PkEgfqkWdxhbUfP96yj+8H40Z/3UqW2nN1K/51+UI+C6K0fRePgrN+/oV/RmK7K7EErOOJlX44bdeD+ZRfVYve5Ml+ISAGqbjVh/rMDt+7DY7DhyuQovbszAio8PY/lHh/CHr09jb045TJbuvVxZOnKpTI03t2R1KS5v5mKZBq9/mwmLl+QduhIfiQDLp1LPq06PD0BafIAbd0QPNoLJ0ie0nN+Nmh/edNn95CNn3ShOkQ+fioRX90N9bD2aTn8Pu+HXIwVBYAxUU5ZDOXEJuGK5y9b3RrhSZpWuPCk90S0KTYRi1G1oOrMFDrO+03VD0TkYis5BHZ+OqN980W0XJk/jsJigObmJ1hz1sfXwn/UYCE7vjqCs2ga0ZO+CtakGBIcLYVAsfMbc3eFFqUXPzCWhmeG8/kylWod3fjjPKDpJhWBfat1QLpWp8e62HDTpOp6oNGhNuFLRhC8P5mH1vGT2uN0JJEni4z2XKXebulLRhAO5lbjbi6J3rmLJpDgYzDZ8d7q4x3GjY/zx8qIxXuX4wApMFrdDOhyo/ekfLr2n/4xVHf5boIpAyMJXEDRvNcy1xXBYDOBKfCEMihs0BtyS2DHgyf1ha6UX9eqqe09PUPUsNRSdQ9lnqxDz+83g8EW01ugLtLn7YDe0OB94E1ZNJXTXTkI+fBqjNa3NtajZ/hdoz+/pFOGt3vIG/CYtRdC858ERiBn3DBfwBsff+81szShxGunqDVRaAV4sU+NP35ztURTpTG2OAK8sGoMpw9kOPd1xqVyD8kZ6TTR2ZpXhrjGRXuH/6EoIgsAjs4YiOVqFHzNLkVlY38G7NT5YgXlpUZg9Ktzjxuq3wgpMFrejLzhNqTiEKoFz/g+yoZO7vMbhiyCOGOGytfoTHJ4AyklL0bDvE8pzhMHxkCaMpzyetmdpyXloTm7u9ELgDZjrmP1NmuuuMxKY5vpSXP/XUtiauz7Cdph0aDz0JfTF2Yh5ZgN8pTKo5EKoW+n5tsaHDC57KL3ZisM02l7SJchXjPSEwB7HmK12vLv1PKWIGwngbzsuICnKb1BUQjPhyGX6hVgl9a0ob9QhKsB9J1UGsw2HL1fhfHED9GYbJEIeUqJVfVJYlxoXgNS4ADRojahS62F3kFDJRYgKkHmtqGYFJovbab1yxCX34QgkCJq3GqqZj7rkfgMR/5mPojnzR1jVlc4HExwEL3yF1pcTE89SzYmNUE1/2Ou+BEkGBVG/TKQ9xWExofSzh7sVlzdjLM1BxbrnEP3bL3HX6EhsOE7Ns7Gdub8cE9Y2G5BZVI9WoxUiPhfDI/wwJNTH634PvaWwusVt0UsBj4MX70kBl9Pzz+z41RpaqQkWmwP7ciqwdHJ8b7c4ING0UssL7zRPZ3aLwGzv/PT96WIYLR3/1k7n12HN4XwsHBeDFdMT3X5EHaAQI0AhdusaroIVmCxux35T72g68FWR4AjF4EmVUKTcCeX4ReCKFS7e3cCCJ/NDzDMbUfLv5T2LTA4P4Sv+DsXImbTuz8iztLYIpsqrXhdZ5itDmc3zpZ8/15K9E5b6EsrjWy8egLHyKuaMicUPGdc7PdS6Y1RUWx7u699m4twtR2lA23Ha0knxA+p4lurP5laiA2Qob9Shu3bsPhIBXrs/FSMinOc2782h39Jvb055rwWm1e7AqbxaZF1vgMFkhUjAQ3K0CtNGhHqNVQ0TuAyPenlOXgSYQJIk/r33MnZnd/87Nlnt2HSyCHUtRjy/INmtIlOjM+HUtVpodGbwuRzEBCqQnhDglVZNrMBkcTscYfcm3j0RsugV+NDMDxwMOKxmWOpLfskz9YEgIKZDnqkwMAbxL+6C+ujX0JzaBFtL/Y1rBJcPn9R58J/1KMQRI2mvbdXWOx/UBTZtPQDvEpg+o+9CzZY3aLUc5Up8IR85i/Za6uMbaM/RHN+IsAf/glfvS8Wfv8t0evwaopTgrtGR+MPXp7stdimq1eKdreexojHRaXVqYU0LdmWVIa+qCRabA3IxHxMSgzBndCSUMu852pWKmD3GhoYr8fYD6dh7vhyHL1dB3WoGj0sg0l+Ou8ZEYPqIUIgE1O5dqe5c7OaM2mYjbHYH47y5nVll+OZ4IZr0HVMoDl2qwucH8rB4YiwWT2zrSW13kMgsqseViiaYrDbIRHyMSwjyuog2SZJoNVoRoKCfs80hCISrZC7f0/7cyh7F5c0culSFxFAf3EOz2QEVapoMWHv4Gk5eq4X9lrcif7kIC9KjsWh8rNNoe1/CCkwWtyNNGAf1kTW05hBcPiQxY9y0o/6JRVMN9bF1aDr9Hez6phufd1Upz5MpETT3OQTOeRqG0lzY9c3gCEQQhY/olVUTwWWWZ8R0njvhyZTwTVuApowtlOcoJy4GR0Dv4eewGNu8RmmiL8wAAKTFBeD95ePx8e5LXRY+EADGJQZh0fgYvLo5k1Il9YZjBQjyEeO25PBO15r1Zry3PQcXStQdPq9pAgqqW/DN8UIsnhSHh6YleoU4SQz1hUzEg85EzwIoLTYAgT5irJwxBCtnDOnVHhwktWpnV837+kg+Np8s6va6zmTFmsP5qGkyIDZIgS1nrqP+Fi/PTSeKEB+swCMzhyI1zrPWNiaLDYcuVWFnVhlK6pmdeE0aGuTyFx+SJPHDGXq52tvPlmBeWrRLhV5xbQte+uYctIauX4YbW0346tA1XKtswsuLxnhNsQ8rMFncjiJpNni+wbA111KfM3oO+D49J9YPJnT5p1D2vyfgMHUWGJb6EtRsfRvqE98g5ul1EPhH3rhGcPmQxqW5bB+ikETQq7vGDc9SbyRowR+hKzxDKWdVGJKIwDufpr2Gw0yv1Vs79pssoJIi/fD5b6fiYpkGhy9XQdNqApfDQWSADHemRCDUT4q/77gAM41cxI3HCzAzKazDg7DVaMUL6zN6rOC1OUhsOlGEVqMVT905wuMiU8Tn4vbkCGw7Sz0FQSUXYsKQIJftIUAhRquRnu+rj0TAqNf78as1PYrLm9mbU9Hj9aJaLV7ZfA6r5yV3+bLRF1Sp9Xhl8znaLRFvhW6LVCpcrmiiXc1e22zE+esNGBvvmueX1mDBq5szuxWXN3Mqvw5fHMzDE7cNh95sBZcgIBF6TuaxApPF7RBcHgLveArV371GcTwfAbOfcPOu+g/G8kso/c+jIJ0YqVvqr6Pk38sR98IOtxnKKycsRt3uf9LqGHSzZ6m3wfcJROyzm1H66cMw13XvMyeOTELU774CV0K/QpvTQ5/3nrg135ggCCRHq5Acreo0Vmuw4NgVegbrtc1GZBc3dKiQ/mzfZcoP1J1ZZRgd449JXuDpeO+4GBy8WAktRZG3fGqiS6M8s0eF4fMDWtpzmLDFiR8iXUgS+HDnRYSppBjex/3o1a0m/HFDBhoZFvW0s2rGECRFMvMB7oniWtqv0wDahHtPAlPdasLenApcrdDAZLVDLuJjXGIQZo7snJaxN6ccGh11J4kdmaXYe74c5l9OMvxkQjQ29068M8U74qgsAx6/qSuoVX9zeIhY9VG/6mXtbmp+eNupuGzH0lCGxoP/c9te+L5B8EmdS2uON1oU3YzAPxLxL+9B+Mp/dkrLkCaMR+RjnyHuhe3g+zCLeHH4IkiHTKQ9j44V0uUKDa12cu3klPzqmapuNeHYVXoi9cdz1KOG7iTQR4y3HxhLqV3gsikJuGtMpNNxdLgtOZyW/ygBMDIFL6xpQUENM9HTEw6SxA8uFq5UWHskv1fikiCAMTH+mDaCWcGeM6wMjfu76ypksdnxz50Xsfyjw9hwrADZ1xtxpaIJGYX1+Gj3JTz4r0PYdrYE5C+pE3YHSTn/sx2SxA1xCbRV1tc1e6bVKRvBZOkTCIJAyKLXIApOQMP+z2Bp7PyPRhKXhqB5L0CWSN2Xsb9jbaqBofQCHBYjuFJfSOPHgXtTxMtUnQ990Vla99Sc/g6Bdz8HDt89hRhhS96GqeoazNX5TscG3vX7bj1LvQkOXwTluIVQjlsIh9UEh9kAjlDqsp+hauoK6PNP05rjN3UF5bEGM7MWhDfPO3ixslPxgDMulmlQqda5pbiCLkPDlPj40UnYdKIQx67UdBLcw8J8cd+EWEwe5vpoukIswDN3jcQHP12kNH7ljCEI86Mf2c6vbnY+iCFnCurQoDX2mQVOW9Sdvt/lzZAkcL6kEas+OYI7R0fgqTkjwXdhZNpHKmA0T9mFv6nFZsermzORW6ruYkYberMN/9t/Fc16Mx6ZORR1zQbUtXhGHLoCrxCY//73v/HJJ5/g2LFjCA6mftxSU1OD6dOnd3t9zJgx2Lx5swt2yOIKCIKA3+QHoJy4BLq84zBcz77RcUeeNAvi8OGe3mKfoS/OQuPBz6G9eKCDryJHJINy3CL43/ZbCPxC0ZK9i/a97ToN9AVnIB8x3YU7/hWuxAexz32PynXPofXy4S7HcAQSBM1/ASovj152BYcvcnnnIcWo2yGOToGx9AKl8cpJSyEMoB7hYppndfM8urlm7VSq9V4hMAEgzE+KFxak4InbhiOrqB5aoxVCPheJIT5uN6C/PTkCdgeJf++53KNQXzk9EUsnMctJtrixW5GDBK5WNGHaiL4RmCev1bqstSeJtnzTZr0Fr92f6rICm/EJQeBzObROBzgEgYlDOuuYdUcLehSXN/PdqWIMD1fCX+59HdDo4HGBefDgQfz3v/9lNPfq1TbD5yFDhiAxMbHT9ZgY1yf9svQegsOBfMR0twkgb0dzajOqNr3cpWG3w6SD+tg6NJ/fhZin1sHWSu0L6VZqtr0LYUgCBH7M8rycwZP6IvrJtTBVF0Bz8hsYynJBWs3gSn3hkzIHvun3Dvje73QguDxE/+4rlHy8HKaqvB7HKkbdjtAlb9O6/8gIP9oPQgBIifk1n9NBM3rZDt2oZ1/gIxFg1qi+L1qZMzoSo2P8sed8OX6+UHHDfF0q5GH2qHDMTY1EZC+MwBUSZhE1qriz3eatMDVT74kzBXX4KbMU945zzbNfIRFg2ogQHLxIvVPUhCGdq9mNFht2Z5fRWnvb2RI8N3cUrTnehkcF5jfffIP33nsPNhuz4528vLYv6sceewzz58935dZYWNyC9uJBVG36U9vZTg/YW9Uo+XQl5CPoGaG3Y64pQPHf7kHs6h9oRcLoIgpNROjiN912f2/GbmhBc/YuWBrKAJAQqMLhkzq/2wIrntwfsX/Ygob9/4Hm1Lew6zq+PAgCoqGa/jBU0x4CwaFXXczkQRjsK0Za3K+FCCqG0RJ/Bp6FA5lgXwkemTkUq2YMgcFsA4m2SLErzLfHxgcyepGgCpUcVlfBcZNf447MUixIj2b8827QGrHnfDkyCurRarSAyyEo/8x5HALnrzfgrnf3gM/lYHiEEvNSo9BssNBuCJBbqobFZkeonwTVGs8U6fQWjwjM4uJi/PWvf8WxY8egVCphsVig19M3qm2PYI4Y4V0GziwsXUGSJGp/fM+puGzH3qqGlUJrwe6waetR9t9HkfDKz7QFC0v32A0tqP3xfTSd3QbS2jEKU7P1HfikzUfIvS+DJ+9c7c0VyxG84I8IvOtZ6PKOw9pUA3C4EAbGQJowvoNhPl3unxCHE3m1lK2Klk1N6HCUOCspDFtoev4FKERIHGS9z6lCEITL+1P7SASYOjwEh9zQe13I43TpUOAuIv3dk1ZR02RAbqkao2P8ac2zO0h8dSgP28+WMvYntTlI2H4Rkla7A7mlauSWqiFj2AygrEGHualR+PxAz6ce3opHqsjfeOMNHDt2DJMmTcK2bdvg6+vL6D55eXmQSCTsUThLv0BfmAFzLTX/unaMpbkgRMy/iM01hWi9cpTx/P6ITaeBqTof5rpiOCyuPYaztTai+INF0Jzc1ElcAgBps6A54wcU/+PeNvHYDRy+EIpRt0E17SGopiyDbMjEXolLAIgOlOPVRWMoVTMvn5qA25MjOnwWE6TASJpWL+pWE84U1NGaw9I7lk9NgFzs+kjjjKSwPo1gjksMgp+bOkJV0MwnJkkS/9p1EVszSpyKy1vzO3lc55FSuk0A2rHY7LgzJQJBPv2j9/iteERgjhw5Ev/5z3+wZs0ahIYysxdobm5GdXU1YmJisHbtWsyfPx/JycmYPHkyXnvtNdTVsV96LN6F9uIB2nMcplYohk/v1boaBm0K+xukwwHtxQMo+eQh5P1xNArfuR0Fb85E3otjULX5FZiqC3q/Bkmi7PPfwFxT6HSspaEMpf95BKSd2YOFKekJgfjw4YlITwhEV4+9uCAFXl44Giumdc5ZB4Bn5oykVTDkIIH3tuWgrIFZ9xUW+oT6SfHug+lO8zHp2CZJhTwsnti3zRD4XA7mpbknfYduXvDRK9XYn+u82UL7vcclBOIfKydgycRYpy1ce4NSJoRUxMc7D6b3y4IfjxyRv/jii72+R3v+5ZUrV1BQUICxY8ciODgYly5dwvfff48jR45g/fr1iI2N7fVaLCyuwGGgZ8TcjmzkDNiNWujyjjOabyijZp3SX3FYTaj4+vfQ5uztfM2sh+bERmhObUbY0nfgN/lBxuvoC87AUJxFebyp8iparxyBYtRtjNdkQkKID95eOha1TQacK6pHq9EKkYCL4eFKDA3z7bHzTnSgHG8uTsULG6hbY1lsjn5ZkFDRqMOu7DKcLfzlZ8TntuXMpUUhKdLP4x2KemJIqC8+e3wydpwrxb4LFR26CIkFXNyWHI570mOQW6rGx3su9ZiVIxXy8ObSsYxsk3rL4olxuFzRhOziBpfel25e8I5zpbTGZ19vwHNzk/BxQT2teXRQSoUYFdWWshDpL8NHj0zCxuMFOHy5mlbHLk/Sa4G5evVqXLlyxem42267DatXr+7tcjdoz79MTEzEZ599hoiItuMeg8GA1157Dbt27cLzzz+Pbdu2Ob3Xtm3bsH37dkrrtgtbloGDw2JCy/ldaD73I6wttSA4PAiD4uA3+QFIh0xy2YOGoNnDuh2eWIGo336J6u/fQNOpTbTnd3WUO1AgSRIVXz/XpbjsgMOOqk1/AiEQQ5l+L6O11AwiwerjG/pcYLYTrJRg/tho2vOqGLTsO3KpCo/PHtanR6xMsdod+GTvZey7pY2izmTF8as1OH61BsPDlXj9/lSX97Z2JQEKMR6bPQwrpiWisKYFerMVEgEP8SE+EP/SDSbMT4oIlRTfn7mOzMJ63KwzBTwOpo8IxdJJ8QhT9b24BAAel4M3Fqfi33su40BuJVwRC5SJ+Ein0aaxtL4VeVX0/EVtdhKbTxYztvaiwp2jIzp4evorRPj93FF4fPYwZBTUQaM3Q8DlQC4W4O87LsALzRx6LzCrq6tRUuK8m0NDg2vfUB5++GHcfvvtkEql8PP7NW9IIpHgnXfeQWZmJq5cuYILFy4gJSWlx3tVVVXh3LlzLt0fS/+gJWcvqjb9CXZ9U4fPTVV5aDm/C8KQREQ+9hlEIQm9Xksal0b/uJrDhTgqGRy+EOHL3kNL1g44zPQK4rhuahvpDeiuHoU2Zw/l8TXf/xk+KXPAYSD2DUX0vyP0hRm053iay+Ua2nPMNgeKalqQQrOwoq+xO0i8vy0HJ6/V9jjuamUTnl9/Bv9cNREKsXutgXqLkM/tMXc2KUqFpCgVapsMuFrZdKM1YXKMyiv+3wQ8LlbPT8ayKQnYlV2G3FI1DGYbJCIexsT4o7xRh9P51FPe7kgJh5BPvaixQs1MJLozLSTcT4pF47s+fZWK+J0suCw2O/6565Lb9sOUXgtMTxmZc7ncG1HLWxGLxRg/fjx27NiBK1euOBWYYWFhSE9Pp7RuXl4eWlvZfKOBQNO57ahc91yPVd3mmgJc/2ARYldv7bXIVKTMAVf2Vid7mh7nJN8Bvu+vLQp9Rt+FpowttNb1SZlDa3x/Qn2MnmC3G1rQkr0Tygn3017LTlPYAwBpNYN02PtVFb+Jpp3KjXn94Nju5wsVTsVlO5VqPf63/ypeWNDz86O/EKyUIFgp8fQ2uiVYKcFjs4d1+rxRa0JBdQullpKR/jI8MJne9zRT/1emleY8DgFbD2tG+svwzgNjaRVy3Tk6EnwuB//ee5m2HZI78bjRurvw9297kzYanbdZWrhwIRYuXEjpvitWrGCjnQMAi7oCVRteoGQZZDe0oPzL3yHhlf29qvTl8IUImP04an98n+IELgJmP9HhI7+pK2gLTL8py2mN7y/Yja1ovdJ1J6GeaM76iZHA5IoVsFHsCd8ORyjtV+ISAGQMK5RdbcnjakiSxE+ZpbTmHL1SjcdnD4NvF63/WPoGf4UIf1sxHq9+e65HP8j4YAXeWkpPmLXfnwmhSikultGP9i8aHwsQwL6cCrQYLDc+j/SXYW5aFG5PDr+R4kCHWaPCMX5IEA5fqsKhS1Vo1JrA5RCI8Jfh4gU58t2XLtot/VZgfvLJJygoKMBTTz2FIUOGdLpeWdlWEUan9STL4EFz4huQdqvzgb9grimELv8U5MOm9Gpd/9m/gam2CM0ZP/Q8kOAgfPnfIIkZ3eFjSXQyfNPvRfM5ajnDqhmPQBgYzXC33o2ttZGyp2iHeVpm6TryEdPRdPo7mnNmMFrLk4yLD+yUn+gMH4kAQ0K92w+zoKYFJfX0Tp9sdhKHLlV1e1zJ0jeEqaT4zxNTcexKNX7KLEVR7a8FkyN+KcyaPCyEUR/yYeFKhCglqKGZe3zfhBjkVzfT+pviEAQWpEdDJRdhxbREVGv0MFntkIn4CFVKep3vLxXyMS8tGvPSojt8vmKPZ1Ih+q3AzM/Px/79+xEbG9tJYKrVapw6dQp8Ph/jxo3z0A4HL8bKPGhObYK5phCk3Qa+TxB8xy6AfORMEFzP/8mRDjs0p7+nPU9z8pteC0yCw0H48r9DFJyAhkNfwN7a2GmMKHQogu99qVtxErbsr3BYTU4LW5QT7kfIold7tV9vhuAyi5gxnaeauoK2wPSbuoLRWp5kXGIg/BUiNGqpF4fdmRIBAc+7I7VVavopDgBQrWE2j8W1iPhc3JESgTtSIqA3W2Gy2CEV8iBiEO27GQ5BYF4aPTPzMbH+iPCXY/7YaHy0m3ru4+RhwTc6ZvG5HET1om1of8DzT3sKlJeXw2q1IjAwEHJ52y9kyZIl2L9/P9auXYspU6YgNTUVAKDX6/Hyyy9Dp9PhgQceQEBAgCe3PqiwNtWgYt1z0Bec6XSt5fwu8P3CEPbAXzzeg9ym09DKg2yHrkk6AJB2G1qvHoOlvgSkwwa+MhSKpNkIuP23UM18BNoL+2C4ng2HxQiuxBeKUbdBEpfW45sshy9E5KOfoTlrBzTH1sNQcr7DdWniBKimrYQi5U6vtlrpLXzfIHClyk4FWs4QhXY+8aCCODIJitFznFes/4Js2FRIE/rfCy6Xw8GqGUPw9x25lMb7yYRYkB7t3k15EG+szh3sSIV8SIWuS8mYlxaFU9dqcaXC+XeJXMzHU3e2dQ+8IyUCmUX1lIqQgnzFePKOwdV1sF8IzIcffhhVVVV47733buRKTp48GatWrcLatWuxfPlyjBkzBkqlEllZWWhqakJaWppL/DZZqGHRVOP6B4tgbarudoxVU4XS/zyCyEc/hc9oDxaeOJglQdMxzSbtVjQc+Bzq4+tha+5YVMARy6GcsBhBdz0L37T58E2bT3svBIcDZfq9UKbfC3PddVjUlQBBQBgQBYF/JO379UcILh/KCfej8eDntOb5TWHuhRmx8p8oNWihzz/V4zhJbCoiH/u03wr82aPCodGZ8dWhaz2OU8qEeOeBdMZ9zPuSAIbdUAL7aRcVFuoIeFy8tXQs3t6SjQul3QcfVHIh3l46FuGqtu5qXA6BPy0cjY92X8LBi92374wPVuCNJWlebXvlDvqFwOyOl156CcnJydi4cSOuXr0Kh8OByMhIPPbYY1i5ciX4fPclnRsrrqBy/fNQTrgfkvj0fvsgcQUkSaJizdM9issbOOyoWPssxJFJEKjCnY93A1ypLwgun1YOJgDwfYKcD0Kbr2bZfx+D7tqJrq8bW6E+M7ujaQAAIABJREFU/BV0V44i5tnNHarEmSAMioUwaHDmiKmmroD6yFrKv0tx9GiIo0c7H9gNHIEY0U99DfWRNVAf3wCrumP3D75vCPymLIP/rMcZWSF5E4snxiEuSIEtZ64jp6RjKodYwMXsUeFYMikOAYr+IcBGRNDPteMQbT3aWQY+MhEff1k2DlnF9diVVYbMooYbvpwxgXLcnRqFWUlhnTpdCXhcvLAgBfeNj8Wu7DKcKaj71bg/XIm5aVFIjQsAZxBqBIIkGdbaD1Laq8iH+zrwVmpbBZgodCjCV34AccRID+/OMxhKclD893tozQm4/UkE3+O5CHP5mmfQkvUTrTlhy96H36QHnI6rWPssmjN/pHRPUcRIxP/xR8Z5gSxAc+YOVHz9rNOCH55PEOKe3+ayFxvSYYe+4AwsjRUASPD9wtt6intBnrGrqVTrUFDdAovNDoVYgJQYf1otJb2FH85cxxcHqefaTRwShD8vTnPjjgYmdocDZ/LrsDenAhWNOthJEv5yEWYlhWHWqDCXHm/3xPU6LfblVKBCrYPdQSJAIcKspHCkxKicCj6LzQ6D2QYhn8uoqtubaNct6enp2LCh71oH9++fmpdgqr6G6x/ej5hnN0MSPTA80+igOfkNgzmbEDRvtccexqqpD9ESmByxAr5pC5yOM9UUUhaXAGCquAxt7n74jLmb8hyWjviOXQCOUIKqTX/qtkJcEpeGiFUfQ+DnumgUweFCNnSyy+7nzYSrZDeOBfsz88dG4WxhHSV7GT+ZEL8bZDlzrqCwpgVv/5CNuuaOll6NWhOuVTVjzeFreHrOSMwe5b4TrLpmA/7xU26Xv+eDF6sQ7ifFc/NG9WhQL+Bxvb5wzdthburH0gGH2YCy/z4Gh5l+m7X+jrGSfvtMu6EZJZ8+DN21k27YkXMkcWlQUohGthO29B1whM5NijUn6Itt9bH1tOewdEQx6jYMffcMIh/7DIpRt0McnXLjdxz34k7Erd7qUnHZHXaTDsbKPBjLL8HaTL37CEvfIOBx8eaSsUiL67n4M9RPgr8/NJ7Nv6RJYU0LXlh/ppO4vBmjxY6/78jFvpxyt+yhtsmA36893eNLRKVGj5c2nsX5651dPFhcBxvBdCE2bQOas36C36Slnt5Kn0I3l7Ed/bUTKLl2AgG3P4mgBX+8kcfqsJpgKM6CTacBRyCGOGIk+MoQV24ZBEEgbOk7AICmUz10o+LwELbsPfiOdR69BABd3nHae9EXZsBhs4DD83zbtv4MweXDZ8zdHokGGyuuQH30azRn/dSh97s0YTxU0x5qq+jvZ4brAxWJkId3HhiL3FI1dmaV4WxhPax2Bwi0eSK2eSoGs9ErmtgdJN7dep5yJ5mP91zGqCgVQv1c1wedJEm8tSUbGp3Z6Vir3YG3f8jG2qems0b6boIVmC5Gc2LjoBOYPLk/zMhnPL9h/2fgiGRQTlyMxkNfoun0dx2tZwgOFKNug/+sxyGNH+uCHf9yWy4PYQ++B2X6vVCf2Ahtzt4bYpkr8YFywv3wm7KCllG53cSsjajDpANH1v1xDYv30nhkLWp+eLPLHFB9YQb0hRmQJ81G5KOfgCNgI2LeAEEQSInxR0qMP0iShNlqB5/HBZcz+AoxXEVmUT2tAiq7g8Se8+VdtodkSm6pGsV1WucDf8FgtuHnC5VYMimu2zE2uwN2B9ltf3O9yQqdyQqxgAe5mD+oC35vhRWYLsZYmQeSJAfVH5lv6jynti3OqNv1IdTH1sHW0sWxIumANvdnaC/uR+iSt6FyoXk1QRCQJoyDNGEcHBYjbK1qEFw+eHI/RoU3XJEcthb6Pbk4Qte9xbP0HZoz36NmyxtOx7VeOoiKNf+HyCf+16t2oyyuhyCIXpt1swB7aXZ/Atp6w6+aOdRlwn73efrH7rvPl2HxxNgOz+wWgwU/X6jAnvPlN0SzTMTHzKRQzE2NQqifFCeu1mBXdlkH78xIfxnmpUVh9qjwflkE52rYn4CrcdgA0gEQg+d4xXfsAtRsfxcOI7PoHQDAYetaXN4MSaL621fBk/m55RiUIxD3usJYmjgB5rpiWnMksang8Nkjmv6Gw2xAzQ9vUR6vvbgfrVeOQJE0y427YmFxLRabHSfzapFf3QyLzQG5mI/JQ4ORGOrbYVylWkf73lqjFa1Gi8uOqItrqUcv26lrNkJvtkEmagsoZBTU4f3tOZ2O+nUmK37KLMNPmWVQSgVo0ls63au8UYdP913B96eL8c4D6YgOHNidepzBvkq7GK7Mb9DlWnGEEoTc93qfrVez/T2QDkefrUcHJtFV1bSH3LATFnfTnLmD9kuV5njfWYSwsPQGu4PEphOFWP7RYfz1xwv48Vwp9pwvx3enivHMV6fwzFcncbHsV1NyB0PHQ6bzusJqZ/ZcsNra5mUW1ePN77Od5pF2JS5vpkFrwosbM1BLs7/5QIMVmC7GJ3Wup7fgEfwmLEbI4jeBPkgNsKor0Hr1qNvXYYIobCgUKXdSHi8MSYQixYNdjVgY05y9k/ac1qtHYTfSj7KwsPQldgeJ97fnYN3RArQYuhZTBdUteGnjWZzIqwEARob7Ah4HcrHriht9pfTvxeUQkIn5sNjs+OCnXJcJ3ma9BZ/T8FwdiLAC08WoprguP7C/4T/9YcS/tBu+6fe6fa3WiwfcvgZTwh/6EJL4dKfj+KoIRD+5lj0e76fYWhlYnJAkbK3OPRhZWDzJxuMFOH61xuk4u4PEX7dfQGl9K6OOR9NHhILPdZ0MmTqcvtvIxCHB4HM5OJlX6zQySZfT+bX4cGcuPtl7GZtOFKJao3fp/b0dVmC6ENWMRyAKTfT0NjyKOGIEwlf+E3w/97aBtOmb3Xr/3sAVSRHzzAYE3Pk0uF1UhhMCMZSTHkD8H3/0WLtMlt7DtPsSwdpRsXgxRosNP54rpTzeandg29nrmDYiFHIxvX8T89KiaO6uZ+5IjqAtWNv3cPBipZOR9CFJ4OcLldiZVYZ1RwvwyKdH8ermcyhvpJ+v2h9hBaaL8Jv8IEIWverpbXgFBEFANc29kVxvt3vh8EUInv8Chr6bgYhHP0XQvNUIvPs5hC37K4b95SzCl70Pntzf09tk6QXicPr2KlyZCnyfQDfshoXFNRy5XA2D2UZ7jtXmwHNzR4FqktSi8TGdCoV6i0IiwKqZQyiPnz4iFKOi2oIA9S3dm8O7ChJAZlEDnlt7GgXV3hskcRVsFXlvIAjIR8yEatpDkA2fNqisiZyhnLAEDT9/BruhxS33l8SMcct9XQ2HL4TvIM3LHej4TVmOpjNb6M2ZtHRA9iofSFSqdTiZV4sWgwV8LgdxwQpMHBrs0qNcb+bqTbY7VLHYHCiubcGkocF4aeFo/GNHbo8FN/dNiMWjs4b2ZpvdsnBcDEwWO9YfK+hx3OShwVg9f9SN53ZfPr91Jite/zYTn/9uGhQuyEG12h04da0Wu7PLUFyrhdXugI9EgKnDQ3B3qmujxHRgv+kYIo4ciWHvf8FGobqBJ1Mi6jdfoOTTlSAtPb8ZEgIJSAv1ajuOSAbf9Ht6u0WWQYK1uRbaS4dg12lACESQRLW1keztA0UclQxJbCoM17MpjSf4QvhNWdarNVncR3FtC748dK3L9oFKqRDzx0ZhyaT4AW/GbrLSi1620155PX1EKJIi/bDnfDn25pRD3drWVUfE52JmUhjmpkYiLtjHZfu9FYIgsGxqAlJiVPgpswwn82pgc/xauJMSrcLctChMGhoMzk3fAaF+0j49um7St3lt3j+he5N3KpTUafHn77M6teds0JqwNaMEWzNKYPNQ7icrMBnCFclYcekEacI4xP7+O1RtegmmyqtdjpGPmAHVzEdR+tnDgJ3aF5tq2kpwRTIX7pRlIGKqKUDdrg+hzd0PODrajghDhyDgtt9COW4h4/sTBIHIRz9F8T8WwtpU3fNgDhcRD3/UJ/3QWeiTW6rG699mwmTt2p6mSW/GuqMFKKrV4pVFo8EdwGb57X6QdLk5/1IlF2HFtEQsn5oAg8UGu4OEVMjvU3E+IsIPIyL8oDWOQF2zEXaHAyq5qNtq9ztTIpBR4MSL2cXszi7HovGxHYQuHcobdXh+fQZ0pp7bNTdoTT1edxeswGRxK5LoZMT/aQ8MJefRfHYbrE01ILg8CINioZy4BMLAGABAxEMfomLdc52EwK0oku9A0Nw/9MXWWfox+qJzKP1sFRymriMS5up8VK57DqbKqwhe+ArjaCZfGYK4F7aj4uvfQ19wpusxfmEIe+AvkI+YzmgNFvdS32LEm99ndSsub+bUtVqsOZyPx13Y3tDbGJcQRLsrj49EgMTQzlFJgiAgFTITrK5CIRZQOoZOTwhEsK8Ytc3uz8Vsp6bJAE2rGf4KEaP5H/6U61RcehJWYLK4HYIgII1NhTQ2tdsxvmMXgCtVonbbuzBVX+t0nSNWQDV9JYLu+j2bw8bSI5bGcpT+55FuxeXNNB76Any/MPjPWMV4Pb5vMGJ//y1MVdegObkJptpCkHYb+IpA+KbfA/nImYOu+UJ/4qfMUuhpFLX8lFmKpZPiaVdM9xfSEwIR6COmVfQyZ3QEBLz+/TfO5RB4edEYvLA+A2YKLxuugmlKQkF1M/KqvLtQiH1Ss9DGYTGiJWcvzDWFIB028HwC4TtmLvhK+h5kNyMfPhWyYVNgKM6CNncfbPpmcPgiiKOT4Zs6z+srx1m8g8bDa2h12Knf9wn8piwDp5f2QaKwoQhdQr11JIvnsdjs+PkCvWidxebAgdwKLBwf66ZdeRYuh8CqGUPw1x8vUBrvLxfhnvQYN++qbxgS6ou/rRiHt7Zk38gdvRU+l4PhEb64VNbkElN2pikJ+3Ndb6vkaliByUIZh9WM+t3/gubkN52qw2u3vwfFqNsQsvAVCPwjGa9BEASk8WMhjR/b2+2yDEIcZgOaMuhVdttbG6HN2QvfsQvctCsWb6WsQQetkf4R46VyzYAVmAAwMykMzXoz/neg5040fjIh3n0wHUrZwGkWMTRMia+fnoFT12qx53w5KtV62Oxt+ZuzksJwe0oEfCQCNGpN2JtTjnOF9dCZrTBZ7NDouhal3TEk1JdxH/aaftCGkhWYLJRwWIwo/fRh6Aszuhlgh/bCPuiLMhHzf98w8ghkYekthrKLlI7Gb0V37SQrMAchJkvvKqYHMgvHxyImSIGtGdeRVdSAm2N1UiEPt6dE4P4JsVDJmeUPejMCHhczRoZhxsjui/L8FW2FTCumtTVXadabseyjQ7DZqUc1e2M077oO7u6DFZgslKja9KfuxeVN2HVqlH72MBJfOwCuWNEHO2Nh+RUm4hIA7CbqR+osAwcpw+NJmWhwPDpHx/hjdIw/apoMKKxpgdlqh0LCR3KUCiLB4PgZUMVXKsTiCXHYdLKI0vi4IAWmjWCeVhbs6/0pY+xfCItTzA1laM78kfJ4W3MtmjK29qpwgmVwQ9qtMJTkwNbaCIInhDh8OKUcX45Iymg91vaq71C3mrD3fDnOFNSh1WSFkMfF8Agl5qZGISHEff6IXREVIKdd0AIAY+MHVzemEKUEIUqJp7fh9ayYnohmgwV7zpf3OC4qQIa3Hxjbq8Ko25MjsDu753U8DSswWZyiOfFNW1NVOnOOb4Bq+sNsdyMWWtgNLWg8+jU0J76BreUmTzqCA3nSLATMehzShHHdzhdHjgJHJKMdyZQNncx0yywUcZAk1hy6hq0ZJZ2KI8obddiXU4HUWH+8tHC0S7qbUIHLIXDXmEh8fSSf8hyZiI9pI0LduCuW/gqHIPB/d41EUqQftp8tQUFNx1oFpVSIOaMjcN+EWMbR83aGhPogMcSn0xreBCswWZyiLzpLe465rhg2bQPbd5mFMhZ1JUo/eQjmuuLOF0kHWi8eQOvFAwhe9CoCZj3e5T24IimU4xZBfWwd5XW5MhUUKXOYbpuFAiRJ4qNdl7DPScV29vVG/HF9Bj5YOaHXD2Cq3J0aiT3ZZainaEa9bEo8RPz+bcnD4j4IgsDMpDDMTApDYU0LyhtaYXOQ8JMJkRLj77KWowRBYPX8ZPzh69O0bLb6koHbjoDFZTjMzNpMOczeX+XG4h3Yja3di8tbqN36DpoytnZ73X/WY+DQOPIOvPMpcPgDpwrWGzlyudqpuGynpL4V/zvQdecvd6AQC/Dug+nwp1Cscv+EWNw7bmBY8rC4n4QQH8waFY47UiIwNj7Q5f3sowPl+NuK8fDz0ip+VmCyOIUrkjObJ2GLfAYSJEnCVFMI3bWT0BVkwNriurZqmlObKYnLdmp/fA8Om6XLawL/SET99itwhM7zMVUzH4VqxiOU12Vhxo7MUlrjD1+qRouh69+vO4gMkOPjRydhXloUxILO0clhYb54ZdEYPDZ7GJv2w+JVxIf44O4xzK0B3Ql7RM7iFNmI6TCUnKc1Rxw5CjyZn5t2xNKXkHYrmjJ+gPr4Bpgqrvx6geBAMeo2qGasgixxAvP7OxzQnNhIa45N2wBt7n74ps7t8roscTziXtiOup0fQHvxAEA6OlwXhiQgYPZv4Dv+PlYwuJmSOi2u0ew4YrU7cOhiZZ96TarkIjw9ZyQemTkU2dcb0Ky3QMDjID5Ygbjgvi0+YmGhQ4Wa2Smju2EFJotT/CY9gPo9HwMO6nkeqmkPuXFHLLfisBhhuJ4Nu6EFHKEE4qhklwh8u7EVZf97vOs+26QD2tyfoc39GYF3P4fAu55lJNbMNQWwNJTRnqfN/blbgQkAotAhiPrN57BoqtF66SBs+qa2zlBRyZAmjGOFZR/B9OHnqYemRMjDlGG/OhaQLujW0hPqVtMNCyAfiQDDI5T9vu0iy684SBJNOjMsNgfkYj7jzj09YbM7nA/yAKzAZHEK3ycQ/jNWofHQF5TGC0OHwCdtnpt3xQIA1qYaNBz6Ak1ntsBh1N74nODy4ZM6F/6zn4A4fDije5MOO8q/+F3X4vIW6nf/E1yxHP4zH6W9jk3fxGR7MJZdROvVY5ANnQKC0322j8AvlH3h8SAOBzOBZnd45qFpstpx7Eo19pwvx/U6LWx2B3ylQkwbEYq7x0Qiwt81llZ5lU3YmnEdp67Vdaiq95EIcHtyOBaNj/WqDjmtRisOXKzEhZJGGC02SAQ8jI71x+xR4W4RTf2dZr0Z+3IqsPt8eQcbrORoFealRmHi0CBwe/jeogOP650vy6zAZKFE8L1/gq21Ec3ntvc4ThgUh+gnvwaHP/C6O3gbxvJLKPlkJew6dadrpN2K5nPb0ZK9CxGrPoLPmLtp31978SB0105QHl/709+hnHA/bYN9pj3mLQ2lKP3kIfBVEfCf+ShU01b2KDRZPINKwey7wF/e90bS+dXNeOO7rE4t/zQ6M7afLcH2syW4b0IsHp01FJxeRMD35pTjo92XunR/azFYsOXMdRy5XI2/LEtHVACzHHhXYXeQWH80H9vPlsBs6yj6MwrrseZwPhaNj8GKaYm9+pkMJC6Va/DGd1nQmTq3Ic0tVSO3VI2kSD/8eXEa5OLeiXOTxYYLpZ2fAd4A+23MQgmCw0X4yn8i7MH3IQxJ7HSdK/GF/+wnEPv8Ngj8WI84d2NRV6Lkk4e6FJc3Q9qtKF/zf9Dln6a9hub4BlrjSYuxx+ru7hAGJ1AqyOkOq7oCNVveQOX61SA9FPVi6Z7h4UpGXUdmJvXt90hxbQte3JDhtJ/0D2eu47N9VxgfnZ/Or8VHu7oWlzfT2GrCy9+cQxPN/tauxEGS+MeOC/j2VHEncdmO2WrHphNF+HDnRbenE/QHCmta8Oqmc12Ky5u5VK7B699mwmLrXdvRw5er0azvu4I4OrACk4UyBEHAb/IDSHh1P2JXb0XYsvcRuuRtRP3mCwz9y1mELHwFPKmvp7c5KGj4+TPYdRpqgx021O74G637241aWtHLdrQ5e2nP4Yqk8B23kPa8W2k+tw11uz/s9X1YXAuXQ+DuVHo9l8fE+iNc1XfdlUiSxN935FLuMb4zq4xR1MhBkvjy4DXKfaQbW03Yfq6E9jquYmdmKQ5frqY09kBuJXZ5eWeZvuCTvZdhslL7O7pa2dTrbjy7s+nnr/cV7BH5IMKqbYBdpwHBE4LvFwoOj1m3DIIgII1LgzQuzcU7ZKGC3ah1mqpwK8bSHBjLL0EcmURtDT29qt92bE4iqt3hP2MVmk5/D9LWu2hN46EvETDrcXAlbNVveaMOu7PLcCKvBi16C/g8DuKC2yxNJg8L7tNCkgVjo3H6Wi3yKFSTy8V8PHnHiD7Y1a9cLtegpJ5eP/qdmaUYHeNPa05OSSOqNPSKl/blVGD51IQ+L/yxO0hsO0tP3G4/W4K7UyMH7VF5YU0LbceEXdlluCc9mlHRoclqR1Gt1vlAD8EKzAEOabehJWcP1Mc3wFB07sbnXKkSyolLoJq6HAJVhAd3yEIX3bVTcFjom9hrc/dTFpgEj2FxAU8A7cUD0Jz6Fua664DDBr4yFL7p98J37IJu8y2FQXGIeORjlH/5FC23glshLUY0nd0G/xmrGN+jv2N3kPj8wFX8eK60w+c2ix2XyzW4XK7B10fEeHNJGmKC+sarVsjn4u0H0vHm91m4VN595N1PJsTbS8e6rJCGKj/nVtKec6agDi0GC3wk1F/Uz+TT945tMViQV9mM5GgV7bm9IaekEbXN9Hq0V2n0uFiqRgpN4T1QOHK5ivacSrUehTUtSAylf/pnphgp9RTsEfkAxm5oQcnHy1Cx5pkO4hIA7PomNB74Lwremg1t7n4P7ZCFCXYDw+gijWptniIAPN9g2mtYG8tR9t/H0HrpICz112FpLIe+MANV37yIay+PQ0vOnm7n+qTciZhnNkAUOpT2ujejyz/Vq/n9GZIk8e89lzqJy1upazHi+fUZKG+gF7XrDXIxH39dMR5/XpyK1NiOAiTSX4Yn7xyBL5+chviQvo8+1zbRf2FzkEBDCz0B1mrsOS+v+3l9n2NXzDAyVlznvRE1d6NuZXYCw3SeRMgDx4uDxWwEc4DisFlQ9t/HnfYRJ60mlH3xO8Q8sx6yIZP6aHcsvYFgWKF/a/SQdNjRevUYmk59C3NtEUiHHXzfYPim3wPftAXwm/wg6nfRy2l0mHTdXrMbWlD+5ZOIePgj+I5d0OUY2ZCJiH9lHwzXs9B4ZC2053fTWh8ATFXXYDe2giv2bPWtO7DY7KhS62Gy2iET8RGmknY4jjxbWI+9OdRaMupMVny48yL+9Ujf/bvncghMHBKMiUOCYbLaoTdZIeJzIRHy3OpL6iBJ1DUbYTDbIBXyEOgr7vBz66sTXaY9zIUe6H1uZeitaO2mGGgwwGWo9pjaDPG5HIyJDUBWcQOj+e6GFZgDlOaMrU7F5Q0cNlRtfhWJrx9ibV76AZLo0czmxfw6z1R1DWVf/BaW+o45VpaGUugLM1Cz7S8IvuclcESyHkUjbUgSlRuehzQ+HXxlSJdDCIKAJDYNisYKRgLTqq5A8T8WIubp9d2u0d+obzFiZ1YZfr5Q0aGFYqifBHNTo3Dn6AhIhXzszKKX8J9X1YyC6mZGx3O9RcTnMhZcVGk1WrEvpxy7sss6HPfe+LmlREAq4iPIVwKUUSya+wUOQSDQh151/NBwX8o92dvhcQgkeCCqq5Qyy9H3ZThvIBAVwCy1I6IXBW3z0qK8VmCyamIAQpIk1MfX05pjqb8OfQF9KxuWvkcYGA3ZsKm05vB8/r+9O49r6kr7AP5LQtjCvoOAiBAVEBUFccdatbbSUaoy1oo449bNT91mqtPpVHGWvtVpldraFnVcqKXtaG1tbeuKihu4IIKigCKyyA4S1iT3/YMJFROSm3CzgM/3P+6Wcw8nN8+995znuMMudDKA9uAy/9+zlILLx8mb6lGyfx2cxr0Cno6DwbrCSFtRffbLLtc3PchB3r9ewIPdK3T+jJbS27i7bQFkzaY5hZo2rt2rxNLPTuPrc/lK83OXVDfi86M38WZSGnKKanT6oflVh/6HPcHdh/VY9tlpJB2/pdSXUFFvr35+BvcrHmHqUO37oY8a4A47LfpfAsDEYC9YW2j3XGfsIE84iAyfcH3UAHeYaflETijgY9QA7bvW9BaTh3hr/RQzzN8FHo7WOn9meIAbQvua5rTMFGD2Qq3lBWh+kKP1frXph/RQGqIPrpOXarW9y6RF4AmEYORyFH7xKuRN7PreVZ5Igk/8R133i+TxYGarfYf+6rT9KnPmNd7LRMHmWZ3nPNdRS0kuas5/3e3jGNOd0jq8+1UGGlvUD3wqrpZg438v6/QZpTr0P5Q0t6GkWoKqR82dZqExFWW1jXg7+SIqHzWr3e5hXRPeTr4ID3sr+Gs54OnFcO1SLwGApbkZZoT7sd5ewOfhpch+Wn+OtuQMg4z8Cnx55g7+czIXBy7eRatUjrGDtHsDMD7IU6tBT/rGMAyu3avE5u8zsS75It7ZfwmfHc3RW99jJxtLTAjSrs5mRPh16zMFfB7enT0Cg/qYXopAekXeC7XVleu2X71u+xHDsxk4Fp6z/obSb9dr3NZx1Gy4TFoMAHiUcwqt5QXsP0gmRdP9rPZ+kfkZqL10EG11D8ETmMHCIwBOY36Pgo/mal1+aX0F5M2POs36I29tQuH2RZC3cPfUsfr0XjhHxffYecc/P5rDeqSorgMF2JLJ5TiX+xA/ZBQi87EckK52lng+zBfPh/ka5UmbKv85mcs6+XTVoxbsPX0ba343BKt2n9cYzAPtQcFQP91GSr8yIRCFlQ1Iu1WmdjseD1gxPVSv3RcYhsHhy4X474W7Sjcan/+ag9C+ThBZmEHCok7src0RF6U8CYexZBdV46PDWbhf2bmLT3peBQ5cuIswfxesih4CFx1nmurK69NCUPDwEe6xCGJnjfLHyED3bn+mYgDdd5fu4cfLhXj4xOAzK3MBjJGunwLMXogn0G3qKb7AdO7mmDqDAAAgAElEQVQ8iWYuz/wBZnauePj9/6G1UjlZr8DGCS6TFsN18rKOAKsm7SutP6f6XArcX1wDUUA4RAHhyhswunXqZ2SdA6fa9EOQcnyT0/IwHy1ld2CpYvYpU1dY8QjXtewXqAs2s+w0NLdh/dcZKstTUd+M3adu49sLBfjb7BEGT6fzpFpJC87klGq1z6kbJVj8bBD+b34k3kvJUPvkM3ZMf8RPHKBz+QR8Pv7yUhj2nb6N79PvoaFZOXjzdbHB4mcHISLQTefP0UTOMNhyOKvLPqEMgMzCaliY8WFjKVQ7M42TjQU2zo2Ah4Pur3q5dKWgEu9+la52oNKVgkq8tSsN/44frXVfWnVsLIX4IC4S7393rcsuK+ZmfMwbF4jYMf05+1wLoQCxY/pj1ih/3Lhfjcr6JvD5PHg722B97n6kG6EnDAWYvZCFu3/761CZdikxLProftEkxuEwIhr2YS+g4eZp1N84DlljHQQWIlj3D4d92PNKc8K3lOVp/RmyhmrIJDVdvgoX2rujrVq7/G88cysIrDu/kqw+k6x12djQNWm8sZ3WMkjSlab+h61SGd79Kh3ZRerTXEmapXhn/yVsWjAKA4wwaEgh7VYZpHLtXtu3SOW4cPshJg/xxq43onAmpxQ/XrmPuw8foU0mh4PIHFHBXng+zBdeTrpPa6og4POwIGoAYscEIDW7BLeKa9HSJoOtlRBjBnpgsK+T3p+6p6Tlsxpw1CKVQ8DnIWZkP5zOKe0UfCueXr8wvK/JvBqvlbQg4dvLrEbBV9Q3Y+O3V7DlD6M5rW87a3P8/eUIFDysx+HLhcj93//XztocYwZ6YPIQb9hZ6ae+BHye0k2esd7gUIDZC5nZOMFu2DTUZXzPficeD06jf6+/QhG94fH5sA2Ogm1wlMZtGbluiXmffNr4OIeRMWi8e0Wr4zmE/w48/m8jiBmGQdOD7ve7VEXXtE7GVivR/0utgX0cNL6CPXK1SGNwqdAqlePjn24gcdFYLoqnE13n7lbMQW5uJsCkUG9MCvXmslgqWQoFmDrUR6dBRt3R3CrFN+fyWW/f+L8pNPcsn4iiSgkaW9vTPXk7iyAwscwjP18tYtXNQSG3pBbZRTUI8eV+oIy/ux2WP89ucoveyLRaBuGMc1S8VtvbDX0O5s76v6AS4xLqkDydZ2YOgZo55h0iZoJvqV2aDefx8zsvkEsBHYNfdfiWNrBw5+41lCGZCXS7PLMdUSqyNMPK6FC12zAMg8Napj66XVqH3BLjPTXWtd6EZk/Pz+Gp7BJW/Sof92tmEdpkDPzcbBHk7Yi+rrYmF1wyDIOfrmg/t7cpz+fdk5lW6yCcEfkPh0fMX1htyxNagmlrQW3GD5BLDT9jhL4xMikkBZdRf/0oHuWcRlu9aeYMMwSHiBla72MfNh18YdeDNwSWNvD6/UbWx3N5dgmsfEI6LeMJhHqZP9xhZAwElt1/pWkMAR661cdrU4M1jkx1tbPEB/NHoa+r+mT0BQ/rlQZJsHEiS/sp87ji56Zbgv1+Ou7XE117bJAWWw3NUuSX1emhNNx51NymNMCFDVOez7sno1fkvZjrs0sgsLJF6YF/QN7U9ReIaWvGoxsn8OjGCZjZucIrdgPshz1vwJLqh6yxDpWn/oOas/vRVvtYfza+GeyHToXLpEWw7hdmvAIagUP4DI3t4UnOE+Zr3MYxYiYYWRuKk9eqnUvcZdIieMxYq3Kdfdh0VJ/lrh8mz8wcLlo+yTcl44I8sf3XHLWDK54U4uuEfu52eHVqMF4I88Xhy/dx5mYpaiUtEJoJEOBhh+nD+2LsIA+Ym2lOcm7oqe+4EB7gClc7S1TUq09R9DgvJ2ujD04ypCYtn1527Ndq2nNf6zqLUKvUtM+rp6IAs5dzGjMXDuEzUJvxPWouHURTwWUwap5SSusrcD/pNXjP3wTHyFkGLCm3WquKcDcxTnVKHrkUdVd+RN3VI/CKTYDz+FcMX0Aj4Ztboc/L/0TRjtdZbe88YQHrINxp1BzYBEai+uyXqD6XAllD+4hjntASDiNehPOEOFj5dt0fyWn8K9wFmHwz+Czcwvr1uLShBo33rkLe0giBlS2s/YdDoOVrf65ZCgWYPtwXX6Wx7yv30sjfcib6utriteeC8dpzwWAYRqeO/oae+o4LAj4fv4vwQ9KxW6z3mRHRr9PUkb2dyFK3TCMiLZPEG5qtlRB8Hk/r3KyOJpJeq7cx7dZCOME3t4LT6FjUZXyvNrjswDB4sPdPsPIbCkuPAP0XkGOypvqug8vHMXKUfPUXmNk4wj7sBcMUzgQ4DJ8ORtqKB/vWALKun2Q4T1gAz9l/0+rY5i6+8JjxNtxfXANZYx0YuQxmIgdWqbOsvIPgNHYe+yCTL1DZb9PCMxBes9+DzUDNA02ai2+h4tjnqLv8Q6fvBt/SBg4RM+H67BKYu/iyK48evDJBjDtl9bjMYoae2NH9MXqg6j62uo4i9XGxAQ/tKWu04eti3OA8ZqQ/bj2oxVkNuSYBYGKIF6JHaJ80vScL83fBcS27Mdhbm6O/h3bJ6A3N3EyASLEbzuU+1Gq/cVomR++ue+WPkJ5fDkmzFFbmAoT4OiHI27HH5uvtCgWYOmqrr8Ddj+MgrSsH+AJYegbCaezLsO4fbpKNpLn4FhpunWW/AyPD3Y9+D89Z78J+eLRJnlNXqk7v0yqZeOmBv8Nu6HOdRjX3do4jYyAKCEf1meTOTxvNzGEfNh3OE+I6zV2uLR5fADMb7UdlesVugFzagtoL36rdzjlqIVynLUdd+kE0FWWDaWuBwNYJDmHTYR0Qwaq91mf+ivs73gAjVX6dK29uQPXpvajL+B59X90JUf8RWp8LF4QCPt6bMxyfH72JI1fuq0y/I7IwwysTxJjZzRlBVHGzt8KIAFek57Hvt8zn8Qw+KvpJAj4P614ahs+P3sThjEKV9SYU8DEjwg8Lnxn4VD29BNpn3Pns1xzUN7HvfjF1qA+rbhXGNn1EX60CTHMzPiYPMcwA18x7VdiTehs37ivnk+3nZouXxwVivIGDXX3iMarmayNdmj9/Pi5duoQgBzk2DFd+GmjpEwzfP34CCzc/wxdOjZKUd1GVulunfR0iYuA9/wPwBKZ/P8LIZch9dzzaqrXLKtt32Q7YhT6rp1KZNkYug0xSA0Ymg0DkoHZADxvylkbU3zgBad3DjpsvUeAo8FiOOGUYBo+yjqPq9B405KT+toLHh+3gSXAeHwebQeO6ddMjyc/A3Y9+zypXLN/KDgF/OgQLd3+dP48LNQ0t+OVaEbKLqtHcJoONpRAjA90QFewFS3P9fTcz8ivwly8vsd4+KtgLa2N0vznhWq2kBUeuFuHavUo0tkhhbWGGsH6ueG6Yj8nkbjSGgxfvYvuv7KYUtrc2xyeLx3E+640+MAyDhG+vaJwpSWHJ5EF4KVL/3+0TWcX44FCmxtf38RMHYO5Ybt8cKuKWiIgI7N27l9Njq2P6EUMP01yUjfxNMei/+oBJBZnNxez7Iz2p9tIBCKxs4RW7gcMS6Ufzgxytg0sAqL/281MbYPL4Ap3mE3+StKEa5T9tRc3Fb5XmOjd37QvnqIVwnhCn8Ukxj8eDXeizsAt9Fm21ZWitLgaPx4PQyRtCe25mNnn4/QesJyKQN9Wj/EgifOI/5OSzdeVoY4Hfc/zDw8aI/q6IHd0fKSzyJvq62OCNaSEatzMkB5EF5o4N4PxHu6ebEeGHivom/PfCXbXb2VoJkTA3vEcEl0D79ePPM4biH/+9ggt31M8MNn98IGJG6n+u95wHNdj0vebgEmif5tTT0RpRwV56L5e+UZoiPZA1VOF+0qswpYfDcln30g9Vpe5GS/k9bgqjR9IGdgmhlfaT6LYfaddaXYz8D2ai6tQupeASAForClH6zXu4v+N1rWaYEjp4QOQ/HNb9wjgLLptLbkNy54JW+9Rd/gHSBv1P22iqFj4zAH+cNBAWanJFDvd3waYFo2BrpdsAEmJYPB4PSyYH4c8zhqK/u3LfSjMBD5MG98HWP4wx6sxMurAQCvDunBFYO3OYUgJ1AZ+H8UGe2LxgFF6ZIDZI96+Us3mQaTG7VPLpOyYVP+jKKE8wm5ubsXPnThw5cgT3798Hj8eDv78/Zs6ciXnz5oGvRfLWrKwsbNu2DVlZWWhsbERAQADi4uIQHR2txzPQrPlBDhrzLkEUONKo5VAQ2rlB++xgnVWf2QfPl97hpDz6wjfX7S77ySkVCXvy1mbc27YArRX3NG5bf/UISr7dgD6xCfovWFdluH5U630YWRse5aTCMWKmHkpk+ng8HuaM7o9pw3xx9PoDpN0qQ31jKyyEAoi97DF9eF/4qwhSiOl7ZnAfTAzxQm5JLW6X1KFFKoODtQUiAt16dBcCAZ+HqBAvRIV4oay2EVWPmiHg8+DpKDLoeT2sbcRFDU9Sn3S/sgHXC6t7fOosgweYEokEcXFxuHHjBhwcHBAeHo62tjZkZmZi48aNOH/+PBITEyEQaO5MnJaWhqVLl0IulyM8PBxWVlY4f/48Vq9ejby8PKxYscIAZ9S1qrPJJhNg2g+fjvrMX7p1jPrMX0w+wLT0GgCe0AJMm3Z5+Kz8huipRL1f7eXv0VJ6h/X21af3wW3KaxA6Gqczu6xRt1lmeuqc5lyytRIiZmQ/g7xWJIbD4/EwsI8jBvZxNHZR9MLDwRoeDtZG+ezrhdVaZ2EA2gcE9fQA0+CvyLdv344bN25g1KhROHr0KJKSkrB7924cPnwYfn5+OH78OL755huNx2lubsaaNWsAADt37sTu3buxfft2/PDDD/Dw8Oj4HGPS5kdX3+yGPgczO9duHUPaA35gBdb2cBjxolb78IQWcIycracS9X7VqVp2GmfkqD77pX4KwwLf3Mqg+xFCnl5NrboltW/UcT9TYvAA8+DBgwCAhIQE2Nn99krF29u7I2D88ccfNR7n0KFDqKqqQnR0NCIjIzuW+/r6YvXq1QBg0NFSqmjT10zf+Gbm8JqzvnvH0PH1s6E5T/wjoMWId8fRsTCz6Z137vomldSi6f51rfd7dPO0HkrDjq7pl562WZ8IId2na3J6U09qz4ZBA0yJRAI/Pz+EhobCx0c5T1q/fu2vXcrLNfdXOHPmDABg0qRJSusmTpwIgUCA06eN9yMGAGZ23AxK4Ip92Avwnr8J4OvWcK39TCf1iDpW3oPgE7cZ4Glu3qIBY+AZY9qv/U2ZNlNOdt5PeSCQodgMGg+hs3Z5GkUBI2HpJdZTiQghvdXQfi465VkN8+9+Zg9jM2iAKRKJsG/fvi5fgWdlZQEAPDxUz0bxuDt32l8/i8XKF30bGxu4ubmhuroalZWV3Shx9zhEzDDaZ3fFcdRsBP7lZ4gGjNF6X6dxPWdKRYfwGfB7bVeXUwXyhJZwjloIv9d2dTvv49OMr+N0inwLEcclYY/HF8B18jKt9nGZvFRPpSGE9GbOtpYYPcBdq336u9shyLvnv1UzmWewra2t+PTTTwEAU6ZM0bh9RUX7zBKurqr7Fbq6uqK0tBSVlZVwcTH8nYDA2h4Ow7XrC2golp6B8Ht1J26vn4i2mhJ2+3gHsZp6z5TYBkfBJmgCJLfPoe7qEcgaqsETWsLKdzAcR8ZAYG1v7CL2eAKRIyy8BqClJFer/UTiSM0b6ZHTuHloKb3NavIBjxlrYTdY+U0JIYSwMXdsAC7llaNVKme1fVyUYdIn6Vu3Z/JZtWoVsrOzNW43efJkrFq1SuU6hmGwevVqHD58GP3798d3330Hc3P1aQQGDRoEuVyOW7duqfxHKDLX79+/H2Fh6vtOHThwoKNvqCZXr15FW1sbrAUM/Gy7rjpLzwBOklfrk7ylEU0PcsComY8aAPhCc1h6B9OTPqJSW22Z1jlSrf2GGr1PL8MwkNaWobWmBIxUub80X2gOobMPhN0cHEcIIfWNrSiseAR16TB5ALycRJwntb958yYePXoEd3d3g3Yd7PYTzJKSEty9q34mAOC3J45PkslkeOedd3D48GHY29sjMTFRY3AJAAKBAAzDaIzy5XLNdwzFxcW4dIn9VGgA0CjjIadWzWfXFgBgPx+2cWnqKSEFKjINUhLSU2nZ2+aa9gOD9EtV+aVAxV0Amq9vhBDChYJy/UUOdXV1ejqyat0OMPfv36/zvo2NjVi5ciVOnjwJBwcH7NixA/37q+4z9yQrKyvU19ejpaUFFhbKT9aam5sBtPf71KRPnz6IiIhg9bkZGRmQy+UQCoUYNqxnDHoxBMUdkq2tLQYNGmTs4pgEqhPVqF5Uo3pRjepFGdWJalQvqinevGoziQ0XjNYHs7KyEkuWLEF2djY8PDyQlJSEwMBA1vu7ubmhvr4eFRUV8Pb2VlqvqY/m42JiYhATE8PqcxWv3ocNG2b0NEimRFEvgwYNonr5H6oT1aheVKN6UY3qRRnViWpUL6op6iUkJMSgn2uUuciLi4sRGxuL7OxsiMVipKSkaBVcAujYPj8/X2ldQ0MDysvL4eTkZJQBPoQQQgghTzODB5i1tbVYuHAhHjx4gPDwcHz55Zes0hI9ady4cQCAY8eOKa07ceIEZDIZJkyY0O3yEkIIIYQQ7Rg8wFy/fj0KCwsRFBSEL774Ara2thr3yc/PR35+PpqamjqWTZ06Fc7Ozjh48CBSU1M7lhcVFWHz5s3g8XiIj4/XxykQQgghhBA1DNoH886dOzhy5AiA9sE3f/3rX1Vu5+TkhHXr1nX8/fzzzwMA9uzZg5EjRwJoT6aekJCA5cuXY+nSpQgPD4dIJMKFCxfQ1NSEFStWYODAgXo+I0IIIYQQ8iSDBphnz56FIu1menp6l9v16dOnU4DZlUmTJmHv3r3Ytm0bMjMzwTAMBgwYgPj4eEybNo2zchNCCCGEEPYMGmAuXLgQCxcu1Hq/3NyuZwkJCwvDjh07ulMsQgghhBDCIaOMIieEEEIIIb0XBZiEEEIIIYRTFGASQgghhBBOCd577733jF2InmbQoEGIiIigqaieQPWijOpENaoX1aheVKN6UUZ1ohrVi2rGqBceoxjWTQghhBBCCAfoFTkhhBBCCOEUBZiEEEIIIYRTFGASQgghhBBOUYBJCCGEEEI4RQEmIYQQQgjhlEGniuwpmpubsXPnThw5cgT3798Hj8eDv78/Zs6ciXnz5oHPZx+XZ2VlYdu2bcjKykJjYyMCAgIQFxeH6OhoPZ6BYSQmJuLjjz9GamoqPDw8WO9XWlqKqKioLteHhYVh//79HJTQOHStFwC4e/cuEhMTcfnyZdTW1sLX1xdz5szRut2Zip9++gm7d+9GXl4eBAIBhg0bhtdffx2hoaGsj5GRkYF58+Z1uT46OhqbNm3ioricO3fuHLZv347c3Fy0tbUhODgYixcvxvjx41kfo7e1CaD79dLbryEHDhzA2rVrkZycjBEjRrDe7+HDh9i2bRvS0tJQUVEBT09PvPjii1i8eDHMzc31WGLD0KVepFIphg0bhtbWVpXr3d3dcfr0aS6LqXcymQz79+/HwYMHUVBQAJlMBh8fHzz//PNYtGgRLCwsWB1H39cWCjCfIJFIEBcXhxs3bsDBwQHh4eFoa2tDZmYmNm7ciPPnzyMxMRECgUDjsdLS0rB06VLI5XKEh4fDysoK58+fx+rVq5GXl4cVK1YY4Iz049ixY9i+fbtO++bk5AAABgwYALFYrLS+X79+3SqbMXWnXm7duoV58+ahoaEBYWFhGDx4MC5evIiNGzciMzPTZIOorigCbZFIhMjISNTX1yM1NRVnz57FJ598ggkTJrA6jqK9DBs2DN7e3krrw8LCOC03VxQ/hubm5oiMjIRcLsfFixexePFibNiwAbGxsRqP0dvaBMBNvfTma8jVq1eRkJCg9X5lZWWIjY1FWVkZgoKCEBwcjCtXrmDr1q24cOECdu7cCaFQqIcSG4au9ZKXl4fW1lb4+vpiyJAhSusdHBy4KJ7ByGQyvPbaazh16hSsra0xZMgQmJmZITMzE1u3bkVqaip2794NKysrtccxyLWFIZ1s2rSJEYvFzIIFC5i6urqO5UVFRcyUKVMYsVjM7N+/X+NxmpqamFGjRjHBwcHM+fPnO5YXFhYy48ePZ8RiMZOVlaWXc9C3ffv2McHBwYxYLGbEYjFTWlqq1f6JiYmMWCxmDh06pKcSGkd36kUulzPR0dGMWCxmvvvuu47lVVVVHct//vlnfRRbL7KyshixWMxMnDiRKSsr61h+8uRJJigoiBk9ejTT2NjI6lhvv/02IxaLmYyMDH0Vl3NlZWVMSEgIM3z4cCY3N7djeWZmJhMWFsYMHjy4U72o0tvaBMNwUy8M03uvIT///DMzbNiwjmtIeno6632XLl3KiMViZtu2bR3LJBIJEx8fz4jFYmbHjh36KLJBdKdeDhw4wIjFYuaTTz7RYwkNZ//+/YxYLGaio6M7fVeqqqqY2NhYRiwWM5s2bVJ7DENdW3rm+xU9OnjwIAAgISEBdnZ2Hcu9vb2xZs0aAMCPP/6o8TiHDh1CVVUVoqOjERkZ2bHc19cXq1evBgDs3buXy6LrXX5+PpYsWYINGzbAxsYGIpFIp+Monj4EBwdzWTyj4aJe0tLSkJubi4iICPzud7/rWO7k5ATFZFs9qb3s2rULAPDmm2/C3d29Y3lUVBRiYmJQWVmJn376idWxcnJywOfze9TMHMnJyWhtbUV8fHynJ2yhoaFYvHgxWlpakJKSovYYva1NANzUC9D7riFlZWX405/+hOXLl0Mul8PFxUWr/QsKCnDq1Cn4+vpi2bJlHcutra3x97//HQKBAPv27eO62HrX3XoBel9bUcQo69at63Rtffy6oClGMdS1hQLMx0gkEvj5+SE0NBQ+Pj5K6xWvXcrLyzUe68yZMwCASZMmKa2bOHEiBAJBj+v38d577yE1NRVjxozBgQMHdH61cPPmTVhbW/fo11iP46JeFO3l2WefVVoXFhYGZ2dnXL58GQ0NDd0uryGcOXMGPB4PzzzzjNI6xTmyaf+tra3Iz8+Hv78/rK2tOS+nvqj7f7I9/97WJgBu6gXofdeQjz76CIcOHUJISAhSUlLg7++v1f5nz54FwzCYOHGiUt85Ly8vBAUFobi4GHl5eVwWW++6Wy9Ae1sBgJCQEK6LZxSOjo7w9/dX2Y/dz88PgOYYxVDXFuqD+RiRSKT2Li8rKwsAWA3cuHPnDgCo7B9kY2MDNzc3lJaWorKyUqe7MmMICQnBwoULVQYNbNXW1qKkpATBwcHYtWsXDh06hMLCQtja2mLixIl44403Ot2V9QRc1Iviwq+qvQDtNzdVVVXIz89X2Y/IlJSXl6Ourg4eHh6wt7dXWq/4kbh9+7bGY925cwdtbW3o06cPPvzwQ/z6668oLi6Gi4sLpk6dildffbXTmwZTwDAM8vLywOfzVf4g+vn5gc/nIy8vDwzDgMfjqTxOb2oTAHf10huvIf7+/nj//ffx4osv6jS4QtFWAgMDuzx+VlYWbt++jYCAgG6V1ZC6Wy8Mw+DmzZtwdXXF8ePHkZKSgvz8fFhYWGD06NF44403dApajUldH3+2MYqhri30BJOl1tZWfPrppwCAKVOmaNy+oqICAODq6qpyvWJ5ZWUlRyXUvz//+c/dCqKA3+4ms7Oz8eGHH8LZ2RkjR46ETCbD119/jZdeegkFBQVcFNdguKgXxR1nb2gvbNt+VVWVxmMpXm+lpqZiz5498PHxwfDhw1FfX4+dO3di9uzZqK6u5qjk3Kirq0NrayscHBxUjtw1MzODo6MjmpqaIJFIujxOb2oTAHf10huvIUuWLMGMGTN0HrmraCtubm4q1/e0tqLQ3XopKipCQ0MDKioq8O6778LCwgIjR46EhYUFfvzxR8yaNQuXL1/muNTGwTAMtmzZAkBzjGKoa0uvf4K5atUqZGdna9xu8uTJWLVqlcp1DMNg7dq1uHfvHvr374/Zs2drPF5TUxMAwNLSUuV6xfLGxkaNx9IHLupFF4qAQSwW45NPPunoitDY2Ii//vWvOHz4MFavXo0DBw5w9pnaMFa99Kb2ohgd3tUoRkUKDTbnoggmIiIisGXLFjg5OQEAqqursXLlSpw/fx5/+9vfkJiYyOo8DEHxv1Q3ilPx/5RIJLCxsVF7HFNtE9riql5M/RpiDL2trXBF0Vbc3d3x2WefdfTjlkql2Lx5M3bu3IkVK1bg6NGjrFP7mKp///vfSE9Ph4uLCxYtWqR2W0O1l14fYJaUlODu3bsat1M8dXmSTCbDO++8g8OHD8Pe3h6JiYms8okJBAK1r3kU5HK5xmPpQ3frRVfx8fGYMmUKRCJRR7AAtHdG37hxI9LT05GdnY1r165h6NChnH42G8aqF0Xaq97QXtg+bWBzLmvXrsX8+fPh6uraKeBwcnLC+++/j+eeew5Hjx5FeXl5l09vDE2bpy0Mw3S5ztTbhLa4qhdTv4YYQ29rK1yZOnUqTp06BT6f36nbhJmZGdasWYOLFy8iOzsbx44dwwsvvGDEknbPli1b8Pnnn8Pc3BwfffRRp++FKoZqL70+wOxOst3GxkasXLkSJ0+ehIODA3bs2IH+/fuz2tfKygr19fVoaWlReWfU3NwMADqPxO4uYyUhFggEKgdQAe11FhkZiUOHDiE7O9soPw7GqhfFUx1Fu3hST2ovt27dAgC0tLSoXK9YzmbQjlAo7HIgh7u7O4KCgpCRkYGcnByTCTAV59XV+QO//T/V1YGptwltcVUvpn4NMQa2baUnDZTjAo/Hg6enp8p1fD4fEyZMQHZ2Nm7cuNEjA0ypVIoNGzYgJSUFFhYWSExMRHh4uMb9DHVtoT6YXaisrMQrr7yCkydPwsPDA/v27dNqFJrix66rJ12a+qk9rRQDnhSP8J8WivbSVZ+XntReDHkupthebGxsYG1tjZqaGkilUqX1UpbN9/sAAAbJSURBVKkUNTU1sLCwUDtAqTe1CYC7etHEFNuEvrFtK6ZyE2YqFG2lq0DLlEkkEixbtgwpKSmws7PDjh07WE9eYahrCwWYKhQXFyM2NhbZ2dkQi8VISUnpcnReVxTb5+fnK61raGhAeXk5nJyceswIcq58/PHHWL58OXJzc1Wuf/DgAQB2I/V7E0V7UZVGhGEYFBQUQCAQsH6CbkxOTk5wdnZGWVmZyjQXiu9EVyMYH5eQkIDXX3+9ywFBptheeDweAgICIJPJcO/ePaX1d+/ehVwu13j+valNANzVC11DlKlrK4B237neJDk5GW+99RbOnTuncn1PbSt1dXWYP38+zpw5A09PTyQnJ7N6cqlgqGsLBZhPqK2txcKFC/HgwQOEh4fjyy+/1KnxjRs3DkD71IFPOnHiBGQyGeu7jd4kNzcXv/zyC44cOaK0rqqqCmlpaRAKhRg5cqQRSmc8ivZy/PhxpXVXrlxBdXU1hg8f3uXAB1Mzbtw4yGQynDx5Ummd4jvBpv1fvXoVx44dw4kTJ5TW3b59Gzdv3oSDg4PJJVFW9/1ne/69rU0A3NQLXUOUKer15MmTSv3mSkpKcPPmTfTp06dHpSjiQlFREY4cOdKRnPxxLS0t+OWXXwAAY8eONXTRdNba2oolS5YgOzsbAQEB+Oqrr7S+cTDUtYUCzCesX78ehYWFCAoKwhdffAFbW1uN++Tn5yM/P7/TK5mpU6fC2dkZBw8eRGpqasfyoqIibN68GTweD/Hx8fo4BZNx//595Ofn49GjRx3LFPMM79q1q1N6CIlEgnXr1qGhoQGzZs3qMa/9dKGqXiIiIhAYGIi0tDR8/fXXHcurq6uxfv16AMDChQsNXlZdzZ07FzweD5s2bUJRUVHH8lOnTuHgwYNwdXXF9OnTO+2j6nukaC8ffvhhp7cB1dXVWLt2LWQyGRYtWsRq4J0hxcTEwMLCAl988QVu3LjRsTwrKwtJSUmwtLTEyy+/3LH8aWgTADf18rRfQ0pKSpCfn98pPZePjw/GjRuHgoKCjlQ1QPs4gnfeeQcymazHtRVtqaqXWbNmQSAQ4IcffugIJgGgra0NCQkJKC4uxvjx403uBlWdrVu34tq1a/D09MTevXs1PgAz5rWFx6gbrveUuXPnDqKjo8EwDMLDw7v8xzk5OWHdunUdfw8YMAAAsGfPnk53zcePH8fy5cshk8kQHh4OkUiECxcuoKmpCStWrOg0pVdP9Mwzz6C4uBipqakq60qx/p///CdiYmI6lv/rX//Crl27wOfzERYWBkdHR2RkZKCmpgYjRoxAUlKS2lQmpk7Xerl+/ToWLFiAxsZGDBkyBG5ubrh06RLq6uowZ84cJCQkGPI0uu2DDz7o+F9GRkZCIpEgPT0dZmZmSEpK6jSFKqD6eySXy/HWW2/hl19+gVAoxIgRI2BlZYWLFy9CIpFg2rRp2Lx5c8eoSFOSnJyMDRs2dHqadvHiRUilUrz//vudpmh7WtoEwE299PZryPz583Hp0iUkJydjxIgRKte98cYbePPNNzuWFxUVYe7cuaioqIBYLEa/fv1w5coVVFRUYPz48fj0009hZtazx/XqUi979uzBP/7xDzAMg8GDB8PLywuZmZkoKyuDv78/9u3bB2dnZ0Ofik5qamoQFRWF5uZmBAcHq00Sv2nTJgDGvbb07NbGMcV0WwCQnp7e5XZ9+vTpFGB2ZdKkSdi7dy+2bduGzMxMMAyDAQMGID4+HtOmTeOs3D3N22+/jSFDhmDfvn3IycmBXC6Hr68vFi1ahAULFkAoFBq7iEYRGhqKb775Blu3bsXFixdx584d9O3bFytXrmSVe9XUrFmzBgEBAdi7dy/Onz8PkUiEqKgovPnmm6yfGPD5fGzZsgUpKSn45ptvcPXqVfD5fAQEBGDOnDmYNWuWxlQbxjJv3jx4eXkhKSkJV65cgbm5OcLCwvDqq69i1KhRrI7R29oEwE290DVEmY+PT0dbOX36NAoLC+Hj44O4uDgsWLCgxweXuoqLi0NgYCCSkpJw/fp15ObmwsvLC8uWLcOSJUt6TBYGoD0uUQxIys7OVpubWBFgdsUQ1xZ6gkkIIYQQQjhFfTAJIYQQQginKMAkhBBCCCGcogCTEEIIIYRwigJMQgghhBDCKQowCSGEEEIIpyjAJIQQQgghnKIAkxBCCCGEcIoCTEIIIYQQwikKMAkhhBBCCKcowCSEEEIIIZyiAJMQQgghhHCKAkxCCCGEEMIpCjAJIYQQQginKMAkhBBCCCGcogCTEEIIIYRwigJMQgghhBDCKQowCSGEEEIIp/4fL7I8MCIWSFcAAAAASUVORK5CYII=\n",
    
    schmittu's avatar
    schmittu committed
          "text/plain": [
           "<Figure size 360x360 with 1 Axes>"
          ]
         },
         "metadata": {
    
    schmittu's avatar
    schmittu committed
          "image/png": {
    
    schmittu's avatar
    schmittu committed
           "width": 332
    
    schmittu's avatar
    schmittu committed
         },
         "output_type": "display_data"
        }
       ],
       "source": [
        "xv = xor[\"x\"]\n",
        "yv = xor[\"y\"]\n",
        "\n",
    
        "colors = [[\"steelblue\", \"chocolate\"][i] for i in xor[\"label\"]]\n",
    
    schmittu's avatar
    schmittu committed
        "plt.figure(figsize=(5, 5))\n",
        "plt.xlim([-2, 2])\n",
        "plt.ylim([-2, 2])\n",
    
        "plt.title(\"Blue points are False\")\n",
        "plt.scatter(xv, yv, color=colors, marker=\"o\");"
    
    schmittu's avatar
    schmittu committed
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "Again, this example data set can not be separated by a line. But we see that points where the sign of x and y are the same appear to form one class, and point with different signs for x and y belong to the other class.\n",
        "\n",
    
        "Let's engineer a new numerical feature corresponding to a descriptive feature \"x and y have the same sign\". How? \n",
        "\n",
        "Here we can use the fact that the product of two numbers is postive if and only if both numbers have the same sign.\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
        "So lets plot a histogram over `x * y`:"
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 184,
    
    schmittu's avatar
    schmittu committed
       "metadata": {},
       "outputs": [
        {
         "data": {
    
          "image/png": "iVBORw0KGgoAAAANSUhEUgAAAusAAAH8CAYAAABowuGDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XtUlXWi//EPiCAbdBRR8a6kmzENDBP1zPizqw61tIlTZDp4W+acbJYezTSd4xpT8xzNU4pmF22s8DJmCyOzyRlNzSEFvKEhgZoy3u8aVxXYvz9mQXlA2LY3PN8N79da/dHz/e7n+exnIXx4+O7n8XI4HA4BAAAAMI631QEAAAAAVI6yDgAAABiKsg4AAAAYirIOAAAAGIqyDgAAABiKsg4AAAAYirIOAAAAGIqyDgAAABiKsg4AAAAYirIOAAAAGIqyDgAAABiKsg4AAAAYirIOAAAAGIqyDgAAABiKsg4AAAAYirIOAAAAGIqyDgAAABiKsg4AAAAYysfqALXht7/9rU6dOiWbzaaOHTtaHQcAAAB1UE5OjgoKCtSuXTt9+umnbtlnvSjrp06dUm5urnJzc3X+/Hmr4wAAAKAOO3XqlNv2VS/Kus1mU25urho3bqxu3bpZHQcAAAB1UGZmpnJzc2Wz2dy2z3pR1jt27Kjz58+rW7duSkhIsDoOAAAA6qC4uDilpqa6ddk1HzAFAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAzlY3UAAID18rJ3OTUv0N6vhpMAAH6Ksg4AkCTlZ++ucjzA3reWkgAAyrAMBgAAADAUZR0AAAAwFGUdAAAAMJRb1qyXlJRo9erV+uSTT3T8+HH5+/urR48eGjFihB588MHb5p49e7bCtp+KjIzU2rVr3RELAAAA8GhuKevTp09XUlKSAgMD1a9fP926dUupqalKTk7WhAkT9OKLL5bPPXz4sCQpLCxMdru9wr46d+7sjkgAAACAx3O5rH/xxRdKSkpS586dtWrVKgUHB0uSjhw5oueee05Lly7VE088oU6dOkmSMjMzJUljx47VkCFDXD08AAAAUGe5vGb9s88+kyRNmTKlvKhLUteuXTV48GCVlpYqOTm5fHvZlfXu3bu7emgAAACgTnP5ynp8fLxOnDhRfuX8p/Lz8yVJDRo0KN+WmZkpm83GchcAAACgGi6XdV9f30rXnm/btk1ffvmlbDabHn30UUnStWvXdObMGXXv3l0rV65UUlKScnJy1LhxYz300EP6wx/+oFatWrkaCQAAAKgT3PoE06KiIk2dOlVHjx7VsWPH1KZNGy1YsKB8eUzZevWMjAxlZ2erd+/eCgkJ0aFDh/Txxx9r27Zt+uijjxQaGlrtsRITE7VhwwancpUdFwAAAPAkbi3rZ86c0ebNm2/blpWVpd69e0v6cb263W7XsmXL1L59e0lSQUGBZs6cqc8//1xTpkxRYmJitcc6ffq0UlNT3RkfAAAAMIpby3pISIh2794tb29vffPNN3rttdc0Z84cFRQUaNy4cRo1apQGDhyogIAABQUFlb/OZrNp7ty5SktLU0ZGhg4cOKCePXtWeay2bdsqKirKqVyZmZnKzc116b0BAAAAtc2tZd1ms8lms0mSoqOj1bp1aw0dOlTvvvuuRo4cKT8/v/Kr6f+Xv7+/+vbtq6SkJGVkZFRb1mNiYhQTE+NUrri4OK7CAwAAwOO4fOvGqvTs2VMdOnRQXl6eTp48We38srXthYWFNRkLAAAA8AgulXWHw6EFCxZo0qRJKi4urnSOr6+vJKm4uFhLly7VhAkTlJWVVencU6dOSfrXchoAAACgvnOprHt5eWnr1q364osvbnvwUZmTJ0/q+PHj5fdVz8rK0ubNm/XXv/61wtzLly8rOTlZDRs2VJ8+fVyJBQAAANQJLi+DiY2NlSTNnTtX586dK99+/vx5TZ48WcXFxRo2bJj8/Pz07LPPSpJWrlypvXv3ls/Nz8/XjBkzlJeXp6efflotWrRwNRYAAADg8Vz+gOmIESOUkpKiHTt2KDo6WpGRkSopKVF6eroKCgo0YMAATZw4UZL061//WqNHj9bKlSv1u9/9TpGRkWrWrJn27Nmjq1ev6oEHHtC0adNcflMAAABAXeByWW/YsKHefvttrVmzRomJiUpLS5O3t7fsdrtiYmIUGxsrb+8fL+C/8sorioiI0KpVq3T48GGVlpaqQ4cOGjt2rEaOHKmGDRu6GgkAAACoE9xy68YGDRooLi5OcXFxTs2Pjo5WdHS0Ow4NAAAA1Fk1eutGAAAAAD8fZR0AAAAwFGUdAAAAMBRlHQAAADAUZR0AAAAwFGUdAAAAMBRlHQAAADAUZR0AAAAwFGUdAAAAMBRlHQAAADAUZR0AAAAwFGUdAAAAMBRlHQAAADAUZR0AAAAwFGUdAAAAMBRlHQAAADAUZR0AAAAwFGUdAAAAMBRlHQAAADAUZR0AAAAwFGUdAAAAMBRlHQAAADAUZR0AAAAwFGUdAAAAMBRlHQAAADAUZR0AAAAwFGUdAAAAMBRlHQAAADAUZR0AAAAwFGUdAAAAMBRlHQAAADAUZR0AAAAwFGUdAAAAMBRlHQAAADAUZR0AAAAwFGUdAAAAMBRlHQAAADAUZR0AAAAwFGUdAAAAMBRlHQAAADCUjzt2UlJSotWrV+uTTz7R8ePH5e/vrx49emjEiBF68MEHK8w/fvy4lixZor179+ratWvq0KGDYmNjNXz4cHl78/sDAAAAILmprE+fPl1JSUkKDAxUv379dOvWLaWmpio5OVkTJkzQiy++WD73u+++0/Dhw5WXl6fIyEjdd999SklJ0dy5c5Wenq6FCxe6IxIAAADg8Vwu61988YWSkpLUuXNnrVq1SsHBwZKkI0eO6LnnntPSpUv1xBNPqFOnTnI4HJo6dary8vK0YMECPfnkk5KkK1euaNSoUdq4caMee+wxDRo0yNVYAAAAgMdzec3JZ599JkmaMmVKeVGXpK5du2rw4MEqLS1VcnKyJCk5OVlZWVmKiooqL+qSFBQUpFmzZkmSEhISXI0EAAAA1AkuX1mPj4/XiRMn1KlTpwpj+fn5kqQGDRpIknbu3ClJevTRRyvMjYyMVPPmzbV3717l5eUpMDDQ1WgAAACAR3P5yrqvr6/sdrt8fX1v275t2zZ9+eWXstls5eX86NGjkiS73V7pvjp37qzS0lIdO3bM1VgAAACAx3PLB0zLFBUVaerUqTp69KiOHTumNm3aaMGCBeXLYy5cuCBJatGiRaWvL9t+6dKlao+VmJioDRs2OJUrMzPTqXkAAACASdxa1s+cOaPNmzffti0rK0u9e/eWJBUWFkqSGjVqVOnry7YXFBRUe6zTp08rNTXVlbgAAACA0dxa1kNCQrR79255e3vrm2++0WuvvaY5c+aooKBA48aNK1+77uXlVeV+SktLqz1W27ZtFRUV5VSuzMxM5ebmOjUXAAAAMIVby7rNZpPNZpMkRUdHq3Xr1ho6dKjeffddjRw5Uv7+/pL+tVymMmXbAwICqj1WTEyMYmJinMoVFxfHVXgAAAB4nBp9XGjPnj3VoUMH5eXl6eTJk2rZsqWkO69Jv3jxoqQ7r2kHAAAA6hOXyrrD4dCCBQs0adIkFRcXVzqn7C4xxcXF6tq1q6Qf7wrzf/f1/fffq0GDBrrnnntciQUAAADUCS6VdS8vL23dulVffPFF+YOPfurkyZM6fvy4bDabOnfurP79+0uStm7dWmHuvn37dOXKFfXq1Yt7rAMAAABywzKY2NhYSdLcuXN17ty58u3nz5/X5MmTVVxcrGHDhsnPz09RUVHq2rWrkpOT9fHHH5fPvXLlil599VVJ0ujRo12NBAAAANQJLn/AdMSIEUpJSdGOHTsUHR2tyMhIlZSUKD09XQUFBRowYIAmTpwoSfL29ta8efM0cuRIzZw5U5988olatmyp1NRUXb9+XbGxsXr44YddflMAAABAXeByWW/YsKHefvttrVmzRomJiUpLS5O3t7fsdrtiYmIUGxsrb+8fL+CHh4dr/fr1io+PV0pKio4cOaKOHTtq8uTJeuaZZ1yNAwAAANQZbrl1Y4MGDRQXF6e4uDin5nfp0kXx8fHuODQAAABQZ9XorRsBAAAA/HyUdQAAAMBQlHUAAADAUJR1AAAAwFCUdQAAAMBQlHUAAADAUJR1AAAAwFCUdQAAAMBQlHUAAADAUJR1AAAAwFCUdQAAAMBQlHUAAADAUJR1AAAAwFA+VgcAAEjpJy47NS+iU/MaTgIAMAllHQAMcTCn6sIe3pGiDgD1DctgAAAAAENR1gEAAABDUdYBAAAAQ1HWAQAAAENR1gEAAABDUdYBAAAAQ1HWAQAAAENR1gEAAABDUdYBAAAAQ1HWAQAAAEP5WB0AAOC89BOXnZoX0al5DScBANQGyjoAeIiDOc4V9fCOFHUAqCtYBgMAAAAYirIOAAAAGIqyDgAAABiKsg4AAAAYirIOAAAAGIqyDgAAABiKsg4AAAAYirIOAAAAGIqyDgAAABiKsg4AAAAYirIOAAAAGIqyDgAAABiKsg4AAAAYirIOAAAAGMrHHTspKSnR2rVrtWHDBn3//fcqKSlR+/bt9fjjj2vs2LHy8/Mrn7tnzx4NHz78jvsaPHiwFi5c6I5YAAAAgEdzuayXlJRo/Pjx2r59u2w2myIiIuTj46P09HTFx8drx44d+vDDD+Xv7y9JOnz4sCTp/vvvV7t27SrsLzIy0tVIAAAAQJ3gcllfv369tm/frrCwMC1fvlytWrWSJF25ckXjx4/X/v37tWzZMr300kuSpMzMTEnSyy+/rF69erl6eAAAAKDOcnnN+oYNGyRJM2bMKC/qkhQUFKRZs2ZJkjZt2lS+/fDhw/L29la3bt1cPTQAAABQp7lc1ps1a6bQ0FCFh4dXGOvUqZMk6cKFC5Kkmzdv6tixYwoNDZXNZnP10AAAAECd5vIymHfeeeeOY4cOHZIkhYSESJKOHDmiW7duqW3btnrzzTf1t7/9TadPn1ZwcLAGDRqkF154QU2aNHE1EgAAAFAnuOVuMJVxOBxavHixJGngwIGSfvxw6Y4dO5SWlqbevXsrJCREhw4d0p///Gd99dVXWrt2rYKCgqrdf2JiYvkSnOqUrZMHAAAAPEmNlfU33nhDaWlpCg4O1tixYyX9WJqjoqK0ePHi8lJ+5coVTZ48Wbt27dKf/vQnLVmypNr9nz59WqmpqTUVHwAAALBcjZT1xYsX67333pOvr68WLVpUXsqnT5+uuLg4tWjRQoGBgeXzg4KCNH/+fP3mN7/R3//+d124cEEtW7as8hht27ZVVFSUU3kyMzOVm5v7898QAAAAYAG3lvXi4mLNnj1b69atk5+fn5YsWaLevXuXjzds2FCdO3eu9LWtWrXSvffeqz179ujw4cPVlvWYmBjFxMQ4lSsuLo6r8AAAAPA4bivr+fn5mjhxonbu3KkmTZpo2bJltxV1ZwQHB0uSCgsL3RULAAAA8Fgu37pRkq5fv664uDjt3LlTrVu31urVqyst6nPmzNGLL76oy5cvV7qfU6dOSfrx7jEAAABAfeZyWb9586bGjRunjIwMdenSRX/5y19kt9srnbt//35t2bJFX331VYWx7OxsZWZmqmnTpurevbursQAAAACP53JZj4+P14EDB9S6dWslJCRUeVX82WeflSS9+eabOnbsWPn2K1euaPr06SopKdHYsWPl6+vraiwAAADA47m0Zv3q1atKSEiQ9K87usybN++OcxcuXKhnnnlGycnJ2rx5s5588kk98MAD8vf3V0pKivLz8xUdHa0xY8a4EgkAAACoM1wq62lpaSoqKpIkZWRkKCMj445zFy5cKG9vby1evFjr1q3T+vXrtX//fnl7e6tLly6KjY3V008/LS8vL1ciAQAAAHWGS2V94MCBysrKuqvXeHl5aejQoRo6dKgrhwYAAADqPLfcDQYAAACA+9XIE0wBANbLy95ldQQAgIso6wBQh+Vn77Y6AgDABSyDAQAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADOVjdQAAAPKydzk9N9DerwaTAIBZKOsAACPkZ++udk6AvW8tJAEAc7AMBgAAADAUZR0AAAAwFGUdAAAAMBRlHQAAADAUZR0AAAAwFGUdAAAAMBRlHQAAADAUZR0AAAAwFGUdAAAAMBRlHQAAADAUZR0AAAAwFGUdAAAAMBRlHQAAADAUZR0AAAAwlI87dlJSUqK1a9dqw4YN+v7771VSUqL27dvr8ccf19ixY+Xn53fb/EOHDumtt97SoUOHVFBQoC5dumjEiBEaPHiwO+IAAAAAdYLLZb2kpETjx4/X9u3bZbPZFBERIR8fH6Wnpys+Pl47duzQhx9+KH9/f0lScnKyfv/736u0tFS9e/eWv7+/du3apSlTpujo0aOaNGmSy28KAAAAqAtcLuvr16/X9u3bFRYWpuXLl6tVq1aSpCtXrmj8+PHav3+/li1bppdeeklFRUV6+eWXJUl//vOf1bdvX0nSP//5T8XFxemdd97RY489ph49ergaCwAAAPB4Lq9Z37BhgyRpxowZ5UVdkoKCgjRr1ixJ0qZNmyRJSUlJunz5sgYPHlxe1CWpQ4cOmjJliiQpISHB1UgAAABAneByWW/WrJlCQ0MVHh5eYaxTp06SpAsXLkiSdu7cKUl65JFHKsx96KGH1KBBA3399deuRgIAAADqBJeXwbzzzjt3HDt06JAkKSQkRJJ05MgRSZLdbq8wNzAwUC1bttTZs2d16dIlBQcHuxoNAAAA8Gg1dutGh8OhxYsXS5IGDhwoSbp48aIkqUWLFpW+pmz7pUuXaioWAAAA4DHccuvGyrzxxhtKS0tTcHCwxo4dK0kqLCyUJDVq1KjS15RtLygoqHb/iYmJ5evlq5OZmenUPAAAAMAkNVLWFy9erPfee0++vr5atGiRgoKCJEkNGjSQw+GQl5dXla8vLS2t9hinT59WamqqW/ICAAAAJnJrWS8uLtbs2bO1bt06+fn5acmSJerdu3f5uL+/v3744QfduHGjwoOSJKmoqEiSFBAQUO2x2rZtq6ioKKdyZWZmKjc318l3AQAAAJjBbWU9Pz9fEydO1M6dO9WkSRMtW7bstqIuSS1bttQPP/ygixcvql27dhX2Ud2a9p+KiYlRTEyMU9ni4uK4Cg8AAACP45YPmF6/fl1xcXHauXOnWrdurdWrV1co6pLUtWtXSdKxY8cqjOXl5enChQsKCgriTjAAAACA3FDWb968qXHjxikjI0NdunTRX/7yl0pvzShJ/fv3lyRt2bKlwthXX32lkpISDRgwwNVIAAAAQJ3gclmPj4/XgQMH1Lp1ayUkJJTfU70ygwYNUvPmzbVhwwbt2LGjfPvJkyf1v//7v/Ly8tKoUaNcjQQAAADUCS6tWb969aoSEhIkSUFBQZo3b94d5y5cuFCBgYGaM2eOJkyYoN///vfq3bu3AgICtHv3bhUWFmrSpEn65S9/6UokAAAAoM5wqaynpaWV38ElIyNDGRkZd5y7cOFCSdIjjzyihIQEvfXWW0pPT5fD4VBYWJhGjRql6OhoV+IAAAAAdYpLZX3gwIHKysq669dFRkbq/fffd+XQAAAAQJ3nlrvBAAAAAHA/yjoAAABgKLc+wRQAYIZz1wrkVXRL568VVDmvVVNbLSUCAPwclHUAqGMO5lxWuJorsKhY568X3nFeq1/412IqAMDPwTIYAAAAwFCUdQAAAMBQlHUAAADAUJR1AAAAwFCUdQAAAMBQlHUAAADAUJR1AAAAwFCUdQAAAMBQlHUAAADAUJR1AAAAwFA+VgcAgLos/cRlqyMAADwYZR0AatjBHAo7AODnYRkMAAAAYCjKOgAAAGAoyjoAAABgKMo6AAAAYCjKOgAAAGAoyjoAAABgKMo6AAAAYCjKOgAAAGAoyjoAAABgKMo6AAAAYCjKOgAAAGAoyjoAAABgKMo6AAAAYCjKOgAAAGAoyjoAAABgKMo6AAAAYCjKOgAAAGAoyjoAAABgKMo6AAAAYCjKOgAAAGAoyjoAAABgKB+rAwAAPEde9i6n5wba+9VgEgCoHyjrAACn5GfvdnpugL1vDSYBgPqDZTAAAACAoSjrAAAAgKFqpKwnJiYqLCxMe/bsqTB29uxZhYWF3fG/5557riYiAQAAAB7H7WvW9+/frzlz5txx/PDhw5KksLAw2e32CuOdO3d2dyQAAADAI7m1rG/evFnTp09XQUHBHedkZmZKksaOHashQ4a48/AAAABAneKWsn7u3Dm98cYbSkpKkr+/v4KDg3Xp0qVK55ZdWe/evbs7Dg0AAADUWW5Zs75o0SIlJSWpR48eWrdunUJDQ+84NzMzUzabjeUuAAAAQDXccmU9NDRU8+fP15AhQ+Ttfef+f+3aNZ05c0bdu3fXypUrlZSUpJycHDVu3FgPPfSQ/vCHP6hVq1buiAQAAAB4PLeU9XHjxjk1r2y9ekZGhrKzs9W7d2+FhITo0KFD+vjjj7Vt2zZ99NFHVV6ZL5OYmKgNGzbc1XEBAAAAT1KrTzAtW69ut9u1bNkytW/fXpJUUFCgmTNn6vPPP9eUKVOUmJhY7b5Onz6t1NTUGs0LAPj58rJ3WbrfQHu/Gjk+ANSmWi3ro0aN0sCBAxUQEKCgoKDy7TabTXPnzlVaWpoyMjJ04MAB9ezZs8p9tW3bVlFRUU4dNzMzU7m5uS5lBwA4Lz97t6X7DbD3rZHjA0Btq9Wy3qBBg/Kr6f+Xv7+/+vbtq6SkJGVkZFRb1mNiYhQTE+PUcePi4rgKDwAAAI9TI08w/bmCg4MlSYWFhRYnAQAAAKxXq2V96dKlmjBhgrKysiodP3XqlCQpJCSkNmMBAAAARqrVZTBZWVn629/+ptDQUIWFhd02dvnyZSUnJ6thw4bq06dPbcYCAAAAjFSrV9afffZZSdLKlSu1d+/e8u35+fmaMWOG8vLy9PTTT6tFixa1GQsAAAAwUq1eWf/1r3+t0aNHa+XKlfrd736nyMhINWvWTHv27NHVq1f1wAMPaNq0abUZCQAAADBWrZZ1SXrllVcUERGhVatW6fDhwyotLVWHDh00duxYjRw5Ug0bNqztSAAAAICRaqSsJyQkVDkeHR2t6Ojomjg0AAAAUGcYdetGAAAAAD+irAMAAACGqvU16wAA1Ia87F1Ozw2096vBJADw81HWAQB1Tn72bqfnBtj71mASAHANy2AAAAAAQ1HWAQAAAENR1gEAAABDUdYBAAAAQ1HWAQAAAENR1gEAAABDUdYBAAAAQ1HWAQAAAENR1gEAAABD8QRTAEC9l5e9y+37DLT3c/s+AdQ/lHUAQL2Wn73b7fsMsPd1+z4B1E8sgwEAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAzlY3UAAOZLP3HZqXkRnZq7dX9WcfZ9AABQ0yjrAJxyMKfqgh3e8e4KbnX7s8rdvg8AAGoSy2AAAAAAQ1HWAQAAAEPVSFlPTExUWFiY9uzZU+n48ePHNXnyZA0YMEAREREaPHiwEhISVFpaWhNxAAAAAI/k9rK+f/9+zZkz547j3333nZ5++mlt2rRJbdq0Uf/+/XXu3DnNnTtXU6dOdXccAAAAwGO59QOmmzdv1vTp01VQUFDpuMPh0NSpU5WXl6cFCxboySeflCRduXJFo0aN0saNG/XYY49p0KBB7owFAAAAeCS3XFk/d+6cpk6dqgkTJqi0tFTBwcGVzktOTlZWVpaioqLKi7okBQUFadasWZKkhIQEd0QCAAAAPJ5byvqiRYuUlJSkHj16aN26dQoNDa103s6dOyVJjz76aIWxyMhINW/eXHv37lVeXp47YgEAAAAezS1lPTQ0VPPnz9f69esVFhZ2x3lHjx6VJNnt9krHO3furNLSUh07dswdsQAAAACP5pY16+PGjXNq3oULFyRJLVq0qHS8bPulS5fcEQsAAADwaLX6BNPCwkJJUqNGjSodL9t+pw+o/lRiYqI2bNjg1HEzMzOdTAgAAACYo1bLeoMGDSRJXl5eVc5z5n7rp0+fVmpqqltyAQDgbnnZuyw9fqC9n6XHB+AetVrW/f39JUlFRUWVjpdtDwgIqHZfbdu2VVRUlFPHzczMVG5urpMpAQBwTX72bkuPH2Dva+nxAbhPrZb1li1bKjMzU5cuXdI999xTYfzixYuS7rym/adiYmIUExPj1HHj4uK4Cg8AAACP4/YnmFala9eukn68K8xPORwOff/992rQoEGlRR4AAACob2q1rPfv31+StHXr1gpj+/bt05UrV9SrVy8FBgbWZiwAAADASLVa1qOiotS1a1clJyfr448/Lt9+5coVvfrqq5Kk0aNH12YkAAAAwFi1umbd29tb8+bN08iRIzVz5kx98sknatmypVJTU3X9+nXFxsbq4Ycfrs1IAAAAgLFqtaxLUnh4uNavX6/4+HilpKToyJEj6tixoyZPnqxnnnmmtuMAAAAAxqqRsp6QkFDleJcuXRQfH18ThwYAAADqjFpdsw4AAADAeZR1AAAAwFC1vmYdAEyXfuKyU/MiOjWv4SQAgPqOsg4AP3Ewx7miHt6Rog4AqHksgwEAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZAblCAAAVVklEQVRZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAM5WN1AMA06Sece9y8syI6WfNYemfeh7uzufvcma6+vV/UXXnZu5yeG2jvZ9k+gfqIsg5U4mCOe0pYeEdrinqZqt6Hu7O565x5ivr2flH35WfvrnZOgL2v5fsE6huWwQAAAACGoqwDAAAAhqKsAwAAAIairAMAAACGoqwDAAAAhqKsAwAAAIairAMAAACGoqwDAAAAhqKsAwAAAIbiCaZAPZZ+gqdwArg7edm7rI4A1CuUdaCeOphDUQdwd/Kzd1sdAah3WAYDAAAAGIqyDgAAABiKsg4AAAAYirIOAAAAGIqyDgAAABiKsg4AAAAYirIOAAAAGIqyDgAAABiKsg4AAAAYirIOAAAAGMrH6gCAq9JPXHZqXkSn5jWcBADMkZe9y+oINeJu3legvV8NJgFqB2UddcLBnKoLe3hHijqA+iM/e7fVEWqUM+8vwN63FpIANY9lMAAAAIChKOsAAACAoSxbBvPpp59q2rRpdxz/j//4D02aNKkWEwEAAABmsaysZ2ZmSpJ+9atfKSgoqMJ4t27dajsSAAAAYBTLyvrhw4clSf/93/+tVq1aWRUDAAAAMJZla9a/++47BQcHU9QBAACAO7CkrJ88eVI//PCDunfvbsXhAQAAAI9gyTKYsvXqzZs315w5c/T111/r3LlzatOmjYYMGaKxY8fKz8/PimgAAACAMSwp62Xr1RMTE9W0aVNFRkaqVatW+vbbbxUfH6+dO3fqgw8+UKNGje64j8TERG3YsMGp45X9cgAAAAB4EkuvrEdHR2vevHmy2WySpFOnTunFF1/U/v37tWjRIr3yyit33Mfp06eVmppaK3khpZ+o+gmhZSI68aRQAIAZ8rJ3OTUv0N6vhpMAP58lZT0+Pl4nT55Uhw4d5OvrW769Xbt2+p//+R899dRTWrdunV566SU1bNiw0n20bdtWUVFRTh0vMzNTubm5bslenx3Mqbqwh3ekqAMAzJCfvdupeQH2vjWcBHCNJWXdz89PXbp0qXSsW7duCgkJ0dmzZ3XixAl17dq10nkxMTGKiYlx6nhxcXFchQcAAIDHsezWjVUJDg6WJBUWFlqcBAAAALBOrZf1vLw8zZw5UxMmTFBxcXGlc06dOiVJCgkJqc1oAAAAgFFqvawHBATo73//uzZv3qy0tLQK4zt27NDVq1dlt9vVsmXL2o4HAAAAGKPWy7qXl5diY2MlSXPmzNH58+fLx/75z39q9uzZkqQXXnihtqMBAAAARrHkA6bjx4/Xnj17tHfvXv3mN79Rr169JEkpKSm6efOmxowZo8cff9yKaAAAAIAxLCnrjRo10gcffKAPPvhAGzduVEpKinx9fdWzZ0/FxcVp4MCBVsQCAAAAjGJJWZckX19fjRs3TuPGjbMqAgAAAGA0I2/dCAAAAICyDgAAABjLsmUw9UX6ictOzYvo1LyGk5ijvp2T+vZ+AQBmyMve5dS8QHu/Gk4CV1DWa8HBnKrLWnjH+lfS6ss5qe59lqkr7xcAYJb87N1VjgfY+9ZSEvxcLIMBAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMxRNMYaz0E849/RMAAFfkZe+qkf0G2vvVyH7d7W7ev6e8p7qEsg4jHcyhqAMAal5+9u4a2W+AvW+N7Nfd7ub9e8p7qmtYBgMAAAAYirIOAAAAGIqyDgAAABiKsg4AAAAYirIOAAAAGIqyDgAAABiKsg4AAAAYirIOAAAAGIqyDgAAABiKsg4AAAAYysfqALBW+onLRu/PnUzOJpmfDwBqSl72LqsjeAzOVf1DWYcO5rinJLprPzXB5GyS+fkAoKbkZ++2OoLH4ZzVLyyDAQAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADEVZBwAAAAxFWQcAAAAMRVkHAAAADMUTTA3h7kfNR3Rq7tb9AQCAmpGXvcvqCE6rqayB9n5uP76z+zQdZd0A7n7UfHhHijoAAJ4kP3u31RGqVVMZA+x93Z7jbvdpMpbBAAAAAIairAMAAACGsrSsf/PNNxoxYoT69OmjyMhIxcXF6euvv7YyEgAAAGAMy8p6YmKiRo8erf379ys8PFz333+/9u/fr+eff17r1q2zKhYAAABgDEs+YHr+/Hn96U9/UuPGjbVmzRrZ7XZJ0sGDBzV69Gi99tprevDBB9WqVSsr4gEAAABGsOTK+urVq3Xz5k2NGjWqvKhLUnh4uJ5//nnduHGDq+sAAACo9ywp6zt37pQkPfrooxXGyraxdh0AAAD1Xa2XdYfDoaNHj8rb21uhoaEVxjt16iRvb28dPXpUDoejtuMBAAAAxqj1sn79+nXdvHlTTZs2la+vb4VxHx8fNWvWTIWFhcrPz6/teAAAAIAxav0DpoWFhZIkf3//O85p1KiRJCk/P1+BgYGVzklMTNSGDRucOub+/fslSZmZmYqLi7ubuC7LK7pVq8eTpERJgY0aOjXXinwAat7nPt5SUW618xp4e9VCGqA+2qYGtl84NbOk4HoNZzFdTZwr5/fpTpmZmZKknJwct+2z1su6t7fzF/OrWgZz+vRppaam3tWxc3Nz7/o1AAAAwN0oKChw275qvazbbDZJ0o0bN+44p6io6La5lWnbtq2ioqKcOua3336r0tJS/eIXv1DHjh3vIm39lZmZqdzcXDVu3FjdunWzOo7H4jy6B+fRdZxD9+A8ugfn0XWcQ/dw93nMyclRQUGB2rVr54Z0/1LrZT0wMFA2m01Xr15VcXGxfHxuj1BcXKyrV6/Kz89PTZo0ueN+YmJiFBMTU9Nx6624uDilpqaqW7duSkhIsDqOx+I8ugfn0XWcQ/fgPLoH59F1nEP38ITzWOsfMPXy8lKXLl1UUlKiEydOVBg/fvy4SktLb7v/OgAAAFAfWXKf9f79+0uStmzZUmGsbNuAAQNqNRMAAABgGkvKekxMjPz8/LR8+XJ9++235dsPHTqkFStWqFGjRho2bJgV0QAAAABj1PqadUlq166dpk2bptmzZ2vo0KHq06ePJCklJUXFxcWaP3++mjdvbkU0AAAAwBiWlHVJGj58uNq0aaMVK1Zo37598vX1VWRkpF544QX169fPqlgAAACAMSwr65L00EMP6aGHHrIyAgAAAGAsS9asAwAAAKgeZR0AAAAwFGUdAAAAMFSDWbNmzbI6BMzUrVs3RUVF8RhjF3Ee3YPz6DrOoXtwHt2D8+g6zqF7mH4evRwOh8PqEAAAAAAqYhkMAAAAYCjKOgAAAGAoyjoAAABgKMo6AAAAYCjKOgAAAGAoyjqqVVRUpKVLl2rQoEHq0aOH+vbtq/Hjx2vfvn1WR/MoRUVFWrZsmQYPHqyIiAj17NlTMTExSkhIUGlpqdXxPNKSJUsUFhamc+fOWR3FaN98841GjBihPn36KDIyUnFxcfr666+tjuWxEhMTFRYWpj179lgdxaOUlJRo1apV+vd//3fdf//9Cg8P1xNPPKG33npLN27csDqexygpKdFHH32kIUOG6L777lNUVJTGjBmj7du3Wx3NY127dk39+/dXWFiY1VEqxa0bUaXi4mKNGTNGKSkpCgoKUkREhHJzc7V37155eXlp3rx5euqpp6yOabz8/HyNGDFC3377rZo2bar77rtPt27dUnp6ugoLC/XII49oyZIlatCggdVRPcaWLVs0ceJEFRcXa8eOHQoJCbE6kpESExM1ffp0+fr6qm/fviotLVVKSopu3bql2bNn69lnn7U6okfZv3+/xowZo4KCAq1evVoPPPCA1ZE8QklJicaPH6/t27fLZrMpIiJCPj4+Sk9P1w8//KCIiAh9+OGH8vf3tzqq8aZOnaqkpCQFBgaqV69eunXrltLS0nTr1i1NmDBBL774otURPc6kSZP0xRdfSJKysrIsTlMJB1CF9957z2G32x3Dhw935Obmlm/ftWuXo3v37o6ePXs6rl+/bmFCz7Bw4UKH3W53jBw58rbzdfLkScfAgQMddrvdsXbtWgsTepZVq1Y5unfv7rDb7Q673e44e/as1ZGMdO7cOUePHj0cvXr1cmRlZZVvT09Pd0RGRjruu+8+x7lz5yxM6Fm+/PJLx/3331/+dZeWlmZ1JI+xdu1ah91udwwePPi2r7nLly87nn32WYfdbncsXLjQwoSeYdOmTQ673e4YNGiQ4+LFi+Xbs7OzHb169XL88pe/dBw/fty6gB5o48aN5f+m7Xa71XEqxTIYVOmzzz6TJP3xj39UYGBg+fa+ffvq3/7t31RQUMByGCds2LBBkjRnzhw1adKkfHu7du308ssvS5I2bdpkSTZPcuzYMY0bN06zZ89WYGCgAgICrI5ktNWrV+vmzZsaNWqU7HZ7+fbw8HA9//zzunHjhtatW2dhQs9w7tw5TZ06VRMmTFBpaamCg4OtjuRxyr4HzpgxQ61atSrfHhQUpLIHqfM9sHplP5OnTJly29dh165dNXjwYJWWlio5OdmqeB7n/Pnzmj17tu6//36j/7JNWUeVPv74Y3366aeVPoI3Pz9fkoz+AjdBfn6+OnXqpPDwcLVv377CeOfOnSVJFy5cqO1oHmfWrFnasWOHfvWrXykxMVFNmza1OpLRdu7cKUl69NFHK4yVbWPtevUWLVqkpKQk9ejRQ+vWrVNoaKjVkTxOs2bNFBoaqvDw8ApjnTp1ksT3QGfEx8dr48aN+n//7/9VGONn8t374x//qJs3b2r+/PlWR6mSj9UBYDZ/f/8KRd3hcOiTTz7Rvn37FBISoj59+liUzjMEBARo1apVdxw/dOiQJLHm2gk9evTQ6NGj9fDDD1sdxXgOh0NHjx6Vt7d3peWyU6dO8vb21tGjR+VwOOTl5WVBSs8QGhqq+fPna8iQIfL25hrXz/HOO+/ccYzvgc7z9fW97a9kZbZt26Yvv/xSNput0l/OUdGaNWu0c+dOzZw5Ux07drQ6TpUo63DamTNn9Nprr+m7777TqVOn1LVrV7355pvy9fW1OprHunnzpt5++21J0sCBAy1OY75p06ZZHcFjXL9+XTdv3lRQUFCl/0Z9fHzUrFkzXb58Wfn5+bctc8Ptxo0bZ3WEOsvhcGjx4sWS+B54t4qKijR16lQdPXpUx44dU5s2bbRgwQKWaTkhJydHr7/+uvr166fhw4dbHadalPV65qWXXlJGRka18x577DG99NJLt207duyYtmzZUv7/paWlOnLkiLp27er2nKZz5TyWcTgcmj59uk6cOKF77rlHzzzzjLtjGs0d5xB3VlhYKElV3l2jUaNGkkRZh2XeeOMNpaWlKTg4WGPHjrU6jkc5c+aMNm/efNu2rKws9e7d26JEnqGkpETTpk2Tt7e35s2b5xF/VaSs1zNnzpzR8ePHq5138eLFCtsiIiK0d+9e3bhxQ1u3btX8+fM1adIkORwOPfHEEzUR11iunEfpX98s/uu//kuff/65fvGLX2jJkiX17i8Urp5DVO1ulms4uIMvLLB48WK999578vX11aJFixQUFGR1JI8SEhKi3bt3y9vbW998841ee+01zZkzRwUFBfw1qAorVqzQ/v37NXfuXLVp08bqOE6hrNcza9eu/dmvLbuLSWBgoGJjYxUYGKhJkyYpPj6+3pV1V85jQUGBJk+erG3btqlp06Z6//33dc8997gxnWdw5RyiejabTZKqfNhMUVHRbXOB2lBcXKzZs2dr3bp18vPz05IlS7ga/DPYbLbyf7vR0dFq3bq1hg4dqnfffVcjR46Un5+fxQnN891332nJkiV68MEHPeqv2ZR1/GyDBg2Sn5+fTpw4oYKCAn7gO+HSpUsaN26cMjIyFBISohUrVtTLZUSoeYGBgbLZbLp69aqKi4vl43P7t/vi4mJdvXpVfn5+t91OFKhJ+fn5mjhxonbu3KkmTZpo2bJlFHU36dmzpzp06KCcnBydPHlSXbp0sTqScd58803dunVLt27d0pQpU24bK3uSeNn2GTNmGPPXHso67uiHH37Q0qVLVVRUpNmzZ1cY9/b2lo+Pj27cuKGSkhILEnqW06dPa8SIETp16pTsdruWL1/O3Q9QY7y8vNSlSxcdPHhQJ06cqPCD+/jx4yotLa30zhJATbh+/bpGjx6tjIwMtW7dWu+99x5ff3fB4XDo9ddf19mzZ/X6669X+AVcUvlyyuLi4tqO5xEKCgokqcp70W/cuFGS9J//+Z+UdZivUaNGWr9+vQoKCjRixIgKP+z37t2r/Px8tW/fXo0bN7YopWe4du2aRo8erVOnTql37956++23OWeocf3799fBgwe1ZcuWCv9+yz4sPmDAACuioZ65efNm+V8Vu3Tpovfff5+LFXfJy8tLW7du1YkTJ/Tb3/62wr/dkydP6vjx47LZbOXP78DtEhIS7jh27733qqSkRFlZWbWYyDncMBZ35Ovrq6eeekrSvx4ccO3atfKxY8eOacaMGZKkMWPGWJLPk7z66qvKycnRvffeq+XLl1PUUStiYmLk5+en5cuX69tvvy3ffujQIa1YsUKNGjXSsGHDLEyI+iI+Pl4HDhxQ69atlZCQQFH/mWJjYyVJc+fO1blz58q3nz9/XpMnT1ZxcbGGDRvGevU6hivrqNLkyZN14MABHThwQAMHDlRkZKRyc3N18OBB3bx5U7Gxsfywr8aRI0f017/+VdK/HpA0c+bMSucFBQWV/wIEuEO7du00bdo0zZ49W0OHDi1/gFlKSoqKi4s1f/58NW/e3OKUqOuuXr1afkUzKChI8+bNu+PchQsX1lYsjzRixAilpKRox44dio6OVmRkpEpKSpSenq6CggINGDBAEydOtDom3IyyjioFBgZqzZo1ev/997Vp0yb94x//kJ+fn3r27Klhw4YpOjra6ojG+8c//lF+a7y0tLQ7zmvbti1lHW43fPhwtWnTRitWrNC+ffvk6+uryMhIvfDCC+rXr5/V8VAPpKWlld95KCMjo8rnK1DWq9awYUO9/fbbWrNmjRITE5WWliZvb2/Z7XbFxMQoNjaWp+zWQV4ObrALAAAAGIlfvwAAAABDUdYBAAAAQ1HWAQAAAENR1gEAAABDUdYBAAAAQ1HWAQAAAENR1gEAAABDUdYBAAAAQ1HWAQAAAENR1gEAAABDUdYBAAAAQ1HWAQAAAENR1gEAAABDUdYBAAAAQ1HWAQAAAENR1gEAAABDUdYBAAAAQ/1/be0b9vszFJMAAAAASUVORK5CYII=\n",
    
    schmittu's avatar
    schmittu committed
          "text/plain": [
           "<Figure size 432x288 with 1 Axes>"
          ]
         },
         "metadata": {
    
    schmittu's avatar
    schmittu committed
          "image/png": {
    
           "height": 254,
           "width": 373
          }
    
    schmittu's avatar
    schmittu committed
         },
         "output_type": "display_data"
        }
       ],
       "source": [
        "products = xor[\"x\"] * xor[\"y\"]\n",
        "\n",
        "features_class_false = products[~xor[\"label\"]]\n",
    
        "features_class_true = products[xor[\"label\"]]\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
    
        "plt.hist(features_class_false,  bins=30, color=\"steelblue\", alpha=.5, histtype=\"stepfilled\")\n",
        "plt.hist(features_class_true,  bins=30, color=\"chocolate\", alpha=.5, histtype=\"stepfilled\");"
    
    schmittu's avatar
    schmittu committed
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
    
        "Having such feature a simple classifier could just introduce a threshold of 0 to distinguish both classes."
    
    schmittu's avatar
    schmittu committed
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
    
        "### Feature engineering cont.\n",
    
        "Manual feature engineering is difficult. It requires understanding of data to extract useful features.\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
    
        "However, feature engineering can boost the performance of a classifier significantly.\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
        "Examples:\n",
        "\n",
    
        "- early classifiers to detect nudity in images used color histograms of full image and image patches (plus more features) to create suitable features.\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
    
        "- spam classifieries depend on choice of dictionary, or couting words only in capital cases, or counting words with special characters (like \"pill$\")\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
    
        "- to distinguish background noise from speach audio samples, the frequency distribution might help, as well as standard deviation, or a histogram, of loudness/energy of a sample.\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
    
    schmittu's avatar
    schmittu committed
        "- to classify DNA sequences, n-gram histograms (n>=1) can be benefitial.\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
    
        "- geopolitical data can be enhanced from a feature \"state\" by extra features of \"political system\" and/or \"gross national product (GNP)\".\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
    
        "- sales data can be enhanced from a date feature by an extra feature \"is weekday\"."
    
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
    
        "Most cases have higher dimensions than 2 or 3 and visual inspection can be difficult. Thus, engineering features as we did in the 2D examples becomes tricky.\n",
        "\n",
        "<div class=\"alert alert-block alert-warning\"><p><i class=\"fa fa-warning\"></i>&nbsp;\n",
        "General recommendations for feature extraction:\n",
        "<ul>\n",
        "<li>use descriptive statistics (mean, standard deviations, higher order features), as well as histograms if applicable;</li>\n",
    
        "<li>polynomial features (e.g. extend <code>x, y</code> to <code>x, y, x * y, x ** 2, y ** 2</code>) (see examples section);</li>\n",
        "    <li>image classification: dig into computer vision to learn about image descriptors;</li>\n",
    
        "<li>audio classification: learn about FFT, wavelets, filter banks, power spectrum, ...;</li>\n",
        "<li>try to incorporate external data.</li>\n",
        "</ul>\n",
        "</p></div>\n",
        "\n",
        "<div class=\"alert alert-block alert-info\"><p><i class=\"fa fa-info-circle\"></i>&nbsp;\n",
    
        "Adding too many features can introduce other problems, such as, for instance, <strong>overfitting</strong> (we'll learn later about that). There are methods for selection of a subset of \"good-enough\" features (cf. <a href=\"https://scikit-learn.org/stable/modules/feature_selection.html\"><code>scikit-learn</code> feature selection module</a>).\n",
    
        "</p></div>"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "## What if there are more than two classes?\n",
    
        "Previous and the following examples in this script consider two class problems.\n",
        "Before we dig deeper into classification, let's say a few words on how to handle more than two classes.\n",
    
        "<div class=\"alert alert-block alert-warning\"><p><i class=\"fa fa-warning\"></i>&nbsp;\n",
        "    The general idea for <code>n > 2</code> classes is to build multiple 2-class classifiers and determine a winning class by applying all of them:\n",
        "<ul>\n",
        "    <li>in the <strong>one-vs-all</strong> approach build <code>n</code> classifiers for \"label n vs. the rest\";</li>\n",
        "    <li>in the <strong>one-vs-one</strong> approach builds  classifiers for `label i vs label j` (in total <code>n x (n - 1) / 2</code> classifiers).</li>\n",
        "</ul>\n",
        "</p></div>\n",
    
        "For new incoming data then all classifiers (`n` or `n x (n -1) / 2`) are applied and the overall winning class gives the final result.\n",
    
        "For instance, to classify images of digits:\n",
    
        "- we could build 10 classifiers `is it 0 or other digit`, `is it 1 or other digit`, etc.\n",
    
        "  \n",
        "  A new image then would hopefully yield `True` for exactly one of the classifier, in other situations the result is unclear.\n",
        "   \n",
        "   \n",
        "- we could build 45 classifiers `is it 0 or 1`, `is it 0 or 2`, etc.\n",
        "\n",
    
        "  For a new image we could choose the final outcome based on which class \"wins\" most often.\n",
    
        "<div class=\"alert alert-block alert-info\"><p><i class=\"fa fa-info-circle\"></i>&nbsp;\n",
        "    In <code>scikit-learn</code> many classifiers support multi-class problems out of the box and also offer functionalities to implement <strong>one-vs-all</strong> or <strong>one-vs-one</strong> in some cases (cf. <a href=\"https://scikit-learn.org/stable/modules/multiclass.html\"><code>scikit-learn</code> multiclass and multilabel algorithms</a>).\n",
        "</p></div>"
    
    schmittu's avatar
    schmittu committed
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
    
    schmittu's avatar
    schmittu committed
        "## Exercise section 2"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
    
        "To prepare for the next bigger exercise, we quickly introduce how to add so called **polynomial features** to XOR data using `scikit-learn`:"
    
    schmittu's avatar
    schmittu committed
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 25,
    
    schmittu's avatar
    schmittu committed
       "metadata": {},
       "outputs": [
        {
    
         "data": {
          "text/html": [
           "<div>\n",
           "<style scoped>\n",
           "    .dataframe tbody tr th:only-of-type {\n",
           "        vertical-align: middle;\n",
           "    }\n",
           "\n",
           "    .dataframe tbody tr th {\n",
           "        vertical-align: top;\n",
           "    }\n",
           "\n",
           "    .dataframe thead th {\n",
           "        text-align: right;\n",
           "    }\n",
           "</style>\n",
           "<table border=\"1\" class=\"dataframe\">\n",
           "  <thead>\n",
           "    <tr style=\"text-align: right;\">\n",
           "      <th></th>\n",
           "      <th>x</th>\n",
           "      <th>y</th>\n",
           "      <th>0</th>\n",
           "      <th>1</th>\n",
           "      <th>2</th>\n",
           "      <th>3</th>\n",
           "      <th>4</th>\n",
           "    </tr>\n",
           "  </thead>\n",
           "  <tbody>\n",
           "    <tr>\n",
           "      <th>0</th>\n",
           "      <td>-1.539782</td>\n",
           "      <td>0.950822</td>\n",
           "      <td>-1.539782</td>\n",
           "      <td>0.950822</td>\n",
           "      <td>2.370928</td>\n",
           "      <td>-1.464059</td>\n",
           "      <td>0.904063</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>1</th>\n",
           "      <td>0.436266</td>\n",
           "      <td>-1.768324</td>\n",
           "      <td>0.436266</td>\n",
           "      <td>-1.768324</td>\n",
           "      <td>0.190328</td>\n",
           "      <td>-0.771460</td>\n",
           "      <td>3.126968</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2</th>\n",
           "      <td>-1.466436</td>\n",
           "      <td>1.391890</td>\n",
           "      <td>-1.466436</td>\n",
           "      <td>1.391890</td>\n",
           "      <td>2.150435</td>\n",
           "      <td>-2.041118</td>\n",
           "      <td>1.937358</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>3</th>\n",
           "      <td>-1.037642</td>\n",
           "      <td>-0.953587</td>\n",
           "      <td>-1.037642</td>\n",
           "      <td>-0.953587</td>\n",
           "      <td>1.076700</td>\n",
           "      <td>0.989482</td>\n",
           "      <td>0.909329</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>4</th>\n",
           "      <td>-0.691444</td>\n",
           "      <td>-0.219826</td>\n",
           "      <td>-0.691444</td>\n",
           "      <td>-0.219826</td>\n",
           "      <td>0.478094</td>\n",
           "      <td>0.151997</td>\n",
           "      <td>0.048323</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>5</th>\n",
           "      <td>1.436550</td>\n",
           "      <td>-0.046027</td>\n",
           "      <td>1.436550</td>\n",
           "      <td>-0.046027</td>\n",
           "      <td>2.063676</td>\n",
           "      <td>-0.066121</td>\n",
           "      <td>0.002119</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>6</th>\n",
           "      <td>0.664361</td>\n",
           "      <td>-1.234410</td>\n",
           "      <td>0.664361</td>\n",
           "      <td>-1.234410</td>\n",
           "      <td>0.441375</td>\n",
           "      <td>-0.820094</td>\n",
           "      <td>1.523768</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>7</th>\n",
           "      <td>0.164649</td>\n",
           "      <td>-1.848453</td>\n",
           "      <td>0.164649</td>\n",
           "      <td>-1.848453</td>\n",
           "      <td>0.027109</td>\n",
           "      <td>-0.304346</td>\n",
           "      <td>3.416779</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>8</th>\n",
           "      <td>-1.883945</td>\n",
           "      <td>-0.222088</td>\n",
           "      <td>-1.883945</td>\n",
           "      <td>-0.222088</td>\n",
           "      <td>3.549248</td>\n",
           "      <td>0.418402</td>\n",
           "      <td>0.049323</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>9</th>\n",
           "      <td>0.934993</td>\n",
           "      <td>-1.081893</td>\n",
           "      <td>0.934993</td>\n",
           "      <td>-1.081893</td>\n",
           "      <td>0.874212</td>\n",
           "      <td>-1.011563</td>\n",
           "      <td>1.170493</td>\n",
           "    </tr>\n",
           "  </tbody>\n",
           "</table>\n",
           "</div>"
          ],
          "text/plain": [
           "          x         y         0         1         2         3         4\n",
           "0 -1.539782  0.950822 -1.539782  0.950822  2.370928 -1.464059  0.904063\n",
           "1  0.436266 -1.768324  0.436266 -1.768324  0.190328 -0.771460  3.126968\n",
           "2 -1.466436  1.391890 -1.466436  1.391890  2.150435 -2.041118  1.937358\n",
           "3 -1.037642 -0.953587 -1.037642 -0.953587  1.076700  0.989482  0.909329\n",
           "4 -0.691444 -0.219826 -0.691444 -0.219826  0.478094  0.151997  0.048323\n",
           "5  1.436550 -0.046027  1.436550 -0.046027  2.063676 -0.066121  0.002119\n",
           "6  0.664361 -1.234410  0.664361 -1.234410  0.441375 -0.820094  1.523768\n",
           "7  0.164649 -1.848453  0.164649 -1.848453  0.027109 -0.304346  3.416779\n",
           "8 -1.883945 -0.222088 -1.883945 -0.222088  3.549248  0.418402  0.049323\n",
           "9  0.934993 -1.081893  0.934993 -1.081893  0.874212 -1.011563  1.170493"
          ]
         },
    
         "execution_count": 25,
    
         "metadata": {},
         "output_type": "execute_result"
    
    schmittu's avatar
    schmittu committed
        }
       ],
       "source": [
    
        "import pandas as pd\n",
    
    schmittu's avatar
    schmittu committed
        "from sklearn.preprocessing import PolynomialFeatures\n",
        "\n",
        "df = pd.read_csv(\"xor.csv\")\n",
        "features = df.iloc[:10, :-1]\n",
        "preproc = PolynomialFeatures(2, include_bias=False)\n",
        "data = preproc.fit_transform(features)\n",
    
        "pd.concat([features, pd.DataFrame(data)], axis=1)"
    
    schmittu's avatar
    schmittu committed
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
    
    schmittu's avatar
    schmittu committed
        "In this case \n",
        "- columns 0 and 1 are $x$ and $y$ from the original data set.\n",
        "- column 2 is $x^2$\n",
        "- column 3 is $x y$\n",
        "- column 4 is $y^2$.\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
    
    schmittu's avatar
    schmittu committed
        "A complete description can be found here: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html"
    
    schmittu's avatar
    schmittu committed
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
    
    schmittu's avatar
    schmittu committed
        "The following script now learns classifiers on different data sets and plots decision surfaces."
    
    schmittu's avatar
    schmittu committed
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 28,
    
    schmittu's avatar
    schmittu committed
       "metadata": {},
       "outputs": [
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
    
          "297 out of 300 predicted correctly\n"
    
    schmittu's avatar
    schmittu committed
         ]
        },
        {
         "data": {
    
          "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAFpCAYAAACVjP/1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl0HNd95/upqq7eNzRWYgcIgPsmUqQWitpl2ZJs2Y4tL3HGfklsZ5x5mXmTzJuZvHdm3vLXOzOZk2Wy+CR2YifxbiuWLVuSrYWUREqiSJESV5AAse/dQO9b1X1/NAGi2d1gA+hGN8D+niP7S/Ste2/dunVv3d8qCSGooIIKKqjg9oNc6g5UUEEFFVRQGlQ2gAoqqKCC2xSVDaCCCiqo4DZFZQOooIIKKrhNUdkAKqigggpuU1Q2gAoqqKCC2xSVDaCCCiqo4DZFZQOooIIKKrhNUdkAKqigggpuU1Q2gAoqqKCC2xSGUndgKdTU1Ij29vZSd6OCCiqoYN3g3XffnRZC1OZTtqw3gPb2dk6ePFnqblRQQQUVrBtIkjSQb9mKCKiCCiqo4DZFZQOooIIKKrhNUdkAKqigggpuU1Q2gAoqqKCC2xSVDaCCCiqo4DZFZQOooIIKKrhNUdkAKqigggpuU1Q2gAoqqKCC2xSVDaCCCiqo4DZFZQOooIIKKrhNUdkAKqigggpuU6x6A5AkqUWSpFckSTovSdI5SZL+IEsZSZKkP5Mk6YokSWclSbpjte1WUEEFtxeC0QSReLLU3dhQKEQwuCTw74UQpyRJcgDvSpL0khDi/KIyHwa6r/93CPir6/9fQQUVVLAkro77+W8/PcPgVACA3e3V/NHH9uCxm0vcs/WPVZ8AhBBjQohT13kAuAA03VTsY8C3RAonALckSZtW23YFFZQjgtEEc+F4qbuxITAbivGH3zpO34SfpC5I6oIz/dP84T8cRxei1N1b9yhoOGhJktqBfcBbN/3UBAwt+vfw9b+NFbL9bEhqGuF4EkW6/m9dYJClCi8SVyTQBGXRl7XmU3MR/vtPz3B5PAhAc5WZ/+2pPbTXO4rS7vB0kNlQnPY6B2aTYUM+h+fevkYkli720QRM+MIcvzjGzjZPWfRztWMf1wQmg4zFqCJJEmuFgm0AkiTZgR8B/1YI4V9FPV8GvgzQ2tq66n75gjH6J/1YDDICCEQTOM3qirmmaQzNhFAVmc46B0MzYRQZOuqcBal/vXOLQSaS1MuiL2vJbaqB//r9k0S0G3Nv2Bfl33/rLf6vT+0jKUTB2jLIEn/7qwsMeqNIgAAOd9fwsYPtIEkb6jmcH/GS7Ts/KeDcoBco3LgW+x1IJDXG5yI0uK0YFDnjumq7mc5NbowGJcsdFwcF2QAkSVJJLf7/JIT4cZYiI0DLon83X/9bBoQQXwe+DnDgwIFVn/F0XScaTyDrCgJBLB4nJkvL5rrQ+f7xq1wcCWZtx2OB33l0GxLSiurfKFzSFWJJrSz6spa8d3Q2bfFfmM/A8Ytj7O7wFKytb79+hUFvfKF+gNd7p2lwW9nb4dlQz6HFbeUUvqzvXK3DWDb9XPIdiMX42QcjvHpxaqHvh7s93LO1HtOi6+IJFbHGYq1VbwBS6rzyd8AFIcSf5Cj2U+D3JUn6Linl75wQoujiH0htALF4AgM6Qggi0SRmg7xs/talqZyLP4A3An/ziwv8qwd7VlT/RuGySScS08uiL/nw2WCU6UAcu8WAuWbl9Ux6c8+NUV+Q7k3OgvTZG4zS782uX/j1mUG2NzvW5XPIxbe3OPnZ6RFu3lsbHRJ1TiOzoURZ9HOpd+CNi+O83pu+ib3e6yWe0PnwHc0L1yWsyfW3AQD3Al8A3pck6b3rf/vPQCuAEOKvgeeBjwBXgDDwpQK0mxfiSZ1pf4KkLbUBTIfiyIq0bP7a+YlbtjWXgL7xIF1NjlW1tZ55XFPwR7Wy6MtSPJZI8k9Hr+JftJa2Vxt56kAbM6HEsut0OXJbpNQ7rAXr//hMNGc7/jjMRRJr+hwkWSKSSDIXXv6Y5cdNfOnBzbz03jADvhgAWxtsPLyrceFey2VO5XoHbl785/H2tVnu2Va/cJ3VYiSpr7MNQAjxOrCk1kKktrWvrbatlcBokKlxqlhVBRAgwGlWl83jeT4X1aisqP6Nwi2qhMlQ/mPwj+/0py3+ANdm4rx3dYY7Ntcsv06rjTfODTMRTq/TIsGB7mpCMa0g/W+rs+Wce1ubbLgs6po9h4GJEH/1xjXmh7G7zsQnD3ZQazcWtC2n2cDTB9twWY2AYC6cWOClnkd5vQNLwG42pEwxBTjM6oJSeK1wW3gCR2Ia54dm6R2fY9gb5uw1L9P+GELAvML9VnxHsz2vthpcprzr3JhcWtF147MhvvHyRf70hcv892c/4HSft2h91HSNvunsYpTXr6ysXVmS+O1Ht7Gv1bHwUm3dZON/fXIrBkUuWP9lSeITdzRm7fujO5sWlV/Zc8iXT8xGePb0CItHsXcyxrdfu1RGc7FUPH3s7Tl0uiZAuV5ocfm1REHNQMsRv3xvmO++2Z/1t3qHzKfv7kKWueXx7mB3PWeHc8t5AQ53eZiLJjEZEyU/hpbL8Tef6/rGAvzs/RsqoZCA586Msb05wGO7mlbUlwl/hMsjcyQ1HafdlN7HZO5pL7j1XFiKb2up5v4djQghmArEiSUF0URhRRWt9Q4+cWczJy6OEYpptNXZ6drkBllaMxHQrz/IasPBSEDQPxFEVipi0Pm/3dldwysXpzPG6tAWD3ORG2vFuhQBlTOujs/lXPwBJgI67/ZOcGR7A3ZVwWIAoUtZudlq4Ev3tXJ5dI6+8TnMZgNWk8rQZASbGe7b0UxnjQ1vKLlkPWvNbarMtD/MpDeCyaTS6jFBEdu1GgT6Mq87PTCe9fmcHw7yxB4dBXlZfbkyHuAH76TbGBzpcnPPlnrsqkKVTcEIZDsDtFUtr61S8Z46GzW2dqodBoROxrxbyXNYDp+ejeV8rzS9vN6BteY3j313g4uGKgu/Oj3EVBSqTfDwnkbcVkvadWaDtOCvtFbY0BvAL04P3bLMm/1zdDV5SAqBNWlACEEwoWXlMV3mzp4GDnTXMxWIU+c0LXzp1TlNRLTc15aCJ5Ia33uzL03Wfez8GJ89srlo7cqKsuzrRv25v3pGfHFqnaa86zSE5YzFH+DolVkaqp0YDDLWpIEn72zmx+8MZ5S7f0dbyZ9bqZ7DcnhzvY3Z4VDWZ2Y2GYkkKfkYlNPY17utfO6Bnox1Y3GZaFKgre0BYGNvAMFoIq9y3329n68+1l0WCqRC8h+/PZyh6JyNw8sfjPD4ntayUQLX2GAq+1pCc7UZs8GQd/uDuSoCese8HNnWiNOssrPZhcOscGZwhilviHqPg4d2NmA1qsyFE2XzDNfyOSyHP7KrkQ+GezPGeEeTlZZqa1mMwXob+4oSuMC4d2tDXuXiwLA3UiYKpMLxD0ayL4aXxqPoevkoge/dkl2pubnOjEVVl9V+QtOz1gUQ1/S08i6LiY/tb+e3H9nO4S0N2EzGIoxHqXhxlcBOs5EvHG6nozr1fAzAw1tr+PidHWU0BsXnk3NRXjg7zD+8eoE3L04ST+qrHvu1xIY+AdyzpZ6uOitXJsO3LDs+F6I1YiObUkdIMDMXI5Iof/v2xXwpTIdiKIbiKMCmgzFOD8wQCMdxWlX2tNciS7mvs1qMPLq9jpfOTy70r9YKXn+Ur//qHLtb6vC4zHm1X++25LznzlpXyZ9JqRSRxWhHE/Cxg50sFoMGouVnmz80E+bC0Cwmk4zDYipY/X0TAX525oa4ccA3xSsXpvjC4XbigmXXV1ECFxiKLPOfPrGPH77Zz4XhKXyBBHM5pEJbG91Zj2YXh/388xvXFso12OHzR3oKbutcDN7iUhiay4xPsMkuUecwFaVdbyDCD99Kl61/MODlK49sW3LMuursHOqpYWw2wgunrjE8rxeICsbOTdBVa+Jzh7tv2b7LauTBLdW8cmkmrQ+ba4zsba/CH0mWzfMpJl8v/hj58KSmcXY6xGvvD2BUDexurcNZZ8/r2pfODHO8bzZtLvzug51scltW1TdNE2nrwjw04IPBae69LmpcTt2lEAFt6A0AUpvAjlYXB7s8xJMa/+OnF7jZl3JfqwO7SUWSQAgWjmMj02Fe+CDdQmU8CH/70mX+1YM9GeXLjT99sIM/f+lKxpg8faizKO3qOvzzm5mKd28UXr84zr7O2iXrkJGY8cduLP6LcGUqxsRcmHqX5ZZ9uW97AzUuG73jPuLJJF31bvZ2eFLvWRk9n+Ly1JdlefTlBh+aCfIvb1/De/0lPNLjYXdbTc7yAp2/fekCk5H5mZCgf2aESV+IR/c1LdnWlYlAxuIP8Lev9PHHT+9Y1b1MB3KH+z47GOSerSure62x4TeAm0NBPHWomf6JAOcH5zCocHdXPVuanUwHM49mr1wYzVrnXAKujPrpaXFRLsfcbFxWZH7jUDPDMyEmfCEsFiOHuxswqjJTgcK3OzAVyojZMo+3r/hoqXfdso5zw9nd5gHODvo42GXIqy+qKvPAInt8fyRZFs9kI4mAlsuvjPp5/qYPqqOXvYzNhnlif1vWay8Ozy5a/G/g+LVZtrZ6iGl6znaPnh/JOo8EcH5kDrPRsOJ7iURzZyYz5uFXVBEBrREMMtjN0oK9bZXFRNcuG4/saMAbSi7YUWez653zL2HrjF4WNse34h6Lie5ttgVb8Wq7kvN+V8ut5tw2BYL82rSZcofCdRkNWJTyGNdy58X2A1gJP5PD36N3MooidFQl0wfjxLg353wYmw7QWufM2W58ifSREhp21bTie6l3m3HIEMhic3Coy72icSqFH8CGtgICSOoQjAoiSRbs9PPl7Y3OnPXaLMYV1bmRuaykHKyyYc9mV151dNS5c4555yZ32dxrufNwUiqbvszziUDu93RkNpr1WpPZlPMag6os2e62lpqc1za4bau+r0/c28HNvev0mOhqrl5RfRU/gCJgPhicRZXxh2NYjXLeypkHd2ziZH9mbps72520eG5vW+dc/POH2/jm6wNp47XJLvHojkbG/VFePDPMhdEQFgnu31HPga7qtDpaa6w8c1cL3zuRrkv4+IEWapymkt/feuHlqARucMkMz2U3022rtWLK4u9xZEsDF0avZr1mT1sVwSWC7LXX1PLBwDQ3B1B9ancD1XYTBjn/tSAbd1mN/Ient/PBcACETmutBYSMRZUwq+vDD2DDbwAA1ybD/OTtgQX5dL0NPnekGyGkJRUyFtXA7z7Ywcm+ac4PBLAY4cj2Texp9zAXThRMMRaOJThxeZLB6QAdtU7u7KlddZ2l4g1VFv71w90MzwSZDcWocVnZ2eoiEkvyjVf7F55JWMAvPphgeDbIg9ub0urY2ujijz/m4MLwHA6bSkuVDX+kcON9e/DyUwLftaWJH76daSTQ02DBrKaSoWSbT0/t3sRzZ9O9u3/3gXYURUYILWe7qqLw1Q9t563LM1yb9mE1GdnW5GFrkzNrWytT2kq0eCxU2Y0IIZgNJVY19muNDb8BjMwE+eHb6V+kEyH4y1/08ol72m6pnAnFBfdvb+TIthu2zv4C2jrfHAhtcNbLa71entrTyHoMqDWvfOzclHrJ5hWwR3Mo1N8fDtFVH85an9msUmUzEYiVn235WvKpYIypQJRoQseoyutWCWxUFZ6+o5FfnhpdsMTb22xnW2t1WlC0m6/tbHTwjNVANKYhKzJmo4LNYso7H0Cdx8LOdvfCfFyqrVIq4CtK4CLg2PnsiqcYEI3rJT8Wn7iSPTHayb4x9nV6Stq3QooeRqdyR1JNJgsTK38jcl84wrNvDrDYEObJ3Q3csbl6yWvLUQSEAFednd1tVXiDcarsRiTIO/TG4nwA5XAvhR77SiiIImBsLndsGH8otnDsWnwEWyuuC5jOYuIGMBYQJe3byrmU9XePK3fGLJvFWCZ9Ly+OJPj6C1e5eYr87Ow4QzOhFT2HcuGyJCFf/0c59Gct3oF8+Vpiw58AtjR5ODOYqcgFsBoNRT8OLsV1PXfcGqCkfSv08Xd3Sx3nRwcy7tFlSrnMr8d7LTYfmQ2TyxD56IUxDvVsWlcioFLyIW+Id3on8EeSbG+tYn9HNb5wsiICWtPWSoAHt9Xz4+PXuNkiuN2jUOs2cn5ghkFvAIfZRIOjDqOirKFttEybR2XAmxmfoqvOWHK77ULan7fXmHlsRx0vnrsR76fRDr9xbyfRmFQWfS83Honk9jYNhWLrzg+gVPzikJdTiz4CT1zx8e4VH1840lZWPhiVfABFgGIw8Kl72nnv2hQXR0OowJ3dHrZscvON1/oWlYzxzjU/n7+7HSGzZvHDD3U3EDg7hHfROb/OCvs3N6zLmOpLxaGvcVv5g8e3MBeKE4glaKm2XS8TL1j7ppjC+UEfpwemsJoU9rbX4rCaymJslstrXdac87qzsWrFz+F24rFEMm3xn0cCeLvPyyO7GovyDgTiSaYnYkzPRjEoEhZzSp+31HUVP4AiwGiQafJY6K7vAG4klP7u8cwYOQAvnL7G5+/vWbESaC4c453LE8xG4zRXOemssyIjLXnt7z++k+GZENcmQ3Q22GmsspS9omulCjCXRcVlMRTl/jRN8MM3exkLpt4ib0Rj+L1xdjTb+OSdHSUfm+VwfziOQYZ7O928cVM8G4sER7bWE0nkNmIoVyXwWvMrszmUbMCEN1CUdg2yzvfeGMC3yP/g7ctTfPXxLUsGRKz4ARQRN9vbXh6/OSRcCtNRSCSXb8OLJLgwMscPFkXCPDcS5uTVcb7y2LZb1tNcbcVuVhfsif2ROL1jflRFptFjLbkNd/48JdMsRft9k8GFxX8xzg2HeHBrDI/DWEbjlJ17AzG+/VrvQtRaCTjY4WbM5ycU1elqcPPw7gZURSEc18vyOZQTN6u5Q4tYswSALAT/5ZmRtMUfIKjBj0708dT+jiXrWGts+A3g5mBw84qXpeANxzAa5bTyuXhS0/jlqWGuTGffUGYi8Nq5CdrqnXkrhY5dGOPda+nH1qf3N9FWaysbpdpSCrDZcJJLI3NM+MMYVYUDnbWoBqno7Z8bzB035v0hH3s7PGUzTtn4VDDGd95MV5QL4O3+Wb50XydOm4GpQJxIQhCOL20DvxZK4IvDs7zTN7mw2N3R6uTebfXMhBIFa2tsLsypvim8wRhbm6u4o315ylu7xYBKSuRzMzY3VK3a+CCpabw/6MNtMdFSa8UbSnJuNPupo38mwVQwVlECryXmQ0FYVQUWHbv2tdo5PZhpm15rAY81/1j5/3i0n76Z3Mo6gAvDXg5srsmrztlQLGPxB3j23RH+81PboMzzEIDGj48PpCVcf7tvln/zoc1Fz6HgtqsM+LLbzXjsJlwWtWzGKRvvG8sdLOfymJeHdzXlXWexRUDT/jAvLkrgA3Bq0E8kkeCx3S0Faev9az5evji1UP/xXh+nen188aGuZdXzufva+P7rA0QWra2Pbqtle2v2HCD58om5CN95czBtDJ7csynnMwSotpaXCGjD+wHM42Z728f3NFOVJc7UVAT+8te9nO6bSSufjc+FY7dc/AFMirRkPYv521cms1cCXJ4I5F1PqfjPTw2SbUR+9GZf0dvf1ZY7+Ne2JgeTsxFGfFEEesnHKRsPxnJHr5wJxZZZZ/5zbiX85fPZHRgvjEUIxxOrrj+p62mL/zxiwLt9U8uq02Ux8Ucf38HvHOng6Tsa+Y9PbeXurXWrGodIIpmx+ANpGcJuRp0FZFm6Zd1riQ1/AsglAhJC8Pj+NmLxJD8+OZJx3XNnxlCNypIxw8N5Jp3f1Vqb97EyEssVUR8CwQTTaulFFUvxK1PZx2Q0IJgM5D7+FoLrAh7bXpfxZXpvdxV/8tOLaYmAntzTgNOeX5rJteJWQ+7XsdFlzzv0wVqIgIayBem/jv6JEDazcVX1D07nduC8MDTH4W0Ny67TZlUJa4JoUhBJrC68yDtXp3P2Lxce3du+ZN0VEVARcHM+gMW2tw6jAVXKPeCn+8Z5dFduW+Eqc24F0zy6a43s66zCF0rmZQu8t9VD/0z2r4itLXYiMUpuV70UXwo2k1z09ts2V7GrzcX54TlcNhPNHjP/7fnejL787Mw4nzrYjMVgKvmYzfOmGittVTIDvnQHQRXYv9mNQvFt0fPldW4D/TPZTyybqsyrrn+pd8uslv4dELdw4pyHRCrj4JFt9ZgNCt4l1oGKH0ARMJ8PwKCAEJm2t4FQ7q/4YDi5pN1uncVEZ42JvulMufOBDhcNDhtdTQ6iWv42xC31TlpcUwzNpb9cR7ZUg6QU1Ga+GHxzjZGr05lCoAa7RCQh1si3QaLKaaXOaeLiaHYvcIAz12ZoWvBFKI/x++jBbk73TXOydwYBbGt10L3JRUKXid/iWkIS04HUOUdWTEXt713dTfTPDGSM6eZaExryqp+z3WbCDBnpWwG2t3lK5iNjCMvMBGN47BYgd3yreRiBrS3VICsLcf83nB+AJEnfAJ4EJoUQO7P8/gDwL0D/9T/9WAjxfxei7VshlxJ4njdVmXjuvexf3Dtaq2+puPzsPZ38/L1h3htMKfBqLPD0oQ4aq6wrsnV3WVS++GAPZwZmuTblx2SQ6Gn0sLnesax6SsU/eqCFr79wldCiiSwDnznchRDS2vdriSN1XCu/IHQuq8pDOxvY31mdd/AzTdf5xXtDXB6/IZbprDbwkX0dReuvc5OBjx9o4ZWzQ8xe3+8Ptrt4dHfjkjH6l8M/e6Sd7x67lqa8vbvTzR3t+RlUFJILofPq+VHOLDIcybVBLUajR83b+GE9+wH8PfAXwLeWKHNMCPFkgdpbNnLZ3lqNKoe7qnj9SnouWiNwV08t4dhSttagKDJHtm7iYwdSOU1nQ4kFW/5s5fPhINFea2dfh2ehznKxq74VNxtVvvRwD1PBCGPTIcxmIwe7PMiSVJL7aK+355wTm2vdZTFmq+VHz42nLf4AfTNJfnVuhGfu7ixa+y0eC3/w5E50PbVJ3Zj3uWP0L4c7zEb+6OM7GJoOMemPsb3JhcWolGQevXlxKm3xh9Ti31ZlQBcwNpvMCDcD8NDO5mW1s9YoyAYghDgqSVJ7IeoqNJZSAs/z/V21yIrEpVEv4Qg019m4f+smIgm9LJSD5cKnA1FOD0zjDybY3lzF1mZXhs33vPJxU5WVBreFqUCcYEwrWd8VRabdY+KaN11MZ1Ogtsq8IYLQHbuS3f/h4liYd69Ms7nRWfI+roY7rUZiGiR0QXwZivBC8pcvZFokAQz4knz2njZqHCaOnR/jvaGUJMAMPL6/CbtVZSqQXzsbXQl8tyRJZ4BR4A+FEOfWotFbiYDm+b72Gh7Y3gjXj9y+UIxvvzJASKREGB/aWU93o7MsxASl4O8PzPLyhRvWNSPnJznVN8kz93avqf35SvhHD7QyMBXi+KVRInG4o9PD3T31RBLlJwJaGc+Nn50d5z+2uovug7HR+VIq33NDMzyxr4WPHmjl/u0JTKpELCEWRHj5trOR/QBOAW1CiD3AnwPP5iooSdKXJUk6KUnSyamp7LvuSrAcG9+zA16+9frAghxbJ5W+8NjF8ZLbipeCJzQ9bfGfx0wUzg35biovlby/N3OQ2Nvh4asf2sGXHurhgZ2NGFW5LPpWCF5nYUlcGit//5F8+eRshN7xAN7Acv0iVscbbLnH9+xQkK+/eAEhUuWVVb4Da4k1OQEIIfyL+POSJP2lJEk1QogMY1ohxNeBrwMcOHBArLbtfERAi3lS03jlYnYb39ODAe7ujqGqxQ9rUE68fyK3h+qZwWn2ba5eKH87xKHXdZ2xuQhCAlmi5P05srOFH76TmWt3HqFwgmlz+YzfSviEP8J33rjM1CL3gDa3yj3bGtekD4e3Lz3GM1E4O+DDZjVW8gHcDEmSGoAJIYSQJOkgqZPHzFq0vZQfQDZ+eQkHFIBILIbTbCkLu/G14nZT7oOiWUm3yd7ocej7R+f4lzM30ozuarRwqKehpH3rqrNy7+Yq3rjqy/qMtrc6CJe5/8it+PFLo2mLP8DAbALn4DTtNc1rMsYfv6OJ50+N5EzSM+kLsstVm/YOaHpq7cmnnXXrByBJ0neAB4AaSZKGgf9Cyn8FIcRfA78B/J4kSUkgAnxGCLEmW92t/ABu5vFbOPeqqvGW9rwbjVc7c8sYeprTbbI3chz6KxP+DGXg+6MRfOFh3HYzvcMBjCrc01PPlmbnmvattd7JZCBK700eug9tq0WsA/+Rpbim6wz6snvIvz8S4uHd+b3bq+UWi8pdW2p47VJ2CYHDYl54B/yxJMcuj3NhNLVrmYEP7WvEZjVuPD8AIcRnb/H7X5AyE11z5KsEnue7Wtw5/QJqLNDgNudVz0bjn7mrle+eSI99crDdyb6bbLLLUQlcKP7BYHad1PBsguHZ1JdDLAEvnJtgLhzlUE/9mvbzM/d2MjQd4vTANFZFpqelCoti4EfHrzA8pyMB93V72N1eXfKxXA5PJnOHR4G17U+rJ/cGcKCrmlBcw6JK/OK9IQYWxQmLAv9yepRPH2q9LZXAJUe+ShiDQebJvZkR/UzAp+7pKhtl2FrzOqeZ/+Pp7TxzVzMPb63jDz7UzeP7WrKULz8lcKH4LaSDaTjRP0ckkVzTfsqSRGuNjfu3NvLAzkYkJP76lasMz10Pfgcc7fXy4vvDJR/L5XCDQcaRIzJEs0tZ0/6YVANfebATx6JPZ7cR/vXDXRgMKcOCcCyZtvgvxluXx24/JXApsVwlsBACp83E79y/mQ+GvXgDUXa2VtNcbWE6mMBkXP9246vhDW4rimJAkuWswck2shK4xi4xmSXhTC5cGpnDalJL0ue4pnD0g/Gs/bo8HmFkJoLNopTFuObD79pSx0vnMy3R9rXXr7kvh9lk4KlD7VhVBVmGYEzDaFQW3odAKLd/8IAvwYg3gs2cOfYbVglcSixXBDTPXVYjjZ7GhRSSIJAoQSiDdcY3sgjowZ0tfO9EZgjgXNhUZSvpc/AGcy9EUS1Jo8VcFuOaD9/e4mZrs4vXL44xNhOko97N3Vvq0PTS9S1XqI46+9L+T/PcAAAgAElEQVRBEf/u1av80ZOZ6SErIqAiolhHw8vjc3zrtcv8Pz/5gH947RITc7GyOTqXhm9cEVC908xv39/OJlvqD0bg7g4X2eBSU2KzUj6Harc5a98APFZjifq1cu6xm3hqfxufvreHx/Y2YzerZdO3xdxiVNm6KbfjgABOXJ7OWcdaYsOfAFYiAsqXfzCYnrFowJtk4MQAz9zVQoPbUhZH51KIHjaqCGg6FKfOaeLT93UzFUhxIQQoMscXxZLyWODjhzaX/Dlsq6/i6mSmQUOdTUJWsovwKrwwY7+vo4ZEMsnVqexGo71jXpprHRURULGxXD+AfLlVlbNmLAI49sEQv3X/lrKwn15rvtH9AOZ5LJ5kzJuk0W1iV7OH+7bUMjkbJS4EbdVWhA7eUOls760GQWO1lWcONfOTt4YXsrT11Bs5vLWx5OO3kbnVINCNBu7pqePqVHbnMbfdtHH8AMoZy/UDyJfPBHKnghwNctv5CszzjewHEExoiKDED968wuyiD7ttTXY+tLsJl8OcStpeolj12Z7DJo+N33u8h/HZCHUuC7JE2fRxPXB/LIEmBFZz/vN6fuxrHVZsMoSyBBLa39GwcfwAyhkrVQJn2CJrGkeHvXxnwI8AOmuyJBS+DodC2ScgL6bycaMqgRHw3dcvpy3+ABdGgmxvDLGj2VU2/cz2HJYbnOx25nazgV+eHuTktRthUI50V9NVZ8977F0Wla8+3sO3X7vM5CIT4s/d00ZnvS1Debye8wGULXRdRxcCSQIhUv+thH/rtUsL9tRA1ixg83h0TxOw8rbWN0/JNMujL4XlgWiciRy+AK+fH2ZHs6ss+rnRn8Na8BdPD6ct/gBHe2eodpjZ1ebOe+xtJpXP3NuDWZWJJpIIIeNx5M4XstbYsBvAwFSAP/35+5wbSinnOmtMfGhvM3OR5SsoJ/yRtMV/MapM4Fu0F+xucdBav7wE3huBxxJJjvdOEYklqLab2d9ZiyyXPlBaIfnYTG6zSn+IsnrmG10ZX0w+FYjx9rW5rM/5xdMjtNbZlj32dU4TkiwzHYijGLJfV1ECFwizoRj/7ptvEo7dyNHTNx3je8eu8pv3dy/7OHh1LHde2Rq3iWd2tKAqEg6LgVCB0uGtJx6JJvmbV64uGpUIZ676+NoTmbbO+fJYIsnQpJ9TfVEanVa6Gt0lv9fOBgfkcK7a1uYoK7HfRhLFTc2F6Z+YY9ZvZEdb8XMbhGO5Q0+ExK3Fuysd+4oIqED45ekhEpqOuOnv3hiMzkapspuWdRyscuaW99c7rBgNcsHT4a0n/p1jVzPGJSTgpTOj3Ldt07LrmwvH+NMXehfqujgW5uVL0/zew5updZpLdq+KLPHUnk08dybTtPKhHY1A+TyTchABBSIJTl6dQpEkuja5sJvVZdWj6/DTdwcW8m0DPP/+BB/dt4l9HdVF67/JkNuRq84Kvz47yomrPnRgb4uDgz11uLOM/Wwoxk9PXuOaNxUnal+Lg7t7GpZsf62xITeAvgk/8WR2kc3QdIDmaivLORrWOsxYSIUxvRk9zVWrPm76wnGcFgO+cLLkx9/l8uHZMP5syVCB00MBtrVWL7vuo+eGs9b3wxNX+dx9PSW9782NTj5hVHjj4iixmE57g4POBhdJcXuLgCYDUc4NzeINRTAbDVRZTDz//o3T0tFeL61VRj5+qAPIr86zQzNpi/88fnp6jJYaOwalOHk5vOE4D22tzWrmHU2QFnb79FCAD4YCfOWxHpTrIs+4pjAdjPHDt9Ln8emhAP2TAb740Jas7VdEQAVCT6ObE70TxBKZm0Cjy7p8u14VfufRTr73Rh+T4VQ9ZuDT97ZSZ1PxhpIrshs+cWmaVy7fyOfaXq3yqbs6UCgfm+ZbcccSuQKAFdU9PJt9R5kKgUkp/X331NmosXVQ7TBct/df2fPfKP4Y/nCC7x6/dYiMQV+cwakAWxocedXfN5Y9vwHA6EyILZvyq2cl/FC3B4dF4aXT44SBWjP0NLl54+psRl8SQP/oLLvaqhbGvj+H2Hg2Bj5/hE3uzJwiFT+AAuFDe1v43htXSCR1Fm+otRawWI0rsoGWFQOP7GvHbVHR0fFHNDxO04rt/UcGQmmLP8C1mQT/8s4QH76jpSxsoPPhCV2mygy+LPrRva2OFdW9FKJJvSzuu9x5If0xpgIxpoJR3FYTMU3PKPOTtwfyfjdP90/RWmvPq11Nz70aJjRRdF+b9nonT99rXvD4fvV8dv0PwNWZEF3N7oWxH58N5yw7NBPB7TBX/ACKBYdF5c9/5zB//cJ5jl+eAGBfm4PHdzUTTqxOSTtvS21SEquq5xfvXMva98uTET5hkNdVEu/fvK+bP3+pN+0+aq3w4d0rG+/dzXbODgczxqarxojbaixJUD45HsasBnFKGkICsxq5JTcao9hMdnRp7Z9JIZTAdpPC94730TtxY3dvq1L5zfu7USSJlOLSwGhgqZTp6TAoUt7K8n0dtYyezb7o7mpzoSrKmo5rs9vKmcHsX/abnJaF+7KoEo0eOyP+zNMCQGudLesYVJTABUSD28p/feYAYzN+PhicxmZUEEIg4uWhpPXldiQmct1euBz6mQ/3OEz88ce2885VL+FohDqXnZ1t7tS8XsF4P3FHMyPTF1lsdWmX4RN3dQKF7buMjkGLY9bCmJI2JC2KiMzhUOzXH0YQh2JHEnGqtGFMeir4m1vzYdCrluSO5ByJmEBIxoV6AEQkiMVUhwaYtTBG3UFCNhT4+axeCfzr90bTFn9IhTP+xelhnrwjPRdEvti/uT7nM9R06J8MEIwkqK8y01HnoLvOR+9kus/NozvqMRpSX85rOdc76hxIjCOy3Ned3TWL7ktib0cV71zL3ACcKrTW2FLvRpZ21hobdgOYRzGDwa2GN7sVhmezizt0JGbKpJ/L4TUuM856G/6ohj+SXEV9Jj5/fzfnh+aIaTrVdhMWk4G4JoglV69oVSQdORki6Atg9sZwqxqm8CxGlwdJS2DxD2LWPQhdYApMo+q1CE2AfxwpWYcAZP8kUjK+JFf9kxj1VKz6hXp0gSEwgybaMAgj8YAXJV5DQHYTDCcxCgdJxVQWSuDjWRYwgFMDfu7bduM5NLsUhueWFt0BtFUZaXBbsyrLowmdb71yhcXbjRn4rQe72Nka5fygF5fNyPbmKuK6WPMcAEIIvJEEXzjcznPvXFvw/bFKcGR7fdrcjGsKobjgs3e38stTgwtlO6qN7O+qy/luVJTARUChQkEUmj+xr/0m2/kUPryrniqrEXmd5h4opP35jhZ3zpjreXOhgy5wKRoGPYZZjVAlqejv/iOGCy8hoxEhgWvzEWz3fRZQkDQnii21Aci6tsB1oSE7U4s4QiDZPASvHEdcOApGK8rW+7FUN6WVUeyZ9ShCR1gtCAksKBisMk4pRIPmw2BIEJYcmNQ4DkUirlhAFyV5DkvBaTYslP/UPZ382S96WbwFWIAvPdzJ2cFZJKBnkwu7RU2JPrK09fNT17hZjRQFXr0wzGfu3kxrtXX1c6EA3GU18m8+soOx2Sguq4LVqGb0ZyEUhNVI90d24A3EcTuMyLBk3ysioCKiHEQli3lDlYUvP9DJL94bYGhWw2OGu7Zs4s7N1Wt+tC0sL739OQIMWhRjUkfWYojoHA7FgoUAVdo00XdPEL3wIxyL5kfs6q/A7sS593HE/EsogZSDIwn8z/8JsZnLC2ulNHkOre0grgd/9xbXgoJ+fWNIIAsNWU9i0MLIug2VODbNh6TVENEciGgEi6mWJBKK0JElI/oaPIdaK0xl0WVWGefrT5V3mI189ZFuxmcjTM2GsdtM7O/0IAF3dBgWfGRmQ4mc9v5XprLLRC+Pp7aFYs0XbyDGu1cnmYnE2dnkYXue4TwsqoLNlCukQ/rYy7KEcv1vt5y7a4wNvwGUqwhIViQsZgP37WhZsDKYCsRLcrQtN/tzLeglePUdvMEksbZuTC3dTIcSt7x2JhjBpAdQkgnE3BQGhxmDFk2JdDQPkq6h+ydJnP1JxjwRQOLMc+ibD6D7J+c/ynLy0OW3iC9a/OfriA28TWz0Pgz26rzqycYhJUoyaHEkZJTrIiMkM1IwSkRvJmawF/05PLirme/fZMsO8NDe5gwxji+SoKXWRnONlalAnEB0OSLA3HG1oHj+FacHpjl26YYl3uXxEV49N8Jj+1oL+g5MBWPMhOLomgCZnNdVREBFQLmKgDYqX63oIdR3mcDxP0MIDYNuJjr0S4Snh5pHvpb9Wl3HaZSRE1GsapB6VaCqcbRkFKPVghDmlEjnuigGIdDILq/WSCDba0CINDFONi4C4+SyfYlODuBs2JJXPUtxyVGLYZHICEnCJuJIaoCwBEY1jtVoRZelgj+HlLjDzu8/auLF90eZ9kVoqLGyv6OWjlpHwedNq1thMItOrN2jFiXERlLT0hb/eXijMDodoqfBWZB3YMof5idvDqSJt75wuI2OWnvGdZWUkEXE/PFq8VGrwovBpRXXoSdj+I7/PSIZBy2JhISeiBGduUxk4EJaeVlomGIBbLEZHIk57CJAgz6KTQ+hanFMegxFaChCyxDFmIy1ZIPJVL+k6CZNjGO0Z61DALH3fkhsuj+vevJq67rISNaTmLQoZj2KS5uhSRvGHp/EFvNh0oLIBXoOi7nHbubx3S38myd28hsHO6iymooyb54+2Jl1PJ++s6PgbUkSjPhy2+l/MDRTkHdAEzp/9eu+DN3Gt18fIBiN56xjLbHhTwDlLALaiHw1oofI4BVmZSdCiqMj8Mtu0GV0TRDvfQ9b107QdQK+GWwJBVvCh2luCLPuRE5q4B9Hv26ls5SYRT3wBPE3/x6xaJ5IgHrgI+iB6bzENca6ZmK9pNUxDwEEn///cD70exhuUc9qxETzVkYJyYA5kCCeaCNqdDIdgrhmWFfRQOucJr72aBdvX5kmFEvS4LRQW2UBWSqKCCgUze27IGBVotj5d+DKEkEkj12cpLuxqiICKjaKlRKykDwWSxCKJrGocln0p1QhCDCClSiqCAICi66giiCS0DHqEZxaAIsepU6ewCLbUI1JdJOMYrAgDAKRsKObnQgEIhHOyU11XegWF/pbPyYZnMDgbETe9QCmtv3ot7h2niueNkz3fInom9/MOu8EGhG/F1vD1lv2ZzVcMtpQAY8phGQIkNAjmHQBogZZkbEaQF9i7A2SzuRcmGqbWvI5ZJYV9rVVr0mIjc46a841Y09bTUHegdFYbmefYCRaCQWxFihWSshC8FAsyQ+OX03LMPXg1lp2t1eVvG8r5SsJQRCIRlETCZSaTiKKGVWyoyOIyA5MySRmElS3NOOMTGLW/RAaRZVrUl/EkTlk1XSdB5FVf17c6qpHv+uTKM4bJwY5mt+189zR0A2ezUS9mea8AIT9y65zpdwY8qIoBkyAEvKRFI3EEyqa2kxMzQy9YIobeOHMIJfHb4Q4bHIa+PhdnSgyZTOfiskf39HAL8+lexpvabCwqdq2qpSZ8+9AfZUNyNQzALRVuyuhINYC5awE/qdXL2WkF3zl4hTNNbZ1FQpipcpHuxG8r/yAaP+7BAiCwUBT16Nw+UWEEChagGpplrauPdg7GjDZFGTNia7F0pSliXiI6NAFUMBR34WsGEGsTgGbL5e2HkF+82qGQlgAtu69a9KHm7kVSFjMtCUiSMYAQcWAsKXPp1N9U2mLP8CIP8mbl8Z48o7Wgs2JcEwjkdBw24xlM0fn+ZZmJ3d0VXFxxI/XH2N7q5sah2nVfgaL/QA6qyfom0k/CbiNsL/LQzCaHial4gdQRJSHjfwNPu2PMpUtvjRw7PwwHz3QWRb9XD7P3/585pXvEeo/iqQZESIOyRih88fovv+3URIh4v5JGjrbcTgciOA0stARixSkAp3g8X8kNn4h9YyBmVM/wfnEf0I1X1fSrlIBeytu33wQce5l4nMDC5uABJju/DyywbomfciqNBYaqhZF1qMIfHgiOkZjHQklZVFzrDf7l+mpgQBP7Fv9PIgmkvzz0csM+29sjY/tbODunpoymKM3uKoo7GxxMxtKLMrpUbh34HOHuzl2YZyz/TMkNNje6uaBXQ28fnGSk5dnQIL9mz3sbKtev0pgSZK+ATwJTAohdmb5XQL+FPgIEAa+KIQ4VYi2b4VyVQJH4zmC6AMzgWTZ9LNYSuCpuRCx/lPommlB2St0jaQmCLz7HToe+SKKOYCVGHogllURGug/SWz8AuL6uInr/xv8+f/A8fCXi6aAvZlb9j+FFJxCDH4AksC07WFU9ya0ueK2uxQX5jAiGgQBRsAZ9KHRRkKyEYg7b6xaWTAbjjOTh9/FUvyF168xc5OhzYsfjOOyGWisspbNfF2Ld6Cp1sG+zTUIIZj0x/j7ly/eSBIvUrkS3hvw8tXHd6xbJfDfA38BfCvH7x8Guq//dwj4q+v/X3SUqwjIYjTn7PP2Jue6FwE5zAbe6/dx7MIoyQTsbHOxp6N2oWwiGCdICCEiSLqOQ5vDRBQZDXdAYLObkTTXkuIOrp5aWPwXQyeCrifXVPzibN2D2PowemAKxVW35mKfm7mwuJDUuTSxkLBasMgSBmaxalHCijnrJlBlMyJLKw9F4g3GMhb/ebzXP8W2xq6yma9rLQYdnArfWPwXwR+HidnI+vQDEEIcJZe2I4WPAd8SKZwA3JIkbSpE2/miPGzkb3CTauBItydrXw9vbyibfq7UBvq5dwd57r1RZmMQ1OFE/xzffPkKCS118lHMTiRFQtZ1rFoYOwFqmaSeGaqqG7Pa72dwPXcAMjEvkFlj8Us58Wy+BKoexym8uLVpHHEvSjKWenCL4I/EVjUPgpElTrf+2IrqLDRPaDrBWBwhiSLUn9sHY2QmM8z5PAbGM7OfFRtrpQNoAoYW/Xv4+t8yk6sWGOUqApIVKXUslOHisJdACJprzDywo4mkTsn7tprj77gvljWVXxw4enGSA501zEQ0LLs/TeKt72DDh5M5zIACmHY+nJc9Pm17kM4NZZwCJAwokgHdP1Vw0cp64YtFQDf/LvsnacXLdNxIRLHjU+sJG5wLq5Q/ohNNrjw9qbSELWNrjaOkqTMnA1GePz3Ilakb7lmPbaujxmMtWFu+EAzNBGmstlHrSI/sutQnt2JU1q0IqGCQJOnLwJcBWltbV11fufsBbNtUxeGe2gW753kb6HLo20ptoGdDWdKDXcfAmJf7u6qR8FPfsw1VfYTwWz/GkFAwerpQdhzB0NCdlz2+ZcfDcO008dAIOqkPXQDjka+AzVUUu/v1wjWjG0Ui5+87W628cm4MlzQBCQ3VFCWoVmFWVOrsK09zKnSJGquJO1psnBrKlHUc2VaHRSndHH39/DDDc+k2Wy9emOSJXfW0eUyrql/XJd69Os6l8fn5P43HCB891LpQdmezi7f7sofZPthZtWH9AEaAlkX/br7+twwIIb4OfB3gwIEDq94Oy9kPYCNyWVFQ5NyfOQ6bGRGaxhkawCqpmOqasN7/zIrs8SXAcuiTKBEf2vgVkGSs2+9DNjpT9RTR7r7cuSJAiub+fV9HDYPjEkHfHHJSYJPC2IWfRx56oCCpFu/b0Uy1zceblyeJ6LC53sKOpmpkg6HoqRxz8XAsmbH4z+PN3gm6m92rqv9Mn3fR4p+CNw4/OzXIbx5JJYKPahLPHGrh2beGmLcAV4GHttcjJGXD+gH8FPh9SZK+S0r5OyeEKLr4B8pXCVxKPjEbZmjSTyRiYVuTEwqocLaoEjtaXLx+YZKbYzzKepLHN1totCaRkgomm7MgCk976y5E931lo4AtB36zEvjm3xVXHZ98rJaJwQGGIkZsZiPNHgtUJfEb1bTnKnTB8EyIU1cn0XTBXVsa6GlwLDkPXBaVu7fVsr2tADkdCsQj0UTOdSIYXX397/ROZa17OgRGBcxqalxdViP/4WkHA9Mh7GaVarsRfyS5fv0AJEn6DvAAUCNJ0jDwX0htbAgh/hp4npQJ6BVSZqBfKkS7y+sjiNTcv225psP3jl9J+0r5yakRPn2wFbfNWKC2UhrHrzzWzT+80svc9XdOScb4zE4Lnc4kJi2CENd/KANl6UbkgjyUxJJEfbWdTY5ahBCI0DRJEYAYRDUFWfKg6fDc6UH6p25s5wMnhtjeZOGRHS0ln9PL4R6HiVxoqjGtuv7gEqmRIzEds3qjLEi4raYM34O1RkE2ACHEZ2/xuwC+Voi2lotyVgKvlk8FY7w/6OPswBSaDnd01LKzzU2u2Pkn+6YyjqgA3397kD/wbAEKZwNd5zTxxYd7uDYWwKHGaDMnqJrrxTBrRUcvG2XpRuVLKYGXDJQnICmbMAcSxJIdXApa0hb/eZwfidDq9rO11VU270M+fHuTnfMjmZY4u5qqVxUA7uj5pQUakiLfUvldCQZXBGxUEZAQOj944wqjgRufHS9fnKJ/apaPHujIeu2VUV/OcQpF4zRWWVfdt8U20JKWZFtVggaLjoqGpFkwOKtLLh65HfitREBL5SCwCEGdNIewxHmnz0+uz9OZcBSnuaYs3od8+aM7G+mqDfDy+2MENWj3GPjw3laMqmHFdfojcd4bzm3C+cTuBtw5UmEu5utWBLQeUOpjqKan4oMri2yEV1Nn32QwbfGfR/9MghFfJKtIR1viiKoLARTiflNfNLLQsCb9OLQZzMKIrGsLNtelFo+UgiNDeOgCCe8QismGzVEDklRSEVBODqhaAlmPskmZpSo2h0+tB0VhMSyqUvL3aiV8X2c1ezs8aeEfcqWrzIcPTuTOLdDiVtjc4My7vrXGht8ASi0CSuqCl94fonciJXqxK3D3ljp2tFWtqv7zw7m/5s+P+miutmZc21rvxDeYPUa5zWwsiH12XFMIROJYk1HssRmM/qtISQ865SMeWWuuJcOEf/E/iSd8qYUZSLzzLLYP/x5SNFKUdlcqArqZ76lO8l6sH5DwyQ1pq1SN27LuU5gWgsdFbsc3h82Ud30VEVARUGo/gGdP9DK6SOQY1OCl85O011mptplWXL/dmPvRVZkMWa890OFhaNyP96Yw5Y/vqsNulArif+CQk7jEDDWSwGTUkU3msrCLLyUPH32W2PXFH1ILbFybRX7rx1ju+lRe9cT1JLHLb0FoFqXrEKa6doRl5X4A+XKbWfDEzjr+8ayPpKwSMHhAlvn4/k3UWE1l4XtSat6zyZU1vSTAXR01GAz51VfJB1AElNIPYMwXSVv8F+PYpSk+tKdpxfVvafFwtDf7KaCxxp41nnkkCZ9/cAt9Y3NcHJ6l2mlmR6uHmKavKv75PA/F41TFvdQG+7BhRUIvG7v44vM5NC2BlKVMfPhtsn3XRacuYQn5kVXrkvUHr54idv55ILV5SANvoDXswrLjoZzX3soPYDm81Sn43z/cwBWfxKWEja7NzSiKxFQgXha+J7m4ISIzPhchmRBYLfaitRVJCD59qJnvvzWc9nwf3laHw27Oe5wq+QCKgGIpgYUumPJHmZgJYTUb6ayzpby8F5VZSqbnnQutKtm102zg6TuaefZU+qT7rcPtVNly2/W7rCr7N1fTtclZUPtsSUtgMUaoUTSs4vZR9uqaRvj9l4j3voqOQMWOeuTz2Nv33yi/xPxUXLVL1q/Fo8TOP59WhwDi4+8jt+7B2LKzoErgeS70OIFzR9EuHUOgY+i+my0HP0FDUkezysRlQ8HepWLwk1em+OcrNz6Q6nrhtx7YUrQgiy6rnT/+mJPzIwFkSaPWYaPOZVpWHRUlcBFRSGVSNKHxzV/3ElgUi+ylM6N87SNb0spXO405+9NS6wBW15/WGiv/58d3MDQTIhjV2NbkRIJVKbRWwmU9gTUZSCl8ZYFyGyl7Ayd+RKz3lYUFOkGQ5NG/QTH8W8xVdQCYGvcQHT2TMQfMVZ1IsrJk/ZHh80iQsYnogD54ErbfX3AlsJAEoZf+hlhobKFdrfdl9MHz2J/8d8TiDoTRA2swt1bCL4/N8caV9NPxZAi+/colnjncU7R2FVmixWPBZpIJxfQV1bHW2PAbQDGUwD9/dzBt8QeICPjBG33cu6NpoXxMgyoz+LKExtnVWlOwoFguq5G4FicQTRbsHpfDTckY9thESuFrNKMVQPm4HrjQ4sR6X8pYnAWQOPED1Hs+BQIs+z6ENnoRjdhCzCIZBdPBp2+dMyCSO7E48eRCwLvYyPskLr9F3NeHKtmRtj+ApWHzinIiRMYuE1+0+M/fUzI2TuziMczbZRKyn0C8CllxoYvSBS/snwjywxPjjF5PPLOjyc6UL7vcdSIMg1OhgrQ77Avz05PXuHZdodZWpfLInlYiCS3vnBgVJfAaoBgioN7J7Km8BmYTfNSmLpQfnolkXfytQGuNrWD9KSWXEjGqTTIWoxlFq1q16GE9cX2J0I6J8BSyIyXeUfUaTPf9JsmTzxOPTGK0N2J+8IsYq1rQA1NLtmXtuZvoO/+UUb8EKFsOIztriU0PEXrrOwsZyWIiiHTuZ5B4CFcOEdFSPNl7PCPFJaROHUT9mGxuJNlAF7PoRnfJxEHheILnzoym9fFcFievxVAM8qrb1XSN594ZZnFgiQFfgn949SpfeaQbh1nOOy1qqUVABckHsB4wf7xafNRaDc8FoUsLZd7tm8haJgxMzIUL2p9ScCUWxpGYxSb8qHo8axz6jcwVmxtpIQZpOtSqloXyoWunCB37O6KRMXQ0osEh/M/9vyTmxm7ZlmwwYjn0W0ipP8//jKnjPiyN3QBE3302a07i2OWX0RPxZd+f5KzNujBIAPZUDotUXgEfZi2YElGVYP69dSl77J2lUO80r7rdCyN+skUVSgKXxgIslQ9gNWtLMbDhTwDFEAG1uVUGZjOnQJUJxvxhDGqqvDcQz9KjFCZmo5iNhrKwY14JN+hRrPE53L5LGBI3wjsUyv58PXBFgHHLo8QuvZgmLv0+LYsAACAASURBVJEAddcj18U7gtjRb6b9DqAjiLz5z1j3fPiWbZkcHsxP/TGha+9DaBpT+52o7nr0uUkkIaGNXc06xyQgMXkFg6N2WfdnqWkhgQGddPt2GRlzVcOC2InAFGAlbITpiGHN52L/1FzO9ysb7uuuZjaawGiUV9Xu4BJJXYa9AboabBURULmgGH4ATx5o5n/+qj+jLV8MfvT2MB0ehU/e1Ul7nY2zw1nyvwHttVbMSnnYMS+Xu6QE1USxqhEUkwRm+0L8/kLZn68Xbr3jSZAMaBdfJUkYk1qLfO9nUBt7EIEJ4kJHy4iLmkJi6jLCkp8fgORowLqrARGYQHY0pOVLUBzVJAKZ80wAkqse3Whb1j2BwPzAl0meeJZYNCViMal1GB7+bSRVWSgvJ8OYDRL1eNEUC2aDGX0N5+Imt4XhueyL8Ud21TEyG+LyUAi7BR7Y1cTmWvuq8hzM83qHGci++TTYzVgNAn0FdVf8AIqAYvgBGAwqz9zdyqQvwsWRacYC6bt2v1fjJ28PsrezNusGsHWTDWSlZHHRV8PRNbTYHCbmsGgB9MgcsmpKfUEW2P58vXBrcw/K9sM3TgbOOkQ0gB4JotrTwycshsHgyuo3sFxu2P0I0hvfyDiFmGq2YND1hb4sp26jwYjlI7+PJR5C909irOlYuL+F8uEgqsEHsootkCRusROVzWs2F3d11PHOQOYG4DGD22mlp7mKB3YIpgJx6pymgr1vnQ1OpLMTGac6CWiosRNOSiuqu+IHUAQUMxjclgYn7/Vll0NenY7xyG4zf/hED6+cG+PctQAOKxze1kRrja3kytsVcZMBYzyMYoljt9mQkyZuViLeTkrgfLjiqsPUtJ/YyLsZC7S0/8kFRfFq2rLaa0jGgiRPPodGykDB1HoXtv0fWXXdql6DrlqXLGMUgho5SMIQx29cOk9AIbnTbOCzd7fx6zMDTF4Px7OlwcLTB9qIJvSi9uF/eaCTV94fom8mJQpu9xh4+lAHQpeWTAq/FK/4ARQRxbL99eUW83N1PMDF4Ukm/YLGGhMf3tNMrdO85nb6mq5x9NwEb13xIoADHS72dtYuux4lGcEsIpg1L4pehciiRBSUj5K2XLjjgS/BLwPEZi4jISEQmLY8hmPrfRCcKUhbjra9SDseQYsGkOIhhMWDHPOvzb0CZj36/7P33vFxJOed97e6p7snD3IiCIAEmLnkcsmluNoctdLualcrWbIsK9wpWH4/st+79yyf/fp973y+N8iX3rvPa9+d/eokW7Ksk05WWmmlDdrlJm4gucscQRIAQSLHiT2h6/1jkAYzA8wAM4MBhOcP8oee6qrqrqqnup6ITfqJSTcTUinZ/K71GPzuo7tJJJIOjVWeZHC3cHRpdvi5Ypdu49P3bsOykoHkpttNru2kXH/dD6AMqNjB4LIphAFePDdrBdQ1bPJffnWFTx5qRaiiZAqzoYDJd9/oZmiOJOrNaxOc7J7g8w9vRRG52XCP+MO47UEqojdRxm9iWfEZkcDUB8yvnRI4H+zc9yGc9qeJByZRsNCqWpD+kYIrpQVg+UeRsWjJx0FBRagx/NEqFNVbcv+AkVAU1VZ6o4j57a77AZQRFTsfwGP7N/Kff3U15/4cudjLUwfbSya66RkOpzD/aQpZcGM0xO5mX0r5QCRGIm5R4dJmrot4DIcRps6ewGFzYyWyiy3WRUALi4NsVXJR2/+VzAewrOdzV+FRNDYJPxgVxIRa9PldjnhdBFSGVKzjYI3XwW/f2cbbl/u4PJjZ2mMudY8linIkzYZvji5gsjbkZ3ezDylhPGjyzZcu45+y/FOApw40U+HS0RMhPNY4dtRFRQKSlRe5rOOVGwfFiuOIm8SkRUyoJZ3r5YPXRUBlQ6XIB2ABrdU+Lg8OLtofB6U9FisLuPppuo2JcCwpJjrSnfKbBfzwWC+VmkWTFsAY70bGPIumc1wXAZUHXqlxEIDqHyWoeJh0NZaN30op8boIqIyoVPkAXuhanPkD3LuztqQ2+zs3+HizM3PY6PdtrkRXBRd7M8cyx7LovNbD7l1OVN2WYu9f7Dj063h5eCXHwYiH8egmNmucsM214n4rpcbrfgBlRKXKB5BYvCvc0uxh68YKhgOxktnvh+PwW3e28tO3uwlMiXfswH276rFE0hehcyBDPlPLwpOYwD8aQA9VIObZ+2ezI/919AMoR7yi4xDy49YGsdQwiWgdEWc1liTnuWtEbVztm+DaaIDNVR42NbpX3P8lH6yo6rofQLlQqZLCH9xcxy/PLnwKON3rZ9wf4rH9m0uqlPI5df6XJ3bROxbCa7fhdegpOQDcumDSTJ15DiuEM+6nyWNHc1diyXjZKh/XcfmNg/DU4lZU2kIm0lByVgiHzARff/4i4anpeK43gH4KPnN/adfMr4sSeD0YXB54Mhzl6pCfQCSaVubAlhoa3YsP3vWJBM+f7lmRIG5uXcPnNNKu79lUn/qupIWIx7DHJ7hvZ33eisBiKBnjgVEm3vs5k8efITY5UPD61yJe6falJbHHA9hkMlRdLnP0hVPXZ5j/NEWBF05cX5E1szQsllVHKWnNnwAKoQROSMlP3rlK78SsoKelUufJg5tQxGz537izgxNdI4wEojgNlaNXM8cLuTpkMjAe4b3uYU5eGcemwK5NFWyq862I4qrSbdBcodI7nnw+zYrisPx8sDmGJz6G5V9Z5aP/0puYZ55hmi+YZ8HsuBv3ng+WjdK13HA5KOMFUwph1cuksyGnudg1ktmzsnssxngoBpSPsnddCbwKKJsISEqL7oEgxwYm8DoMWmrdWY9mL5+9mcL8AXrGopy4OsT9uxtTyu9rq5lJtZhtAwD44VudM+7rWPD2lXGu9o3z5Q/sQkBaH4qN/9H92+nsn+TElX4aNHho4yaq8ay46MFSlBTmP/VqMDtfw779bmwFCKVQLCytKP7Oo3DxzWSvb3kAz457UNaQCEhqBoGjz5C4ehzV7oK9D+Fu2jFTxinA5pIIQ0HKHNIxLkBeh21F1sZaFgGt+Q1gmuaHRvj6C+cZCKWW+dL9m2iocM4cx5Jl4VRvZlv61y6Pcv/uxpTyc/HGCpXr45nVw4Oh9GtDIbg6GKC9zp21zmJhRQi21nto1SNscEYwEmFkIP+jv2R54gNknND1swibDd1VQbD7VMb3J4HIpWN4brlvyW0VVfyBlZZWURz7Llw/heeuTxW9D8sdh1ywtCJMfu9rxEgaEcQifsTbfwcb9+N78MvJ8SR5onRGJxiVnkXnYkuljZ6x1DDUAM0+FWXKvr6Y6yEQiXHsyhCJuKS9yUOVy7HuB7CaKZMI6K3O8TTmD/Ctl6/xO49uTT2aBTKk9JpDC6V13Ntaz/Xxm2n3NFdo9GYJH3Hxxjg1HmNFjrBq1A/+IWQ8gmVFSi56CFw/gXn0+zPvQmBDaz+U/eUnwounVFwhHLx+NmNaRXPgLLaekzg27i1qH0ohAgqeeYk4qRZkEjCvHyc6eBnVXoE1OZhkMmqIQLQWodYsGCJif3sD14/1pp0FDrQ3MhGOFWXe3xgJ8+KpnrTsfW91jVPlgE/dk3vIlF9LEZAQ4lHgPwEq8HUp5dfm/f454N8CN6Yu/YWU8uuFaHsxyuQHcOLqeMayESBiRlPsc72GhgPIlASy3gUONbttb1Olgy/fv5lXLtykpz9CfaWNu7c30TkwSe945j5U2G0L1lk0rFoYApyaiWJ3YFlaSe3PzViYyNHvz1v4cRJXXifTh5EAbB13IHU9/z6qOqFjzxC/9gYgsbUcxNh5J6KA9vDWUHfGtIoA8bEhrC2r3w+A4XRGPT024YkhnBUbk30xvNgVG63REWJKFVHUrHOx1m3wB49t4UzXON2jAVqr3OxqrWAyZBVl3gfCJv/jnZ4sIwWjYTjfPcKB9pp1P4BMJIRQgb8EHgZ6gaNCiJ9KKc/NK/o9KeVXlttevpTJD2Ah06dwTBCXqfa5HzzQzA+P9aaVfWBPy6Ixxuu8Bo/sbWFoczImuZSSpoQFVzJvAFuaqlYkT4DLTGCPTqCF+9CUiuTXXgntz6Pd72ZkJsDMdTHnb6PxFlQZRYSjebWVCPkJvfQNzODNmXoTPW8ie8/gfeqrSGwFsYfH7klKtOY9iwDQNJTI6vcDwOnKlhcF3WZHmZuHQCg4IiHCZhNhm2fheWnZ2LqxksoKF3Veg5i19PltWRYX+8e5fiaAlJKNNW722WuBZJmjlzOnbZ1Lx7tG2NVWve4HkIUOAp1SyqsAQoj/DjwJzN8AVoQyKYEPbqni1cvp3q92oLXGwWQ4nmpHX+em3qvzwukbjE6abKhxcVt7Da3Vnpky+Sl8nHz+3k1865VrM7lFNeDJgy3U+owl1rk8XGWLUGFT0KK+FVE+Es/2vTxLxq7H4ep7mOEbRPvOYPadxvC24n78D1Bs6bkJMuHIYCfROcyf5BsgavkJDvfgbju4pOeej117HiR64RcZNgAbrm13rAklsLHzEcy+c2nPqGlV2Nv2gYRAIMyrZybpnwhR55Zs8yXweWYDDRZ7fv/4nWucujEbDfHayCgDE2E+ccdmkNA/kulsP+95VPA5cu/zalICF8IPYANwfc7fvVPX5tNHhRCnhBA/EEJsLEC7edFce9u7d9ZT50gv8+n7NmW14a31OfjQvlZ+77HdfORgGz67sSxb4eZqF3/01C4+dWcrv/tgO3/01C6aKpafsHopWImGccgotjmJ3Uttf6623LLgZBQAw9cwwzeSX6JJIQTmZDeB1/4m57biwz0ZRTMSsHouFkxJqjq8uO75IjZciKn+60olnif+GEXVl11/OfgB6BV1uB74CjYcM89o97bhfPiLCCGYGAvw7VcvcaprhIGxEFd7R/jGs8fpGQqUZH73jwdTmP80XewPc30kiJRQX6Wn/T6fDnY05tmHdT+A+fQM8F0ppSmE+B3gb4EHMhUUQnwJ+BJAS0vLshvO7Adg8Jv3bOFU9xiBcAyPXae2wo7LoS+o1C0GlggM3cZkpLTtzsWB4CQbYqOIhJ/ECikfndXNJHxtRCa6so/lwNm0r00JRK4fxzl+E4Lji7aFWGDKD13F8g8XTEmq6S7sT/+vRCcHsYLD2Bt3YkmIXD+FsFegVTUiA2MFaWul/AAcFU0YT/0J0YELaNXNKLoXa3IQa3KI54924oxNEFdAYOGxAsTiBs8eOcVDh/YUfX5f6cssZgU42T3C9uZq9rfX0zl0PWu5Bo/C5kZvXnzh100JfAOY+0XfzKyyFwAp5cicP78O/JtslUkp/xr4a4ADBw4s+20sFApib2vVjM3+3NAIpTqelgMWiRhOp4bD4cmY4rF0ooc6PB/+5/DW94lcfjnvcY6M3sRZ07q42KJ5F5Hzv8xYRyw4jOKuWfY7mP9chrsWyz9ELBYm+Mx/JEEApr6ZHYd+G3fzrlUpAprGwpIYQqD66lKud45dxaV4CQjP1BsWRKWGCI5R71bwFHl+Dzuyf9177Tq1bh2fU+dT71f4hyPdTBsB1btgW1Ml7Q0+vE49Kf7Jo93VJAIqxAZwFNgihNhEkvH/JvBbcwsIIRqllH1Tf34YOF+AdvOiUtrUryasx5Ox/tUcYv3ngiXLEVmoePY8DAkL8+orM1/7AjA23wND3UT83RnH17r6NqKubdG2bE5nRuUsgE3zFE1cgozjf+b/ZjZsoAQkobe+hbFhBzZ39arzA1gMG7qaNK2b+8YtiZYw0a04igCriPN7b1sVz2eJz7VvcxWJRLJ8e72bLz2yFbddRREKk+EYle65KR5zbzdgRnnz/AgD/ggdDRXc3lGdV99LTcveAKSUcSHEV4DnSJqBfkNKeVYI8WfAMSnlT4HfF0J8GIgDo8DnltturlSKfACrFgsLVyT3WP+lEj14bn0ErWkrscuvg+5B37wfm2YQclfBqcwbANFITj4BMujHqN5GZORiyu0CEDvuKqgIaC4OXHoLmSFmrARCp5/HvfvhVSkCWgjf1erg3MUepBRTIiA/qibYubGK+FgvAZtGDFvR5ned1+DxvQ387GR/yjv/4O56LCky3GsgZWLJ7fYMB/nh0Vlrwe6xIX51foinDzSvaREQUspngWfnXfsXc/AfA39ciLbypVLlA1iN2IlJpc3CZjdyivVfOvtzH1rLHmyV9SiehuR1/wDObXcROfXjtDFWADrej3S4c6rfcd/n4Bd/iRnqnfk2NTbcimvXg1iC4tjMW2Q8dQAQCWPZPavOD2AGS4tw8AJysAfha8Duq8Sye7l1t5tIYJIjNySaIjGtOJs2NHNobyvBSBxTUTBFcef67mYfdRV2xiZN4lJS6zWo99mRFgVv62dzmP9ceu/aANsaN69NP4Byp1LlA1iNuEqYaNEBtOAoimpLfr2Vsf25qjlx3P5xIlPewpLkl7tetwNXfTsyMJxzPe5H/ye0vrNIoaFVNSAiERTTX/A+T2OtspJMCUMVQDRsSrWZL/NxmIuFOkjw+a8TDd2cGQ9LuHE//nvYNA/v7/By294qYkETNerEU1NNIjqJHg4RiDYv7hNQAByJQ2uDFyklQ/4o4XjheQEBQeYwdnBtJJZTm6vVD6CsKdd8ANGoJBG38Nht4M4haNUqxyIRp1LT0DUfYoEk7/NxIhZFhsfBWYmiqGlliq189Ox4CHtNG+Ebl8AMo9VvxLHpIEiwhMjPjr1h54zistiJ2o2GXcRa34/ZfWTmJCAA3d2MZ/u9gFLQdkulBA6ceg4zNOtXIQFTBhDvPIP3A78PUuLx1SF9EsvvTCqNpcSu2qhw2rGppfMJKCZ26NmNmBXWthJ4VVA2xYsUkufevc47XZMzZfe1eHjiQEtyXGRxFFQrjW3REE5bEJUEMhclppBMvPl9zIsvzFzSb3kS99aDKeUluSkK46FxAsd/SrznNDbDjTjwGO6OQznda3NW4LvtMaSUyMBw0u4aueJKz8Ww977P4b+yA3nqxSSn3PI+3C27EIqKlIXtf67jsFwcu/LGDPOfS5GBM3hkPPO9gGIlUGJ+FMVZFuthudjQbDR7FXon071M9rf51q4SuNwpkxJ4YCLMie5hJoNRdJtC91hqYLb3evw49Jvc3lFbPgrbAmKsBKGgn3h8HM0K5qbEfPcZzK63U7/0Tv8EzAk8ux+ZKZ+L8jEeGcf/3L+dUYnGzRDijW8i+6/i3LRv0b6sVqxKcNW1Yx30oHrrZq4LRSt4W6VSAmdSbE9TYnIwq28Gk4NoikYw7mQ4pJTN2lgOfnT/Jr798pUUUV+zV6WjsSKnQHarVglczjRfBHTy6hiHLw3NKZF5Ah/pHOOhW5oolyNmIbEWjVDjtHC4PChxB4sd9y3LIjqH+U+TBBKXjqK8/1N5iR7CJ55Pe+sSMK+8gmvX3SWxXV/ruFQiIL15H5He99LWj4LK+E/+FAU7tj0fwLP3g2l5EAxnBTW6QlTRymZtLAd77TZ+55EtDE6EGByPsqXJS32FPWcfo9UaCmJVkBAQjSfmMf/Fae7RbK1gVVrYE5GpCzkc961E9siWBNPKL1pf36WMdQkE0fHBhe9dxznjUrTjOvSb2HCmMRKL5JyJE8E89RP8h7+Zdq9KAmd8BJuMl83aWC4GwaY6D7tbK2modCyxjtLRmj8BzBUBdfZlz9A1nzzqwrH+Vy2esv3X/b1IK3fbfw0nMdKTKBh6JdbkUF6iB9yejPG1JRKRiKTUV2wRxlrFpRIBqd46vB/+A0IXX4OgHyaG0pz1JGBefxujdSf6vHriNidjURcJVV/5tbEEPDRh8k7nAAnLoqPWR3WFg0jcRsD89QkFUdY0VwRU6bbnfN+HD7XmFQFw1WBD4FEd2GMV2DwVOR/3bbc/Rfzo3zN3egrAdvDpvEUPxoGnMH/x52l1GVXt6HXbykKEstpxqUNBuHc+hOqrY+If/s+M60kgSEjS7tUVndqogt3QkKKM1kkOuHswwI+O35h5xqvDs17HBvDUoY1sa/TmXN+6CKiIJAS0Vruy/u5Rk/9v8Ag+dvtGOuqT8UvK4VhZSKxaMYSMoogpKXyOx313y27cD/4T7J4WVDTslZvxPPpVHPXtaeUXDRFQ145x+8dR0ZMGRoBRtwv3o7+34mKTtYTnX4sHRpk8+UsCZ35FZOBKcdqvbiITSSQ2R2VaeZUElfExtCmtULmsk8VwLCFTmP98MoHvvXWdriVEPi0lrfkTwHwroEd3NfDLs6mu4fvbvGzbUDWTsGXIHy1a+rmVxs5YiIpoL4z3Y1lWXsd9u68O4+Evzxz9JaSFX8hV9OD0NaE+/S+IhcYgHECrbkVGQsuORrqOM49D4MIRzHM/A5J/m5dfwmi4BceuB7AVsH1j60HMrllfB5ja4Cs2o2CliffiikYwkCBq1BJR7GWzThbDF27kJk7+xbvdPLyvbV0EtFI0PxRES62LP3xsK1cG/IxMRLmltQKXYWM0GC+L8AzFxD4Rw6cmUHR7zmETihuCoALF7kP6B0oTsmClseEhPHAZa7gH3eHB5qkrSUpIK2YSPfezFKYsgWj/aWjciqt+S8HaV+0e7Ic+g/X2TzHleJL5b7gN/cBHCF19B/q7sW3YijY1/xAKnkSUkE1DFDksRCGxx54b6xwK5R5yYj0URBEoYygIy0ZzjQfDiKJqthVJwZgPHg2bmAkLn9O2rHqi0QAao2iJwoYdWIkQBKsNx8ZvEHr2L4glkjHqzVM/xmjci2PHvSias6jjEL5+NuPasAC63kPZtL+g7TvcVagf+UMS8TAyMEoiniDwk/8dmDp9nAGjZhvGnkcwrx5nLGIR3fYEsU0Hy2K95YKdDg1l+h0uQA0u1nxKyLKmXENB5IoTcYuRgInDyD/ed75Yt8H3XrtC9/is1fxjexroqHMvqU7D6ShY3P9yUD6uJmw+/18wE6kJSsy+k1DTiq/llqKOg3BWZF8ghl5U5bClGkz+6M/SGGVk+CLmSxexSIqIgv03kJePU/PQ72adx/6gyRuX+vGHotzaVsfe1soVDdvyxfvb+auXryzIfx69rQ2fc+E+dvZP8uq5XmIW3BgL8/ShDpxGaVjzmt8Apmmpbt6WlcTRWILvH7lMn392i97Z5OTp2zflXWeu+FsvX6Q/kPocPz/VT1OVncZKV151ilgUXU75KBZR+ShZeeVnueF4eBwzkJ51SgLywuuw/4mijoOzeWcmq1sEoLYezFpHIbA50oPMEiZNTvcBkIQID5/Hun6Zyp270+bxyWsjHL40m1fqxql+Xj/fz6fu2bJi4R8aKh38yZM7OdU9ljyp+8McuZrUDXhs8OH3tdJS41owp8Cr525y+OJsfvLvvHqFl8708RdfuLskm8Ca3wCWmg/gQu84L50bJD5VT4UB4/PCOZ67GcJzppf2hsqCK5muDQTSmP80/epMH08caM2rTj0yjj55HRkXWFZs1dufryZsBecmxEslKxYuit/D/HEwdj9B5MwzwCzjNZr3o7sri9L+LB7O+uwz7wCIoTMZ14h3nsa1aVvK3I3GEinMf5omYnCkc4D7djYWdO3liz0uY8qAxEtbYyVeezIlZK3XWNCXqG8ilML8p9/F8GSEX7zXw0cPbV703S2X1vwGsBQR0MUbkzx/bjClnvnMf5qOXpngUEd9wY+Y6gLaoImAmbePgqE4MWIV2NwqSiJBsUQeq0UEZCUShC4eQb7ybaxYBLVlB+5Dv4li9xa8Lc1djYqDeIbvcLV1b0nGwbXlEK5d9xHoPAqBYexbD6FXthQ9Cqp9062ET/woORezkAHUMYSUNmJGBhHJeKbzS5JuDk/itbcUdO0tF+eaErJrIPM7MeMWb14cWN8ACkn5HO8On+5fvMIpssitznxxbYWRtc2OBh/k2a6QFsgELCH1Y3S0i8jhvyUSuIGCQG+7A89dn0ao6qoVAflf/gZm7zszbCnWc4xIzzEMvRbt9g/j8tUVrC0hBPY7P0nwjW/MtCcAGx6cex4syjNmGgfF4cW7+4Fk3gRPLVIWP4Kqothw3v+7BF/+zwAzp4+5rE8BNOIIoePaui9t7upadnclu24r2NqTQoJViDWc/MJfrKyuqRmfSQBV7uzrv5C05jeApYiAIotXO0PNPrUox8qgabG72c2Z3nQ50C2tNfmFqVhi+AdrcpB4cJTJX/67GSWehcTsOgKhUdx3fWZVioDiwdEU5j+XzOgQ0Tf+G0JRMWrbCtau7vCiPfoHhC++DqP90LQb55Z9EPKXRAS0ZPGVlSAxfgNNSiRiSfU4KpvRPvSHhM+/BlKgNmxFRiaJnPjhzHu3sKHvfYpJZzOOeT44XoeWdf211+cWaXOxcA7PvtvF2NTCb67QePy2VgxdWVKd0URSBLRYWZtN4CA9KoquqTx5sC3rMxeS1vwGsJSUkBoQW7TmJD26txlFKY7N8eP7NrDBM8rh80OYQHutxsGOBmq9NvJLaSdxadqSUj+GT76UZsEhAXPwAnrURJ3nT1DSVIRLxOHh3rSv0PnPFzv1PNpj/6yg7SqeBpx3tCL9A7OpLqUsWP3RRAzzyN9jDl1EAHrTHhx3fhqh2fOvLxrEf/IFoldexgJs2LEd+jiO2pYl9VHYPTh2P5iS4tO+5S5CvSchMIqz4w7Uqv1YITLMY4WnDzTzw2OpKRfvaPOypcG3rDVGIsF3jnSl1Ns7HuO7r3Ty5Ue3LS3Vqk1i5eJLoNv47P2b+ebLV2dCSCvA7zy8g10bq3LkQMujNb8B5JsSMpZIsKHSoGssXei/o9FFPGExPBGm2mvn7u1NuJw2hvzRotkcb2+tpLrKleKlvJSUdno0gis0Sb6pHxntzvheBWCNdGNzVaw6PwBds2dN3zczbyb6Cp6msZg47h8mePibxKdYiQTMm6fg2f+A65GvQJ71Bd79CebNMzObZJwIibe+hbLnKVwdhfFbUDUn7sZtWJODWJpOOBolEFMzzmO7YeP3GNS1bAAAIABJREFUH91Gz1CAIX+YnRuqcBrKstfeyeupprnTNJGAy4NB7Lot7zoVVc25bJ3X4Hc+sIUrNwJ4vTqP376ZGq9zkdlZOFrzG0A+SmCHJvj6c50EMnh3PLangY5GLz6nDkgmQrEZvFCd5YB9tjgelwMtWo3irclLmUddOwTSY55IQGvYhoK16pTAdm8t5lu1mNHsocFtFRtQ3DVl0+fFcOTSWyTmZR2WgBnsQw+NoXvySftppjD/ufVZV46h3PZY4Z/DWUWNJoiq2XMD+BwaFS0VTIRcBVt7R/3ZFcxRM87GKmfRlMBzcccGD3UVLtz27OKuYtCvVTA4YEYJkwm/fWkoI/MH2NNWueC95Yx1EceBH1WZWtJ5KPOctz6SNkkEYDTuRfNWI6XJxLs/Y/KH/5rAK39DqPfsiit4F8NCCFxPfhW7t5VMJAD99qdXvJ/5YMavpzHsaYqO3MirvkQ4e5ybeHCoKM+hksApJ0ueG6C5yp31WWsr7EusX6RcSySgdzRA70iIhLV4HaWkNX8CyEcJfKI7u732+RuTOO3ashS8J7vHeOVicgFpwAO76qmucBTdXtkVi+CNDC8p0JrqrcPz4Fcw3/gekcgQCqBv2IP74EeJj10n8NP/hxiBWebz6mVk1RZc93wCoTjLRvE7HyuA8+BHcNodhM6+SvTaG1iArvpQd9yL4anC8g+veD9zxdjdGfUaArAZjrSgfQthYcWz6khs7pqi+Q3E9TBjEXtJcwNsbark5Qvp677SAR6HxnBgeUrgrsEgPz6eqrt4+mAzG6uc68HgSkH5iIA8hspoOHOKyBq3jsu+9NR1J66O8MocZ5YY8NzZAQwgCrRVadyxvakoIiC3zcKmVyKkuaRjuuGuQftgIz5fHdKSWP4hVF8dgfd+kcr8pygyehnzx/8H9jv+Ea6GjhUXjyyEVV8d3rs3Yd36IRRPDSCKbhtfDOzaeS+xziMk5iXb1PQ6HO3vQ/qH8wrhoG97BPPi8yljmzwZPVG05zBUgyrDgbOU4lGnzu890s4P37rGjamE7tsanDx9sAVNVRGIJYuANJU05g/ww3d6+cPHt1E7L4zFSuQDWPMbwDTlYr97x44NdL/Zk3avATRWOpkIZXfpXghbFinMfy5NS22vjca4dqSb33lgM/U+R171D02YvHy+j3DEZEtDJR2NvrQyUATRQ/d7Gb8SIfllF3nzmxiP/AFqAW3qiyoaUhRKYRtfFHt7zYn3qT8l/Mo3iYxdBcBevx33/V9ECAF51ufefS9UNWC9/VPi1ji6txXjzk+gT8cVKsZzkPy/1KEdKl12Pnqog0p38uQxHoyh25KK2qXVmfyqf/dKqpfvXDrdNc6WpszrtJS0pjeAvrEQ33mlk/M3R+mo97KrxcdYMJ716NZQ4WB/m5fjXZMp9XzszjYmI0tPDxlPZD5VZKKfH+/mo3e051x/11CAn753c+b+rtEhXjo3xBce6MCuK4z4w3jsQTyRUdQCH9kxFnZWkUDk0uto7qqyEZWsZWzz1uG+/ws4xvvA6UVEgoioiRU1l1DfEJ7G7cints+IAiXp+R8KiU3NxajpIr5K00POFwGNB7OEDwCGgxEqg451EVCx6PiVIf7V/ziOGUsy396xIY5cGOJTd7cuaJ/78K5Gdm6oYDIYxWGouB0GtR4tT7v7VGwpmT3+MlHvRAKHmlv9Tk3h7+cw/2lKAMc6+3j4lmYqRYRKJYxqtyNjhc0BoOz+AGLgQtZTQLIz8bKw/f91wrim/THEivclr1wCqoFT2FY81v9y8bQfQHujl+M9kxmXxZYGz3o+gGJRwpL8+Y9PzDD/aYoCb3YO8+itzSxkn5tAYVOjj+XY3c/H+1q9vNedeTLMJY+NnPMT9I9kN2E70xPkrp2SSDyKGplEsYIFtz93+uqxtt5H5NLh7A80eBUlUj728msBo/YRG+6HRAR7llwCq8EfYz5OaC5CZpyQjDEajKIo4HSUTw6AfP0AGitdNHgE/XMiCAM0V6jUeB0MB2JrIx+AEOJR4D+RjOz6dSnl1+b9bgDfAvYDI8AnpJRdhWg7E10fDqQx/2nq7gviPVR6e/x7tjfQ6HXyi9P9LDTGD+3dkHOgt9rK7CIYh5a0mzacDnSHDyXuoBjKR/euh/Ec+CiTP/izjHb1pjmKPW6iV2woSvsrhaWM4z//BvHzLyGJoDXfhvN9H0fJw95+KThw5kXMSy8hEEgkMXcLrg/9flq7q8EfYz5WpI1XTw3QOT67QnY2OfnI7W0lXavLxdNKYJ9D4/MPbOfIhWHOXB9CSNjVUsudO+tQIE3BvCqVwEIIFfhL4GGgFzgqhPiplPLcnGKfB8aklB1CiN8E/hz4xHLbzkZ2TcWSmdmsrpVeyTSN922uZN/mKvzhOB6njX94+xoX+ma/4u/sqGRPayW5Kp88dp0qA0YziBrv2tkIJMsBRVVEKrod4auGofQNQADR8ZvolRvKQllaKBx85VuYo50zm3mi9zjx3rP4nvxq0doNdh3HvPQSEpBTLUcCPfDcX+B56Esp5SXl8Z7ywS8ev861YQ/YZj9szt0MUX22n32ba1Zs3S4nGJyqKNzSWsk9u+qZVjCrU79nqqPUVIgTwEGgU0p5FUAI8d+BJ4G5G8CTwJ9O4R8AfyGEEFJm4dLLpIZKJ83VbroGJ5mvU9m2cfnBo+bi4UmTw2du0DcRw2vALW1V3La5FiklvaMhrg74sSzJ6xf7mZyKP1DtgqcObOYDezeypyWMblOpcGmMBmN59+3DBzfx3deupfiAtlUZtDd6mQjHCIbDNMUnUK1gURWReOsQQ+n6AAloNteqsqlfDEf9AynMf5oSRAieeQnP3seWVH98rJd4/xUUzY6q2tKStSfe/XnG06M50YXRfwl9TvlyDsoXDQxinn4eYglo2Iq9diOalJzvvo5q38b8s/trnaNsrPeWhYK3kMHg1oofwAZgbrqjXuB92cpIKeNCiAmgGlg8W8QS6V/+xn6++u03GZyYje25o9HBoY7agh31YrEEf/dG10z9Yya8enEUQ1EZCYV5tztzRpeRIHz7lat89cmdNFY4UBW4dNOPlJJNtU5UIXLug8+p84dP7eRMrx+ZSNBS50CQPH6CLLoIaBo79z1G9MqrKQxKAIa3FXvLrrIQMRQKR/svZXSUkgB52NvPxZOXjmAe+ebUW5OouHA98c/QK5tnyliRUMb5JAAM96oQAYWGuwm9+lcz704MX8RSK3B97F8SFi4SZDaYmG8zX854KaEgkKtUBFRoEkJ8CfgSQEtLy5Lraah08jdfeYCXT3Vx4toYW+pd1HiNBdOz5YtfOJ3u5AHwwvnsMWamKQpc6p/k2oCfY12zrvc/P9XPP7qnDY9dz7k/INhY5UixY55bJvlii3t8t7kq8Tz4+5hv/5BIIBlt02i7E/etD5ek/VJi3VdHJgM/AeBtzLtOc7SXyJFvTjHF5L8WQfzP/DlVn/6PM+WVtj3QeThjy5qvLqVOycq/p/kYkSDy6v+XsnFKIJYYJ3zmV1Q5ttKfIRRLo0sse62ulAgo3zpKTYXYAG4AG+f83Tx1LVOZXiGEDfCRVAankZTyr4G/Bjhw4MD8j6y8SFUEWxorGZqIoutqfjH0c8BXBvLJHJBOp7tHuNCfbsnzzVe7+OT7WwuTV6BEIiAJqELBcd/ncIT92Hz1M78LRS8L0UOhsM3uQ9cqiMRSI0kKwGjYlHeohMilN9NOEwASk9ClNzE8Vckvy+2HiHe+QYLY7Bc0oN/6FJZ/FCFsM3WWowjI7D2HTAsunvxNXn6LD951iIun5/syw127NpaNeGddBJROR4EtQohNJBn9bwK/Na/MT4HPAm8CHwNeKpb8fz4tJR9Artijw/hicYUXoJGJ7GacE/4wbdX2ZfdT2nRUuwPLUkpiz70a8gEUAuv3fwGOPYM5ehEJ2NUabA9+FsVw5F0nZjDrPEhYCeRUzgVh9+B85PeJXj0BPWfB7UK59cPYGzYj/QPlPw7OyowbHYDQHDQ31fExVyXvdI3RNxKnvlrjwd0bqHYZjAbjZWHjX8h8AGvCD2BKpv8V4DmSZqDfkFKeFUL8GXBMSvlT4L8B3xZCdAKjJDeJklC++QDywXfvaOSZk31pbdph0axiXi0Zp4gMX0QA/mi8IP4HoXiURCSMXgQ/gEx4NdqfLwXbrDjGfZ/FmTCxJgbQqlpmvnjztutv3oYYyBx+2VHbhEhpN4Gx50HkngenPHRrkRnyFpTjOOg2g7heS2SeubAA2HEHiWgIu1rD47e3M+2D43IYOfvFlAvOJx/AmvADkFI+Czw779q/mIMjwG8Uoq18aSlJ4XPFHXVuorEEz81JIN9aqfHUwTb+3+cuZ2HtsK3RxdO3b+R09wQ3MmwgADs3VBWkn6VSApe78nE52AyOET3zEgRHoOMO3NvuRJGzgdMsRV9W/Z6GbXDhbcxg78wmIABj68NoNVuWFJyuXMfB+dg/IfHjPychJ2HKl8FoPYh310PEVIOqRGmDwXnsNq4PBxnzR+gb9nPsygjhOOxp9fDA7qYlKZ/XlcBlRsFInL6xED67hk1VCqr4ed+2WtqbfEhp4XZomFGLCpfOV5/Yzsun++kdmcDnsbNnYy3bN3iZVtLqNhu3tlXyTmcfg/MkAB/cXY9hK1w/gZIp/CTloXAsFA5cPIJ5btb8UhzrgjOHcT/65YK1pdhseJ76Yzj5HPSeAs2OsukAnp33IuXSgtOV6zhonloqPv1viHQdJwHYazahiqTidJqWMtcnQlGuDQZorkoae+Ry72Q4yl89dynjaf3dbj+nui/yhQc71pXAq5WklPzNSxc5fGH2C91nwCfv7FhywudMeDwco85rJHMPzLnesaGC9+9IOoAM+aMZbfwf3NvK+GSEi/3jCCm4fUst9RUOhvyF6VsplcDlqnxcKk7EgynMH5K/m5E+OPsSnls+UNB2nQ2bUbcemrm+nLj75T4Omu7CPi/AXNTmZDTqySsY3FDA5OfvdXNlaNYuq8EluPeW5kXv/e+vdS0oqo0DRy4N8MDuprzW3q+bErhs6ZfvXU9h/gATJvziRBefvXcbuR7Nio231Hu4fUtNUdJMrouAlo7DXX3Z7f2Husqmn2tlHHRFz1sE9Mb5wRTmD9AflBy/Mshv3bUl670j/jDhHHjt6GRwTYuA1nRKyH94+2rG692jccx4IuXYtZYxUNLjfrmIG5aLFbudrGR3lU0/18o4xHQPFiKv+X2sO3NS984hk2mT00z3hqPZNHSp5HE6lrD2xLLWbClpTZ8AAuF41t8GJkyiCVkWdsPFxIF1EdCSsWb3oWLHmicoEIDasH1ZIpr1cUjFMUWjP1FLfyiBpeYeDmUhGvHH0Gwi471Oe26sr6POl3d4lnURUJnQgY5aXjiZ2Vu33qMztopsi5fuB2Cs+wEsAxv3fhZe+RYJkj4bEjB2PoG+ceeK920tjQOGB1134I6T1/yuc5FmRAHJLH4+h0LWPB6Kwn1bqjl8OXse8I8eaKTa7Vj3A1it9Jl7t3L4ZC+xedefuLWRyCqzLV4qDibMdT+A5diuaw4cT/9vRIa6iY324erYg1BdS7L3Lz6ewBy7SbT/Crb6dmw2rUz6tTiWjgBhESUQU/Oa3wc7mvjZyfSkSHftqFvUj6apzsMnqpwcvzbEaCDC9g2VbK7zMRGIsqnRgyBpvLHuB7BKqc7n4N999iDfOnyJ7sFxqn12bm2rY1ujl+nzZzkogYuJddOJbl9XAi8P1+Fw12LUDKH66sqgP+nYigXx/+IvMcM3EYB5HuJ12/B+4J8ihFIWfVwQu6rw2V1EVSuv+d3e4OafNm7l1Qt9dPX7aapxcc/2BmxqbkpYn1NnW5M3xQBjwq3PBFNcytpbTUrgNb0BAPhcBvff0ohLT2YBK2QwuNWAkVMvokTKPMnKKxN/HXHoyPeJhJNfwtNDbg5eZPLEs3hve7ws+pgVq4K4UJEsba57XTqP7WthPBjLGhBxPRhcZlrzG0A0bjE8GSPusigXxWzJlcCxtaMETsRDJEZ60aVEIspGibmSOBGPYI5cTpv7Ekic/hXWlkOL1mFZcYInf0Hi2iksQmiV7TjueBrVXlH054j7h4jo9YxZUYaD1oqvmfVgcGuIihkKopTYbbcRjyWocWl53atFXdiMxKoXAcmEif/t72PeOAGAgo5+12dw1W4qDxHGCmIr4s86/y1MFHfNonX4X/jPmDfeY5r9JMY6iT37H6j4xJ8XPc2loqjgacCtOKglVhbrbTl4XQRUhrTSopil4kRC8vK5m5y6nkwuI4CnD2xg18aKnOqJqU7CKtisKMoqFgEFX/97zJHLswyKKJHXv47tni/h9NWVjzhjBbBquNHVCsxEuk28tnHfonXEJgdSmP80WcQJnjmMZ/sdxX0OARIVxMqvt8LgdRFQ2dBqFwH98r2elJwBEviHYzeIW+ByaIu7yodiOOMxHJExxGg3tkQUFH1ViYDi5ngK85/7LmInfolV01bw51gKTsSDxPo70es3IzRPSfug3foQseM/mAlAKAAVG869DyyajjMyOYCYep/z3y83zpFobC9q3yPBMSb1IJO6rbCimLjFie4Rrg1O0OhzceumGqJW8X1/1kVAZUTFzAdQbGzDypgwBuDI2Rt85I72nOph9BrjL/1bRHQQARi1OzD2P4ZYJfbnUf9IRgYFIP3jZWDHHsT/3i8xr72KAAKA0bAH+/7Hi/KOM2GtaTvuDX9K9PTLMHod6jow2vcgvBuxFqlDsRkZ3y0AvvqZfATF6HsChYR0YbO7cYjCrR+FBP/1pa6Zxxjw+znR6+eJWxtprTKKum7X/QDKiIqZD6DYOBibnxtploZMcqpncnSY8PP/jRY5iIMkEzWHzsPhYfQP/dPk11iZ+wEYDgeZs+GCqN2AEllZO/bA+Vcxr72GZHaTMvtPwbtxPHf8dsn6Y3jr0Pd9YOok5k6OQw7vxuGtI+5sIhJKtacXgH37HSn5CArd94SiMRG2iMZjRJSl2c9nwq+cG8g4X5470Ud7o7eo63bdD6CMaDUrgV32zAmyAVor1JxilY/1vIMhQylBnyRgRoawx0LolS0gy1sJLCyJseV+zMsvp3ypKgjs+x5fcWVsovPdtC9oCZh95/C6qopih28O9xC5fgbc1bjab09T1OY7Du4nvwov/lfMoYtT66YC48EvotcvLR9BrtgmFLwqRJ1ODKEWbP1cH8ucqi8KaCo4NK1o63ZdCVyGVB7Kofywpqrc3VHFa52jac/z8J6WnOoxx/uwYRHHhkZ8ZiMQQGxyCL2qZVUogd17HkLUtWEdfZZEdBxb0w4ctz+NzWYreFv54gSZUzpKQFpRhM1esLZQYOLVv8O8+kryXQPm8e/hOPgpPHOU4fmOg6K78NzzWTx2X7LP0TCKpxYpl5aPIHcsMFUHkuTfhVo/KqTlFp4mVRS2rXS8rgQuG1rtSuB97dWE4wlOdk0QA7wGPLy3GZdTyylnQKRqK4mhTpS4RQM3mY5vKQHd4VlUQZgvLp4fwBDu+i3Ix/9nrMlB1Hmx5AvbVn5YdzcRCaSHI9BxQTiARaBgbYU6j84w/+lxBIi88x2cTe2g2Jc1DupUhYkSvb+wzUlX1I3HnsCSiYKtn20b3Jy7EUgbkyonROKScCy24krgkz0jnO0ZYTQEDV4bj+5vZdvGmlzYWsFozW8Aq1kENI3v3FbPh/ZtBGTeOQM27nkfgWs/Qo/HmP7AEIDRsBO9Yduq8QMoZ2wcfJroS3+RkgJUANodv1HwtqyhqzNMfz6FRgdwt+1fVeOgKzoVCQ9Oe2HzYDyws5FwuItro7ORwNwqPP2+zWXhB3D8yjCvXJgNRHdzMs43Xr7CbZvr2dKk58zflktrfgOYpnIQ6awEVnQHG576V5iv/w2y5yVsqNh234976+1TL6awx3rJyoliVgrrlU34nvxXhI//DNnfiajZgH3/h9Hs7oK3RVb2Dwi56sYhprmxEqLw814IPnPfNgbHw1zuC9Bc62BjlYuJUDJEhD+czNDncyV1AYVdewuLgCQWPz/Vn3EIv/3KJf7sk+/LPsYFpjW/Aax2EVBBsLcS1/s/RcWOvbhcHgQW1uQgArXgx/rVFoe+UNjmrcN98CNFF0+J6k0ofaeZn85EAo7K+hmR3moYh6XmAMgH67pKXZWDCpfBZCRG92CQb71yifGpJGI24IkDzTgMW8lEQBPh+fGJZ+nc9bFcWVtBaM1vAKvZD6CQWNMcSEcdCaeOYsXX49CvUmzfdAtyog/z+tHkhjA1z41bPwLO+hmb/3IfB+JhYvYabEb+OQCWihOW4CcnbqTwhzjwo2O9fOrOjSXzA/A6sidirHKXTvwDvwYbwGr2AygkTlgW8ZiJIxJFsWLr+QBWLQ7iuf0j6B0HiV49Cs4aHJt2IaKxFJv/ch+HaDjIpMtOwKYSiOUfc38puLNvMiufePfaKLVeZ0HayuYHYMbiDIdMnA4X7bVGWi5jgI/f2Z47cysArfkNYC0ogQuBFXs1sXgU4YqgxKMgi6PYWy3Kx9WO7e4a9IqmmfwE8231y30cNFXF6a0goWrIEq2BRDx7HuBYLF40JbA/EuP7r1/ipl8C4Fbg6fe3Yck+rg3PbgKP7G7grh1Ny+J3+dKa3wCmaaWVsSuNLQlRoQORoir2JCuvWFzHyx+H2OQQsfAkenVh/UQAhAIxoWMpSfZTqjWwscZFNmqp9i25fsuCWCKBqihT12eVwAkLvnP4GnO/9QMWfOv1Lr5w3yaqPQaToRhCKDTXuLP2r1i05jeAdSXwLPZHItTHA6jW5LIUePHRHiJnX4au06AqiF334tywG+kfWhXKx18HvNRxiIfHCb3wDaKx4Rn9gr7tQTy7HixYH2PCxlgwQdhhElYyJ20vBnbYbdS5FQYDqScBA6irtOed/F1RBee6x3j+3OBMXdubkhnJAmZSCXyt30+6oCdJRy4P8cieDeiaypA/ijccWw8GV2haFwHNYkXWgWpHxh0oSzy+J2Im4Te+TzQ2yvRUFe98F9nxMO5b7it70cNqw+ZYH5GeU2BzYt98K7YcY/MvdRwmn/n3RONJz/Pp8TUv/gr7lvehV7UV5JlsQkXXNVSnE72A4R9ywR+/o52zPWO8dWmYqITb2rzcv7sRMybzrrNvLJTC/AEu3AziVge4c2cTXrtGbAGxkxlNzX2wHgqiiFQuopiVxAkJpqLjUNTZiZbn8T1w+c0U5g9JRmF2voBjy20oDl/ZiEFWO5449QLmu9+fZcTnfobRdje++z5TFBFQdLyXeDw97IgEIqdeRL//C4Wx/RcaY3olTsWW3KxKuAYUIbhnVwN376xPSSEZieafQvL5966nvSuAY9cDHNyWFAE1VToylgHYWOVZ3aEghBBVwPeANqAL+LiUMs2QVQiRAE5P/dkjpfzwctrNh9ZFQKlYlxIjFMaYGEFPfnjkdXzn6jspzH+aBBDuOolD1dZFQAXAscFLKcwfpjbarteI9OxBq9hQcBFQdLA3+0KaHCxI2BBLqPj1ZvojFlVFsv0vFR7LJtsBrg8FOXZ1iPPX05P0AChAfZUzRey0GvMB/BHwKynl14QQfzT19z/PUC4spbx1mW0tidZFQKnYZVfAVoeaGEfx1uR9fMdTD8Pp+WcBtJoNKN6GgoiAzKGrRLpPgqMCZ8fBoqclLDdsXn4r4zuWgNl7GaN574L1LEUE5Ny8B/PsM2ltCoDW23JKLbkYxl2L4qijUi+P9ZALDkfi3BgJoukaHrttxiG73gUDmeMA8uLJm2TO5AG7m108ureZWDxV7LQaRUBPAvdN4b8FDpN5A1hxKuaxciIc5Y2L/QyOB2mo8HDf7gbsmlrSo22uGNWGJVTiqo4GeR/f7bvvx7z2esqXKYCKB6N2E5LliT5QYOLw32J2JdsQgHnqRxj7P4bvlg+suFimVBiR3VkIRRRFBKTqLowdj2Ge//nM+ApAEz48u+9b9jMpqsDUHERRkdIqi/WwEI4nJD94q5MbE7Ny/OePw5c/uBUp4dH9bfztq11pw9PiE/RMzF8hSfr8fW00V7mRUjIeSxc7lZqWuwHUSyn7pnA/UJ+lnF0IcYyk493XpJQ/Xma7OVOxRUA9w0F+eHT26NwzPs47XeN87p5NRBOyLI6q87EZieEKRVBIYLPi+R3lTT8KNhLEZ57ZhgPnB76INTmMjEaWJQIKdR6dYf7AzP/m8R8Q37gdoTjLQkRTbGz4qjNajwjAaNq+qDhmqVZAnh13orgrsM4fhkQMNu7B3tRRkKim4cAYk0YHY7q14msgF/za+b4U5g8QlPCdVy/zwN5W6rwGT+3fwIsnbxCIgw7curmCnoHMYh+ACzcm8DiMjG2WpQhICPEi0JDhpz+Z+4eUUgohsvW+VUp5QwixGXhJCHFaSnklS3tfAr4E0NLSslj3FqVih4L42dHMctNXzl7n4VtayyYUxFxss3uIG9Vgl1j5hIXQ3QSf/9MU5g8QJ0wCDcWhLTsEgdWfnvsXkowvONCLc9P+sghlUGysVDRiHPgk5rHvprwHo/1ebA1bFk3zuJxxsG85hGzYhOJpSF73DxQs9SN2H3axvHkcMeO81zmO3abRVOMo2jo53pXZc7g/ILGrEocNtje4qfO0U+2xIS0YDcYZmZiEYGbrnwqHsbpSQkopH8r2mxBiQAjRKKXsE0I0AoOZykkpb0z9f1UIcRjYB2TcAKSUfw38NcCBAweWvR0WMxSECAoy5x2CayPxFQ//kA0jbYQSDioi4zisYM5u/OboTawsTxw/9yL6truXHYIAGc9YP4BIhFEi/rIIZVAK7Gm5BUfdRsKX3gLNg71lO0oigRKZxJKSUOc7cPUEcXMSW9VGHAefRHVWlWUoiISiMRazEYvHMJeY+tERs/Hcietc6E9NEHpbi5f3b6/5ry/QAAAgAElEQVQr/DpZgMYjCbyuzDxlb1sDV0bS80OogNdtEI5nvm81poT8KfBZ4GtT//9kfgEhRCUQklKaQoga4E7g3yyz3ZypmEpgp5E9ZaMCOaVsXCls81Zi0xWUuANkbgo8ywyQ/BbPMEujkWQGqWX6Adi23YUYupjWggRcHXei2Ox517kYNoevE7nZiQiN42q7bck+EsXAmrsG1fClhXzwv/0TzPPPz7yn+Ohlor/89/g+8n+hFmAcCo2FoiGdlTidXuxiaXN3YCKcxvwB3u2Z5N2eSX77ztaCrpPtjXYu9EXS2nMpsLHSmT0URKXBQzvreXFOXmKXgH/8cDuKyJ4nYDUqgb8GfF8I8XmgG/g4gBDiAPBlKeUXgB3AXwkhLJJ88WtSynPLbDdvKoaiSLeptFXZ6BpN/2q9q6OqoG0VGsdUJyFVoshEzj4BjvothDMwfwGwaV9OysfY5ACJcADNcGQsY6/fTLz9Pswrh5N1TbVhP/hJVN2BlIVLUThX4Tx9yTzyt7ju/SLOOekVC9FWIbEVC2Ge/1naSFhIwieexXPbBxcdh1LjmOYhkjDQFJL8bglz9+jlzDH0p+lHb3bzB0/tLtg6+dCtG7nQl27x9vG72ha5V7Cz2cf7tlRxYzSMGZdsaXSDhPHgwv4GpaZlbQBSyhHgwQzXjwFfmMJHgFuW085yqNhK4Ef2tfKdw1cIzklA2lKpsbe9muFA4RVUQwGT4aCJgiAhl65kHgpG0SwFNZy7T4DqrcNovxvzymszzEcAhlGLs76dxER25WM86if84tcxI0MzZwhj9xO4t94xr50hPHsfwdi8F/PKUXBW42jbhYhEsCaHFu1jPjhw4c0MCmdJ6JWvY69uQaKUhUI4LVzDcDTbOQzZe45E+/6yCskRUe30W3X0B5cX999cwKsWkmL3rqEgFS5tyWvMsizevDzEe9fGiQMuFVrqXYQjMex2jfd31ONx2hZMxzqbD8DA59IZ8keZDMcXbb8slcCrnYrtB+C12/j8g1sImnFGAlE8Dhubaj2AREEUtK2e4QDfO9I9kwzEAD53fzv1FfYl1ekyFNDy8wnw3vlpAtWtWFfeAdOE5l149n8IoepYip5V9BD+wX8lEhkCZhmXeeYZtIZ2jAw2/oa7Bs1dlzXaZUFw/4XMTBQLMzCBvWFL4doqINYUJWO/AURFXUFEcYXClqISq+zAUHzUKrFlrYHb2+vpPX5jwfXuNlR8Dm3Ja+zwmZscvTZrxRNMwPmbQT53dxs+p55TOtZcUkJmwishAlrA2Hht0fTxau5Rq1AYBM3VLva0VFDpNIrSViQa529e60rJBGUCf/XyFeIJa0l1Ypv1CZh6jJyO9a6NO/E98VW8H/0TPLvuQtGMlDKZxD5moCdtTCQQO/GLlbO1t7IrnGUiXhaik0zY5qnBqNk2Ix6bJgHotz2WdRxKjYUCcUUnoTiQYvlrYHdrBZuqNLKRDaj2Gkuu35IWr15OD4UB8Nx73XnUKZbJT0pHa/4EUA6hIC71TvDahX7CMWirs7N7Q3Xe9XQPTmR9xmOXR6ipci6pb5Eo2ENRahnHZsWWfdzPJHqIRyNZRRb4x4qSOjEXTEMHynhXWnpFAMNTUZDQB8XCzvd/HF79O8zxawAoKGgHPobuqlpQFFdKHFM0hk0FM2QSUQoT9fOJ29s40TXCqxfTGfX9O+tyErXMxQkpefV8H6d7A1nXF0BfIPc6F0sJuS4CKiGtdErIY5f7eb1zlnl3DkboHLzB7z6wGZ9Dy7meYCSbwSkETJM2zbOkfgrFQ8DYSIU9gmKFi5IS0la5MSPzFwAbdiEd7hWxtXe0H4T+a0THr2BN9wfQ930U6awueX/yweDBcfencOguEpEgqpAo3saySQkp7V5iioOAzYvdcOCwKNC6UtjeWMkdW2o40zPBpf5xGrx29m2uJhLNf53/jzcuM5huWJRGFVru/V8sJeSq8gNY7bSSKSEnzFgK859LL58f4AN7N+RcZ3OVlxPXMwceaaj2LKuf48JNbcxEj4UQOdp2I/pIBCcQiRiK5py5nsn+XNWcGUMMqNhx7Lwj5zYLjs0Qngf+MeG+y8S7j4GnAfvmfSix1PSKijZJPBog1ncZo8lC0dwrblc/992qRtI7WtHLJyWkNIKE9QqGowZVWezel4UT/z977x0d13Hne37qhr6d0UiNnEiAYM6iRInKwQqWLKcn2R57xhM8wd6zu292Z88cv/P27Xu7Z2dnz+zb2fHs8/jMm/F41h6nsWxZlm1Jtiwqi6RIkWIGCYCIRAY6x9o/mgjN7ga6gQa6Afb3H37ZuLeqbtWtqlu/qNFeX0aZw4Lbadz4PbfUktdGvVkt/gD37KxfcUrIpfh69AMoeuSiBLYZKkMTAVSRe2zwdHxwItWGeBbXhn2U3ZG9smqT28ZbF4e4uchml8qOBiczgeWntBPSDppAxlRUGV1UsRePRfEf+wGhvpMIBBKJsfleHHd+BkXGCQb96CYjVXl828fwV7iJXngTvDNQ34H90NMohmN1FLxZczdWezXx2o4MCucYnhM/JdT7dsIb+QQYrYex73u84ArWxXghlcACiDprEUZNUQd9W8qqCBIfKk8faGBXs4tpf3ZK7PWkBN7wG8AslrL9Pds/zStn5x03nBp88cF2pFSWbU/stGbWsVc4EgOdbZmqEPzRI9t45fQQ565NIQTs3lTO/TvqkpROy2lnXEJQd6DFo5hVEypkVOx53n2OUN9JJCBvfM+HrrwGoSCR/veJEwHAcLZgfeSPUReUYantQOm4Eykl0juGYnGST7v+1eDeD14h1Pv2jedNINTzNmgGZUc+h5Qx/AMfEj8/Do5qbPWbCt7m5QaDy5fiN6BZiBg1BIUJKXOPs79WvOKGwjgd7mkv567ttXgDMSociZwBmcoZmAzwm3NDxONxOmpdbKm3L7tda40NvwFkowQenAgkLf4AM1H4+i+7+MSdLXPXd1/3cr4vit1mwmxSl1TsBCJQ5xQMzciUdh3sqGM6EMlZGdbe4OLObTVIKRn1hPGGYlnfuzg3iPjDlHumUOMxBPE0ij1J+NK89+ksJBDsfzfpt+BML/Inf4n1ns+jJZWxvnj46mtpnzfS9RuiO+/G9+LXCYdH53QIEcD+wH+H7nIXtP2FUgJHFJ3xoCBkiRJUcn+/15KbdBWHAp40B4EtjRX4wzHG/WFULXM5r50b5GSvZ+6+MwM+NveauL2zvqQELgZkIwL6ZV/6zD4hIBiOYzdrfPfNK3SNzMtfzMCXH9+Czby4GOcL927he29coWdy3uTw/s5qdjdXZGxPobihV0GsBWFXUWIxbj7iC1tlWouZTIhEJojFQ5iKQCSybDv2DM8WA3zn3iYUHp3bIOSN30NvfRfj3/zHgra/UCIgoehEreVYrE6MZYZ8WCkfnPDx5oVBpmfCNLltHNhclfH6P3q8kx++dZXuicTJtdyAj+xrvpHJa/G6IpFY0uI/iytjYfa0xUoioGLCYscujy+zrD4QjvD2hetJiz9AEPjO0cv8wcPbFz3WmXWdL9zXydB0AFUIKu0GnkC04MffdDysmphRyjFEEEMEUo74QlUxTNWEwqPZ9jpR30xSGeuNm821BIOpIQjMljpil95JOR0AhILDxILTKLeSCEgVxFCJmJwrDvmwEn75+gz/8ta8z8nUgI8zAz7++MHNVDvNKddbTTqfv3cL454wZVYNTVWWDNcwyy/0Zw77fPX6FLuaynJ+jrXGht8AshEBNVeX0T+dkskSAItJ47XT6WOQDHklw9NBvKGlbX59oThup4E3FC2K428mPhUx4fLNQGQaNc0RXz/4JOG3/iHtwnczJBLdZOQ9hMNacm3HEcSJHyY9rwC07UeInfh5xmeP+yeRQX/B2r/WIqCoZ5SgXsN1aWLYu7KQDysJk/KDt1IdDgF+eryHTx7enPHeyUAEXVeQ4Vj29v6LTIJQNJ6U7rEkAioQsvEDONxeybtdk8Ruundfo5Vqu5ExtRuASqzg8f3zyYOGmYC1Dj1kRosGMG6y8za17kOqv0fs/JvExwZRKt0oe54i8uv/lyjBuYVSAEbzYZTyhqKxnV8O1+u3YnP/OdGTP0Ne70XUtqLteQxd14jOTBC9/KuUzdAw6hDOOqRYeRz9fPpjrJ5PAgTjgqjVjSbM2E2xgry7JlWSybe7fzqGRc1vvftbXLx+cSxtfTsby0t+AMWArPwAUPjE7Y10X/dwvm8aXYM7t9TSXu9gzBtha52NC0OpNvgqoOs6095I0cT6Xyn3RGJYpEEsqlAeCmFoXhTiSXbehuFAvecLc1+BqrOK6Ef/lMDJnxIfuIJiMmDnfdhaDiA9o0VhL78SbnG6kXc+m7C1dySivErvBPYdd8PABcL+AWZD3Qo0zPd+tuB5C9bSDyCoGgxTCTGdiKBg724oc2QPVCAQy3O9FoPHd9by4ofJEoLDm8vRdS1j3P+SH8AaIns/ACvb6l08vq+RaX9kLuiTQPDkgUYuvXAxRSH42SMtuKwmBPkN+lYM3NArF1UIp8Stj1ehHnomoXwMTM/b1EPBFbn54KGxPoJv/5Cgrz9xunF3Yn/gD3F86t8TuPou0ZkJhKMCa3Uzmquh4G1eSyWwottRwg4sFiuyQIrfWd5Za+HicOqZ/b6t1SsKEpeJH+yopMltZ2jCRzwuqa20UWXTCERy9yUqBYNbRawkCJXVpPNnT27lro5yWit0bmt18tv3tLLJ7Vh2mcXOw6rBdVMNQWHOWSlYDMrbfPJYYJqZF/4TQV9/oo+A4MhFvM/9JQiw1LRTtv8JHO13oOQYWG91bfJXsR4FpKoR1Gx4tCpCmOdWk0K+u5841EpLRfJ37dY6G3dtd69avYamsG9TJfs3V2LV1VIwuGJCPoPBtbjLuK3dzawNfq5KnnXHQzp6XKMm7EPPMmDbcpSP3gtvQde7hMOjmCxu9INPY1S35scu3T9ObKIfo347KPqyyvH3n2XW6S3p3QoNE7xyHN1sW3E7881XWwkcQ8Hv8zFtMeOJCUZ9YUSh39cb/ixPH9pE74gPRRVUOQy8oVjOQeJWwkvB4IoIq50PYKNzk6WWSEigEEF3lOdd9DB94Sihc/PZrYKBEUKvfwPxkf8BU5o8AdnyWNiD56WvE/JeS4RwQGC6/bew12/NuUy8E2mW/8SCGIkEMKpbi0ZUtWYiIKEgjTrMdhdCqMgieV9neUu1bU6Mm20Ih3zx9RQKoiQCKvFFuVQEIdVBSHERE0peRQ8yHifyzvdSFlcJhN/6/opEFYFX/pGg91riqxWIIwm9+8+EJnpzL7NqE5mmpbmqueCinjUVAd2w9w+aXIyaKokoiW/IYnlfi4OXREBFg1xEQFIIRqYC+INRFNVRBMfZ4uBqXCCDMZpkAEvclzfRg4j6iJM+zHXYc23ZeQLCnhFCaZy3JBA5/QrxytacyrS1dhI9ZSK6oK0CMJyNaIa9YPkMCiECmrf3NxjwCtxrZO8/4glycWCaiWAQu25id2vCk77Qc6MkAipyZJsPYGLGz3fe7Jm/8QO4rdnGtpbKgtvmF5oT15mxNRM0fBCbQY2EEHmwPxfmagSknAAAdOFadp6A8PhgxnLxe3MuU1hrsT7554Tf/DbhiS4EoDfuw3r488R1vSj8FbIZhwgQPPYTIn3vIdDQNh3BvPWOjGNZLPb+454w33072cHr5JVRfu+hjoLPjVI+gCJHNn4Ak54wvzgzknLvsWs+jl3z8YlDjTRVWIvCTr9QfDIqMFkrcQTDOMNR9GCqf0Du9udWTO33Eup6LWmxFoBy4OFl5wmwlJWRLriHAKhtTYn1nw036Qba/o/icLrnvorVWBAZCxaNv8Ji4xD1TuD/zd8QlrP5KSLErr4Kw2dxPPrfIhGLl2eawadYC2Lv/723e1LGcioCvz47zLamyoLPjVI+gCJGNkrgdy6kD/Uwix+/189Xn96e9t5biTvMOobmhrg/o39ArspHx+HPABC+sQkoqOi3PYNj231JcfmljOIf7yMe9mGU1aIvrNNsxfvmdwn1vgOA4d6G0XaEUPcbcxuLAFSs2PY8UhRK2rVWAgd7jhOVycmJJBDyj2DyTWGu6chYngAiznpiRg0yCPZVtvfXVRiZCmPWBboK06H08/KDax7u2VZXFHNjvSqBN/wGMIvFAjBNBjK8YTcQB0amgxi6tqaBrYqRhzWDKVMNmvBiKMGUgGeSXBWVCo49H0EcfpZYOICI+FGdiXDXs9eEJ3rxvPAXJNzKJEHA2PIgzsPPgALe5/6SUGBwbrEPjpxHxYT57j9AnvkV0jeN2LQP297HUaLBrNu2nvnN48B4f8bIpuHr3ZhrOzIqkn2alZi5Fo+wEJGRhOnIKrxbsTi8fGaQc4Pz+XlbytUMrU5sYIWeD+l5Qq6/nDLWGht+A8hGCdzkcnBxOHNEUABPMI4nXBxKpoLzkI6i2KkOzKDPTGBOfMCsSPmoysQ6FZ8ZQ6AsuEbifeGviN0UqSl06Vf4yush5CO8YPGfRZwwcvI69gd+/0a4CjcyEiRWJEra1eY3jwO6Oa1eRACKYSLuGUtV0gM+xcpAxAoBiIjVje//3uXRpMUfoHfy5ghd89jeaCuO+VBSAhcvshEBHeqo4u1Lo/gyfCLpwOYa64rSLm40brbaiVtNRBAYdh0lnhAH5dv+POSfJp5Goi+BWPcJcG9OWdRm/453AsVeteI2rEd+8zjYtt9DuOt1bnZoU7Fh33IPCCWpjDmxj7kWGZCrLvZxmnXe65pYYjbPw67CE3sbCS0j5EJJBDSPDb8BzGKxY5emKXzh/nbO9IzzxpXUsNC/c18rK027uNE4AnyqFb9Rj6Z4MEiIgyR5FmVEQon/pFvmIyG0MjfhNH8VAJUNeWlDPOTBc/EdmBhAbdmJtXlv0Yh6MvYbyb8puhXnk/+e4Ct/TygwgATMrjYsd3waoaosFLmtpdhnIV8klhu/e08rAxMBJr0Byh1WDrVXIBAEw8WYcrIkAioaZOsHMB2McnCLm/3tVZzrm8YTDOMw6VS6zNgsxrLSN94SPKShCCvVwRmM6XGUPNufGw4XvjSLvwBo3olutmMyVREMJ4flVVCwNXWkFW3kwkP9p/G9910kif8rPW8SM9yYD38SPU/PuBo8nShOd7rRHvsy5vFe1HI3QrEQnxlhYb6GhNjHxkDUtiZin4W81iEY9qSOtQ4EopJtTS6kLGPUE8YTzFcq1JIIaNkQQnwa+A/ANuCQlPJ4huseBf6aRFTWv5dS/sVK6s0F2foBzHOFTW4HlQ4NGYcJX3TN7Yk9wQgBfwTdpaOiFI19czpu01VUi4OoCEOkElW3YBLZ+QFkw6W1GtNtnyN07Ntz24AADFsjls77IDCO5ck/hTf/hdDw6cSXbVkb+r7HwFpLfCVtkHFC772QpDyNA6HQCHSfRq3fkZdnXOt8AMJZDdaapL4BSSwaImStwW9yE/BBmUlHi7Nm79Nje5r4xzdSE7o8dbAOh0kr+Lueix9AVFfoGZrh1LURJILDW+porbRuOD+AD4FPAH+X6QIhhAr8LfAw0A8cE0I8L6U8t8K6s0JW+QCKhE8GQvz0/avzSeRPwt0dlTS5HQVv26I8phFWnMTi1TRE/ESDQcx5tG23N+1A1z5LZKgbgl4ob8Cx7S5kNJCwUdet2O98FvPUvYT9U8SnxoiO9WGuqEeiLLveSGCSCN6Ud0oC8d5TKAeeyNsz5pvnmg8ghkIoBFOU441bmIyG0XOMZ79S7rSbeXJvA5eGJukf81NmVTmyvY66ciujnnDW5USiMc4PTeKaNGiusS2rPde6vRw9ex2/hEor3LujEbNJy+peoaj89EQ31xdkm+99p499zY5F/RbWnR+AlPI8JGRei+AQ0CWlvHrj2u8CHwPWZANYT8Hgvv/GAEPe5Dfg9cvjPGUzaHfb16w9Fl3h0tAMvmCMpgoDQ9OXvFeg4aWJoBIF3UhSDOdDsWnU7sDaeT8yLm/4B7iTromFvARe/zaRyMRccpbY+TdxfOqrKMsMKqeIzCaIKFpRKHvzFQwurFmZslnQ7ZU4b8ilCzEHNtXY2NdWDsikvBzZltM74uW5EwNJQ/XU3vqc5s8HV8f5zaXxufvH/fCjY/18/GBTVm0YmPAlLf6zOHnNw57WiltOCdwA9C34fz9w+xrUm4TiUA5l5p5AOGXxn8U7lwfZt6liTdrTPeLh+ZNDc3X/4swwT+2to9XtWPLeCBp+3cS0uQFNmZlTDCcGYHWVn97X/4VQZN6KJA6EYxP4jv4TjjufXVaZmr0cw1RNMDya/C4BSsfBtPfGI168b/8GBi6AowzzgY9hqmxZMyWwlFEi0wPEgj7MVtui1woForqJiGrFo7vxRAQuJTGYhZ4Py+GeYDhl8Qd4/tQgWxudmHV1yXJiMZIW/4V481wfu5uXTvR+rj/9/QDdwz7qXFbePH+d969MYNLhzs46WmscxakEFkK8AtSm+dNXpZQ/yXeDhBBfAr4E0NzcvOLy8pkPYDX5wHhmZ7RJH2uSeyAQjiYt/rN4/tQQH9urZK0A8wRVFLWMal+qnwCrxEP976Xtu+DQaSxT96Mts3z9wCNE3v4+ksjcycLkbMHcsJWbk91Hg5PMvPhXxIkjAbx9hF74EMttn8NcVr1qzz7Lff0fEnr3X5AkjD3Dwo714T9Es1emtfEPCDPjQZWo2Y4/nl1M/67BGYLRGE6bgcVQi2b+SCl550r6/LwA71weY19bxZLleIOZbZFG/NnNQ2TmIMvBaJSvvXgez2w1IXjh9BCNZWP81n2dxacEllI+tMI6BoCmBf9vvPFbpvq+AXwD4ODBgyvujfUiArLWZH5pNtVa16QNF/umMrZhYMrHnhtH88XKmbWBNltNxC2bUvwEVkv0sRhUp3sFoqftmD/3f+PtfR851o+pZTdGTTvSM5ZyfeDE88Ru8reVQPjYv2L9+L9bVbFPZGaMwLvfYeGECUsv8Ze+Tvnn/wplwbWChI1/xFxL0B/FanWiicRXf6ZxtRkq33r1An3T889nE/DHj2/BalpaRLgWXF9EfKIis0oJadUXj5CfTXsOb3Fzbrgn7f1WXZ9f/BegfzqCPxDZkPkAjgEdQog2IYQJeBZ4fg3qTcLs8Wr2uFZsXNMU7u6oSNv2uzrda9KGUDSz12U0FsuynIS/BAJ8ipnr5gaCipmYqhJXb8jUV0H0YdTtSttuc1XnistXdBOOzbfj2HEvlrotCCHSXh/tPZ22DTGCRH1Tq/bsCAh1vZO0+M8ijp9A//m5a+Oqil+zErhh4x/EPPfButi4/ub0UNLiD+CT8IO3rix571rx9hpXmh5IoLOhLKtyNHXxJTEWjy1ZjrvMzANbUz9KPndnE/1Tnoxld4+lGhysNlZqBvpx4G+AauBnQohTUsqPCCHqSZh7Pi6ljAohvgL8koQZ6D9IKc+uuOVZYr2IgKSUNLmdPGkzeOfiEFOBxJf/4S01BKNyTURAdeV2IP0xutJuyaoNKTbQQRVFdVEdGgGPB1scBPG8i0Es+x4jNnSJKCEkiS8bBQPzbU+uarz+aHCSyEgvRmMnmslKNOxP/yKGPCkio3xyplOj2SYgiU71EVMFEUUnoFUzEHai5Wjj/+bVVAdJSIRqGPeFmPRFCz5/TLpCW6WJ7vHkHBObKgzMhp61L89iGJoM4bBqS86B2kobf/RAGd3XPfijEXY3V6KpAlXJbFigq0rxiYAWg5TyOeC5NL8PAo8v+P+LwIsrqWu5yN0PoLC8pcnJjgYnE77omvsiNFUYbKmxcOl6IKkP2yo1NtXYlxUL3aarqIbGjN5AIGJQYwlhyABykZwCy+HC7MD2+L8lONoLI71gd2Hd/gDoJqTnet5t7WPBKfy//gdCU4n8AL7jYFR1IsbGUr7EjfJ2hLN6VW3/adyGMtmVEvAtDlC3kxODAS4M6bjcJuqrHFTnaOO/GExCFsX8cZg0nrmzjfP905y4ch2TprBvs5sKmyWncioMmMigkqt2agiZ3Rwot6m4Wl1M+KI4zQoyDvtaK7gw5Etb9o5G57rzAyh6rCc/gGLgB9tr2N4Y4cy1MYKhGPs3VdNWY2fMG8GWhV145ljoCmPChaLEqA5ch0VyCizPZn+C4Ds/Ijx5FYEJvXEnSsQLMX1VbO39b/+Q0NRVJMwt+MGxi5idTYRm+uaCVxiORqxHnoFVtv03VzWBqZpQeDRpA4rXH+Y/v+EnoBpM6xCbmAKm+N17NuGwalm/H+3VZrpGU2My2RWICxVvJHs7/dXmrTVObFYzbqeBlJJRTzird3eW79/s5pVzqSeqnY0OQjGxgjkgEYrK0/vr+fH7g3PlmoGHdtcTiYv15QewHrBelMDFxMvcdnY3u5LssAUiL4GwzFYTIZuNkG7HMEfQYuEkBSXL4NKw4PnRXxMjcmPUw8T734eQD+djf7qsMhfjsbCP0OTVlC99AEJBKp/5vwiNX0NBYG7cnvBd0EZXVQmsSYnjU/8ezrwEl94DzYBt9/OP49sYjhigKMTE/HQ/er6fzx7pyPqdeOpgM//555dSnvmZu9uyUq7ezIPhOGZNYNK0onnvZ/mOJhf1FRZeON7LRBBMwCO7a9lc58zLHChz29nZ7OLysJcKm4kqh4mZQHTD+gEUBQpto3zr8MQXUqa/IyCEyrRehcmiYg5OomoeLEJBEbFlKUI9544Sn1v8E5BAaPQi4cl+dJM55zIX47FAZmVdNORBtTiwNGxHesfyWu+SymqTmbIDT+Hfdh8RWw1jERtnXx5IyEFvQtdoQk6ezbjG4xAIR/jM4Ua6R3yMefy4HVa2NZXRUGFDyuz9BsZmgnz/rS7GbkgZqy3w2MFWXDbTst+5SCyKIpS8vsdtbgdfeWwHU74I5XYTUkqmfNkGnlt8DggBCoIap3mu7Nnf1xobfgNYT2n+up4AACAASURBVErgjcCzDYSVsDk30OJWYiE7DcQxx2aQM+OYEh9K2StCB8+l/RoXQHDwLEp5U3blZMkVKVFQU3IUAGgVTauq7F2Mx1EIKhYGIk6iqoPrIQ2UzFYt2ShFx6ZDfO+tnqTt9ZHtbrY1uxj1hHMyTrjuCfK9m3L7jgbgW6/38OWHO9BUkdM71zPi48UT/cyqfBtdOk8daEXXcyunUHPgZr7ugsGtB5REQGvLc42FLtDwykZCVgNkABQ7eo5+A1RuQoxeTNkEJGDUdKAYjryKXERcoh/8JPHj30+qU0HBfPCptQ//ICVh1SBc2UlUGMhAFItmwm1I2ip0uici3IzdjfYlRTd2s8b/8/OLKYrll86N0FZjp9puyun9ON2d3pIIoG/Uy962iqzfs1A4xo9P9CeV0T8V4SfvdfF7DxU2fet6ygewFn4ARYFC2yjfOlzkdJ8kEUIirKh4FFvCb0CzEdFMRFVT4uIlRB+2nfchSJ04hq0RU3XbqohcHC17cTzyZ5jd2zH0Ssxt91D2if8V3VGZ97oWDeOgmfFbqhiytONVnfiFiYjUQUmMw6cOb8ZyU9eU6fD4vsYlx6d7xJsxjeRbl6/n/H5MBzN7u0/5QlmXIyW8cTHVYx1gwCMZ84TW1Ry4ma8lNvwJoCQCWh/H34V+A1Ivx4j60f3XqcCDGo8gFksn6XTjePDLhI5+m2BkMhEuunwTtns+g/SMr5rIxXC6MR35rfmUk7CqPgezPI5CRDEzFtSImZ0EowZDvhhuLZIyDm6nwR880sHp3kkisTjVTgsWQyMYlQQii4uAJqYyp0md9IRyHlubOfNyU2bLLefG4Hh6U0qAvjEfDpux7uZASQS0ClhtP4BwVDI9E0AjTp3LUhT20IWOhR5fQRk2XUXXNaTqZMKxFc1pwhyahpjEbHEhZTytD4FqdmB59MtYzeVIoUBgHGwrzAdQBBwScfrj5nJQICh1cHUQwMSUEsZutqPHwW4Si4yDwpbaspz9Sspr7XD2etp5ta3OlfPYdta5OH5xgkCa8rY22FHJ/n1pqrIx3pd+E2iuNBOJKetuDqzHfABFj9X0A+jqmuHX5+cjRWrAo7vrsVocea9rvfDFbKBz5WMxHSVmQqhVeAS0xaMYUS+EoyihAJqMpMbB161zvBji8q8opr9phrAwEQrFwaITwEYPVZRJOzEJYzFQMti352Mc3BaD3Y12TvcnWz3ZFehsTjg45VKmPxLnob11/PRUmoCDxwd4dF9j1m3b31bDqb6rKeW0Vxtous5ksHB+Ccvt+3WXD2A9YLWUwMNTwaTFHxI5TV84Pci/27wjoVzJU13riS9XAbYUl7KKuFUlJCV+cw3lJoklPoNEQ3eWr63SdQ2UulGhES2rIWiqZsIawW5zIAG7KYbdvHSM/HyNw8cONtNUMcEHPdfxhyWdjS7u216HriqoQsm5zN+c7k07Ty9e9/MxTWStWC6zmvjyQ5t5/ngPfVMxBHCw1cVH9jUUfO6tJyXwht8AZpFvm/dTPaMZ6+oe8bLZbc9bXYXkAxNenn+vh9Eb5/Z7tlSwu6VqURvoeFzSN+6la3AGoQju2FKdVSz2xXhcQlSoSCQexYFuNhGMu/CHnbjVELoSIqaZMQkVqcg1y0OQU6J2KVN/VwUxFFAFYd2MppoIa3ZGZA1Wi5OIVPCKCLqS+FKUMp43W/RsOAg21zo52F6FlAlbeJOm3mhL7mWOpMn5OwuPP4quqXPXe0NhzvROEI7GqKtwpPgKVDrMfPzQ5iQ7ffXGcxd2/iy/79caG34DWC0l8KQ3s0XD+FSQKoeRdyVTPB7nbN80g9M+VAUayxxsbS7L63Mt5FeHPLxwJvm4fvTSBIPjfj56qCXtvYGIyvPHk9PhHb00ztMHGrCa9fwr3UJmwiYbWjxCKBShRtXQoh5U7zRmFOJSLKpAXgvu8fh47fhZrnoNdA0O1Cns2bsbTSiEPNPEtCoimBkJl2OOVhGOqTeUunGkjBVGGb9KvNal0T+VPua+os3b75/vneSXSeEYJum8ZuUjexoY80WK4llKSuB1gNUSAe1oqGTkYvpTwI6WMmzG4jbWy+E/eq+bDwfmFV8f9vvwR8Lct6Mu73WB5MPB9JmNusaDmDQwp0kVealvMm06vB+fGOArD3esypHbajEhMBNBI2o1iMs4AXMtZXYHhKfQhY7iLEPGWXHYiVy5Bwf/5c0ejJgVj1YGQuH14QAfnDV45v6dzFg8WB3lRAElEMJksaELSTWRohTFrZQ/sa+Fv3v1Ssr7caS9nEqbgSYUDI2bFv8ELg77OdgWotppLopn2QgioJIfwDL5tiYXZXpqPfuaHTdktPmrS0roG/cmLf6zOHppgmn/6tg9D98UVnchBieDae890Z1ZNDY0FVw1G2xJwp8goqgEFY1ptQyPasZrrmHA1sm4dRM+UzVe3UVEMxPVzQQ0GzGhElNVopqJmFDSc5Qk0U1MWeJ6oSbK1538+tIkHt3FsKWV67ZNDNra6bHv4PiUif4gTKtlBBWNiFBv2O/nq08Ek/4wzx3r4Ws/P8vPP+hjbCb9mK0lry238Lv3tOG+ka3SAO7rrOKB3fVz11wezBxq40TPaEHbX/IDWGdYLRHQVCDC5+7t4IOecc5cm8BuVti/yY3TZl6V2P1nejPnGT1xdZJmtyPvx9kyh0Iwzdc8wPfe6OUPH2ln4qY48NFMnkPAlDeU977pHfFx9NwQM8EwVU4Lt22uTgkpMOoXhLU4QlqZjtZRFbMipWQyYtAWjmKKR/AEFJyaioRULiOYpZe4ZxJF1QmqFcwscr1VNzGpuxiN2jnhizNuOEGIRDA2IeYCSHSP+LFbTasihrg2GuTHJ4fn+n5iOMCl4S4+eVsjhklDCsG1US8TvgA7GiowTMqaiUocVp2H9rYmReucCUTnrvGHMqdljMbiRSPqKYmA1gFWMxREmdXEg7vqOLi5ai5q5rR/ZUf3jMdDU+aY7E6znrNbfjb8nm2N/OC9a2nrjAA9w96UCImHNlXxi/Ppk8psayzLaxuvDM/wk1MDc+VfHQtxtnuKLz/RmbE/4tKJ2ZIYqwj6nGVRyFRFyGpDksrDVhtxonitHhx2B2FUQiZ/xutNVhsGCg4Roaa6nOvB9F+0bW4rkL0lTVzGOd09yYvHeohEYVtTGS176tDV1IiaX3uzJ22dPz/ez0cPNfM3v7w499vrFyd4eFs125vLi0KE0lxh5hcfpvc/uL29lqpVeNfzyUsioCJEcRwNl893t1VmfLYdzWWrUm+dy8zBVmfGei+PTKXcu2dzJU2u1O+Kz93ZjCJE3tooheTbb6duTj4Jr5/LLkzBrGVRWKgEMBNW0vOQouIVJqYUJ17FILTE9RFFhRvWHfdsrUvbd5sqTZRZjZye/btvXeHVi6NMhcEXh+O90/ztixeIxZOjScbipAlTl4BfwvffTe23l8+PMjAZKIp33dA1PnGwIaWNe5sdbFpgXVfodpZEQOsAGyUUhNtpcFd7BW92TSQ93+O7agjHVq/ehgo7x3tm0vat1dBTrnfGVI5sbyAUidE7OkNMwqFNbiyGwqgnf+0a82QOU3Dy6hRtda6iGbdPH2ril6f6mLmhUtnitvDI3qacQh+MeoJ0jaRans1E4dilMaoqrHPXD05nSEu5BN65NMzETBBPKIzDbGJXSwVQmP5rqrLxiYONXJ/2E47FcFutdDQ5mQlm32clEdDS2LAbwNXrM3zj5XOc7E7Izu/aXMZdW2uLJmTCcvjdndW01di4PhFAQVBXZaHOZUHmkNovV95U7uAn76fv45O9HqyaRkuFO9kN3qTRWmlmi9uWSG1pV/PexnTB32ahitXrj+XwzdVWnr1zc1IoBochcuqTK8OLJBMfn6K1xjGf0tCaxjohC/RPReifmlfin+kZ5bcf2FKw/quyG3TW2XIKX1EMvBQKosAYnPDxb7/5FoHw/EH4zSvTjPnCHNhcUxQhEzLx8FScswMTzHgj7GiuoLHSknRNHJUdrZXMKs8COaS6WxaPaXzhSBv/+nY3vjRyhTevTOIwm+hsKst7KIhFwxQ4DewqeNO06bYtVUUznvniFsOU8X13WI2bQi5IdtRaOTu8vJPALEYD8NqF63TUlhdFH6wXXgoFUWB8760rhCKpK8PF4QD3bCusbbQ3GGZiJogqJC1VtqRrLg7M8Isz85YbF0f8bKoy8cT+loK22WnW+OIDHXzt5ctp+/v1c9c5tKWKlSjAlsO/+OBmvvbSFRbOmS21Zo5sc+MJRItCIZgvvqnaygsfpA+BfPfWGpDJyuQnDjZhnBni/d704rtscfbqNHe21xRFH6wXvp6UwBtyA7g0OEUmUdqEN0x9uQUpQcobNuRrxF8+2c/bPVNzbVGBzxxJpMMLR+NJi/8sro6FuTTk4Y4OoyBtnuWReGb7Tt+Nvk5cn5BprkW7ym1mvvzQFsb9QTzeCGUOE+01iUB8heqn1eKqovAnD7bzzV934V/wbn/urhbKLEZKukJVCI501vLE/iZC0Sh/+dOL6QcPuK+zkt9cTG9mLCmePlg/fOk5cObaFC+9P4A3DnV2wV3bG6kpt2Uco9XChtwAWqod9Ix40m4CcSlXxU5/KX6ydyxp8YeEpcb33ujhTx7t5MrwdMbnOdl9nW2NqxfyIRs+E8hsm+0yzacXXOsQBBOBMDVlFtxOc84pCtcb13WFp+9sRQGiUYlQodppTqtMvnkcGpwaAzOpY9hUrrOnrYq3Lo6Tzu1vZ2tZwZ97vfGl5sCp3nGOLthwh7ySH77Xh9mk0tlUlXGerQY25AbwzJ2beevi9RQx0KYqE82V1oIcDS8PpE+HFwECoQgOc2bFnUXTiuJo+9HdtbxwOvWU8tFDLXPpBYs1BMFG4tn4nNw8Dk8caOU7R7uSdCZODR7flxi7z9/Txn892p00rpUWeHhnPb5wrCiee73wxeZALCb5TobT1mtnB/j0XVvS/m21sCE3gLYaJ//p2dv4m5+foW8sET5hb5ODx/c34g3ECnI0DEZkxvaGYnHaauwZ/767dbHom2vHD7RXoekqL50YwA9UGHDvzgY2uxeKXdZOBHSr8tGZAK9fGGJkyk9HbTl3dFanuT55HMy6wn//sR1cHZ7h2qiPZreDTdV2pv0J0VFDpZU/fHAzPde9zPiCVJVZ2bupAiFBhgozZ9YDD0Zi+EJhymyJD6Cl5kAwkvkk3TeZmrt5tbEhNwCAPa2V/P0f30fXwDjvdY1RblPxhZYXWTEfvKHawVR/elM+u6HjC8W4f2sVr15I9qLtrLVgt5qKRrTRUm3j6buS3fgXtq1Yo1BuFH7m2kTSOzJyZZI3r0zy9L6GrMQQVU4LUqhUO40Um3pPMMa2JtfcuHoWhGco9HMXG++f8vPDd7oYnEnoxjTgif0N2Cz6onPAG8qsSys3KPkB5BsWk4pjFVNCZstv31TB1X5PSjq8e9orcJoVZBw6asvY1+riTM8U4/4we1tduB2WW8IGusSX5vG4SPlAmMX7PcNsa2wvjcMa8ZeO9+NdsJZHgZ+8P8CnbmvEalcy9r3T0NjdZOV0X6qJ7kN7mkp+APlGvlNCTo2E+LB/glAwzp5NVTRWWLK6NxgTfPGhDs72TXKuf4wKu5U9rVVompJsy28x2N5awagnjNNmEIgVj33zatpArxWfCUXpGp7h0uAEKAq3b6mhscJaFG1binsWUcRfm4wlvUfFPg7rmQ+MB5IW/4V4/8ooVc7FU1veu72JuOznw/756L4HW11sritbX34AQohPA/8B2AYcklIez3BdD+AhYfgSlVIeXEm9uSCfweDePD/C8d55S54r4/3sarDxwM6GrJV3926vYW9rxaoHjytGBViheTQW45fv9zI5F1EhRv97/Ty4tYqdLRVF085M3LzI56GJ9TMO6533yczhqv3hEC6Ltmjfl1l1PnFbK/duDWMxBIam4Q1G12UwuA+BTwBHs7j2finl3rVc/BdC3OhXKZfHJ32hpMV/FmcGfEUTRKs4uCiitiTzMz1TCxb/efzqwhiBSKxo2pmJm3SVJlf6qLC3dZSvm3FY77yxwkImNFWVZd33qiKwGSZUJfn6tcSKTgBSyvOQeNmKFcsNBnd92s+p3nG8/gi7miuZDmZOjnKmZ5zGSmtO5W9UnosSWCgCbzDKTCC0Jm18vyc1y9QszvZPYjW0gvffUvz2zjq8H/QzuSAWXofbTHO1s6SMXyOOUGh06fRPpVrtNLkdTPojpWBwN0ECLwkhJPB3UspvrFG9mDSFuIzy43d76J+IUm0XfGR/C82VyWEYFvKTV8Y5enneVnfgw+tYFtnjbBa9aI6nhebZiB4ikRj+QISvv9nDwg9yhwbbm120VNahq0re22i36jCTPlBytd1SFP23NLfy3zy2k+tTfgYmAnTUOXBY9BRRYkkEtLr844daOdc3yRvnxwgBW+ssPLq3ERkXGysUhBDiFaA2zZ++KqX8SZb1HJFSDggh3MDLQogLUsq0YiMhxJeALwE0NzdnWXxmXB6e4luv98z9f8gr+ebRHp65o5EapzXFVjcQiSUt/rMIyMx1bGt0FY1dcuF54osmFo8BIunvQ1NBvvXqJSYzHKY8UXj36hQX+qb4yuPb897Gwx21XBzuSVt3Y4WtSPovO17jsmDoGk6rCSnThb5IjEOxtHejcYHgyLZa7tpaw5QvQrk9MQ6JkBzL7/u1xpIbgJTyoZVWIqUcuPHviBDiOeAQGfQGN04H3wA4ePCgXGnd/99v0gcw+947/dyxuZx9LVWYTPMpBC/1ZQ7JYNfAe5Mhxt0dlUhE0djpF5r3T0Z45YOBudj3VTZ4+uBmpEifiCQdpiPw3sUxqiuteW1jmc3EzkYHH97kj/Fvbm9mIhBG0wvff4UQxZV4cfT9hhQBCSFsgCKl9NzgjwD/cbXrnUXvRObEIe9cmeSdK5N8+rY6ym1WLBpYFpH1VDg1/uC2Vs5dm8YbjrK/rQKboa0rO/3V5IYS5zvHBpL6bMwH//jaFQ60OHIat67RCdpqHXlv453tbh7aUcOVYS+xeJxdLeUIub7izZf8MYqb3zL5AIQQHwf+BqgGfiaEOCWl/IgQoh74eynl40AN8NwNRbEGfEdK+YsVtjtrWHXwL+Fh/YNjQzxzuBmrRaO+PHNIho6aCqSisrWlnFFPGFXX1p2d/mryk9dSraQgYft7dSRzQpN0cFjMq9dei8GmOiejnjChGEXTf7n7NES4NuZlJhjBadKxWlxz15T8AArHb5l8AFLK54Dn0vw+CDx+g18F9qyknpXgqYMtfPft3iWv8/jCdNY6Acknb2viX4/1Jf397o4Kdja7Cq58KkaOjHOxb4bhscyx5+0WjbFFHJluxj3balCVtVdiTngDdF+fZmRCY2erK2Ny+Xxyiy64NhogHAOHWUvkOlvi3tFpP9+9KSfyheEJPnd3x1yZJSVwYfiGUgKvd3xkbxNdQ9Mc70n/dTqLSGxeIdNQbuGrT2/n0tAMkzMR9rS6sJm1lJjrJQ5vXxzhvSX6FuBQRy097/ZnNWafOtSEy2bmXP80fWM+WtxWpBSr/kyvfTjIa5fncy6/cn6UB7e6ObLdvWr1nuwe5+ileaMDA/j9h9pRFSXjvQjJN1+9mtJvPRMRjl0eY2ujq6QELijfQErg9Y5ITLKzuYpDm6v5oHc8Jan6LMrsWooit77ciq6FiUFOCbxvFT4w5s9q8XeZoNZl4en9DZzqGaFnIiGT29Po4O7tNYx7IyAloWgcQ1PRFMH//uOzLDTY7HBbeHx/M7A6z3Rl0JO0+M/iVxdGaKt1YDOrea/32pgvafEHCAF/90oXn76zJeO9475wRqu0ty6NUFVuLSmBV8BHvSG6RzxcGZ0GoXDHJjcOq1ZSAq9HLAwFcf/OWvrHPfTeFHb18V21NLgKkydgPfPXrqfPcbAQW+ttfPxgE7qqIqoFu1s6gUQIjNlwGKpQ5viUL8w/vHyZm631L48EuDbmY1dT2ao8U/9MZvf+/jEvhzqq8l7v6d70gd2iQCgSz3hvKJzelwFAxqHabiqJgJbJo7EYr5zqZXRBrLZz/V4+e7iZaqe5JAJarxACFARPHWxjwh/iw95xhCI43OGm2mkuiXeWwaOLaKw+uqeO/ZsqmPJFMGkJRVc2ZY95w3gzFPvOxQF2NZWtyjOR+VGIycQf811vIJAmLsUNhCPRjPe6y82IDE1ucJsT1wFd1z0EgmFqyi1U2lN9Xko8lR/vGk9a/Gfxnbev8ZWHtpREQOsNN4eCGPeHcTvN3LeznlFPGMOklcQ7y+Sbaso4M+BL2++1Luuy+nV06uaA2fPw+uWqjVWtw8oHpLdUaqq0r0q9bbXlDHjSiyQNk7qob8nTBxt57niqTuXScBBVGeDSoC/pFGUGfueBdgyTkvuYeEKc65uia3gSIRRu3+KmxmUp+Pu3GvzYlczhQi4OTrFDL1+ynJIIqIigKWAvgnwAheaRmGRk0ofHE2BznT0vZW6tc3CyQuPaRLJ1z6HWMqqdGjJOzmU3u21wLv1Ymk1gUXNv7/RMgN980MO4FxqrdR7e2YTLqidd0+K2s8/j5WRf8oZ2e1sZNWX6sp5lKX57eyXvXZ5IycXbWWPig55Rrg5NsrelEruup9zbWWOjtUKf06csxPnB1E05CPzqzDU+eagtt/cmDj871svCdMLd7/TxyNYqWmvLiub9zhdXFll/7YZW8gNYb8h3PoD1yEeHgjx3fGC+U05f57Y2F3dtrVlx+XdtbeBgOMq5gUlkDHY0uTCbTck5DnIozx/OnDFpNEDOfhdnuyd5+cL8V92V0QhXXr3KF460EZUyOU77zka21Af4oG8ch0mjs6GcOCz7WZbmgo/f0cS1cS+X+ydRVIEiJBevz24JIU72+djb7OS+HXUp5QylWfwXw+XRcM7998HVSdLkkuelC2M847JgteT+3JFYjA+ujROLS+pcVuxWU1HME2tUY9+mal65MJq2/8wWPat34ZbxA1gPyGc+gGLlwUgEiy7S2pCHwnG+82ZPSr8c657iYFsV1WXGittQZnWws8nFtD/RjkBELru82BIzYDb5fDZl2s1q0uK/EO90DfHYnuaUe531GrUu85rma+isK+PhnfWc7pnixycHUtp66toMD+2qxWpKfvZyOwxn1l2vuP+cZp1Lg+kV1QCBYO7J4kPhGP/lV10LSpmmzAR/8uhWdFUr+Fy6Y2s1XaPT9Iwnn8t+9542HFkGfSwpgYsQxaJkyif3hyP869uX6Z9JLJoG8OzdLZRZjLlruoYye+CeuDrKo/sa89y25SvApARFCMr0RDygm1FnT0yObMuc9GT+Qr48HOTR3YUfw4X83FB6fQDAhX4P+zdVJF1/x5Z6fvz+YHYTANhcbcqp/4QAk0kD0vejrmf2VcjEv/t6V0o502F49fQQj+T9XcydKwieOtBKIBzh6rAHhMKhjkp0VcnBUKSkBC4aLDcfQLHzeDzOP7/azcJIRyHgn17v5WN75xOETwYyx0KaCUXzrtxMpwCb9IW5NuYlHIuxr7UKXROLlvHQvkb+9b1UBee9Oxtzaq/TyPx623UKPoY383hEZmxvKBJLeXarxcQ9nZUcvTjvS1BrF+xvreHFD4dTyrhve279p6iCXc3VdI+n32RM+uKK6pt5/5Q/YyTYd3umuX1rTVGMw5gvjNtpsPNGatZAJI4/HFvRHCgpgQuEjSoC6h31kmlp7x6fZk9bOSDZ1eziRE/6CKf72ipzFgksxW8+/v767CBn+ublFG93TfKFI62Lhlgos9qpfcjgpQ8HGZ8K0FhlY9+mKloqHTm1pcxqoq1CpzuNrPzBXQ1rEuYhF753s5uu8fQRUw9srsCkqSn3trvrOLLFTfeYn/pyA5uRyA3wp0123r86zXQwSH2ZjeZqB1VOI+d27W0tp2/Cy8ne5DAff3BfG1YjtzwYPpuR4Y0FQe7iqWLlJRFQEaLQx/t88ylf5gxlk57A3PVOs8Gdm8p562qy01aTS6Oj1pF49/Latvnj76Wh6aTFfxbfeqOHLz/UsWh5lQ4zj+1uuinOeu7tevauzfzTa5cYnJlXLt/bUcHuFlfR+X7Uu8zcu6WC1y4li4Ke3FuHoWf2pdA0hWqHgd08nxvApGnsailfcf9JCXd31nL/9lquDHmRQrK7pRxFiJzLtOoqLh3SJNLittYyoDjGIZ9zINcy1hobfgPYqCIgh9WU8ZlddmvS0fxQpxt3uY0TV66jKrC9oZIyh8FMIJr3ti08/r51/nrGNp7rn2RPW+Wa9Nl9u5oxqwozgQiqCnXly/NRWAu+b3M1bbVlnLk2QZnZRGejk+lALOd8E/kOBeF2GrTW2hn1hPGGYssu5/HbWvjOW71J74JNgQOb3UU7JvkQg5ZEQAXCRvUDaHQZNJYJ+qdTX5iDbeWpNvu1NtyOZiodCfv81Yp/v9AGOhzNrITVVWVN+6zSoeF26Osi7r/ZYcLUWjU3VrEoKxqHYnimhePwp4+2817XBKFIlIYqG5UOC2VWZVV8LQrBS34ARYSN7Adw945mukdmONE1SQTorLFyZFsdgUhsFW3Xs7eB3tXkZuh8ejPMcodRsDauF26JaPSN++gb89JUaaex0pLVvZ5wlGhMIRArjudI4Sg01ThxOw2klAlF6wZ6F0p+AEWEjaoEnuUdNQ08sqs+KbjaWtiuZ6MAu21LFWf6Rhm6KbjPk3vrqC1bL0nYC8ND4TjfOXpxLi7Nse4pHCp85p72jPfazRq/OjXA293zEVqf3lfP7tbyonimW4WXlMBFiKWUMPE4nO2b4t1Lg4RjcQ6117G3tTzj9YXm8TicvTbNh9euE45CZ1M5D+yoRVWUArdtXgGmKoJPHu5g1BPgXN8EqqpwZ0cNVU6j6BSwxcZ/c34oJSiZJwYvfdDLb9/Xmfbe3Itd7AAADzhJREFUX57s59hNFl8/PjmI2azgdpSCwRViDuRaxlpjw28AmZTAwxNB3rg4iC8YoaHKxuRMiIEFPu8vfDDE8a4h7t+TOS57IfnPTvRyeWTeEPTtrknOX5vk8/d3MO6L5L3eUW+I/gk/5/rHiUYl+zZXUV9uXVIBNuEPU1dupdZlYdQTxnQjyFmh+68Y+ag3xOCUn0AwyoWh9EH2eiYiTPojCJLvHfEEUxb/Wfz8RD9P3NZa8Oe7VXhJCVxESCcCuj4d4LvvzttbT/ann2zDPvD5IzhrcrM/X20eCseSFv9ZTIWhb9RPS7Ut7/X+/FQ/l4bnP0m7xvo5srmcA+3VeTn+3up82h/kubd6M/p2LITToqIgksrxBDMr3KfDFJ3Pw0bm60kEpKxpbQXE7PEqHofvv5Xe2SYdukZm5u5deExbKQ9Fo/SP+/GHIznf271IgvVLwxN5bacQcG3cl7T4z+KNK5NMBcI3XS/yXv+twL/5666sFv9KC6hCSSnHomX+lquzl8ZkbfnK+nstseFPADeLgAam/CnZphaDFORsg70Yj8fjvPh+H11j89N9U5XB4/ubmchSdKOJzPu2oWWfui5b/v7VzAHBTvVMUG4zVnz8vZX5hC+cNvZROhzuqE/7Pk4GIhxuL+ftrtQsbYe3NRTNs94KvCQCKiLc7Afgsqg53b+3OdWmfiX86LmRpMUf4OpYiFfP9HFXZ0NW5TQ0OXjh9FDa9t6+uZK4zK99cySWJh7wDdh1JS820LcyD0YWX/2by1WaKuwcaK8kGMrs03LfNjdOXePl86PEAYcKHz3UREuFdV34P6yUG0qcU10j9E95cVrM1GyrwaypJT+ARbDhN4Cb/QCCMUFzuc61yew+uSQiJxtlTyhKNC6xmpW017x5Jb2i7uxQkN1t0exsh+Maz97ewvff7WVh9Pwn99ZhGCZGPeG82TQHJmOcH8osnKiptCf1z3JtoG9lXmEzZ+zffS0OtjVWztnMeyOLj+3WlnIqK2w4zYmvULfTyDkHwHrkU94w33x9oWg3wvvXPHzuzlakoOQHkAEbfgNIpwT+zJFNfOvVSyn26engD0Rx1majwNE4enYoKY7LniY7mw62JBQtc9dnhsucvaLOWa/xlUc6CEZiRKJxbGadCnvuwb6W4q98OJCxvR/dXUtTubWkBF4hL7OaeGpfPc+fTI66aQIe3lVPaBn5FXIZB28gzLuXR5gJRNjXUsWO5jKQ60tp/ON3r6Z9R3/1QQ/PHNlSUgJnwIbfAGax0N7WrOv8wcPb6R71EZeSo2f76ZvKoBkQ2dnznrgynhLE64M+Lw7TIA/srp+7vs4mGPLJ1GoAXRM52Q6DoK7cipQrC/a1GL82nN5CCqDKZU5zb0KmWRz22OuH720tx6xrnO4bw+MN0Ox2ce/2GkyaSjC8nLHNbhxOdo9z9NJ8OOneiUHeuTTIJw8vHqyv2Hi61JiQsOSLxda6PcufA2uNDb8BLBYMLibB7TSzu7mavqnU+OkAVrOelRL4pdPp73/jyiT726sYu6HgPbKjkR+815dynQSuDHroaHIuWdda8jKHhmcqvQ5AEakJxldDCRyPx3nz0ggf9EwTJRHL/5G9jTRVpvohrGeu6QqP7m1CykR4hGBUEogk+0xc7J9mOhzGpmlUlplXpIgMRqJJi/8shn1wonuMO7a4i6ZvluKLYdwfQtNLSuB02PAbQDahIPZvquDi0CRdo6Gke5+9o4kapzmr41tmNSnYdA1hFzjNOqIys7z33PAEBzoql6xrLflHdjfyX4/2pLS1tUKjscKSEnZiNURAr344mJTTwBuBHx3r54t3L55XYCNxu1njX964zJXR5DDgX7ynlaZKW8r12YxD/3jmfJID4zM4zQ0Ff+5s+a4GG2cGUk+rm6tNuB1GSQSUAbecH8DCo9YsF0Lw+L4Wfv/eVu5ur+Dujgr+xye2sqXOmfb6dLw8Q64LhUS89tnrJ7yZ4/iPToaKxI55njdW2fn07Y0sfC03uc189khHhntFXuuPyTivX06fKvGlU71F00+rzU93T6Qs/gD/eLSHuFzeOBha5umv6VpRPHe2/KP7m1LmoEOFT9zeVoD2rGwOrCVWdAIQQvyfwJNAGLgCfFFKOZXmukeBvwZU4O+llH+xknpzQS75ANxOg/3tVYx6wkTiknAOIQvu39XAj44PpNT/yM4aZoLz5Zj0zF1e4TTl1ecgX7y+3Mqzd7ZgM2mYTYIJXxR/JI5MkyYv3yKgKX/mDXPAU/i+WSv+9uX0Zr8A5wemMUxazuNQ4ch8Gt1UVVaU7+Ji/NEDLYSiMcang6iKYFdLBeHo2rfnVhIBvQz8uZQyKoT4P4A/B/6nhRcIIVTgb4GHgX7gmBDieSnluRXWnRWshkZDpRWrriABw6RRZjatCq9wWvjZsW6GPDHcNoW7dzSxv7U86ZoqB2xrcHB+INWb95F9zVQ7LKvezpVyqzmc8RqLquC0xfNW56Ierg6VxkprwftjLbiuaGQSNFY6zbhspmWNw+fvbuWfX+9JKu/BrW4OdFQVxXMvl88EM7+jq82XOweqyyzo6toKZVa0AUgpX1rw33eAT6W57BDQJaW8CiCE+C7wMWBNNoBKp5UDHcacg0U0LufkbPnmO9vcPHagbcnr/5emKn7yXjc/ea8bXyjO1gYnX3poG81u56q1ba24KiAmyWvZHzs4yQvH+5I8uFUBf/zYHna0VBbFc68294XifP2lCyl24lZd8Oj+ViRiWeOwraWaj93ezgfdY3hDEfa2VOGyG0Xz3OuRL3cO6KqSyPu8hsinEvh3ge+l+b0BWGj20g/cnsd6F4WiKNiM4lJ1mE3whfu28oX7tha6KesCf/iRXdgtZn707lVCkRhVDjN/9JHt3N5ZV+imrRmeONjGO5fHONs3STASw6QpKELwPz9zEJs5c7L1bHFke0MeWlnCesOSG4AQ4hWgNs2fviql/MmNa75K4nz67ZU2SAjxJeBLAM3NzSstroQNAFURfOG+LfzWvR1EonFMmoIohMasgFAVhf/ts4c41TPOqe5xymwmHthZj8u28sW/hFsXS24AUsqHFvu7EOJ3gI8CD0op02kwBoCmBf9vvPFbpvq+AXwD4ODBg2urESmhqKEIgaGv7RG5mCCEYF9bFfvaqgrdlBI2CFYkG7lh3fNnwFNSytR4wQkcAzqEEG1CCBPwLPD8SuotoYQSSihh5VipcPxrgAN4WQhxSgjxdQAhRL0Q4kUAKWUU+ArwS+A88H0p5dkV1ltCCSWUUMIKsVIroPYMvw8Cjy/4/4vAiyupq4QSSiihhPyiuMxjSiihhBJKWDOUNoASSiihhFsUpQ2ghBJKKOEWRWkDKKGEEkq4RVHaAEoooYQSblGUNoASSiihhFsUpQ2ghBJKKOEWRWkDKKGEEkq4RVHaAEoooYQSblGUNoASSiihhFsUIn0Az+KAEGIU6F1BEVXAWJ6ak08UY7uKsU1QalcuKMY2QalduSAfbWqRUlZnc2FRbwArhRDiuJTyYKHbcTOKsV3F2Cb+//bOLsSKMozjvz9tKpTkx5JuKpUgfV21iJhJSEbIElpU0FUuGiUR1FUsCF10ExZ0ERURFhiISZZloaSm0tVaJq6rruYqQsqmUbAlgX09Xcy7MZw9sztnO/PO8ZznB4fznvM+zPzmOXPmmXnf2T24Vy00ohO4Vy3EdvIhIMdxnBbFC4DjOE6L0uwF4N2yBTJoRK9GdAL3qoVGdAL3qoWoTk09B+A4juNk0+xXAI7jOE4GTVUAJL0m6aSko5K2S5qWEbdC0ilJg5J6Ing9Lum4pH8kZc7wSzonqT/8vOahBnGKnasZkvZIOh2ep2fE/R3ydERSIb8xPd62S5osaWvoPyjpliI8JuDVLemnVH6eiuD0vqRLko5l9EvSG8H5qKTOop1yei2TNJzK1UsRnOZJ2i/pRPgOPl8lJk6+zKxpHsCDQFtobwA2VIm5BjgDzAcmAX3AnQV73QHcBhwAFo4Rdw5oj5SrcZ1KytWrQE9o91T7DEPf5YI9xt124FngndB+Atga4XPL49UNvBljP0qt8z6gEziW0d8F7AIELAYONojXMuCLyLnqADpDeyrwfZXPMEq+muoKwMx2W/Ij9AC9wNwqYYuAQTM7a2Z/AB8Cqwr2GjCzU0Wuo1ZyOkXPVVj+ptDeBDxc8PqyyLPtaddtwHJJagCv6JjZ18AvY4SsAj6whF5gmqSOBvCKjpkNmdnh0P4NGADmVIRFyVdTFYAK1pBU0ErmAD+kXp9ndPLLwoDdkr6T9HTZMpSTq1lmNhTaPwKzMuKmSDokqVdSEUUiz7b/FxNOPIaBmQW41OoF8GgYOtgmaV7BTnlo5O/dPZL6JO2SdFfMFYdhw7uBgxVdUfLVVu8FFo2kvcDsKl3rzeyzELMe+AvY3EheOVhqZhck3QjskXQynMGU6VR3xvJKvzAzk5R1m9rNIVfzgX2S+s3sTL1dr1I+B7aY2RVJz5BcpdxfslOjcphkX7osqQv4FFgQY8WSrgc+Bl4ws19jrLOSq64AmNkDY/VL6gYeApZbGEyr4AKQPiOaG94r1CvnMi6E50uStpNc7k+4ANTBKXquJF2U1GFmQ+GS91LGMkZydVbSAZKzqHoWgDzbPhJzXlIbcAPwcx0dJuRlZmmHjSTzKmVTyL70f0kfeM1sp6S3JbWbWaH/I0jStSQH/81m9kmVkCj5aqohIEkrgBeBlWb2e0bYt8ACSbdKmkQyeVfIXSS1IOk6SVNH2iQT2lXvXIhIGbnaAawO7dXAqCsVSdMlTQ7tduBe4ESdPfJse9r1MWBfxklHVK+KseKVJGPMZbMDeDLc3bIYGE4N9ZWGpNkj8zaSFpEcEwst4mF97wEDZvZ6RlicfMWc/S76AQySjJsdCY+ROzRuAnam4rpIZt7PkAyHFO31CMkY3hXgIvBlpRfJXR194XG8aK88TiXlaibwFXAa2AvMCO8vBDaG9hKgP+SqH1hbkMuobQdeJjnBAJgCfBT2u2+A+UXnJ6fXK2Ef6gP2A7dHcNoCDAF/hv1qLbAOWBf6BbwVnPsZ4264yF7PpXLVCyyJ4LSUZL7vaOpY1VVGvvwvgR3HcVqUphoCchzHcfLjBcBxHKdF8QLgOI7TongBcBzHaVG8ADiO47QoXgAcx3FaFC8AjuM4LYoXAMdxnBblXzEFSFEzALdZAAAAAElFTkSuQmCC\n",
    
    schmittu's avatar
    schmittu committed
          "text/plain": [
    
    schmittu's avatar
    schmittu committed
           "<Figure size 432x432 with 1 Axes>"
    
    schmittu's avatar
    schmittu committed
          ]
         },
         "metadata": {
    
          "needs_background": "light"
    
    schmittu's avatar
    schmittu committed
         },
         "output_type": "display_data"
        }
       ],
       "source": [
        "from sklearn.linear_model import LogisticRegression\n",
        "from sklearn.svm import LinearSVC, SVC\n",
        "from sklearn.preprocessing import PolynomialFeatures\n",
        "from sklearn.tree import DecisionTreeClassifier\n",
        "from sklearn.neighbors import KNeighborsClassifier\n",
        "\n",
        "\n",
    
        "def train_and_plot_decision_surface(clf, preproc, features, labels, marker=\"o\", N=400):\n",
    
    schmittu's avatar
    schmittu committed
        "    \n",
        "    features = np.array(features)\n",
        "    xmin, ymin = features.min(axis=0)\n",
        "    xmax, ymax = features.max(axis=0)\n",
        "    \n",
        "    x = np.linspace(xmin, xmax, N)\n",
        "    y = np.linspace(ymin, ymax, N) \n",
        "    points = np.array(np.meshgrid(x, y)).T.reshape(-1, 2)\n",
        "  \n",
        "    if preproc is not None:\n",
        "        points_for_clf = preproc.fit_transform(points)\n",
        "        features = preproc.fit_transform(features)\n",
        "    else:\n",
        "        points_for_clf = points\n",
        "    \n",
        "    clf.fit(features, labels)\n",
        "    predicted = clf.predict(features)\n",
        "    print(sum(predicted == labels), \"out of\", len(labels), \"predicted correctly\")\n",
        "    classes = np.array(clf.predict(points_for_clf), dtype=bool) \n",
    
        "    plt.plot(points[~classes][:, 0], points[~classes][:, 1], c=\"steelblue\", marker=marker, markersize=1, alpha=.05);\n",
        "    plt.plot(points[classes][:, 0], points[classes][:, 1], c=\"chocolate\", marker=marker, markersize=1, alpha=.05);\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
        "\n",
        "df = pd.read_csv(\"2d_points.csv\")\n",
    
    schmittu's avatar
    schmittu committed
        "# df = pd.read_csv(\"xor.csv\")\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
        "features = df.iloc[:, :-1]\n",
        "labels = df.iloc[:, -1]\n",
        "\n",
        "plt.figure(figsize=(6, 6));\n",
        "\n",
        "clf = LinearSVC()\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
    
    schmittu's avatar
    schmittu committed
        "# clf = LogisticRegression()\n",
        "# clf = SVC(gamma=.1)\n",
        "# clf = DecisionTreeClassifier(max_depth=6)\n",
        "# clf = KNeighborsClassifier(10)\n",
        "\n",
    
        "preproc = PolynomialFeatures(2, include_bias=False)\n",
    
        "# preproc = None\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
        "train_and_plot_decision_surface(clf, preproc, features, labels)\n",
        "\n",
    
        "colors = [[\"steelblue\", \"chocolate\"][i] for i in labels]\n",
        "plt.scatter(features.iloc[:, 0], features.iloc[:, 1], color=colors, marker='o');"
    
    schmittu's avatar
    schmittu committed
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
    
        "<div class=\"alert alert-block alert-danger\">\n",
    
        "<strong>TODO:</strong> explain shitty init plot and add poly features for \"2d_points\" first + add blackbox warning that classifier details follow in script 6(?).</div>\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
    
        "You tasks are:\n",
        "- modify the script to use the `xor.csv` data set.\n",
        "- compare classifiers which are outcommented in the script.\n",
        "- try to tune classifiers parameters.\n",
        "- activate the feature engineering step and experiment with both classifiers and their parameters.\n"
    
    schmittu's avatar
    schmittu committed
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 1,
    
    schmittu's avatar
    schmittu committed
       "metadata": {},
       "outputs": [
        {
         "name": "stderr",
         "output_type": "stream",
         "text": [
    
          "/Users/uweschmitt/Projects/machinelearning-introduction-workshop/venv3.6/lib/python3.6/site-packages/ipykernel_launcher.py:9: UserWarning: get_ipython_dir has moved to the IPython.paths module since IPython 4.0.\n",
    
    schmittu's avatar
    schmittu committed
          "  if __name__ == '__main__':\n"
         ]
        },
        {
         "data": {
          "text/html": [
           "<style>\n",
           "    \n",
           "    @import url('http://fonts.googleapis.com/css?family=Source+Code+Pro');\n",
           "    \n",
           "    @import url('http://fonts.googleapis.com/css?family=Kameron');\n",
           "    @import url('http://fonts.googleapis.com/css?family=Crimson+Text');\n",
           "    \n",
           "    @import url('http://fonts.googleapis.com/css?family=Lato');\n",
           "    @import url('http://fonts.googleapis.com/css?family=Source+Sans+Pro');\n",
           "    \n",
           "    @import url('http://fonts.googleapis.com/css?family=Lora'); \n",
           "\n",
           "    \n",
           "    body {\n",
           "        font-family: 'Lora', Consolas, sans-serif;\n",
           "       \n",
           "        -webkit-print-color-adjust: exact important !;\n",
           "        \n",
           "      \n",
           "       \n",
           "    }\n",
    
           "\n",
           "    .alert-block {\n",
           "        width: 95%;\n",
           "        margin: auto;\n",
           "    }\n",
           "    \n",
    
    schmittu's avatar
    schmittu committed
           "    .rendered_html code\n",
           "    {\n",
           "        color: black;\n",
           "        background: #eaf0ff;\n",
           "        background: #f5f5f5; \n",
           "        padding: 1pt;\n",
           "        font-family:  'Source Code Pro', Consolas, monocco, monospace;\n",
           "    }\n",
           "    \n",
           "    p {\n",
           "      line-height: 140%;\n",
           "    }\n",
           "    \n",
           "    strong code {\n",
           "        background: red;\n",
           "    }\n",
           "    \n",
           "    em  {\n",
           "        color: green;\n",
           "    }\n",
           "    \n",
           "    .rendered_html strong code\n",
           "    {\n",
           "        background: #f5f5f5;\n",
           "    }\n",
           "    \n",
           "    .CodeMirror pre {\n",
           "    font-family: 'Source Code Pro', monocco, Consolas, monocco, monospace;\n",
           "    }\n",
           "    \n",
           "    .cm-s-ipython span.cm-keyword {\n",
           "        font-weight: normal;\n",
           "     }\n",
           "     \n",
           "     strong {\n",
           "         background: #f5f5f5;\n",
           "         margin-top: 4pt;\n",
           "         margin-bottom: 4pt;\n",
           "         padding: 2pt;\n",
           "         border: 0.5px solid #a0a0a0;\n",
           "         font-weight: bold;\n",
           "         color: darkred;\n",
           "     }\n",
           "     \n",
           "    \n",
           "    div #notebook {\n",
           "        # font-size: 10pt; \n",
           "        line-height: 145%;\n",
           "        }\n",
           "        \n",
           "    li {\n",
           "        line-height: 145%;\n",
           "    }\n",
           "\n",
           "    div.output_area pre {\n",
           "        background: #fff9d8 !important;\n",
           "        padding: 5pt;\n",
           "       \n",
           "       -webkit-print-color-adjust: exact; \n",
           "        \n",
           "    }\n",
           " \n",
           "    \n",
           " \n",
           "    h1, h2, h3, h4 {\n",
           "        font-family: Kameron, arial;\n",
           "    }\n",
           "    \n",
           "    div#maintoolbar {display: none !important;}\n",
           "    </style>"
          ],
          "text/plain": [
           "<IPython.core.display.HTML object>"
          ]
         },
    
         "execution_count": 1,
    
    schmittu's avatar
    schmittu committed
         "metadata": {},
         "output_type": "execute_result"
        }
       ],
       "source": [
        "#REMOVEBEGIN\n",
        "# THE LINES BELOW ARE JUST FOR STYLING THE CONTENT ABOVE !\n",
        "\n",
        "from IPython import utils\n",
        "from IPython.core.display import HTML\n",
        "import os\n",
        "def css_styling():\n",
        "    \"\"\"Load default custom.css file from ipython profile\"\"\"\n",
        "    base = utils.path.get_ipython_dir()\n",
        "    styles = \"\"\"<style>\n",
        "    \n",
        "    @import url('http://fonts.googleapis.com/css?family=Source+Code+Pro');\n",
        "    \n",
        "    @import url('http://fonts.googleapis.com/css?family=Kameron');\n",
        "    @import url('http://fonts.googleapis.com/css?family=Crimson+Text');\n",
        "    \n",
        "    @import url('http://fonts.googleapis.com/css?family=Lato');\n",
        "    @import url('http://fonts.googleapis.com/css?family=Source+Sans+Pro');\n",
        "    \n",
        "    @import url('http://fonts.googleapis.com/css?family=Lora'); \n",
        "\n",
        "    \n",
        "    body {\n",
        "        font-family: 'Lora', Consolas, sans-serif;\n",
        "       \n",
        "        -webkit-print-color-adjust: exact important !;\n",
        "        \n",
        "      \n",
        "       \n",
        "    }\n",
    
        "\n",
        "    .alert-block {\n",
        "        width: 95%;\n",
        "        margin: auto;\n",
        "    }\n",
        "    \n",
    
    schmittu's avatar
    schmittu committed
        "    .rendered_html code\n",
        "    {\n",
        "        color: black;\n",
        "        background: #eaf0ff;\n",
        "        background: #f5f5f5; \n",
        "        padding: 1pt;\n",
        "        font-family:  'Source Code Pro', Consolas, monocco, monospace;\n",
        "    }\n",
        "    \n",
        "    p {\n",
        "      line-height: 140%;\n",
        "    }\n",
        "    \n",
        "    strong code {\n",
        "        background: red;\n",
        "    }\n",
        "    \n",
        "    em  {\n",
        "        color: green;\n",
        "    }\n",
        "    \n",
        "    .rendered_html strong code\n",
        "    {\n",
        "        background: #f5f5f5;\n",
        "    }\n",
        "    \n",
        "    .CodeMirror pre {\n",
        "    font-family: 'Source Code Pro', monocco, Consolas, monocco, monospace;\n",
        "    }\n",
        "    \n",
        "    .cm-s-ipython span.cm-keyword {\n",
        "        font-weight: normal;\n",
        "     }\n",
        "     \n",
        "     strong {\n",
        "         background: #f5f5f5;\n",
        "         margin-top: 4pt;\n",
        "         margin-bottom: 4pt;\n",
        "         padding: 2pt;\n",
        "         border: 0.5px solid #a0a0a0;\n",
        "         font-weight: bold;\n",
        "         color: darkred;\n",
        "     }\n",
        "     \n",
        "    \n",
        "    div #notebook {\n",
        "        # font-size: 10pt; \n",
        "        line-height: 145%;\n",
        "        }\n",
        "        \n",
        "    li {\n",
        "        line-height: 145%;\n",
        "    }\n",
        "\n",
        "    div.output_area pre {\n",
        "        background: #fff9d8 !important;\n",
        "        padding: 5pt;\n",
        "       \n",
        "       -webkit-print-color-adjust: exact; \n",
        "        \n",
        "    }\n",
        " \n",
        "    \n",
        " \n",
        "    h1, h2, h3, h4 {\n",
        "        font-family: Kameron, arial;\n",
        "    }\n",
        "    \n",
        "    div#maintoolbar {display: none !important;}\n",
        "    </style>\"\"\"\n",
        "    return HTML(styles)\n",
        "css_styling()\n",
        "#REMOVEEND"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": []
      }
     ],
     "metadata": {
      "kernelspec": {
       "display_name": "Python 3",
       "language": "python",
       "name": "python3"
      },
      "language_info": {
       "codemirror_mode": {
        "name": "ipython",
        "version": 3
       },
       "file_extension": ".py",
       "mimetype": "text/x-python",
       "name": "python",
       "nbconvert_exporter": "python",
       "pygments_lexer": "ipython3",
    
       "version": "3.6.6"
    
    schmittu's avatar
    schmittu committed
      }
     },
     "nbformat": 4,
     "nbformat_minor": 2
    }