Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
"xor = pd.read_csv(\"xor.csv\")\n",
"xor.head()"
]
},
{
"cell_type": "code",
"execution_count": 349,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAUwAAAE/CAYAAAAt2PowAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnWd4k1UbgO+T0ZG2lFHKLHsWZMtegoIiMhQUZImKA1FBRT8XIgKiCIogICKCooAyBNmCRRmC7L1K2bSlFLp3cr4fJ13QkWY0LeS+rvdqmveMp0nz5JzzLCGlxIULFy5c5I/G2QK4cOHCRXHBpTBduHDhwkJcCtOFCxcuLMSlMF24cOHCQlwK04ULFy4sxKUwXbhw4cJCXArThc0IIaoIIeKEEFoHz1NNCCGFEDpHzmOBHAuFEBMtbLtNCPG8lfNY3deFY3ApTBc2I6W8JKX0llIa82tbVJRecUYIMdf8BRUnhEgRQqRm+X2Ds+W7m3EpzCKMS6m4yAkp5UvmLyhvYDKwLP13KeUjt7d3/R/ZD5fCLGSEEM2EEAeFELFCiN+EEMvSt3dCiM5CiCtCiHeEEGHAD+bnewohDgkhooQQu4QQjbKMV1EIsUIIESGEOC+EeC3LvfFCiF+FED+a5zsuhGiRh2xSCPGaECJECHFDCDFVCKEx39MIIT4QQlwUQlw3j+lrvpdt1WjeSn4ihNhpnnezEMLPPM0/5p9R5hVRGyFELSHE30KIaPO8y/J5GQcJIS6Z276fRf6WQoh/za9TqBBilhDCzXxvjhDii9v+3tVCiDfyex3zQghRSgix1tzvlvlx5dua1RRC/CeEiDHPWTpL/9bm9zRKCHFYCNHZknnzkamW+f0YLoS4BGwWQjwohLhwW7sr6fOZ39/3hBDnzK/rUiFEKVtludtwKcxCxPzhXQUsBEoDS4C+tzUrb75XFXhBCNEUWAC8CJQBvgXWCCHczcrsD+AwUAnoCowWQnTPMl4vYClQElgDzMpHzL5AC6AZ0Bt41vz8M+brAaAG4J3PWE8DwwF/wA14y/x8R/PPkuYV0b/AJ8BmoBRQGZiZj4ztgbqov3ecEKK++XkjMAbwA9qY748031sCPCWEEKAUHdANWGrh65gbGtQXW1WgCpDIna/LUNTrWAFIA742y1AJWAdMRL3nbwErhBBlLZjXEjoC9YBHLWg7xtyuI+o9iEuX00UWpJSuq5Au1D/jVUBkeW4HMNH8uDOQAnhkuT8H+OS2cU4DnYBWwKXb7r0L/GB+PB7YkuVeIJCYh3wSeDjL7yOBrebHW4GRWe7VBVIBHVDN3FdnvrcN+OC2cTaaH2dra37uR2AeUDmf1y+9b+Usz/0HDMil/WhglfmxAC4BHc2/jwD+Mj/O83XMYdyF6e9ZDveaALey/L4NmHLbe5ACaIF3gJ9u678JGJal7/P5vCbjgcW3PVfL/DpVyfLcg8CF29pdATqbH58FOmW5FwAkARpnf26K0uU62yhcKgJXpfk/0szl29pESCmTsvxeFRgmhHg1y3Nu5rGMQEUhRFSWe1pge5bfw7I8TgA8hBA6KWVaLjJmleeieZ502S/edk8HlMtlnNvn9c6lHcDbqFXmf0KIW8A0KeWCPNrnOLYQog4wHbVCNpjl2w8gpZRCiKXAQNSxwNPAYvMYVcn/dcwRIYQB+BJ4GLVCBvARQmhlphHs9tdUj1oFVwX6CyEey3JfDwTlN6+F3P6/lRdVgD+EEKbbnvcn++t9T+NSmIVLKFBJCCGyKM0A4FyWNrenj7oMTJJSTrp9MCFEG+C8lLK2HWUMAI6bH1cBrpkfX0N9wMlyLw0IR23hLOWO9FhSyjDUig8hRHtgixDiHyllcMFEZw5wEBgopYwVQowG+mW5vwR1njcFtapMPw65jPWv45uo1XYrKWWYEKKJWQaRpU1AlsdVUCvzG+Z5f5JSjrBi3ny57Ys5HvUlAmQYgspkuX8FeFpKuccRstwtuM4wC5d/UavCUUIInRCiN9Aynz7fAS8JIVoJhZcQ4lEhhA9qOxorlJHIUwihFUI0FELcb4OMY82GjADgdSDdALMEGCOEqC6EyGqdzW2lmhsRgAl1DgqAEKJ/FkPJLZRSvX2lYwk+QAwQJ4SoB7yc9aaU8iBKUc0HNkkp01eUtryOPqhzyyizMeejHNoMFkIEmlejE4Dl5tXnYuAxIUR385weQhn+CvIFZCmnUCvf7kIIvVlOfZb7c4HJQogqAEIIfyFELwfIUaxxKcxCREqZAjwOPAdEAYOBtUByHn32oVZfs1DKJBhlfMH8oeuJOjc7T6Yy8LVBzNWobewhlEHie/PzC4CfUNvZ86jzrVdzGiAvpJQJwCRgp9ky3Bq4H9gjhIhDGaZel1KGWCH7W6itdizqiyYna/svqPO8X7LIZMvr+BXgae6zG9iYQ5ufUOeeYYAH8Jp53ssow9p7qC+Sy8BYHPC5lFLeQr1fi1Dn6DfJvtWebpZ9qxAiFtiFel9cZEFkX7W7KGyEEHuAuVLKH4qALBKobcVW2IWLewLXCrOQEUJ0EkKUN2/JhwGNyHlV4sKFiyKGzQpTCBEghAgSQpwQyjH69RzaCCHE10KIYCHEESFEM1vnLcbURfn7RaEMBv2klKHOFcmFCxeWYPOWXAhRAaggpTxgNkTsB/pIKU9kadMDdX7SA2WdnCGlbGXTxC5cuHBRyNi8wpRShkopD5gfxwInUdESWekN/CgVu4GSZkXrwoULF8UGu55hCiGqAU2B2325KpHdifYKdypVFy5cuCjS2M1x3eybtwIYLaWMsWGcF4AXALy8vJrXq1fPThI6kJMnISFBPdZooF498PR0rkzOQEq4dQtu3gS9HipWVD/z48AB1Ted5s0dJ2MRIPhmMNHJ0SBBIzTU86uHp976/5dUUypHw4+mhzTiofegQdkG9hI32zxxyXF46D3w1BXv/+/9+/ffkFIWOGbfLgrT7Ai7AvhZSrkyhyZXyR7tUNn83B1IKeeh4opp0aKF3Ldvnz1EdCxr1sCAAaDVQpMmsG2benwvkZoKrVrBhQtK+Wk0ULUqWPL+DR0Kq1apxw8/DL/95lBRnc1jvzzGurPrkEg89B78/OzPNCnfxOrxIuIjCPgygGSjcuetX74++1607+cmPC6cwNmBpBpTMUojawasoWuNrnadozARQlzMv9Wd2MNKLlDOzSellNNzabYGGGq2lrcGou8qy3CvXnDmDAQFqeteU5YAR46o1yB9pWgywenTlvVduBB+/RWWLlVXEeJA6AFWnVxFbHKs3cac3n06VXyroNPoGNFsBI3LNbZqnKS0JAatGETL71rSuVpnDDoDASUCWNA7rzB86wi6EESKMYXYlFgSUhP48ciPdp+jOGCPFWY7YAhwVAhxyPzce6iYWaSUc4H1KAt5MCpZwnA7zGtf9u5Vq6Nu3cDXikCZypXVda9SqVL2bbVOB89bWF1Bo4FH7sh761QSUxOZs28OH/z1ATqNDn8vf46+fNSmrXM6tcvU5sLoC0gpMWebs4ppu6ax8tRKktKSiEiIYNWAVXSr2c1m+XKioX9DTFJFqxr0BlpVss7JJcWYwvR/p3M+6jyj7h/FfeXus6eYDsdmhSml3EH2RAM5tZHAK7bO5TAWLYKRI9UH188Pjh8HgyH/fi4yKV8e1q6FyZPV+e2oUfDQQ86WyipORpyk3YJ2RCdFY8oS0n44/DCtK7e22zy2KEuA6/HXSUlLyfg9Ij7CVpFypaF/Q1YPWM2Ph3+kdeXWvNzi5fw75cAbm95gwcEFJKUlsfTYUi68foFSnsUnT7ErWxHAt99mGm2EgMOHoU0b58pUHHngAXUVc6bsnEJUUhQyS2IlkzRRvWR1J0p1J6+3fp1fjv1CfEo81UpWo3e93g6d78EaD/JgjQdtGmPnpZ0kpiUCKhfvhajipTBdoZGglGO6VVtKqFEj7/Yu7kriU+JJTkumgncF3LRuAOg1eh6s8SBbh26lnHduqT8dQ0JqAtdir5FbcEmNUjW4POYyJ145weGXDuPtllfK0aLBc82ew0vvhbebN/5e/tQvWz//TkWI4qswjUYIDoa4ONvHmjIFPvhAWWuDgqCcHT4Y//yjzuVefRXi420fz4VDGb9tPCU/K0mpz0rRslJLHqvzGNVLVmfCAxP4c8iftKrsmMA0kzQx/PfheE/2psMPHYhOigZg1+VdlPuiHDVm1OCJX5/IOD+8HQ+dB9VKVkOrKR6GxlEtR7Fx8Ebm9ZzHgRcP4KHzcLZIBaJIZyvK1a0oORk6dFBnjXo9/P03NLbO0ugQrl+H6tXVNt/dHQYOhB/MyYjmzoWvvoJGjeD778HHx7myuiA6KZqyU8uSakoFoIpvFS6OtsrrpMCsOb2Gp1c8TXxqPG5aN95s8yaTu06mww8d2HFpBwBeei+2D99O0wpNC0WmrMSlxGHQG9CI4ru2ygkhxH4pZa4FAXOjeL4Kf/0Fp04phRQdDZ9+6myJsnPlijIggVLuR4+qx4cPw5tvKnebNWvgvfecJ6OLDPRafbYVWmFubVOMmUYbkzSRlKaqk5Q1lEUrtBnPl/Qoma3f+VvneXXDq3y87WMSUhPsLpdJmuj/W39KfVYK/6n+nIg4kX+ne4DiqTDLllVbclAruIoV825f2Nx3H9SqpVaPBgOMHaueDw/P9NFMTlaK1YXTMegN/NT3J8p7l6dumboseWJJoc3du25v2ga0RSCoVrIab7d7G4A5j86hQ5UOVPGtwsxHZlK9VKbBKcWYQuv5rZn932ym7JzCsFXD7C7Xv5f/ZWPwRtJMadxMvMm7W961+xzFkeJpJW/RQrmvzJoFTZvChAnOlig7ej3s3g07dyr/xLp11fOdO0P9+nDsmFKc77+f5zBFApMJIiKUu9Vd7JDfL7Af/QL75d/Qzui1ejYP2UyKMSXD0ARQzrscQc/kXAstIj6CmJQYTKgV6b9X/rW7XAa9IePcVKvR4uPuOjqC4rrCBHj9dTh7VkWIeBdB66C7O3TpkqksAdzcYNcuFTt95YpS/EWZmBh11lq1qvIcCA93tkTKi+Hrr6FvX1i+vJCnlhZvf6/FXqPp3Kb4fOrDO3++k2/7rMoyPyr4VKC+X3289F546b0Y2nioxX0tpWmFprzT7h1Ke5ameYXmfNHtC7vPAeo1TU7LtUKL3eZ4bcNreE7ypOHshlyJsWFn5+w6v3ldzZs3ly5yITpaykuXpDSZHDfHt99K6ekpJUip00n50UeOm8tSFiyQ0mBQMhkMUu7cWSjThseFy1pf15Laj7Wy/YL2MjE1Mc/2T694Wmo/1krGI70mecn/rvxnV3niU+LlkqNL5KbgTdLkyP8BBxIcGSwrTqsoNR9r5BPLnpBGk9Eh8+y6tEt6TfKSjEdqP9bKQSsGSWCftEInFd8V5r3Mli1QoQLUqQNPPpk9JNGe+PpmGq90Oihd2jHzFIRDhzKDDABO2G6MiEmOyYiSMUkTIbdC7ogdn7F7BheiLmCURg6GHuS343knCElOS87mCpSeGMNeGPQGBjQcQLea3WyOGMqPFGMKk7dPZsSaERwJP2K3cccFjSM0NhSTNLHp3Cb+vvC33cbOijGjPLxaIKZ7Q1iDS2E6kqtXoX17CAiABXZMiPDOO0ppJCXB+vXKY8AR9O8Pgwcrv9Q+feDFFx0zT0EYPBi8vKBECfDwsDkGfdnxZfhP9afyl5V5c/ObdFnUhYazG1JxekV2X9md0c6gN2RYrYF8Y8o/7fop5bzLoREaetftTbuAdjbJaQtSSsb+OZaaX9fkpbUvkWYqWGXkMRvHMPGficw/OJ8OCzpwK/GWXeTy0HlkeCdIKXHXudtl3NtpF9COfoH90AgNAb4BTOk6xeqxiqcfZnHhscdgwwZl0ff0VIqtShXbx+3RAzZvVuN6eEBIiFpx3itcuKCyI7VuDf7+Ng1VaXolrsVeA0ArtHjoPIhPVYEG3Wp2Y9PgTYDyR3x82ePsubqHvvX6sqD3gnx9E9NXMwU5n3QEvx3/jeGrhxOfGo9BZ2B69+m82MLyL7+mc5tyKFzl1fFx8+HvZ/62i09oeFw4PZf05PSN07zQ/AWmPjTVoatlkzRlvGfW+mEWTyt5ceHGjUz3JyGUEcUezJ+vVlqXLsHEifeWsgSoVk1ddqC0Z2lCY0ORSHQaXcY22k3rRkXvTHc1bzdvNg/ZXKCxhRBOV5agknSkb0tTTCmExxfMeDei2Qje3vI2QgjKeZUjsGygXeQq512OvSP22mWsdM7dPEf/3/pzPf46U7tNZWDDgRn37OF871phOpIdO1RC3NRUeOIJ+PlnpThd2E58POzfDzVrKtctKzl14xSDVg4iJimGmT1mcjXmKp/t/Iz6fvVZ2GdhsUoMkRs3E2/SYl4LwuPDKeFegn0j9lGpRMFes12Xd3E5+jKP1H6EEu4lHCSp7bT9vi27r+xWyZm1Hlx54wplDGUAOBh6kCd/e5Kw+DDi3ouzaoXpUpiOJjERYmNt3jq6yEJMjAqFvXlTreA3bYJ2zjsjtIXZ/83myz1fcp//fSzss9BhyijVmMql6EtULlHZYWeFRYHAbwI5eeMkAO5ad4JfC6aSTyVeWvsS8w7My2w4nnsoNLI44enpUpb2JigIIiOV4oyPV36ZxZDDYYcZu2UswTeDWXd2He9tdVyorF6rp2bpmkVCWS4/sZzK0yvTcHZDTt2wr8Hy60e+xqA3oNfoGdFsBJVLVObUjVP8dOQnu4x/dyjMgwehd28YMUIV4bIGkwmmT1cO0atX21c+F/alevXMs2FPT2hg/4JfhUFEQkTGuVqKMYWrMTmWubqriEmOYfDKwVyNvcqJiBM8veJpu47/YI0HuTH2BmFvhTGzx0xAeTRkzW1qC8VfYSYmqqS1a9bAjz8qY4g1zJsHH34Iv/8OTz9tWfEuF86hUSOV/alzZ3jlFXg37zjnM5FnimTyiI5VO9LQvyGeOk9KuJXgg44fOFskh5OclpyhvCRSVc+0M556T0p7ZvoMVy5Rmc7VOqPX6KnqW5Wzr561euzirzBv3FCJLABSUlTKN2s4eDB71nU7OEQXeaRUoZpBQWqFnZUzZ5RjfIkS8OWXzpHvdjZuhM8+U19m588r96qPPsqzlO+EvyfQZG4TWsxrweiNowtR2Pxx07qx89mdHHn5CFfeuELzikWzvLCUkm0XtrH+7PoC+3DeTlmvsoxuNRq9Ro+nzpNvenxjJylzZ+rOqfxz8R9STalEJETYlt3JmvCgwrosCo00maTs3FlKb28VKjd0qJTjxkl56pQFQVNZ2LVL9S9RQko/PynDwgrWvzjyxhtSenmp165//+z3OnaUUggVgujhIeXFi86RMZ3Fi9X7o9NJqdFI6eYmpbu7lO3b59ktPSSO8UgxXsj6s+rLKTumFGjq0zdOyxbzWsjaX9eWG89utOWvKJaM2ThGek3ykt6TvWWPxT3sMmZUYlS+4aX24rFfHsv4H/CZ7COXH19udWjk3WElT0uD7dtVEa70+jw+PmqVVJDs6SEhaoXapo3KznO34+OTmbFeo1HHG25mv8HWrWHPHvXY01Pl9KxZ0zlygqr7vmzZnc/r9WpnkQu1Z9bm3M1z2c6wvPRe/D7gd4vr0zSe25ij4UeRSDx1nkS+HWmX6pHFhZJTSmZsnbVCS8y7MRj0xaNI4IWoCwR+E5hRR8jP4MfZV89SyrPUPWwl1+nUOebhw8pqmv4lcOxYwcapUUNF59wLyhJUJiWdTinLChWyb21nzYJSpVRKt5EjnassAXr2VLlFtVp1eXqq3x/MW+ltGLSBh2o8RCWf7H6H6dE9lhCZEJmhcNNMaXaPC8+Pfy//S6eFnej/a3/C4wo/Y1RD/4boNXo0QkM573J46orPl8Vf5//KFj3Uu27vO5IxF4S7K9KnXz+VhzItTX2omjRxtkRFm3XrVNb3pCT45JPsTvUtWijXndTUzFWnMxk8WCnwI0dUMMCBA0rRDxqUZ7dapWuxacgmzkSeodX8VqSZ0ijnVY7edS2vsDi9+3SG/T4MKSUv3/+yTR+4gpKQmkC3xd2IS4lDp9ERmRjJX8P+KrT5AVYPWM34v8cTnxLPuE7jHJ7sw540r9Cc9M2FQW+wuerl3bElz8qGDWor3revfeK2reH4cRgyRG1333lHGU1iYmDmTOX+5MIpxCbHcin6ErXL1C5wyGJUUhRJaUmU9y7vIOly5lrsNWrMqJGxqi3MekN3C39f+Jtfj/9Kh6odGNBwAGB9LPndpzCLAvXqqbo9oFZt6a+xh4eKTvG0w5bm0iWV0b15c2XNLi5IqSKffHzsEyYaF6eSSZ86Bf/7nzpSuYuQUtJ3WV+2hGzBJE3MeGQGI5qNcLZYxR5rFaZdrNnAAuA6cCyX+52BaOCQ+RpnybjFNoFw2bLKunz7pddLGRUl5d9/S9mihZQPPWSd9Tk4WEofH3UZDFLu3Wv/v8ERhIZKWb26snS3aiVlQoLtY44Yoazl6QmFL1y4o0lMUoyct2+eXHp0qcOS1DoSo8ko913dJ4Mjg50tyl0DTk4gvBB4OJ8226WUTcxXESvCY2emTVMlKtzc1Lmqh4d6PHas+tmjh/Il3LpVJQAuKBs2KN/T2FjlEbBihf3/Bkfw9ddw+bI6Yz52DH7LOwmvRZw+nemHq9HcUVjOJE20/6E9ozeN5rk1zzFy3Ujb5yxkNEJD84rNqVnayYY3OxOVFMXFqIvpi6pigV0UppTyH+CmPca6KxgyBMLC1If3t9+U8SQ8HCZNUlb8VHPGZ5PJusqRVatmd6UJDraP3JZw/ryKirLmqMTbO3shNS8v2+V57z1lLff2Vlb/++/Pdvtm4k1O3ThFQmoC8anxrDq1yvY57xKklBy7foxL0ZcK3M9WJbf53GYqTqtIvW/q0e/XfsVGaRamW1EbIcRhIcQGIUTxDP4tCCVLqnLAoD7QJc2WVT8/GDhQnWN6eKh8lgWlVCk1ZjqhobbLawkXL6osQaNHQ6dOKktQboSHqyJwVavCd9+p515/Hbp2VfIPGKAMc7bSvbsy8m3dCv/+e4dFv5RHKSp4V0AndHjoPOhYpaPtc95GRHwE03ZN48fDP2I0GfPvUEQYuGIgrea3ou6suiw4mH9FAJM0MeC3Aeg+0VH689LZMtIXlHe2vENiWiJJaUlsPLeR05GnrR6rULFmH5/TBVQj9zPMEoC3+XEP4Gwe47wA7AP2ValSxb4HF0UFk0lFIl25Yl3/mBgpy5dXZ3ZeXlLOmWObPEePSrlqlTpfzYtFi1RUUPqZ7HPP5d62Xz91VgmqkNq5c7bJaANhsWHyo6CP5PRd02VSapJdx05OS5ZVvqwi3T5xk4ZJBvnKulfsOr6jCIsNk26fuGVEwARMD8i3z8trX85oz3hkvZn1rJ7/kcWPZBSJ85joIUNjQ60eyxqw8gyzUPwwpZQxWR6vF0LMFkL4SSlv5NB2HjAPlJW8MOQrdITIXn63oPj4KCf9NWuUQ/kDD+TdPjhYZWmvUkXV5cm6Lf79d+XLqNWqVfDx42r8nGjePDPm3GBQyS9y4/p1dVYJ6mwxKsriP8/elPMux/jO4x0y9tWYq0TER5BiTCHFmMK6M+uY1WOWQ+ayJ7HJsQiUl4JWaKnqWzXfPltCtmT7PWtxsYLyfa/vGbJqCJdjLjPxgYmF7q5lLYWiMIUQ5YFwKaUUQrREHQVE5tvx0CH1wZw5E557ztFiFi/8/eH55/NvFxMDLVtCdLQ6Ajh3Thml0pkzJ3vSkd274aGHch6rQQNVS2j5chU+mpfB6tNP1XY5NVVF4zgiiEBKpzvW+7j7ZIv8qeNX9F28rsdfp+X8loAyKDUu35hl/XMIO72NPvX6MGPPDFKMKWiEhoW9F1otQwWfCmwZuiX/hhaQlJbE1pCtVPCpQLMKzewyZm7YRWEKIZagXIf8hBBXgI8APYCUci7QD3hZCJEGJAIDzMvivDEaVXzzyJEq5Zo9/BfvNUJC1ErPZFKKcevW7Pfvv1/F4Scmqnb5+XS2a2dZdvO2bdU5ZnQ0lC9v/9IcwcHqHDUsjOgnexH+9afU8qtjl7otBeFg6EEMegNxKSom35J/a2ez+8pujNKY6QxfogoVfSpmayOlylCUbEzmoRoPodVomfLgFJqWb0poXCiD7htEOe8C5GnIgcvRlxmyagjhceFM7TaVnnV6WtQvxZiCXqNHCEGaKY2237fl7M2zmKSJqQ9OZWRLx3lC2EVhSikH5nN/FlD09yl3I3XrqvriRqNSWgMGZL8/frz6IjpyROWWrJr/1sxiDIbsxil7sWOHiqAKC2N3RRMP1fgd09wNNK3UgqBhQei1uad7szd1/epmKEmD3kDbgLaFNre1NCrXKMM4ZdAb6FK9yx1tXt/4OgsOLkAIQZdqXVg9cDUaoWHgfXl+1AvE4JWD2XF5ByZp4snfnuTam9fyDDs1moz0XdaXdWfXUblEZbYP305CagJnIs9kVPqcuXdm0VeYDkOrVQkhZs60fHUZGwtjxqiV1QcfKEutPdizR+VirFZNxV3bwyWmMPD0VLk+V65U9dEfvs1dVqeD9993jmzWMHUqfPyx8r00mZjQCeLcAFMyh8MPs+vyLjpV61Ro4lTxrcLmIZuZs3cOjco14o02bxTa3NZSrWQ1tj2zjZ+P/EyT8k0Y2njoHW0WHlqYoYTWnl1Lclqy3ctbhMWFZVTplEhik2PzVJibz20m6EIQJmniasxVJvw9gYldJpKcplbKWqGlaXnby//mRdFWmE2aFNzf7+WX1RlbcrJSciEhBUvxlhM3b6pzuLg4dQ4YGQmLFtk2ZmHi5wcvvKAeh4SobXLjxsoY40y2bVNnpt27Q1ML/9HnzVO+rABCUDlBi5s0kSJMGE1G/L0Kv35S24C2xWJlmZUWFVvQomLukYGBZQM5EHoAozRSyaeSQ8oFT+02laeWPwXAkw2epHKJynm2d9e5Z6zmNUKDp86T2Xtno9FowKiey0n525O7I71bVk6ezIz8EMI+PopXr2bGgyclKWNUcWH/flV6Y/Vq+P57aNgQOnRQZX+ded62aRM8+qjaBbRvb3mm/JYt1ZeWEODry9T5F+n+FomNAAAgAElEQVQZ2Ie6Zeoyq8cs6pet71i5syClJOh8EKtOrspY5RQmYXFhdF3Uldoza7Pk2JIC9b0YdZFtF7blmn187dNreb7Z8wxrPIztw7c7JENRr7q9uPbGNU6POs3C3gvzneOBag8wrPEwvN28aVahGR91/oiwuDBSjSoQxF3nnnGW7DCs8UUqrMuqWPLfflN+fz4+UrZsKWVqasHHuJ2UFCmbNMmM3V6wwPYxC4PTp5W86XHWZcpk+lC6u0t59arzZBszJlMWT0/LfUkTEqT84AMpn31WyuPHHStjPnyw9YOMTORt5reRJpOpUOfv+XPPDF9Gz4me8mqMZe/n1pCt0jDJIH0m+8jaX9eWcclxDpbUcZyKOCVLTSklDZMMsvGcxjI+Jd6ifhRlP8xCpV8/aNZMrSxbtlRndLai16sokm3boGJFVYSrOPDff5nb7vQs9Dqdsobr9coY5Cy6dVPZ8ZOT1WqxfXvL+nl6qjPkIsD8g/MzzvkOhB7gevx1my3HBSEsLizDF1IIQVRS1B3W7pyY/u/0zJVlHOy4tIPutbo7UlSHUdevLlffuEpoXChVfaui1Wjz72QDd9+WHFTm9EqVlPJ85BG1TbcVDw9lMCkuyhIylZC7u7JWT50KvXqp5zdtcq7h6uGHVUmRCROUW1PDhs6TxUpaVGyBu9YdgaCEe4lslQoLgykPTsGgN+Ch8+Dhmg9T38+y44j0SpWgnM+rlayWa1uTNLHz0k4OhRXdYyhPvSc1StVwuLKEuzkfZmCgymQjpYrp7t9fneFVrw5//aV8A+8FzpxR2Y2aNVNnly7sRmxyLBP/mUhkYiTvtn/XKdmEYpJjiEqKIqBEgMXnjMlpybz313scDD3I6Naj6VW3V65t+//Wnw1nNyCR/K/9//iw44f2Et2puBIIZ2X9eujTJzMrkBDKRSk9VK9ZM2UMceHCRa7EpcRR6rNSGaV1S3uWJvLt/AP0igPWKszitSUPDlauRpUqwZJcrILr1qnVZLqy9PBQ2/K0LPWUjxxxvKwuXNjArcRbfLHrC+bum0uKMTOV36XoSwxaOYghK4dwOfpynmP8cfoPxgWNY/816xYHnjpPfN19EQi0Qkvt0rWtGuduongZfQYPVspOSnj2WeW/V/q2c6O//86MjXZzUynFJk5U53XpOSQr5+3v5cKFM5FS0ub7NpyPOo9WaAm6EMSyfirWu8uiLpyPOo9AsPfaXk6NOpXjGL8e/5Xhq4eTkJrAtH+nsf+F/dTzq1cgObQaLf8M/4d3trxDCbcSTOs+Lf9OdznFa4UZHZ3pOyilin++nfRyrB4eyhI8bJiyDO/bBx07qsQSf/6prLOzZqkkEZF3xzajSLN/v/IwMBhU5nUXuRKdHE3IrRBSjCkkpiWyNUTF/0spuRB1AZM0YZRGQm6F5DrG5nObMyzhGjT8d/U/q2QJLBvIHwP/4Ocnfi42GYUAUo2pXIy6mOGjaS+Kl8KcOVN94PR6laasUqU723TsqFaZU6fC3r1Q32w5vO8+9fzmzVCrlkppNnYsfPSRyrxThM9yrSYkRL0ejRpBUJBzZXn2WeXqlZgIb78NN+7I7OfCjK+7L3XK1MFD64FBb8hw+RFCMKzJMLz0XnjpvXiuae4ZvPrU64NBb8iI0GlfxUK3rbuA6/HXqTWzFvW/qU+dWXW4kWC//7XiZ/RJSlJXSRtrQ5cpo0IeQSng69dtH7Oo0ayZyptpMqkjichI5WLkDBo2zIzmcXNTpTnSM9K7uIPopGgWHV6Et5s3QxsPRadRp2dSSnZe3olA0Dag7R2W8YTUBAatHMSuy7voENCBdlXa0aN2D+r62ZB/1QIiEyJ5bMljHLt+jKGNhzLzkZlOq18+dedU3v/rfVJNqbhr3fm066eMaTMmW5t7w+gDaqttD8X26KNqterpqVahznTitoaICFXuISDgzi3u8uXKSf3QocyEvykpmWe7zuD779V5s06nHM9dyjJPfD18ea3Vazzb9NkMZQlqldm+SnvaVWmXo0L68t8v2Ri8kevx19l4biM1S9e0SVn+ee5PBiwfwJf/fpmRKCMnxv89nn3X9hGbEsvCQwv56/xfVs9pK2UMZTIyVmk1WsoYytht7OJl9LEnCxZkJtQYMuTOfI2HDqntY6tWzk9SkRNvvAH//KOs///7n/pbAgPV0cLQodnPdz08YPhwVUvHWbRqpVa4Uto/N6aLDKKSo7Kd20UnRVs91omIE/RZ1oeE1AT+OPMHQghGtx6dY9uktKQMhSqEyJZUubAZ1ngY/139jw3BG3i09qMMum+Q3ca+dxWmTqcUS05MmKBSuQmhVqLL8s9GXejcuJHpKqXVZi8BkfWYpUQJtS2vVq1QxcsVl7J0KK+3ep0lR5cQkRBBXb+6PBH4hNVjnYg4gVao6JmE1AT2XN2Ta9sPO37I5nObuRJzhU5VO9GtZjer57UVrUbL3J5zAUhMTSTVlGq/KCBrAtAL67Iq+YY9KFUqMzGEVitlXAGSE1y/LmWvXlI2bSrl+vWOk3HfPilLlFBJNHr0kDItLfPe0qUq2YaPj5Rr1jhOBhdFkjRjmrwed93mZCAR8RGy7Odlpc9kH2mYZJCbgzfn2d5kMsnE1ESb5rQn8/bNk26fuEm3T9zk9we+z3YPK5NvFD+jT2HQsiUcOKDO/8qUUaUWLN2WP/YYbNyoVn+enqo0raPO65KS1MqyXDnXyq0IkZiqjkM89cW/pMqNhBv8feFv6petT2DZQGeLYzFSSjwneWYcDRh0BuLfj8+4f+8YfQqD1atVtNCjjypXpIKcYV68mLlVFsKxPp4eHo6pl+PCar4/+D0lPytJyc9K8t3+75wtjsWkGFN4Zd0rNJ7TmC93f5nxvJ/BjycCnyhWyjKd9AQjYL8vL5fCzIkKFVTo5R9/KENKQZg4Ua0s08vQ2lJO10Wx4XDYYb7b/x2j1o3KKLn72sbX7DJ2qjGVD//6kB4/92DdmXV2GfN2ZuyewQ+HfuDI9SN8+NeHbLuwzSHzFBZCCFYNWEWVElWo6luVlU+ttMu4967Rx1H06qUcxiMjlbuSa/V317Pz0k66LVZGjiRjUsbzHjqPbO2Czgdx7tY5etXtVaBSGpO3T1Y5LNMS+Pvi33mGOcanxHMl5go1StUoUDG4C1EXSEzL9Ky4EnPF4r5FiXe3vMusvbOoWaom655ex8UxF+06vmuF6QjKl1c1vIuKO9KRI6q8bqp9w8QKndWroWZN5aJ07pyzpclgzek1JKQmkJCagJvWjdIepaniW4VVT63KaDNv/zx6LunJ6xtfp9GcRsQkx1g8/qHwQySkKR9ardASfDM4x3bBN4Op8lUVms9rToPZDQo0xystX8HX3RdvN2/KeZXjsTqPWdy3qPDr8V/5bOdnxKXEcST8CG9uftPucxSRT7QLhzF7tgr97NNHHRGYcnc+tjuLFinH+tat4dKlgvePiVG1h2rXhi++UCWCQ0JUyOvTT9tfXitpV6UdBr0qJ6zT6NgweAMXR1+kc7XOGW0WH1mcoVQT0xLzTcgblxLHsuPL+P3U77zc4mUMegMl3EpQyrMUHat2zLHP7L2zuZV4i/jUeK7FXmPVyVU5tsuJwLKBXBx9kZ3P7uTEKyfw9ShmgRzA+3+9j0QZsdOrUNqbu2NL/uefykiTkqLKHgwZ4myJig7Tp2dG+Bw8COfPq1Wao7l2DV56SVnyr12D555T71NBeP99la4vORnGjVO11UE5fDkhFn1LyBZG/DECN60bPz/+c0bVxV51e7G472K2XdxGrzq9aFmp5R19u1bvyv7Q/SSkJiClzDNzUKoxlebzmnM28iwSia+7L1uGbCEmOYa2AW3xcffJsV9Fn4p46DwyttYFTZbh6+FLI49iVFHgNgTZj78+7GT/ZMd3xwpzyBCVySgxEZ5/Pnvuy3ud++5TsdugnPVtLTlsKfHxmee3JlNm3H5BuHYtswKoTqfS+bm5Ke+Ar76yn6wWYJIm+iztw4WoC5yJPMPjyx7Pdr9v/b7MeHgGXWt0zbH/h50+5MvuXzKm9Rh2PbcrzzPMM5FnuBh1MWO1FJ0czYbgDXSv1T1XZQnwWqvXePq+p6lTpg7vtHun0JzHD4YepPL0ynhN9mLG7hmFMmdOzO05F4PegE6j44MOH9C6cmu7z2GXFaYQYgHQE7gupbyjOItQQa8zgB5AAvCMlPKAPeY2T2C3oe46Fi1SoZPXrqlyu97ehTNvrVrw1FPwyy8qucn06QUf4/33YcsWdfbaoAGsWAG3bikPBJ/cFUd+nL91npjkGBqVa2RxggijyZgt3K+g5Vw1QsMLzV+wqG2Ab4CKTDEvqLVCa1G9IDetG/N7zS+QXLZgkiae+f0ZfjryU8Zz72x5hwENBxS4GNzZyLNM3j6ZUp6lGN95PCXcSxRYni7VuxD9v2jSTGl3GNzshb1WmAuBh/O4/whQ23y9AMyx07yKxYtVQg6DQcWI26NS5N1CiRLqHPP336F588KbVwj44QelqG/cgE6dCj5Gs2aqJvzRo7Bzp1pdlitnk7Kcf2A+gbMDabugLU8tf8rifnqtnsldJ6PX6NFpdAxsOJBbibesliMvSriXYPdzu6nvVx8fNx+eqP8EL7d42SFz2cL2i9tZderOc9K8knTkRKoxlbYL2rLo8CK+2fsNA5cPtFomnUbnMGUJdlphSin/EUJUy6NJb+BHc0jSbiFESSFEBSllqD3mp2tXtfJwUfQoY2OmGG9vu66KJ/w9gaQ05fqz5vQawuPCLV4NjW07Fl93X8ZsGsOPR35kzZk1nHzlJN5u9l+131fuPk68csLu49oTrUZLTpGCIbdCqOBTweJxbibeJDY5FokkxZjCwbCDFvdNTksm2Zh8x4rUJE1sv7gdg97A/ZXut3i8/CisM8xKQNYCJFfMzxUuJpNKILx5c+Fai10UGar6Vs1IKKHX6gu89fvpyE8kpCYQlxJHTHIMB0Ltd7JU3GgX0I5nmjyDuzYzx2qyMZnn1zxfoHH8vfy5v9L9eLt546X34vlmlvXfFLyJUp+Vwu9zP/635X/Z7vX7tR89l/Sk86LOjAsaVyB58qLIGX2EEC8IIfYJIfZFRETYd/AhQ5SbyhNPwDPP2HfsooqUKjlysvPSbRUGNxNvsv/a/ozVY2782v9XetbpSduAtmwavClbyFxcSly+Z5MdqnTAoFMuREaT8Z4uDCaEYFaPWYS+GZpNaeq0Bdu4CiHYOnQrvzz+C+sHrWfCAxMs6vfK+ldITFPZiL7c/SUR8UpfxKXE8ceZP4hLiSMhNYFZ/80qkDx5UViHfVeBgCy/VzY/dwdSynnAPFDJN+wqxbJlma4pS5bAjz/m3G7NGlUOo1kzlew23crsbJKSYO1aldeyS5f8jV1Go/K//PNPlWl9yBDlVvTss+pL4y7hcNhhOvygaq77e/lz4MUDua4cK/hU4PcBv9/x/Lx983h146sgYcB9A4hJiqFH7R483+z5bIahCQ9MoJRHKU7dOEWT8k14bcNrtKzckjfbvIlGFLn1R6FQyrMUX3X/irf+fIuSHiVZ1GdRgfpLKdl5aSdajZa2AW0t7pf1PRYIrsReYdT6Ubjr3CnpXpLIxEi0Gi11y9gxPNmaFEc5XUA14Fgu9x4FNgACaA38Z8mYdk/vVr++Stem00kZGJhzmxMnVGo0kNLTU8oPP7SvDNZiMknZsqWU3t5SenlJ+d57+ffZsUO1T09Vp9GonwaDlHv3Ol7mQuK51c9JxiMZj/Se7C2XHl1a4DE8J3pmjJF+eU3ykitOrMix/bHwY9IwySAZjzRMMshpu6bZ+mfcs7y6/lXpNclLek/2lo/+/KjF/U5cPyEDvwmUFb6oIJceXSrLf1Feaj7WSN0EnWzwTQPZb1k/OWzVMBkeF35HX6xM72Yvt6IlQGfATwhxBfgI0JsV8lxgPcqlKBjlVjTcHvMWmK1bYfx4tTIbP16lbdu2TdWbadBAtQkJUQl5Qfl1FpUa5mFhKhFw+tb6hx9g0qS8+/j6Zp7VCpH5WKOB06ehRYGzWxVJapSqgafOk8S0REzSRIBvQP6dbsPLzStbLDWopLlHw4/yeP3H72h/6sapbMl1911zQhrCQiAuJQ53rXuB4tILysJDC4lPVanXNgRvICktySJLd/2y9Tk+UtWJSk5L5umVT2OSJkzSxKXoSxwbeczustrLSp6nH4BZo79ij7lsokIFFQkESlk2aKCig4xGFaf84IOqyqKfn2pjNKq65kUBPz+lAG/cUH6N91tg+WvYUCnVqVOVO87p08rlysMDujkvI7a9eavtW4TGhrLr8i5GNB9RoG1dqjGVP0P+ZELnCUz7dxopxhQiEyPRaXSYpIl+gf1y7Ne5WueM80+jNOZZwbG4MnrjaL7Z+w3uWnfWPb2OTtWscA2zgIb+Ddl3bR9GaaSST6Vs56GW4q5zp19gP9afXY+U0mFuWPduAuFly1RUUJz5kH/IkMwzzfh42L1bOV9XrVqwcaVUOTF9fe1fQyckBD7/XCnP//2v4O42Fy7AyZMqttuZ9X2KCFJKHlj0APtD9yOlZGzbsXzU+SNCY0PZe20vTcs3zXO1GpkQyfZL26nvV9/hVRkLm8vRl6kzq06GEe0+//s48rJjdluRCZGM3zaehNQExnUaR9WSBfzMmUl3JfLQedCqcqs821qbQPjeVZjHj6vM6gkJyuH9s89g1CjbxpRSJYhYs0ZtgVesgEcesY+8dzPXr0Pv3moF/Oqr8PHHhTNt/HWqfFklI4KnvHd5Qt+0j2twced6/HWqflWVpLQkBII2AW3Y+exOZ4tlN1wZ1wtKgwZqGz5okFKWr9jhxODcOZV0OClJnX++847tY9pCWBj06wcPPAD//edcWfJi7FjYt08FH0yaBDVqwG+/OXzaUh6l8HH3QSBw07rRuFxjh89ZXPD38md2j9n4e/nToGwDFvZe6GyRigbWWIoK63JaETRruX5dWdbTi6c99JBz5WnfXskBqiBaYtEpUJWNxx+XUohMa366h8LlyxYPkZyWLJ9f87ys/XVt+fG2jy0uAHYq4pQcvGKwfG3DazIqMeqO++vPrJcj1oyQS44usVgWF0UfrLSSO10p5nUVmsJMTFRuOv36Sfnvv7aNtXKllHXrStmli5RXr9pHPmupWDFTAbm5SRl+p3uFPHdOykaNpCxbVsq5cwtfRimlPHlSzZ9VYXp5SXnwoMVDfLHziwzXIK9JXnLD2Q02i7Xr0i5pmJjpOrTq5Cqbx3RRNLBWYd67W/KsvPEGfPklLF+uLOXXr1s/Vt++cOqUcmGqWNF+MlrD+++r+kJeXqqapX8OKcWeew6OHYOICBg9WiW7KGzq1VPHB2vWqPNkgwHat4dGludmvBZ7LVuUT1hcmM1i7Q/dn5FIIiE1gT1Xcq/LXZiYpIk3Nr1B3Vl1eWvzWwVOdlGUkFJyI+EGRpPR2aJYhEthAuzfr84cQfkoXrRvHRCnMXKk8iP95x/49dec28TGZvfVTEzMuZ2j0WiUUr98WSU63rAh1xIfl6Mv0/zb5pT5vAzTdk0DYOT9IyntWRovvRcVfSrSt15fm0XqXrM7Oq0OL70XBr2BPvX62DymlJLIhMh8FURkQiQj141k6KqhnLuZvRzH4iOL+Xb/t5yJPMPcfXNZcnSJzXI5g4TUBO7/7n4qTa9E1a+qcjXGCV/WBcSlMEFZx9NzLFasWKCVTaGzZo0yVP3wg9q85ketWirEM7f6Ql9/rf5unU7F19eqZVdxC0zp0lCnTp5hn6+sf4VD4Ye4mXiTD4M+5EzkGWqWrsmlMZfY/8J+jo88nmOJhfiUeEauG8lDPz7E1pCt+YpSu0xtjrx0hNmPzmbfiH35uqrkR2JqIq3mt6LCtApUm1EtTwXRe2lv5h+Yz+Iji2n/Q/tsq8iwuDBSjao+U6opldC44mnZX3lyJadunCLFmEJYXBhf7SncpNDWcHcljjx/HkaMULVgZsyApk3VVrNSpbwLkg0ZopTk5cvKouxecMfZQmHnThg4ULlC/f672mo/+aRtY7Ztq7KhJyUVXnJhG4lLictQIEIIElJVCQ6D3pCnP+TrG19n8ZHFJBuT2XVlF8GvBuebhqx6qepUL1XdLnKvPLmSExEnlJKLDeXL3V/yRbcvcmyb3g7gRsINElITMtLIDW08lK92f0VMcgy+Hr4MaVQ8S7JkjQXXaXSUdC/pRGkso3isMI1GGDZMOYN3764cy3Oib1/46y9VJOuhh1RkT506Sinkl62ncWPo2VMpoaLK4cOZq8qEBOWKYw90usJXln/+qZIKP/88REUVqOu0btMo5VEKnUZH/8D+FrsDHY84nuFzqRGaQi8le7uC8HXPvdDY882ex0vvhbebN91rds+Wc7O8d3lCXg9h/wv7OffauQJnNy8qPFbnMYY3GU5ZQ1m61+zOmDZjnC1S/lhjKSqsK8NK/uuvymoKUrq7SzlpUs6mr6yW1qxuKt7eUq5ZY40xrWgREiJliRLKRchgkPK//5wtkXVs3JjdIv7IIwUeIs2YJuOS4wrUZ8WJFdIw0SB9JvvIJnObyOS05ALPawsmk0mOWjdK+n3uJ3v+0lPGp8Tn2Xb7xe1yU/AmmWZMK0QpHcfR8KOy4eyGssqXVeQfp/9wqizc1W5FixZlKkydTsr338/5VZgzR0oPD+XD16iRUq7pLio7dlj3yhY1Ll+WculSKc+ccbYk1tOpU3aFmZ6BqUYNKU+dcujUwZHBctv5bTIpNcmh87i4k/qz6mdkgvKc6CkTU53nF2ytwiweW/L+/dUZo1YL1arBa6/l3O6ll+DMGTh0CLZvh4cfVnWx330X2rUrVJEdRuXKqrhYbSclro2NVYXJrKkznk6jRtmNOklJ6pjl/Hl48UXbZcyDmqVr0qlaJ9x1RfScOhf2XNnD6lOrSUx1kheDHYhJjsl4nGZKyzBcFSeKh8L09IRdu5Qx58yZTH/CtDSVTCI6OrNtQIA6tyxRQhlGLl1S/oj3Gnv3wqOPKiNYAc8IcyUqCgIDVfLhwEBlhLKGKVNg+HDlf/n22yr7Eqj1ZmoOH6KYGGjVSp21dutm1+zxJmni2PVjhMeF221MezPrv1l0+bELg1cNpvX3rUkzFc8y0l8/8jUeOg/cNG680+6dPEsGF1msWZYW1pVnpE9iopRNm6qtnI+PlPv2Wbc2vxuJjVWvSXqEz2OP2Wfc337LnpB44ED7jDt2rArh9PPLObrn00/V35Ge/HjBArtMazQZ5YM/Pii9JnlJz4mecu3ptXYZ197Um1UvW1LjE9dPOFskq4lPiZe3Em85W4y7dEseFqbSmcXlUGclKAiCg9VWLjYWPv208OUrqkREqNU3qHyfJ2yoPvjXX8rv86uvoGbNTCd3gwHuu892WUG9x8nJKsKqSZP829upDv3x68f59/K/xKfGk5iWyLht9iuWZU/ur3h/RkJdrUZLpRKFXz/QXhj0Bkp6KPehczfP8fLalxkXNI74lFw8X4oYRdsP89o1GDdOOWvv2JH9XvnymfV53N0LnrfybqZqVZVg+MAB9Rq99ZZ145w6paJv0v0+J05UOUPnzlU5NceOtZ/M6Vnuc+KVV9T/wN69KsHz00/bZcqyXmUz/Dn1Gj3VS9rH39LefNvzWyqXqMyl6EuMbTu2wJUuiyIpxhTafN+GyIRI9Fo9x64fY+VTK60eb1PwJl5e9zIGvYGfH/+ZxuUdk3mqaOfDFELuA3V2ldPZ1ty58MUX6mzN3x9mz4bOnQtZyhy4eVMpm4YN1VmqNUgJ33+vDFjPPFPwchJpaeqM0c8vs/xGQVm5Us0dG6t+798/9xDLYsofp//go20fUb1Udeb1nEcZg4111F1YxNWYq9SaWSsj/r+STyWuvGGdX2yqMZWSU0qSkKYCGGqVrsXZV8/m2cfafJhFe4Wp0ahyCh065Hz/pZdg1iyloCIjleP5rVuZRgRncPasWt1JqWQ/dEg50BeU6dPV6johARYuVAmPC7KK1umUY7gtdOyo/gZQK9Xnin8ZhqikKHr83IMDoQfoU68PPz/+M4/VfczZYhUr5uydwyf/fEJV36osf3K5VUcEFXwq0KBsA05HnkZKyTNNnrFanjRTGimmlIzfY5Ji8mhtG0X7DDMgQJW7Xb069zYREZnRL8nJzq+//eOPakUWE6OuFSusG2fbNqUsQW1Xj9m/oFO++PkpRT1/PuzZo6KsijnTdk1j/7X9JBuTWXtmLatOrXK2SMWKkFshvLH5DULjVBmPketGWjWORmjYPnw7C3otYPWA1XzywCdWy+Sp9+TDjh/ipnXDXevOV484Lia9aCtMPz9VQzuv2O7PP1f33d2Vf6a9Q/ykhDlz1NZ02zb13Lp1Kit406Zq652VmjUzV2VarWpnDUOGZKY60+uVW40zKFtWxas3bFiwfiaTOiopYkc+qaZUJJkyFVcXHWdxLPxYxjbaKI1EJkZaPZan3pP+DfrTtUbXbLXfrWFcp3GEvxXOjbdvMLBhnjUZbaJob8ktYdgw5W+YnKySbNibWbNUwbGEBFU2Yft2VfYhKUlZawcMUNvudIYOVenhNm5UDuY9elg375NPqhX2yZOqLlB6JcviwNWr0KYNhIaquklbt2Z+iTiZt9q+xdozazkRcYL2VdrzRP0nnCKHSZoyKhz2qN0DrSYPo1cR4tfj2c+wcypB7CzSre+OpPgrTHCsMtm5M/vW+PDhTOu8lOr8NCsaDXz0kbpspU0bdRU3pk1THg5Go3q9fv9dfbHYg4QEFchg5YrEz+DHsZHHMEkTGuG8DdaQlUNYc2YNUko6Vu3ImoFr0GmK/sextKE0blo3UowpGHQGWldu7WyRCpWivSW3B6mpypo+aZKqRV5Qhg9X22Jvb3BzU6vZ119Xjz08lH+ii+xk9QxITMzZw6GgGLzaht0AACAASURBVI3w+ONq7IoVlXHNBpypLAF+O/EbcSlxxKfGsyF4Aw1nN8wWOlhU+eSBT3ig2gNU8K7A2+3fLlANeHuQYkzh233f8tXur4hOis6/g50p2m5F9iiz+9xzsGSJcrMpV07V9i6oFf3IEWX86NJFjQFw44ZSmMUkh2Sh8vff0LWrUnJCwODBmTXfrSUoCHr1UkEMGo1ycVq61D7yOoEmc5tw9PrRDD9Qg97ArEdmMbzpcIfOm5CawA8HfwBgeNPhGPQGh85nD8Ljwtl1eRdNyjfhzc1vsjF4IyZpoq5fXQ69eMiq80+nuhUJIR4GZgBaYL6Ucspt958BpgLpKaZnSSnn22NuQG2N9+5VUS3t2mXfrv35Z2bZhchIFT0UEFCw8Rs1ujMLe3E6UyxshFDb5vQILXuUvfD0zDQgaTQOyVuaakxlyKohbD63mW41u/FT35/QazO/XI0mI29tfotN5zbxeP3H+eSBT6w2Vvw55E+eWPYEu67swiiNCAR+Bsf/T/X4uQd7rqraRMtPLCfomSCHz2kLl6Mv02huI0zSlFHWIzFN/T8dv36cxLTEQlX6Nu9LhBBa4BvgESAQGCiECMyh6TIpZRPzZT9lCar+d5cuyjgyeHD2e716qQ+Xh4faylnjE3k7SUmZIYL3Mnv2KJev2xVi+/bqvdBoVEDBpEm2z9WqlSol4usLzZs7JBR24aGFrDm9hltJt1hzeg0LDy284/68A/M4eeMkX+3+ipUnrY9MKetVlj+H/smg+wZRzbcao1qOomednjb+BXdy7Poxgs4HZWQG2nFpB0lpSSSlJbHj8o58ehceIbdC2H1l9x1eCxuCN5CclkxMcgzxqfFU8K6AQW/AXetOA/8GeOo8C1VOe6wwWwLBUsoQACHEUqA3YEMAcwGZMyczC/vSpcrRO33b/fXXatUZGalionVZ/uSkJLVd12hU6Qc3t7znkVIVFvvuO3WWtnWrci1KJzISTp+2LcKnKLFtmyqg9uCDKmt9VmbNUl9UGg1Ur67CMNNfW41GRQQlJSl3L3vEfguhshxNmZJ/WyvJWvrCJE3EpWTPYXA19irJacrP12gyci32mk3zuevcWdR3kU1j5MW3+79lzMYxaDVaGpdrzD/D/6F9lfbsuboHgaBVJctc1RJTE1l9ejWlPUvzUI2HbHYBup1fjv7C82ueR6vR0qxCM4KGBWWcMTf0b5gxn0Fv4P2O75OclkxiWiLPNn3W7rLkizUZO7JeQD/UNjz99yGoLXfWNs8AocARYDkQYMnYFtclb9JEZbvRaFQtbpPJsn5du6rsNwaDlI8+mn/7Y8dU2/RsPR07Zt47dUpKX1+VEb1cOSlDQy2ToagSFKT+ViFUQuY9e7Lfr18/83Xw8pLyRPHNoJPOrcRbMvCbQKmboJOB3wTekVXnUtQl6f+5v/Se7C0rT68sr8ddd5KkllHr61rZEvYGRwbL+JR4OXPPTDlzz8w8M76nYzQZZbNvm0nvyd7Sa5KXfHfLu3aXs8E3DTLkNEwy3JGNafnx5fLxZY/Lb/77Rpos/WznA0U8W9EfQDUpZSPgTyDXr1UhxAtCiH1CiH0RERGWjb5unXJbefxx9fjAgZwzHGVFSmVISEhQ1+bN+c/j7p69JK1nlu3AokWZ0T0xMbCqmESQHD6sQii7dVPZn9LZtk1ttaVUBrPt27P3u//+7A76jvCBLWRKepTk2MvHuDH2BsdePnaHX1+AbwDnR59n93O7OfvqWcp6lXWSpJbR0L8hblq1a9JpdPh7+WPQGxjVchSjWo6y6OwvNDaUExEnMiz6Px620XiXA3X96mbIKRB31Ch6IvAJVjy5gpH3j8xxRRkWF0bvJb1p9V0rgs47+EzWGi2b9QLaAJuy/P4u8G4e7bVAtCVjW7zCTOfiRSnLlFG5IP39pbx6Ne/2LVqoPIvu7lK2b2/ZHJ9/rlaSDRqoGjvpzJ+fufr08lJ1a4o6JpN6vdJrINWpk3lvxw719+j16ueBA9n7JiRI+e67Ug4eLOWhQ4UrtwuLiEqMki/88YLs+UtP+d8V6+o/JaclS//P/aVmvEa6f+IuH1/2uJ2lVCv7YauGyU4/dJLbzm8rcP+ui7pK7cfajBVqTFJMvn1wVk0f1DloCFAdcAMOAw1ua1Mhy+O+wG5Lxi6wwpw8WdX8SU+cO21a3u2jolSfKVNU0l1bMBql/OgjKdu0kXLGDNvGKixSU9VRRtbaOlnZvVvKqVOl3L/fOfJZydaQrXLg8oFy2q5p0mgyOlucYk/IzRD5yrpX5Pig8RZt4wubmjNqZmzpPSZ6yItRF/Pt4zSFqeamB3AGOAe8b35uAtDL/PhT4LhZmQYB9SwZt8AKc/HizGJpXl4qQ7iLvHntNbWC9PBQXx7FnJMRJ6VhkiFjtTF151Rni+TCwSw+slh6TPSQhkkG2fq71rLPkj75fllaqzDt4ocppVwPrL/tuXFZHr9r3qo7lqefVlbqtWuhTx9Ve8ZF3syYodLk6fVQq5azpbGZkxEn0QoVl52QmsCeK3ucLFHepBhT0Gl0To88Ks4Mum8Qnap24t/L/zJs1TB2G3ezOWQzHjoPRt5vXTal3Li73iUhYMIEZfQZN85upQzueurXL1bKMiktiVc3vEqHHzqw4kT29Hkdq3bEU++Jj5sPBr2B55s97yQp8+fNTW9imGSgzOdl2Ht1r7PFKdZULlGZFGMKWm3ml+X+a/vtPk/Rj/Z3YX/i45WHQEAANHZMKn9H8lHQR8w/MJ+ktCQOhB6ggX8D6vnVA6CMoQwnRp4g6EIQ9f3q08A/72zz8SnxvLj2RQ6HHWZMmzE82/TZwvgTCLkVwpx9czBKI1FJUYxaP4o9I4r2ario81DNh/DQeaARGtJMaQ4JM3UpzHuN5GRV7uLqVRXrPWeOSklXjAgNPsgn65JI0MO3nTVcjLqYoTBBKc1+gf0sGuu9re+x/MRyko3JjFo/ivsr3s995exU3C0P9Bp9Rl5OgcBDXzTS3xVn/L38OfnKSXZc2kFD/4bUKm3/XdPdtSW/F4iJURE01nL0KFy5orLCJySojPbFCSn59tNjvL4H3tkJK5aY6FA1lxImFnAx+iLJRhW9o9PoCI0LtZekeRLgG8CnXT7F192X2mVq891j31nUL82Uxvht43n0l0dZe2atg6UsfvgZ/OhTr49DlCW4FGbxYtw4lfSjdGll2LKGqlUzk1h4eKi47OJEUhKeV8PRm8DdCK3CtTYlX3ivw3t4u3njpfeidpnadKpqYx2kAjC6zWii/hfF6VGnqVOmjkV9PtvxGVN3TmX92fU8tfwpTkQUXgSyC5fCLD5ER6s46tRUFYEz8v/snXd8U2UXx383oyNdlGmhjLJBQSh77yUOQJwIiCjIEl4FREFFlgqCgiCCoGxFkL2H7L1KoUBZhbZQSvdK04x73j8OTSh0ZNyMln753E+T3Huf5ySlJ88453es3P0rU4Zz4Pv2BcaMcQ09z1u3OM//ww+5NnkeHLpzCAsvL4OmRVMWVPHygtD3DZu6blqhKSLHROLE4BM4Ofgk3BX5lENxAUIehBirI8oFOW4k2KYLWtTIFhaxF66/hknEoS9btwKvvQaMGlXw7rdOx0IQRWmXXKnkFMRsMd6CxD30eiAqitWZniwP0awZl9twBYi4OmVMDL+/0FDg9OmnLlt9aTWGbB0CkUR828MD4R/Ohp//c1w33Ub2RezDwI0DAQDLey/HG3Vtc8L2ZHiT4dhxcwcUMgV83X3Rvkp7Z5tkNiKJSMxMREnPknYJo1p6YamxKNtvPX+zy6aP648wN24EJk0C/vsP+PJLLneQF3o9y7m5u3Mxsnv38r62sKFSAatXc852nTr5i+empgL16rFqUqVKwJ07DjPTYrKyWKOUHuWsP1lU7hF/X/4bap0aGr0GmXIRR1pW4C9QWT7/hZOSeEOrfXtWXcqDQZsGIVOfiUx9JgZtsq+Ar610COqAS8Mu4Z++/yBseBj8PPycbZJZpGhSUG9hPVSYUwE15tVAXIaZOhEWMHLHSGgNWmgNWozYMULy9oHC4DCvXzeVzs3Kyr80wc6dHC5DBERGAlOtL91pF/R6lj37+2/ryjb06cMbNleu5F/FccMGfv9qNUvOzZ9vvc32xsODkwy8vXmaPWRIrpd1qdrFuFZpEA14sZwZ4VAffMCf9aFDrM+ZlJTrZY+PdgpDAHlV/6roVr0bfN0Lj4Tg6kurEZEUAa1Bi6jUKPx+3rxNLkvwUHjk+lhKXH9K/uabvHZHxFPsN/KZLrm55VTldpFKhUbeegvYvZsfr1pl/cZNQZQpY1qOcHMzldVwVdatY3Ukd/endTcfMarpKJT0LInQ2FC8W+9dVPQzQzU/PDznF9PDh4C//1OXremzBv039QcArOy10pp3UEwB+Lr7Gr+MFDIF/NylHxlveHMDBmziELmVve30e7Qmn9JRhzGXPC6OaP9+/pkfokg0ZAjnkTdrRhQfn//1jkapNAldyGTm63ZaiigSTZxIFBRENGAAkUZj3n2ZmSzIUVRYtYq1PL29idq3Z4GUYpyC3qCnDzZ9QGVnlaW31r1FWfosp9oDK3PJi34RNFeiWTPgwgWemnt4cCnesmV55KlycjGq777jsCWlEvj3X57CFgVu3wbi4jhYX144an8/C0w+OBkzj81EgHcAdr630+ywKqmwtghascN0JElJXFcoO/A8W4S4Xj3g5Enn2ZWWBpQqZZq+VqzIa6DFFGMHridcR4PfGiBTnwkBAjpX7Yw9/c0Q8JYQax2m669wFyX8/Hh0mQ0Rb8ycPWuqSeQMFIqcu82eji0sVcyzRXb1x2yeLHzmyhQ7TEcik3GIlLs7P5bLeQocFOTcKbmnJ5fYKFMGqFq1UNf7lhS1mss05xeZUYzF1ClTB8ObDIdckKOcdzn80qPwpOcWT8mdwb17PC3/918eWY4cyc6qGNchM5OVnB48YJGStWuBl6Uvg1sQIolYe3kt4tRxeLfeuw6pXW4O4/aMw7zT81DRtyL29N+Dqv5VLW5DJNFpYVzFa5i2EhnJI6vq1TkuML+A6GJyEhbGReeaNCkyn1vKrs1Q9X0HyoxHNdc7duSU0nzYdG0T1l9Zjy7VumDgiwMlseOTnZ9g0dlF0IpaCBCw5Z0t6FG9B1KyUuDn7oeVoSsRkxaDgQ0GorxPeUn6LIiLDy6i5R8todapIRNk6FmjJ7a8s8UhfUuFtQ7T9eMwn0SvB06d4hFZTYl21s6eBVq0MK0vvvIKsKVw/QdwGjNnAt9+yxtYPXq4TsqlDTxIf4AehwfhmDYTSgAGD3fIGzTI956jkUfRb0M/qHVqbLy2EV5KL7Ml5vJj07VN0IpaAACBMHDjQCjkCiRlJuE57+cQr46HTtRh7qm5iBgdAU+l/defs2u3AxyW+PjzbDK0GRiwaQDO3j+LDxt+iK/afWV3uxxB4RoOiCLQqRPQvTvQoAGvu0nBn3/m3IzZts26TJxnkR9/5LW+jAzcPrgRk3dNwPKQ5bn+ERUW9tzagxveWrz2NrCjOrDvpVrAjBn53hPyIMT4nvNT+z589zBmHJlhtsJ6p6BOOZ5r9BrEZcRBJ+oQnRqNTH0m9KIeGboM3Em+Y1abttLguQYY3HAw5IIcgb6B+KnbT09dM+3wNGy/vh2RKZH44dgPOHw379TUwkThcpi3bvFoMD2d15i+/16aduvXzynUUbYsb8YUUzDVqgFyOZI9gMYfiph6ehaG7xiOyQcnO9sy1h+YPh04Z1mpgjql64BA2FcNeGOQChFfDOONunx4qcZLUMqU8HHzyXN0eSDiAHqs7oGvD3yN9sva43zM+QJtWfzKYnzY8EN4KDxQ1qssetbsCaWM/28qZAp4yD3gLneHn7sfgvyDzHp/yZpkdFvVDeVnl8eMI/l/EeSGIAiY12MedF/pEPm/SNQoVeOpax6qH0Jr0Bqvj1fHW9yPK1K4puRly+ZM+attUtkGEW+geHlZrlL00Ueco71sGe9Yr5C+WH2RZcMGYMwYhIuRMHhfgqjPgFqnxq6buzClwxTn2bVrFxfB02h4dHjyJMe7mkGTCk2wqvcqLLu4DG0rt8WQRrnntz9OVf+qCBsehmNRx9AooFGuTuS/iP+g1rE0m4EMOHL3CIIDgvNtVylX4vdXf8fvr3LudbImGYmZibgYexEfNvwQ9cvVx4P0B+hXv5/Z+dMT90/EgYgD0Ik6TD8yHZ2COqFZYDOz7n0cIZ+/s89bfY5N1zZBrVOjVqlaeKnGSxa374oULofp58e52N98AwQGmrQc4+OBVq14BNqwIecle3mZ365MxkIdribWURgICADWrkXdrDR4/FIdWhggF+TOl0jbu5eXCgD+Mj12zGyHCQC96/RG7zq9Leqyol9FvO33dp7nO1XthNknZnOxLkGOtpXbWtQ+AJTwKIF9A/ZZfN/jJGQmGGMfZYIMKVkpNrWXGzVL1cS9T+8hLiMOFXwrFApRE3MoGrvk06ZxtUidjuMZf/6ZR43FOJSYtBisv7IelUtUxis1X8l3BGJ39uwBevcGtFqejZw+DTyff0E0R3A08iiORh5F56qd0bi8xZu0knA17ipa/9kaGdoMtKzYErvf2w2l/Nlagnp2dslzw9PTJK4rCJaNLouRjACfAIxqNsrZZjBdu7Lc38mT/NgFnCUAtK7UGq0rtXaqDXXK1EHMZzFIykxCWa+yzv1iK2QUjXHy8OFA5848Ze/Vi8UsCgspKUDr1jwyfvttDpIuxnIOHOA17hIlgPXr+bW2bYHx4zmiohCzMnQl6v1aD2+tewupWamStOkmd0M573LFztJCJHGYgiB0FwQhXBCEm4IgTMjlvLsgCGsfnT8lCEIVKfo14unJJSySk1lnsjCp0syZA5w5w7v+27bxJkoxlvPOO6xKlJIC9O9fZL54wuPDMXTrUFyOu4xN4Zswds9Y8268e5cjSorI5+Aq2OwwBUGQA1gAoAeAugDeEQSh7hOXDQaQRETVAfwE4Adb+y0y6PUm0ePs57YiFt4YSKt53DGIYs7PtBATmxELuYwHAFqDFndT7hZ80/r1XMakfXueebnq/4eMDC45c8a8mFRXQIoRZlMAN4noNhFpAfwN4LUnrnkNQHaU+XoAnYQiNBdQ69R4e/3bqDq3quVxbf/7H2csCQKrjb/+uvWGxMRwqJVCwRsez9Lo4s8/eVnDzQ1YuJA/gyJAi8AWqFe2HlRKFbyUXviq/iguVdKoEa/R5saUKTxjycjgza486iQ5Fa2WU2n792fHvmiRsy0yD2tUhx8/APQFsOSx5/0BzH/imssAAh97fgtA6YLaNiquuziT9k8i96nuhMkgr+ledOjOIcsb0ettN2TkSCKFghXdvb2JNm/OcXrhmYXUY1UPWnhmoe19uSKiWCRV1fUGPV15eIUS1YlEr75q+h17ehI9fPj0DX36mNT9VaqCKxXYC52O6MsviTp2JFq3Lue5kBD+P5pdgaB+fYeaBisV113ua1gQhCEAhgBApUqVnGyNedxPv58jq6GginjHo44jMTMRXat1hZvcjV+UYt1VLs8ZtP/YKGtL+BZ8tuczqHVqHL57GAHeAXit9pMTgUKOIBSt0sqPkMvkqFOmDj+JiDAt2wgCxyA/qXS1ZAkrYN29y3n+pZ2kcDRzJvDTTzzaPXkSqFGDFaAArmaa/bvy8ODRZiFAiin5PQCPV6QKfPRartcIgqAA4AcgIbfGiGgxETUmosZlnCR5phf12Hd7n1mpawAwruU4lPAoAU+FJ6qXrJ5nVsP3R7+H9wxvtPmzDd5e/zbaL2svbc71pEmc5unhwdO27t2Np67EXTE69SxDFq7GX5Wu32Icx9SpvMmpUnEUQK1aT1/j788lmY8eZe0FR3L3Li8LqVTAypXsLAH+Mr91K6eNhw4B/foBn33m2pVNH8PmwPVHDvA6gE5gx3gGwLtEFPbYNSMA1COijwVBeBtAHyJ6s6C28wtcv/jgIs7cP4OOQR3N1uI7FnkMs47PQs1SNTGlw5RcU8mICB1XdMTZ+2chkogp7afgs5afFdh2pi4TD9IfoJJfJeMi/ZP2ZktiZeOh8MCNUTcQ6Btolv22cDPxJhotbmR8fm7IOVQvWd3u/ZoFEe9w+/q6XqVPVyQmhssn163renJ6ffoAmzfzRlO2ULZSySF/ly7xTxfAaYHrRKQXBGEkgN0A5AD+IKIwQRCmgNcJtgBYCmClIAg3ASQCyDt/7DH0oh7Dtg1DliEL37T7BpVLVAYAHLl7BN1X8+hJJshwYeiFAv/4Y9Nj0W1VN2ToMuCh8EBaVhoWvrzwqevup93HyaiT0Bi47s7Pp342y2F6Kj3zFT9I06Y9lR7mqfB0mCBs9ZLVcX3kdZyPOY+GAQ3xnPdzDum3QEQR6NsX2L6d/8D27uViccXkTUAAH0/y8CFnvQE82yhb1rF2AZw8kj0IUyhYY1alApo25drzhRxJ1jCJaAeAHU+89vVjjzUALE4uvpF4A2EXwiCSiP0R+3Fn9B0IgoCN1zYaR2qeCk/sv72/QId5N+WuMUhXo9fkOd0upSoFD4UHNAYN3ORuqFfW/Pzj/GhZsSU6VumInTd3QibI0LlqZ8zqMgvucnfEpseilKoUFDL7LimX8y6HHjVcrBrkhQucxqjV8vHFF6wyVIzldOpk2hE/eBAIDXW8DbNn8+80JgZ47z2gZ88ita7sYuP5nGj0GuhFPUQSEZUSZRQMaFWxFVRKroEjCIJZObkvlnsRFX0rwsfNB54KT4xuPjrH+dtJt7Ho7CJcfngZhwYdQp86fTCowSCseX2Nze+DiDD/9HwoZAr88eofSPsiDdve3YYqJaqg6ZKmqPxzZQTOCXSYnqFL4etrihOUy7l6ZTHWcfUqbwjp9fzYGdSsycpfOh3w22/sLFNTeb21CGSzudwu+eOU8iwFtVINQeBSnNkCAa/XfR0EwsE7B9GnTh80Kt+ogJYAd4U7zg45i0N3DqGiX0W8UPYF47k7yXfQ4LcGXM1OADa/vRn/vvmvZO9jyYUl+GL/Fyx7dmsXapWuhSYVmmBL+BZci7uGLEMW4tRxmH18Nn55qfAUhJKEGjWQPms6Euf9gIrP1YTwyzP2/qXk9deBHY8mek6oP5SDx9dW587lKglaLWez/fsv8GaBWxguiUs7zEp+lTDrnVnQGrToXLVzjnN96/a1uASASqnKdUp68M5BiCRCredp/vor65/qzxYuxFwwLiEIEBAWF4YmFZqghEcJEHi9RylToqRnScn6LCwcjzqObqlfQz9Aj/aVvbCtbBkUosRW12LNGlMw+0supD+p1ebMvCrE1QxcekoOAB2COqBb9W657jxLRaOARkbHpVKq0K5yO0nb71+/P1RKFXzcfOCucEe3at0AAF2rdcXwJsMR4B2AbtW7YXyr8ZL26yjmnpqLZr83w8T9E5+qOV0Qk/6bhHRtOjR6DY5GHcW5GMvU0Yt5DLmcR5Yvv+xau+ejR5uy2Zo1402+QkrR0MO0gNSsVESnRqNmqZo5NlmORh7Fhqsb0CKwBd54Xnrx21uJt3Dp4SW0qtgKZbycX1L3yN0j+O3cb3ix3Iv4rMVnVn8h7b65G6//8zoydBlQKVX4qdtPZimUZ/PO+nfw79V/oRN18FR4InRYqOuEOxV1Ll1i55qQwKU8Ro8u+B5b0OtdJmX12dbDNJOLDy6i7bK2MIgGVPWvipMfnjRuHkmpU/hP2D/45fQvaFK+Cb7v/D3c5G6oVrIaqpWsJkn7thKRFIHuq7tDrVNj07VN0Og1+Lrd1wXfmAt3ku8Yg+8zdZm4lXirgDty8stLvyBRk4ibCTfxZZsvi52lI/ngAy4vDQCff86yiM/ZMdzMRZylLRT+d2ABs47PMuoJ3km+g7239uaZHnjxwUXcSLyBTkGd4O/pb3YfobGhGLR5kLFyoLebt3Nr2+RCeEI4FAL/6tU6NU7dO2VxG1n6LOhEHXrX6Y3JhyZDqVNCgIAPGn5gUTulVaWx+73dFvdfjAQ8qYxViHevHUWhdZhEZIyrVOvUOBV9CkH+QahSokqe91Tyq8QxlnoNDGRAgE8uwb8ANl7diHc3vAu9QQ+FTIFjg48VWKwqmzvJdyAXeHqbqc90yRTEFoEt4OXmBQLBQAb0qd0HSZlJZn8x7LixA33/6QudqMMXrb/AjVE3EPYwDDVK1XgmN64KLYsWcfpsairHv1ao4GyLXJ5Ct4ZJRHh/8/tYHboaVf2rYtu729BzdU/EZsTCQAZsfntznjvcmbpMfLztY5y5fwbDmwzHyKYjc72u+6ru2H3LNOop5VkK8ePNKxOark1Hg98a4GHGQ4gkYvd7u9GqUisz37HjSMpMwv6I/VgVusr4Xv9+/W+zBDmq/FzFqMvoJnPDg7EPLBqFF+NCEHEcrKuIbmcXrMvMBDp2tJtd1q5hutBWmnkcvHMQG65ugIEMuJ10GyO2j0BsRizStGlQ69T46eTTReWz8VR6Ynnv5bgy4kqezhIAmgc2z/E8MTPR7N1fbzdvhA4LxY5+O3B91HWHOcsNVzdg+Pbh2HNrj1nX+3v6o0VgC+y6uQsavQYavQbj9o4z614fdx/jY5kgMykuFRaIWJhix45CHeIiCYLATkmr5VjJe0/q5jiYCRN41NunD2u6uhiFzmHKBFm2piYECPB19zU6M0+FpySpjJPaTkK7yu0gF+TwUHjgg4YfWLSLrFKq0LpSa5T3KW+zLeawJXwL+m/sj4VnF6L32t44EXXCrPu83byN+e0yyFDWy7zc479e/wu1S9VGgHcAVvZZCS+3QlZ07quv+I/yrbeAbt2KjDq71WRlca53584c/rPPtjK+NrF4MQsfp6fzF1p6uvNsyQ1rRDQddeQmICyKIg3ePJiUU5RUZ34dik6Jpq3hW6nT8k40dvdY0ug0Eo4ntwAAIABJREFU5mqIFsiFmAt0Ovo0iaIoWZv24It9XxAmgzAZ5DHNg+adnGf2vVvDt1LlnyqT/Fs5yb6VUa+/e7n8+7WZsmVNwrVubkQJCfbrKyWFaNAgonbtiPbutV8/tnDoEJGPj+kz8fEhSkx0ji0tW7L4sSCYfrZtS5SRIWk3sFJAuNCtYRbzNCejT6LTik4QwJtg54acQ63SuegkPsaD9AdYF7YOlfwqYeSOkYhOizaeW/fGOouzqAoVnTsDR47wLnHp0jwNtVfIS79+XGNHq+Vc6tu3gXLl7NOXtdy+zTWAtKyXCkEAvvzSpHzkSOLjgYkTgXPnOE5Uq2X9z9mzgWHDJOvmmVnDLAoYRAN+OPYD3lz3Jv6LsF2Zp3lgc5z68BTm9ZiHkI9DCnSWGdoMNPitAcbvG49+G/ohXp1zQ+tB+gObbQIAkURsu74Nm69ttjgDyK6sXw8MHcrO7OhR+8YHhofndEQxMdK0q9cDy5YBP/8MJCXZ1lbVqsAnn5iyg+RyaQunxcVxgPwLL7BWZn6ULs279wMG5MxWcpXMJWuGpY46pKzpo9aq6c8Lf9Ka0DWkM+gka7cgNDoNhceH51gqmH54OqmmqwiTQarpKroef91h9hARnbl3hnxm+Bin8ZV+qmR8XOqHUpShlWb68+6/75L3DG/ynuFNvf/uLUmbduf2baLLl7k+kBSsX8+1d7y9iZo14zo3UvDBB1yvx92dqHp122tCabVcL0guJ2rQQNpliifrEMXEFHxPRgZRhw48Le/ShSgzUzp7qAjV9LEXXVd1xfmY8xAgYHP4Zvzd92+79xmbHovgxcFI0aTAz8MP54ecRznvcjh977RRjEMhKBCeEI4apWrY3Z5sapaqCaVcCbkgh7vCHe/Vew+ftfwMkcmRqP9c/aeEjq1l/ZX1xrIYm8M354iddQkyMrjCpMEAfPwxsGIFMH48j2beegv44w/r2755k0ewiYnAggVcSqJJE+lGszt2AOpH6v1RUTyKsyVLR6nk0R8Rj4TPnuXPo317oEED22yNispZhyghoWBbVSqX1EV9Jhxmlj4LxyKPGQU2tl3f5pB+V4auRLw6HlqDFjpRhxUXV2Bcq3EY2mgo9t7eC7kgh8pNJVlKprn4uvvi7EdnseLiClQuURkDXhwAmSCTPOj8hbIv4FLsJRAINUrWcC1nKYpAtWpAbCz/Ea9Zw9NlDSvtY+VKnu76+lrX/ltvsZAuETBiBK/NKZXS2d+tG7BuHTuiChWeLoRmLYLABcs6deIvErmcly0aNrS+zRkzOExIEIAOHXi9VCqiooBevfjnxIl2z4d/Jhymu8IdtUvXxs3Em5AJMrQIbOGQfst5lYNCpoDWoIVCpjCWhehRowfOfHQG4fHhaF+lPUp4lHCIPY8T5B+Eb9p/Y9c+9ry3B9OPTIeBDPiy9Zd27cti/vuPnSXATi00lJ1CQgI7U5WKD2uJjzeFKxkMHIhtbnsGAztur3zCtZYsAVq3BpKTgUGDLAvwzh5F5sXevWwvETv5/ftNDnPyZGDOHCAoiLUtK1bMu51sunfnnPWEBJNqkVQMGwaEhPDv7IsveK20mh01G6yZxzvqkHINMz4jniYfmEzfHfmO0rPSJWs3NzQ6Da0IWUGrLq6i0TtHU/V51WnMzjFkEItezexCy759vF6XHUrz3HNEd+8SvfQSUatWRKdP29b+unVEHh68xjhqlPn3nTtHVKIEr/kNGiTdWioRUWQkr3fKZET9++ddw/3AAV5rzF5zPH6cXw8N5XVTgD+7Pn2ks81a2rQx/Q5VKrbRDGDlGqbTnWJ+h5QO05F0Wt6JvKZ7kdd0L3p97evONqeY3BBFdhpyOVFAAG/2SE1SEtH9+5bd07atVQ7ALAYONH1JeHsT7d+f97X79xNNmsQxmtmcOUPk5cX3CwJRjx7S2WYtZ84Q+fnxF8zAgWZ/wVjrMJ+JKXk2BtEArUELT6Wn3foQScR/Ef8Z10u339hut76KsQFB4E2NFSssu48I2LIFuH+fyyw8WYMoMpLTLatVA0qU4MMSvL1500kUuS9PCf+vPh6aQ5R/qE7Hjnw8TqNGwBtv8GdWqhTw44/S2WYtjRvz8kdmJuDjU/D1NuIiwU3258y9Myg1sxR8vvPBiO0j7NaPTJChXtl6UMqUcJO7mVWgrZhCxLff8u73Z58BwcGmTSKA1/Zq1QLq1ePz1rBwIfDii0DJkizqW11CfdBp04DatQE3N34P7SysLCAIwJ9/8u58bCzXRXcFFAqHOEugEKoVWUuLpS1wMvokAM45D/k4BDVL1ZSk7SdJzEzEvFPzoJAp8EmzT+DrbuVOayHiZuJN9FzTEzFpMfi63dcY23Kss02SFiJg9WoO8M4OFPf25h3l55/n576+QFoaP5bJeNTjVsiESQoLWVnAlClcVvh//+MNMAsoVlwvAC+lF2SCDCKJIBDc5e5266ukZ0lMbj/Zbu27IkO2DsGNhBsgEL468BX61u2brzZpoeO334CxY02xjzIZ4OEBVKliuubx3V9R5Kli+ScEWBYv5nCgl14CxowpUjW7Hcr48cDvv/OX0u7dwPXrT3/WduCZmZIvfmUx6pauC38Pf/zQ+QdULlHZ2SYVKbL0WcZ1WwGCMWBdCi4+uIih24Zi9onZxtr05hCZEokuK7ug0eJGOHTnkG1GHDhgcpbu7iw9dvZsztCfoCDTY5WKYwMfZ+VKHg3t28eKSWvX2mbTs8y5c+wsAf7yiohwTL/W7BRlHwBKAtgL4Majn/55XGcAEPLo2GJu+4V1l/xZ5Nz9c+T/vT/Jv5XTmF1jJGv3YfpDYxqn5zRPGrdnnNn3Nvu9Gcm+lREmg7yme5Faq7bekA0beNdapeKwn9x2v//5h8/7+BA9/zyR5jHlrAkTTOmB2bvMX39tvT3ORhSJVqzgkKkTJxzf/9q1ps+6Rg0itWW/WzhDrUgQhJkAEonoe0EQJjxymJ/ncl06EXlb2n5RVSuKTImEm9zNGMheVCAi6EU9lHLpMlqORx1Hj1U9kKrlWkwtAlvg+ODjZt1b8aeKiE5lFSY3mRvufXYPpVWlrTfmxAng8mUOxM4rYPvaNR5Ztm5t2uHW6fjx4zVzfHyA06d5E6YwsmgR8OmnPOpWqYCLF6XdoDKHsDDgzh1O38wvyD8XnKVW9BqA5Y8eLwfQy8b2ijzj9oxDrfm1UOXnKvjtzG/ONkdSBEGQ1FkCwIvlXoSfhx+8lF5QKVUWFVmb1mEaPBQe8FR44p167+R0liEhrO7999/mCwi3aAF89FH+2S21awNduuQMB1IoeIMom4AAXnMrrM4SyLlEIZfz5+lonn8e6NmTnaXBwHn79t7EtmZYmn0ASH7ssfD48yeu0wM4C+AkgF7mtl/UpuSZukySfys3KgP5f+/vbJOcyqXYS/TSqpforXVv0f3UvAO8E9WJtPLiSjp696jFfdxLvUfX46/nFEWOiDAFYKtURAsXWmG9hZw8SdSwIVHz5kRXrti/P3uzeXPBSxSO4u5dovLlWdmoVaucSyFPotEQJSTYL3BdEIR9AHKbO058wvGSIAh5uffKRHRPEISqAP4TBOESEeVawFoQhCEAhgBApUqVCjKvUKGUKaFSqpCmTYMAAeW8XUxI1g4kZSYhLC4MdcvUzSHuYRANaLesHRIzEyEX5IhIisCpj3Iv9+vv6Y/36r9nVf+5lgm5cMGUe61Wc+70xx+bzt+7xyIOGRnAzJkcV2krzZoB58/b3o6r8OqrnI9/6RILgQTkXoHVIcyaxXGhBgMvDWzdCvTNRQD7+HG2NSvL6q4KdJhElHsJRgCCIMQKghBARDGCIAQAeJhHG/ce/bwtCMJBAA0B5OowiWgxgMUAr2EW+A4KEXKZHLve24URO0ZApVThj1dzyoeJJCJLn2XXTCRHEpkSiYaLGkIv6iEX5Dg35ByC/HknWa1TG2vEG8iAm0k3HWdY8+YczuPhwTusb76Z8/yrr/IfnsHA64xxca4jYOtKNGvGhyWkp7OAs78/f85ShFX5+vKyh8HAU/K8gtg//dTmGkG2/i/YAmDgo8cDATwlpywIgr8gCO6PHpcG0ArAFRv7dUkS1AmYeWwmfj3za55hNS0rtsSFoRdw7INjOZTRQx6EoPTM0vD5zgcfbf0oeymjUPNP2D9Iy0pDalYq0rRp+PuySYPUx90Hfer0Ma5NftbCysyYR2RXvjSLgABec/vxR9aVfOutnOcjIkwbNMnJgJ8fhwxdvmyTjc88osjrwCNGcKbRWImSGyZMYNm40qV5jblr19yvK1HC9i8+a+bx2QeAUgD2g8OK9gEo+ej1xgCWPHrcEsAlABcf/RxsbvuWrmFGJEXQ/FPz6dCdQwVfLDGiKFLNX2qS21Q38pzmSW/884ZF97df1t64tqmarqKLDy7ayVLH8e+Vf8lrupcxrGft5bU5zouiSCeiTlDoA9sEJpaeX0puU93Ibaob/X7ud5vaIiKi6dNZpUelYmWf7FCgJk1sb/tZJjqaFZyyP88KFRzbf2QkUdOmRAEBz0YRNJ1BhxPRJxDgHfCUQvn9tPuou6AusgxZkAkyLO+13KGFvJI1ySg7qyx0Ite5LuVZCvHj4wu4y0TPNT2x68YuiBDtnrrpKIgIs0/MxsZrG/FKzVfweavPbRYRjlfH45+wf1Depzxeq/UaBEGA13QvqPW8Y+uh8ID6S7XtYsVhYSyk0auXqSbPiy86Zze4qKDTAZUrAw8fss5mr17AX385xZQinxqpF/Vo82cbhMWFwSAasPS1pXjnhXeM509GnwQRGadl/4T941CH6efuh1qlaxlFintU72H2vdfiryEqJQoKuQJKmRJft/vaZmep1qnx88mfkaJJwejmox1WI/1xBEHA2JZjJcsr1+g1CF4UjHh1PGSCDGNbjsXk9pPhofQwOUy5hzTK7s8/z8eECSyC4ePDsYfFWI9SCZw6xSU7SpcGRo50tkUWU2hGmJdiL6HF0hbI0GUA4Pi8kI9N3/YRSRGot7AeMnQZ8FJ64aduP+GjRh851N7UrFSsuLgCPm4+6Fe/HxQy876PXvj1BVyJuwICwVPhiaTPk+CusC3X/dW/XsWeW3ugF/Wo4FsBEaMjJKvV4yzCHoah+dLmSNfywn3dMnURNjwMh+4cwoBNA0BEWN5rOToEdZC2Y4OB176K876LDEV+hBngYwpbcJe74/kyz+c4H+QfhMODDmPt5bUIDgjGm8+/+WQTdkMkEYfuHIJCpsCIJiMsHuEkZiYa87D1oh5ZhiybHeaJqBPIMnD4RExqDJI1yZLX7LEUvajHHxf+QGx6LD5o+AEq+Faw6P4qJarAQ+GBTF0m3BXu6FyVAzjaVWmHuyNv8Y62oaz0hltS/qGYIk2hcZilVaWxo98OTD00FUH+QZjddfZT1wQHBCM4INjhtg3cOBCbwjeBiDDwxYFY0HOBRffP7jYbgzYNAoHwSVNp5OB61OiBlaErAXDYzpWHV9C6smOLrT3JJzs/wfKLy6E1aPHrmV8RMSYCHgoPs+/3cvPC2Y/OYumFpQj0DcTghoP5hChy0a7z53k0uGgR0L+/nd5FESUmxlT0bcwYi1MNnxUKzZTcVRFJhHKqEiJx4XsPhQcyJ2Za3E6yJhlZ+izJgtmXXliKEdtHGEeZwxoPw689f5WkbWupNq8abifdBsByeyEfh6B6SQnyj8PDWcw3O1WvTh3gSpGMXLMPoghUrQpER3M8Y+fOXOCsCOOsXPJnHpkgQyW/SpAJMsgFOWqUtK6+eAmPEpJm/jQo1wBygaeSKqUKTSs0laxta8mOu/RQeKCMVxlU8pMok6tsWdP6optb4c7RdgapqVxyw2DgLJgTJ5xtkctSaKbkrszBgQcx6b9JUMgUmNFphkP7NogG/H7+d1xPuI4Pgz9E3TJcNqBR+UZY9+Y6rA5djXZV2mHgiwMLaMn+zOw8E03LN8XDjId4+4W34SaXSI3c3x/YtQv45hugUiXgp5+kafdZwc+Py+iGhfHzN95wrj2ujDXBm446GjVqRJm6TPrmwDc0YOMAuhBzQYrwVbNQa9WUqct0WH/5kanLpPD4cNLonhYVmLh/IqmmqwiTQT4zfCguI84JFj7jJCZy1UlbSuKKItGsWUTNmhFNnixteV1zUKtZ33LDhrzL7+ZGZCRR3bockD56tPl2z5nDgesdOxLFxRGlpBB98QXRiBEspmFnUFQD14O/Ccaq0FXI1GfCx80Hkf+LRAkPCyvxmcm5++dwPuY8olOjMe3wNIgQUdG3Io5+cFS66aOF3E+7j0aLGyEtKw3+nv44P+Q8yniVMZ5vubQlTkTzFMrX3Rc73t2BVpVaOcXWZ5Ldu1l9HWCdzH//tS78aMsW4N13WfBDpeKSGIVh4+qdd7jkhsHAG0X79xecX37pEl+Tmcmxme++y5tOBw9yO+XKsaaoHfP3i+wa5qnoU8jU8yYKgRCZElngPXpRj3F7x6HJ4iaYf3q+Wf3su70Pbf9si9G7RmPK4SkQwZs4UalRGLVjlPVvwEaWhyxHvDoeGboMxGXEYfWl1TnO96/fHyqlynjUL1ffSZY+o0yYwH/4j9eWsYaICED/qPxGVhZw+7Z0NtqTbMGLbPRmlBBJTjaFaul0XPvo3DnOqDIYWOwkNTX3e2Nj+Yupbl1g40bb7bcQl3eYHzf5GCqlCt5u3gj0DUTt0jkX9Pfc2oOvD3yN41EmFe6FZxZiwekFOBtzFp/t+QwzjswoUMxi3ZV1UOvVRuf8OLm99iTx6ng0/b0pVNNVGLxlsGTiGeW8yxnX+hQyxVMq7cOaDMPWd7Zibve5CP04FD7ujik3Wswjypc3/fGLouV1yLN54w0O6fH15ayiwjC6BIDvvwcCA02qTy1bFnxPy5asSO/uzuunU6cC773HI1Rvbx59+vnlfu/gwTyKvXqVBTxiY6V9PwVhzTzeUUe2+MbJqJO0Pmw9pWWl5ViH2Hljp3H9TjVdRefunyMiotE7RxuFLDAZ5D7Vnb7Y90W+axqrLq4ytuU2xY08pnkQJoP8vvMzSxxi9M7RpJyiJEwGec/wpl03dhV4jzmkZKbQy6tfpkpzKtHYPWPJIFqwvuSirA5dTZ2Xd6ZvD35LeoPe2ebYxv37RJ06EdWuTbR+vW1tpaRwfZzERGlscySWrHsS8VrngwcmsV9RJNq1i2jdOqKsrLzva9DAJN6hUrEYs17Pwh5ardndw14Cwq5As8BmaIan10UORByAWsexd6Io4njUcQQHBGNIoyFYemGpMYUuy5CFNZfW5LuD/W69dyGXyXEi6gT61u2LNpXbIEufBTe5m1mZO1qD1hiLCcAowmELGr0GTZY0QUxaDAxkQHBAcKFPbzwVfQofbf0Iap0ax6OPo4RHCXzS7BNnm2UdFy8CbdqwxuLAgUCfPra15+vLWp2FEUvXGwWB1yoff96tW8H3zZgBvP46P+7ShaX6nn8euHsXKFWKs73sWG63UP/19ajRA54KT7jL3SGXydGhCucQ1y1TF9dHXoe/hz9kggweCg+0rdw237YEQcDbL7yNuT3mok3lNgAAd4W72WmOk9pOQpUSVSBAQKegThaJb+RFyIMQxKTFIE2bBrVOjXmn5tncZjYavQaT/puE9za8hwsxFyRrtyBuJN6AAP5M1To1Lj8sxBqTPXsCaWk83lmxoljJyBH06MEB9pcu8Rrm2rWsKqXR8PTczgIphWKEmRftq7THgYEHcCL6BDoFdcLzZU355QE+Abgw9ALmn5mPcl7lMKqpfTduyvuUx81PbsIgGiCXFZx7LJKIyJRIlFGVgZdb7mloVUpUyZFB1CigkWT2jto5CqtCV0Gj12BL+BbcHXMX/p7+krWfF92rd4ePmw/kMjkMogEfBTtWIEVSHj5WYEAUeQOjGOtZvx5YsgRo1Qr48su8c/hLluQj+3H26Fap5CiD/v2BWrWAzz/n16TEmnm8o46iVgQtG61eS63/aE2e0zzJ9ztfOn//fJ7XHos8Rn3W9qEv932ZaxymtdT/tb5xjdd7hjeFxIRI1nZBJGcm075b+ygqJcphfdqFDh24vjhA5Odn+TpeYUCvd0xM6NmzvCaZvTY5Z4559xkMXBu9QgWivn1NbXh6En36aZ63wco1zEI9JS+sHL57GCEPQpCpz0RqViqmHJqS57UtK7bEv2/+i+mdptusYPQ4w5sON0YfVPStiDpl6kjWdkH4efihU9VOCPQNfOrc7aTb6L22N3qv7Y2IpAiH2ZQnGRmmHPUn2bqVd3jHj+dd26JW9+frr3knu1Qp4MwZ+/Z1/brp81OrgdBQ8+6TyYB583iaPmYM58IDHOZ1KveierZQqKfkhZXSqtLGqbab3O2pUKHcCI8Ph4EMxtRHWxnaaCiCnwtGdGo0ulbrKl2aoo10WdkFEUkRECDgUuwl3PzEgcXRnmTePGDcOH78++/AgAE5z3t5ARMnPn1fUSAqiitmGgxAUhIwbBhgTyGcrl05pEgm4z6HDCn4nvh4VmwvW5bDsho25Ck6EbcxdKjkZrp8po+rqxVZy/zT8/Hj8R9Rzb8a1r2xDiVVeWtVTj44GTOPzQQAfNz4Y8zpNsdRZjoc5VQl9CIHPytlSmi/yr2YnF0gMmXpiCJXlcxel/T2BhITpV8Tc1Xu3weqVePNFIBjI0+etG+fyck8Kqxdm0tZ5IdWC9SsyRs9cjk79FmzOOB9714uWhect9Rjkc30eZLt17dj1rFZuJWYa5XeQkPj8o2RkJmAU/dOoedfPfOsMgkAM4/NRKY+E5n6TMw7NS9H+JLUaA1a3Ei4gSy99bWbbeHjRh/DS+kFL6UXPm78ccE3SIFOB7zyCk/n6tfnkYsg8HQ0m/R0DmEJD3eMTc6mfHngu+94FF2lCrB0qf37LFGCQ4sKcpYA74zHx7NDz8gwZf34+nLYUT7O0hYKlcNccn4J3lr/Fib+NxHBi4PxIP2Bs02ymqmHpiJdm44MXQbCHobhWOSxPK8t71MewqN/ZbzK2C0WM14djxq/1EDDRQ0RNDcI99PuW9VO2MMwrAtbh3i1+UXgspnXYx4Ovn8QB98/iLnd51rVv8Vs3gwcOMCjymvXeKQiCPx6mTKmUWdiIjBtmmNscgXGjOEviogIjnV0Fg8fcnlef3/TEkjFipwRpVBw7r05MZwSUKgc5qZrm5ChyzAGhZ+POe9ki6ynkl8luMt5BKMX9flqYe7stxNdqnZBhyodsK//PrvZtObSGsSmx3LeujoOy0OWW9zG7pu70XRJUwzeMhjPL3jeYqcpCAIal2+MxuUbS1PMzByerNeTvfnQsSOPXDw9+blSyRsgRRW9ntdtx4zhTSxXYcIEzjVPTgbmzuVpu7s7v/bNN6wUP0+6GOX8KFSbPi/XfBkH7xyERq8BEaHhcw2dbZLV/NDlByRmJuLSw0sY13Jcvps5NUrVwOZ3NsNdbn4gvTWU9SoLhUyBLANnOJX1srw+ztILS43ZVwBw5O4R9K7TW0ozpee11zggevNmLqU7frzpXKtW/HzRIj737bfOs9PejB/PKkkaDbBsGXDnjvW58VKSkWES9RAEU9RC+fLApEkONaVQbfoQETaHb8aVuCt4vc7rqFW6lhOtcwzxGfFou6wtwuPDUaNUDRz94ChKq0rbpS+RRIzfOx6brm1C9+rdMbf7XLOC8B9nzok5+OrAV1Dr1FApVTg35NxTginFuCjBwcCFR1lfPj68TNFIumQJq7l+HWjbltcsX3mFJfRsDOGydtOnUDnMZ40MbQaC5gYhTh0HAJALckxqOwmT2092rmH5IJKIeafm4cy9M/ig4QfoVLWTs00qxlx+/tk0YitVitdzs5cjnI0ocmylRMXZnFJmVxCENwBMBlAHQFMiytW7CYLQHcBcAHIAS4joe1v6fVY4HnUcaVlpxudEXLfclZEJMoxpPsbZZhRjDWPGcJRAZCQvU7iKswR4RGmrs9TreTrva31VVls3fS4D6APgcF4XCIIgB7AAQA8AdQG8IwiCNNHXRZyq/lWNQhUAbxSNbDrSiRYVU+Tp2BF4/33ekQbMEwS2lrVrWQj45Zd5um1PLl3iAPdSpWyqWWSTwySiq0RUUGBaUwA3ieg2EWkB/A3gNVv6fVaoVrIaNr69Ed2rdcfnrT5H+KjwPIU6iilGUjIyOJTHzQ1o0iRvBXRriYoCBg3i3fjduznw3J5MmMAZS3o9sHOn1c04Ype8AoCox55HA7mIW+aCTtQhJi0GAT4BdjGsMNCtejd0q+6YGLNiijGybBnrfRLx6GzpUuB//5Ou/YQE08aNXs+54PbE15czgp4sqWEhBY4wBUHYJwjC5VwOu4wSBUEYIgjCWUEQzobeDkXQ3CB8f7R4ybMYJzNtGq+hVatmfd2e3MjK4s2VvAQ+nIVSaYpNFQTpU0Lr12fxZU9PDjy3d0LATz/xSLl0aeCrr6xuRpJdckEQDgIYm9umjyAILQBMJqJuj55/AQBE9F2B7ZYXCENZoCJrknNS9QoL6dp07L65G5X8KqFJhSbONqdocesW8MILHJ8oCLzOt0+CBIKEBA7bSUhgx3H2LNdVdwWysjjF8L//OKRn0ybOrZcSIv5sS5UyrZk6CFfOJT8DoIYgCEGCILgBeBvAFksasFdZ3aJClj4LwYuC8f7m99F+eXssOb/E2SYVLfR602iLyDKhYCLgjz+A4cOB48dznvvnH077S0/ntMslLvR7c3cHtm3jke+uXdI7S4A/0+rVLXeWej2wYAELBN9yrKaETQ5TEITegiBEA2gBYLsgCLsfvV5eEIQdAEBEegAjAewGcBXAP0QUZk77KqUKDZ9riB3v7rDFzCLP5YeX8SD9AdK16VDr1Fh4ZqGzTSpa1KrFDk8u553WX34x/95ffwVGjQIWLuQaNDdumM4995xpHc/d3fpaNKLI7Y8w4V7hAAAgAElEQVQa9WyUyRg7lmX3fvyRp9lpaQXfIxXWqA476pBCcT0mLYZeWfMKNVrUiPbe2mtze65IfEY8+czwIUwGeU7zpGHbhjnbJCManYaWhyyn5SHLKUufTzVAW7hzh2jGDKK//rKvOrg16uNvvmmqcujjk7OypCgSTZxIVLMm0YgRRDqddXZNnWpSGvf2Jrp3z7p2QkKIatUiCgwk2ryZ7UlKsq4te1KvXs7P9OJFi5uAlYrrTneK+R1SOMwuK7qQYorC6EySMl3wP4AEnLt/jvpv6E+TD0yWtJSFrXRb2Y28pnuR13Qvemn1S9J3kJxMVLIkkULBTmPqVOn7sIUtW9guLy8if38uLSs1nTqZHIivL9G+fda1U7OmqR03N7ZXqSTq08e1ym/MmMGfp6cnUaVKRJmZFjdhrcMsVOIb1nA35a5RkBYAkjKTiuSaaHBAMFb0XuFsM3JARNh7e69Rv3PPrT3Sd3L1Kq9pZR9btzpckCFfXnkFOHQIuHyZp+Tl8lalspoBA4ATJ3hN0MPD+vzvlBTTY52O4xYBYM8eVghq0eLpezQa3gArU4ZFhh3BhAkshBIdzRtT9lhfzYNC4zCjUqKgF/UI8g+y6L6pHabi/U3vQxAEdKnaBVVKVLGPgbmQoknBzGMzoTFoMK7lOLNKURQlBEFAo4BGuBh7EQA79WyORx3HgYgDaF+lPVpVamV9J3XrcnC1mxuHvrzmgjkRjRvzYS8GDACqVuX10Z49rVMYOnHC5CAB/lzDw/lLSBRZcf5JDAagdWsOszIYuL7Rp59a/z7MRRCAl16yfz+5Yc2w1FFH9pR8zvE55DHNgzymedC4PeMsHn7fS71Hl2Mvk+iI6neP0eaPNuQ21Y0UUxRUY14Nh/btKiRnJtO0Q9No+uHplKJJISKi45HHSTVdRbJvZeQ5zZOO3j1qWyeRkUSzZhGtW+eYCodFkddfN03Hvb2JVq4katmSqEwZou++y/2eW7d4Wpx9X7VqjrXZBlCUp+TfHPwGGj3XFplzYg6md5wOpdz8QNryPuVR3od3INOy0qCUK/H7ud8RkRyBIY2G2E1+7HzMeWPpiZuJN6E1aF2m2Jij8PPww8S2OQuFHb57GFqDFiKJ0Bq0OHjnoG2jzIoVeee0GOupXp2nthoNjyjr1weO5V0FAAAvL7i58T1ubnYrC+FKFAqHWc67HNIT00Eg+Lr7QiGz3GwiwqDNg7D60mrIBdZ41Bq0+OPCH4gYHQF/T+kDZ9+o+wbWXVkHAGgR2EJSZzn18FTMPDYTgb6B2P7udlT1rypZ2/amQ1AHuB3mz0IpU6JjUEcnW1QMJk/mfPGzZ4FPPmGHWRBeXsCRI8D333NI1Dff2N1MZ1Mo9DDD48Px4dYPodVrsaDnAjQub/l6UGhsKFosbZFDDRwAfNx88N/A/6xqsyBEErE1fCuyDFnoVbuXZA4zPD4cDRc1RKY+EzJBhq7VumJnv9wFBa7EXcHtpNtoX6U9vN1yWYeyESJCpj4TKqXKovtO3zuNg3cOol3ldmgW6KDNgmKKeYRT9DAdRa3StXBk0BGb2lApVU9VW/RQeKCERwnJan0D7EDCE8LhofBAlRJV8Fpt6TchtAatsVSFSGKeFR43Xt2I9za8B7lMjjKqMggdFiqp2lF0ajRa/9Ea0anRaFelHXb222n2l0LTCk3RtEJTyWwpphhHUKiKoNlC9ZLV0atWrxyvNQ9sjgtDL1g8OsqPYduHIXhRMOosqIN5p+xTmOmFsi/g/Rffh0yQoYyqTJ7VFeefng+1Xo00bRri1HE4c/+MpHb8cPQHRKdGw0AGnI4+jW3Xt0nafpEnORk4f56VxIsx8fAhMHo0Hw8f8m79hQs2qQxJxTPjMAHgfy3+Z3SOXkov9KvXD6VU0lUBVOvUWHJ+CTL1mdDoNfj2kH0KZgmCgAU9F0AzUYPYsbGoV65ertcFlw82KrQbyCD5OqdKqTLW/CGQpF88RZ5r17jed/v2QJ06OUN6rCUrCxg8mNv78Ufb23MWnTpxSumvv3K8ZcOGrGw0cKCzLXu2HGbTCk2xqvcq9K7dG9M7TsfghoMlbd9d7m6c8soEGSr4VJC0/SdRypX5VpGc3nE6xrYciz61+2DHuztQyU9aJZwv23yJFoEt4OfuhwEvDkC3aibdzqORR7EsZBniMuIk7bPIsHAhb7KkpbHa+ObNtrf544/AmjXsjCdP5oD5wsjjyQgPHvAIPCMD+OsvFiqxBLUaOHkSiJPm/2GhWMOUkt51etut7KtcJse+/vswZtcYeLl5YdHLi+zSj7m4yd0wpcOUp14XScS/V/5FalYq3nrhLas3g/w8/HDw/YNPvb7swjKM2DkCAgR84fYFwkeFw9fd+joqdkejASIieMTnqDo2VapwGE/2dLxiRdvbjIriUSbAwd0xMba36Qxefx3Y8UhwR6nkLxaDgYPnLfn9pKQADRqwfB4RcPgwj1Zt4JlzmPamSYUmODa4gPg1JzNi+wisDF0JAuGX07/gwtALktY7X35xuTEaQS6T43zMebSv0l6y9iXl4UOOH0xJ4TCZs2eBwED79ztqFHD3Lo8CBwzgaaitjBnDdXJ0OqBCBa6VUxhZs8bkMOvX57XMtDQeQcstKPu8cyeP3rNHpfPns3K8DRQ7zGeQDdc2IEOXAQC4Gn8VCZkJudY614t6pGvTLc69b1elHU7fPw21Tg2RRNeuS/7XX/xHlZXFI83ly4GJEwu+z1YUCi5rKyW1a/MoMyqKA9GlVkl3FHI55+Bns2mTde1UqcJB+ACPTGvWtNm0YofpIC4/vIzQ2FB0DOro9JzyNpXaYPuN7dCLejzn/Rz8PZ4O2r8adxVt/myD1KxUdK3WFZvf3mzc4CmIr9p+hTJeZXA17io+DP7Q6e83XwIC2HllZXG2irWalK6Ctzdv+hQDNG/O2qWLFwOtWkmS517sMB3A/tv78erfr0ImyOAmd0PY8DCnOpFVfVZhwekFSNYkY0TTEbk6wq8OfIXEzEQQCIfuHsKRyCNmT6vlMjlGNBkhsdV24o03WHR3wwagRw+eHhdT+FmyBJg+nWswbdnCws8SUOwwJYKIsCxkGUJiQ9CvXr8cQdkrQlcY1/S83bxxIOIA3qn3jrNMhYfCA5+1/Czfa7JTUHWiDiKJ8HHzcZB1DkYQgBkz+CimaHDrFqd3ZmayBNyoUby2KwHPVFiRPZl/ej5G7hyJeafmoePyjriddNt4rkVgC2OMokhinnGT9kYkEaN3jUbQ3CAM2zYsh07ok/zQ+Qc0D2yO0qrSGN9qPBqVt1Jj0VmIIv+xaLXOtiR/jh4FSpbkHfNff3W2NUWDpKScJXwfPJCs6eIRpkQcuHPAOIqUCTKExoYaA8WHNhoKADgRfQID6g/AC2VfcIqNf1/+G0vPL0WGLgMrQlegUflG+DD4w1yvLeNVBocHHXawhRKRmcmBzmFhgI8Px+FVdVFxkvffNwWt/+9/QP/+bHMx1hMcDHTowMLGCgXwXYEFas2meIRpA0mZSQh5EIIsfRb61esHlVIFlVIFhUyBlhVbGq8TBAEfN/4Yy3stR6eqEoSPWElcRpxxVKkz6FwmqDw1KxXtlrWD1wwv9NvQDwbRYFuDW7dyOp1GwzF4rpL1kpTEYUTx8c62xL7cusXOf+ZMU1yoI5HJeN3yxg0eXbZsWfA9ZlI8wrSS0NhQtPmjDUSICPAOwLkh57B/wH5cfngZPar3QFkvaRaZpaRf/X74+eTPeKh+CH8PfwxqOKjAeyKSIjD/9HyU9SqLMc3HwF3hLrldc07Mwcnok9AatNh8bTM2XtuIvnX7Wt9gyZKmvGOlEij9dMiUw4mO5iBqnY7XTc+cAWrUAFasYJX49HQOM8pvdHnvHofY1KgBdO3qONstITOTS1UkJXHUwdWrwJ9/Ot4OQbBLPG2xw7SSuSfnIlWbCgCISY/Bzps78ebzb6J5YHMnW5Y3pVWlcX3UdUSnRqOCb4UClYU0eg2aLWmGBHUC3BRuCIsLs0vdoCx9Vg4lqWzR5YJYdG4RfjvzG5oFNsPc7nNNzrxTJw7iXr6c/3gnTJDcZotZv56dYlYWj4DWrGH9yJYtzUvbS0zkvOqMDI5TnD0bGDrU/nZbyr177DRFkUf4R2xTGXM1iqfkVhLkH2QUthBJRKCvA7JDJEApVyLIP8gsGbaYtBika9MhQoRGr8HRyKN2senTFp+imn81CBDQLLCZWaPL0/dO49PdnyIkNgTLLy7Hd0cfW6cSBGDaNA7gXr8eUD0mChIWxoejqV6d19MA3uCpUcOy+0NCeHSq0bDT/Ocf6W2UgipVOM3Ty4uP/v2ta+fAAf6Mnn+elYpchOIRppWMazkO91Lv4WT0SXwU/FGONUtXISkzCe4Kd6tVhCr6VUTlEpURlRIFAHi33rtSmmekjFcZXBt5zaISHtGp0UblfI1ekyMqIU/Gj+f0OAAYOZLX2J7k2DEgNJSLbFWubO5bKJiXX+bQpfXrue13LAwre/55XmYQBM5a6dat4HsAfj9Dh/L0+M8/eZRqMADHjwO+vvxcCohY6MLLi5cbNm3i2Edrlg5EEXj1VVNKY69enEZqCZGRwPDhnFI5e7Z0ReisKQTkqEOKuuTPKp/v/ZyUU5TkMc2DNl/bbHU7qZpUWh6ynHZc3+HwInL5kZaVRjV/qUneM7zJZ4YPnb9/vuCbFApTwS6F4unz//7LNcQ9PYn8/Iju3ZPecFu4coVo4kSiFSvMK/YmilynPPs9V67Mr730Ehc6U6mIZs603a7YWC6AJpdz4TQr6oTnQKvN+bsqUcLyNoKDiWQyvt/Pj0in49rqOh0RWV8EzSaHBuANAGEARACN87nuDoBLAEIsMbTYYVpHojqRlFOUhMkgTAZV+qmSs02yCxqdhi7EXKAEdYJ5N1SqRCQIfFSu/PT5N980/ZH6+HAVysKMTpfT8fj4ED18SOTmZnrtueds7+fLL039eHmxQ09PJ1q6lOjvv4n0esvbnDGD7XR3J/rzz9yv+fdfosBAohde4C+TxyldOueX4/bt/CWhUBB9953VDtPWNczLAPoAMCdgrwMRNSAr6mgUkzsG0YBph6fhpdUvYdM1k0CBm9wtR7qjAAFX4q44w0S74q5wR4PnGqCkZ0nzbti7l6eIXbsCe/Y8fb5LF55SAjwttFEKzOkoFMBXXwHu7nzMnAn4+Zneo1LJgh22olLlVBHy8ADateMMm8GDgY8+srzNL77gkKCHDzlW9UnS04F+/Tj64PLlp5c4Jk3ipQuVCnjvPVY8Sk/nQHZbirVZ42WfPAAcRMEjzNKWtls8wsyfH4/9SKrpKsJkkGq6ii7EXDCe23h1IwXOCSTFFAV5Tfci1XQV7bi+w4nWWse1uGt06M4h0uq19u9MFIn++otoyBCi+fOJUlPt36cjePCAKD7e9PziRaJXXiEaOJAoLs729tPTibp14+n/++8TJSbmHNn6+5vXzsWLRL/8QhQS8vS5Y8eIpk4lOvqohn1CApFSaeqjSpWn77l5kyg0lH+vdeuarnV3d86U3NhIwQ4zAsB5AOcADDG33WKHmT/9N/Q3Tru9Z3jT2strc5zfcm0L+c7wNV7T669eTrKUSBRFSlQnkt5g/vRsxcUV5DnNk7xneFPzJc0tutdqDh7ktT1fX6KKFYmSk+3fZ1FDFImqVmWn6eHBzrkgzp3jz93Dg3+eOWM6d/w4vyaT8fpyttMcP56dpocH0dat+bd//jwvyfj5Ef3xh/2m5IIg7BME4XIuhyXlEFsTUTCAHgBGCILQNp/+hgiCcFYQhLNxEsnKF1WGNhoKlVIFX3dfeLt5o3PVzjnO1y5dG3rizB6VUuW0Ko0avQat/2yNcj+WQ6WfKxl33Qti1rFZyNRnIl2bjkuxlxCeEG5nSwEsWMC7vampXKTswAH79nfuHDBnDv8sKggCcOIE8OWXwJQp5glf7N3Lef8aDR+7d5vOHTrE50SRf2aX3vjhB56yJyYWLJbcsCHvtCcnA4MKTtjIiwLDioioc0HXmNHGvUc/HwqCsBFAU+Sx7klEiwEsBrguua19uzpEhFE7R2FV6Co0eK4BNr29yWzB3laVWuHysMsITwhH88DmT91Xo1QNbH1nKxadW4TggGCMbTHWHm+hQLaGb0Xog1DoRB1i02Mx6/gszOtRcEXNumXqIjwh3BjI7hBJvPr1ge3b2WkaDBw/aS9On+acZ72e1wAPHQKaNLFff46kbFngWwuKALZsyaFPej2vgbZqZTrXoQOfA/hnx46mcyUsE7e2FbvHYQqC4AVARkRpjx53BfB0oZlnlD239mBZyDJk6DJwIuoEph+ZjlldZpl9f5B/EIL8g/I83zGoIzoGdczzvCPwdvMGgb/7FDIF/Nz9zLpv8SuL4evui7spd/FV26/M39yxhQkTOBvn9GmO43vBjkIp+/ZxXwYDb9Ds3190HKaltGnD+d979gCdO3M1zWyaNeOR/sGDvJnUrJmzrLTNYQqC0BvALwDKANguCEIIEXUTBKE8gCVE9BKAcgA2PqoZowCwhoh22Wi3UzgRdQK3k26jR40ekv3xZuozjfV0DGRAepaFVfEKAd2rd8fg4MFYc2kNGgc0xvhW4826z9fdF4tfWWxn655AoQCmTnVMX23b8ohJo+Ed6zZtHNOvq9KpU961jZo25cPJCESuO+tt3LgxnT171tlmADBVQpQJMpTwKIGrI65aXW3xcXQGHXqs7oGDdw6ivE95HPvgGCr65V1BcPv17fjh2A+oU7oO5nSbYyzrW0wh5dAh4L//eJrZrp2zrXlmEAThHFkR4ujSDtOtohst3rIY7zd839mmoPUfrXEsiqtB+rr7Yts729CmsnQjggxtBlRKVb7VG+8m30XdBXWh1qvhLnfHoAaDsPDlhZLZUEwx+ULElRgjIrgU7nNWrCknJwO7dgFBQU6dWlvrMF1afENn0GHYjmG4n3bf2aagbeW2RrENnUGHOSfnYN6peTlUdmzBy82rwFK30anRxoD0LEMWrsZflaTvwoDWoEWCOsHZZjzb/PQT8OabwNixLFWXlmbZ/RkZvKn20Uc8ol62zC5m2hOXdpgAZ6lkaDOcbQamdJiCaR2noW+dviAibLq2CV/s/wILziwAANxPu4/3N72P9za8hzvJd+xiQ5MKTVCtZDX4uPlApVRhQmsXkC1zAOdjzqPsrLIoP7s8Xl/7+v/bO/MoqYp7j39+szLMwr5DZBUFhijyBJUIkkBGeIIvYAT1gQJq3KKRnKBHg74gR1GDz6gkKvIwgqOgBtAgaxRQZJFlWAdlABWGNeAMzD7Tv/dH9SwMPdPd07cXoD7n3DO3u++t+t7qnrq3qn6LYzcpi5/Mm2c6vcJCE8LN36hPW7ea/O9nzhgrhDff9Hycq8r3q+6gHhFCRHeYIsKoHqPo3DiIph0+EhMVw6PXPMot3W8hNtrke84vyWf9wfUApM1JY862OaTvSGfA7AFB0RAXHcf6CetZcscSdj+wm7TOaUGpJ9J4bMVj5BTlUOwqZmnWUr7Ojox57QuW/fvNanVu7tnvDx5sXA1FzNa1q3/ldu58dp7wqqZDYIINt25tFsAefNDYV6ammqhKvXtXRi8KIxEd3q1ni57MGj4r3DLO4ob2N1QEqi3TMu66whjBfnvyW8rUpFb4IfcHXOoiSpy/H8VFx0VkKLlg0qheI2KiYih1leJSFynxKeGWdOHy+ecwdKixFkhJMX7aDdxmYE8/beYes7Jg7FhodG4++1pp0cKUP2OG6Wyr5wn/3e+M/7iqCUUXE2PSTJSVwa5dJjr9/fc7cJF1J6I7zJioyJPXLLEZu+7fxarvVtGtWTe6NesGwPgrxzN762xEhOFdhwels7xYefnGlzl0+hBZJ7OY1G8SlzV1IGCExTMzZlQOgVWN/ePNN5vXUVEBeckAcNVV8NZbnj+LiTFPruUL0fXrV2Z/LH//llsgM9ME57gtOPFZayOiV8kjyazIG6rKlz98SamrlOsvud52mBb/2bLFzA/27Ws6iHAwdaoJdJyfbzqsDRtM8OJQsG8fpKWZCEQTJ8ITT5gOcvVqEzA5IQHee8+4RyYkwPbt0KmTb2V/8ol5Sh0xAjp1qvMquSPBN4K12eAbFx5ZJ7N0yNwhOvjvg3XXsV3eT7hYePJJE2AiMVH19tvDp6OkRHXyZNUbb1RdWPfA00Fh4MDKiENJSSaCkS+8/rpp29hYE1Tl8OE6B9+wT5iWkHLpK5eSdSoLVaVlUkuyJ4bfZCwiaNCgcpElKso84cU7n6HzvGbVKjO/CiaYxmefVeZJqo2hQ2HxYrOfkgLvvYcMGXLh2WGGk9yiXEZ/MJper/di/s754ZZzwXAw9yAudaEoR/OOWhOhcjp1MgE4RExa4DjfchtdVPTvbyIObdhgFo986SwBbrqpMsixakCBoSNvVSVCeGTJI3yU+RHFZcWMXTCW3q171xrkwuIbE6+ZyJ+/+jMiwrgrxtm53nI+/tjM2xUUmLBl4ZrDjHSaNDGbP9x7r/FK2rLFPGFu317n6m2HWQP7Tu2rCCsWHRXNkTNHbIfphfQd6by/431+0fEXPPAfD3j0XJoycAqjU0dT6ioltXlqGFQ6RHGx8XpZudKEH5s/P7AhdJs2ZkHD4jwi5inzySfhwIGAirIdZg1M7j+Zm9JvQhBSm6fSu7VNRVQbqw6sYsKiCeSX5LN833IaJzSuMS1vuSnWec3s2ca4u6DAhGmbNQvuuy/cqiw18f33xiA/QK8hOx6qgYEdBrL/4f2sHb+WNXetqfDuuRjILcpl4rKJjFs4jr0n9/p0zq7juyrmI/NL8sk4khFMieGnsLDSXtDlMnEtLZFLq1bGg0gkoJGA7TBroXlic3q26HlWBsbzkTc2vcHw9OHM3jLbp+N/Pf/XvLrhVWZvnc21b11LSVmJ13OGXjqUejH1SIlPITE2kWFdh7H2h7WcyD8RoPoI5a67oFs3s6J9+eUwblzgZWZnm8yOc+ac7U9dG9u3w623GlfCnJzANZSTmQlz58IPvqUTCRnffw9/+AO8+KJ/N6m//tUcHxNj3C/riB2SX+AsyFzAo0sfJa8kj5X7V9IiqQU3drmx1nO2HtlaMX+bU5TDj4U/0iyxWa3n/KTBT8h8IJMNhzbQJqUNQ+cOJb/UDH/WjV/H5c0ud+aCIoXkZJOHp7DQpFQIlPx86NXL+E/HxhqXxOeeq/2cggIThPjHH82q+nffmcWjQFm3zgTyjYoy29atxiUy3BQVmSDCx4+b683IgHfe8e3cl14y3xXA4cN1lnBRPmGqKqcKTl0UJi07ju2goLQAMCHSdh73HmFmQq8JJMYmkhSXRJ82fWhav6lPdbVIasFNXW9iU/YmcopyyC3K5XTRaWZtiaB4AJs3m46oPJFWoDjRWYLxz87Ph5IS8/eTT7yfc+JEZSdQXAzbtjmjZd48o+HMGaOnakKycHLkiLFVdbnMda/2mBbMMz16VJpq2SG57+QV53HVG1fR4sUWdP5LZ47lHQu3pKAysttIEmMTSYlPISEmgZsvu9nrOVNumMLi2xcz91dzWTFmBSLC/lP76f5adxo+15BpX06r9fwOjTpUmAvVi6lHo4RGkXFz2r7dpIH44x9hyBCTqTBS6NTJ2ArGxZm/w4Z5P6dtWxPFJznZnPPQQ85o6dPHlAdmzi8Au0VHadsW2rc32hITYdQo38999124807jFx/IzbIu7kGh2oLhGjlz00ytP7W+8jQa86cYfeqzpxyvI9I4mHNQF2Uu0uzc7HM+m7p6qjZ4toGmzkjVA6cO1FhG2pw0ladFeRpNeCZBvznxjcfjVh1YpfN3ztfpa6drzxk9NW5KnCY8k6DXvXWdFpcWO3ZNteJyGXe4sWNVV6yofP+110xe63L3ut//PjR6qvPuu6r33KO6bNnZ72dnq77wgurcueYafKG4WHXp0rPzeAeKy6U6e7Zpv3/+07lynSA3V3XWLNVFi3xvIw9QR9fIi24OMykuCcHYB8ZExZAclxxmRcGnTUob2qS0Oef9zBOZPLP6GQpKC9h5fCcPffoQi0Yv8lhGYUlhReZHEamY46zKtC+nMWXVFESEjo060qFRB7YdM8PEjKMZrPpu1Tm504PCzJkmVFh+vrGPXLfOxFX82c/ME1N0tBmWDRpUeznFxaZrddJFcf58mDDBaJszx3islGeKbNXKRDP3h9hYE6cyEMrKYONGYxDepYtpo7FjzeY0quaaT50yT/n+TmkkJwceMSkALroh+chuI7m1+600SWjCLzv9kgeufiDcksJGYWlhhXG5S13kl9Rso/ZS2ks0TmhMlEQxpucYj7aUb256k7ySPM4Un2Hvyb0kxSYRFx1XUb6vc6EB89VXlfZ2UVGVc3upqWbea8oUk3u8to4mPd14hSQnw+uvO6dt7dqzw6dt2eJc2XVB1UQIGjQIfvpTE4cymEyebIzIx441ro6+WgNECnV5LA3VZqMVBReXy6XjF47X6P+J1ibTmmjGkQyvxxeWFNb4+W0f3Kb1ptRTeVq04XMN9VDOIR2ePlw7/m9HfWX9K07Lr5mVK010mqQk1UaNVA8d8r+MlJTKoXtcnGpZmTPavviiMipRcrJqVpYz5daVffvOnqbo0iW49bVuXVlXfLyZhggD2GhF/pNblMvHez6mbUpb+rcPXYrT43nHKdMyWibVIeteECgsLSQ+Ot5rEjZvFJQU8OwXz5J9OpuJ10wMrynRjh3G7GTgQDPU9ZeWLeHoUbOfmGgSfjnl371jB3z9NQwYYBYxwsnp06Z98vIqh/e+rNDXleHDzap7cbGZAjh0KCyBRmw8TD8pLCnUTi930sSpiVp/an2d/tX0oNVVlRkbZmj8lHiNnxJ/USw4+UJecZ7uObEndItCvrBmjWq7dqqtWplFlQuZL74wsdpIfiwAAAenSURBVCbvuEP1xIng1nX6tOrjj6vefbfqt98Gt65a4EJ8wux5ZU/97Vu/5YqWVzjuy51xJIN+/9ePM8UmsVJKXAqT+k1i0nWTgurZk/JsCqeLTXrSaImm8MnCiEzFESr2ntxLn5l9KCwtpF1KOzbevZHk+At/Ic4SIC4XPPWUyZM+YgQ89phfI4Cw5CUXkRdEJFNEtonIP0SkYQ3HpYnIHhHZKyI+54bdeXwnDy95mP6z+7Nk75JApJ5D+4btiZbKjjG3OJepa6by/JfPO1pPdZrUrwxNlRiXeJaGSOZY3jFGfTCKwe8MZvPhzY6V+8r6VzhVcIr8knwO5h5kQeYCx8q2XMDMmQPTpxtvq6lTYeHCkFQb6Cr5cqCHqvYEvgEer36AiEQDrwE3At2A0SLiW7gaNYEc8kvymbdzXoBSz6ZBvQasHb+WtM5pxEcbs5H8knw2Zm90tJ7qLBq1iF6tetGjeQ+W3L4k4HnDUDFy3kg+3P0hy/ctZ+DbAykqdSbYROvk1hVZOMF4C1ksXjlwoNKXvLTUuIWGgIDGgqq6rMrLdcBID4ddDexV1X0AIvIeMBzY5Ws99WPrc/0l1wci1SPdmnUjfUQ63Wd053TRacq0jPt6BzdEV2qLVDbdsymodQSDvSf3UuoqBaCgtIDcolyaxdTuX+4Lj/R9hD3/3sOa79cwpucYBnX0YhtpsQCMGQMvv2xcNxMSTGzSEODk5Nk44H0P77cBqoY8OQj08aXALk26MPjqwfRt25fRPUY7IPFcGtZryM77d7L6u9V0bdKVrk39TE5/kTCp3yQeX/E4URLFoE6DvAbj8JX4mPiIyz1vOQ9o395kmfzmGxMtKikpJNV6XfQRkRWAJ/uXJ1R1ofuYJ4DewK+0WoEiMhJIU9UJ7tf/DfRR1QdrqO8e4B73yx7ADt8vJ2g0BSIlTpnV4hmrxTNWi2e6qqrfq4tenzBVtVZfNhG5E/hP4OfVO0s3h4B2VV63db9XU31vAG+4y/66LitZThMpOsBqqQmrxTNWi2dEpE4G3oGukqcBfwCGqWpNfnUbgS4i0kFE4oBRgGeHZYvFYolgAl0lfxVIBpaLyFYR+RuAiLQWkcUAqloKPAgsBXYD81TVe1BGi8ViiTACXSXvXMP72cCQKq8XA4vrUMUbdZTmNJGiA6yWmrBaPGO1eKZOWiLa08disVgiiYsuvJvFYrHUlYjqMIPtaumHjltEZKeIuESkxlU9ETkgItvd87dBCavkh5agtom7jsYislxEvnX/bVTDcWXuNtkqIo4u8Hm7ThGJF5H33Z+vF5H2Ttbvp5Y7ReR4lbaYECQds0TkmIh4NMETw1/cOreJSK9g6PBRywARyanSJpODpKOdiHwmIrvc/z8PezjG/3apS8SOYG3AYCDGvT8NmObhmGggC+gIxAEZQDeHdVwOdAU+B3rXctwBoGmQ28SrllC0ibue54HH3PuPefp+3J+dCVJbeL1O4H7gb+79UcD7YdRyJ/BqMH8f7nquB3oBO2r4fAjwKSBAX2B9GLUMAD4JQZu0Anq595MxrtvVvx+/2yWinjBVdZmaVXUwrpZtPRxW4WqpqsVAuaulkzp2q+oeJ8usKz5qCXqbuBkOvO3efxvwnlHNWXy5zqoaPwB+LsFx2A9Vm3tFVVcDJ2s5ZDjwdzWsAxqKSB2ChDqiJSSo6mFV3ezeP42x0Kmep8XvdomoDrMa4zC9f3U8uVqem7AmNCiwTEQ2uT2UwkWo2qSFqpYndT4C1BQpo56IfC0i60TEyU7Vl+usOMZ9880BmuA8vrb5CPdw7wMRaefh81AQSf8zANeISIaIfCoi3YNdmXta5kpgfbWP/G6XkAdi9MPVshSYG04dPtBPVQ+JSHOMLWqm+w4bDi2OUJuWqi9UVUWkJhOLS9zt0hH4l4hsV9Usp7WeB3wMpKtqkYjci3nyHRhmTeFmM+b3cUZEhgALgC7BqkxEkoAPgUdUNTfQ8kLeYWqIXS3rqsPHMg65/x4TkX9ghml+d5gOaHGkTbxpEZGjItJKVQ+7hy4ek7pXaZd9IvI55u7uRIfpy3WWH3NQRGKABsC/Hajbby2qWrXemZg54HDg2O8jUKp2Wqq6WERmiEhTVXXcx1xEYjGd5VxV/cjDIX63S0QNyeU8crUUkUQRSS7fxyxYhStQSKjaZBFQnnt1LHDO06+INBKRePd+U+A6/Ajl5wVfrrOqxpHAv2q48QZdS7X5sGGYebRwsAgY414V7gvkVJlaCSki0rJ8TllErsb0QY7f0Nx1vAXsVtXpNRzmf7sEe7XKz5WtvZg5ha3urXy1szWwuNrq1jeYp5YngqDjvzDzGUXAUWBpdR2Y1dEM97YzGDp81RKKNnHX0QRYCXwLrAAau9/vDcx0718LbHe3y3ZgvMMazrlO4E+YmyxAPWC++7e0AegYxN+rNy3Pun8bGcBnwGVB0pEOHAZK3L+V8cBvgN+4PxdMEO8s93dSo+VHCLQ8WKVN1gHXBklHP8waw7Yq/cmQQNvFevpYLBaLj0TUkNxisVgiGdthWiwWi4/YDtNisVh8xHaYFovF4iO2w7RYLBYfsR2mxWKx+IjtMC0Wi8VHbIdpsVgsPvL/Ag5dcMAYNMUAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 360x360 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"xv = xor[\"x\"]\n",
"yv = xor[\"y\"]\n",
"\n",
"colors = [\"rg\"[i] for i in xor[\"label\"]]\n",
"plt.figure(figsize=(5, 5))\n",
"plt.xlim([-2, 2])\n",
"plt.ylim([-2, 2])\n",
"plt.title(\"green points have label True\")\n",
"plt.scatter(xv, yv, color=colors, marker=\".\");"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Again, this example data set can not be separated by a line. But we see that points where the sign of x and y are the same appear to form one class, and point with different signs for x and y belong to the other class.\n",
"\n",
"How can we engineer a more descriptive feature which describes \"x and y have the same sign\" ? Here we can use the fact that the product of two numbers is postive if and only if both numbers have the same sign.\n",
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
"\n",
"So lets plot a histogram over `x * y`:"
]
},
{
"cell_type": "code",
"execution_count": 350,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADvBJREFUeJzt3X+s3XV9x/Hna6UOoy5gOCMdpavZCIYYLcldh2F/dCimc0ZwccvIRjCy1CWSYGK2+SOZlzgTF6fsjy0udTCajOmIPwJhOOywhJg4tGitheJ0TiOk0hpHgCxhKbz3x/2SXS/39px7zvfcc/rp85Gc3HM+53vOeVHaVz/9fj/f70lVIUk6/f3crANIkvphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIacdZGfth5551X27dv38iPlKTT3kMPPfSTqhoM225DC3379u0cPHhwIz9Skk57SX44ynbucpGkRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEZs6Jmi0jxZvH9x9fFdq49L884ZuiQ1YmihJzk7ydeSfCvJw0lu6sZvS/JfSQ51tx3TjytJWssou1yeBa6oqmeSbAa+kuSL3XN/UlWfnV48SdKohhZ6VRXwTPdwc3eraYaSJK3fSPvQk2xKcgg4Duyvqge7pz6S5HCSm5P8/Bqv3ZPkYJKDJ06c6Cm2JGmlkQq9qp6rqh3AVmBnktcA7wdeDfwa8Ergz9Z47d6qWqiqhcFg6PXZJUljWtcql6p6EjgA7K6qY7XkWeAfgJ3TCChJGs0oq1wGSc7p7r8UuBJ4NMmWbizA1cCRaQaVJJ3aKKtctgD7kmxi6S+AO6rq7iRfTjIAAhwC/niKOSVJQ4yyyuUwcOkq41dMJZEkaSyeKSpJjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEYMLfQkZyf5WpJvJXk4yU3d+KuSPJjke0n+OclLph9XkrSWUWbozwJXVNXrgB3A7iSXAX8J3FxVvwr8N3D99GJKkoYZWui15Jnu4ebuVsAVwGe78X3A1VNJKEkayUj70JNsSnIIOA7sB/4TeLKqTnabPAZcsMZr9yQ5mOTgiRMn+sgsSVrFSIVeVc9V1Q5gK7ATePWoH1BVe6tqoaoWBoPBmDElScOsa5VLVT0JHABeD5yT5Kzuqa3A4z1nkyStwyirXAZJzunuvxS4EjjKUrG/vdvsOuDOaYWUJA131vBN2ALsS7KJpb8A7qiqu5M8AnwmyV8A3wRumWJOSdIQQwu9qg4Dl64y/n2W9qdLkuaAZ4pKUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRoyyDl2aX4uLo41JZwBn6JLUCAtdkhphoUtSIyx0SWqEB0XVHg+U6gzlDF2SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEYMLfQkFyY5kOSRJA8nubEbX0zyeJJD3e3N048rSVrLKCcWnQTeW1XfSPIK4KEk+7vnbq6qv5pePEnSqIYWelUdA451959OchS4YNrBJEnrs6596Em2A5cCD3ZDNyQ5nOTWJOf2nE2StA4jF3qSlwOfA95TVU8BnwR+BdjB0gz+42u8bk+Sg0kOnjhxoofIkqTVjFToSTazVOa3V9XnAarqiap6rqqeBz4F7FzttVW1t6oWqmphMBj0lVuStMIoq1wC3AIcrapPLBvfsmyztwFH+o8nSRrVKKtcLgeuBb6d5FA39gHgmiQ7gAJ+ALxrKgklSSMZZZXLV4Cs8tQ9/ceRJI3LM0UlqRF+Y5HOCIv3L846gjR1ztAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJT/6UxrXU5gcVdq49L0+YMXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRgwt9CQXJjmQ5JEkDye5sRt/ZZL9Sb7b/Tx3+nElSWsZZYZ+EnhvVV0CXAa8O8klwPuA+6rqIuC+7rEkaUaGFnpVHauqb3T3nwaOAhcAVwH7us32AVdPK6Qkabh17UNPsh24FHgQOL+qjnVP/Rg4v9dkkqR1GbnQk7wc+Bzwnqp6avlzVVVArfG6PUkOJjl44sSJicJKktY2UqEn2cxSmd9eVZ/vhp9IsqV7fgtwfLXXVtXeqlqoqoXBYNBHZknSKkZZ5RLgFuBoVX1i2VN3Add1968D7uw/niRpVKNcPvdy4Frg20kOdWMfAD4K3JHkeuCHwO9NJ6IkaRRDC72qvgJkjaff0G8cSdK4PFNUkhrhNxbpjLDrtvtfNHb/O3ZteA5pmpyhS1IjLHRJaoSFLkmNsNAlqREeFNXpY3Fx1gmkueYMXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoTXcpFWWLx/8cVju148Js0bZ+iS1IihhZ7k1iTHkxxZNraY5PEkh7rbm6cbU5I0zCgz9NuA3auM31xVO7rbPf3GkiSt19BCr6oHgJ9uQBZJ0gQm2Yd+Q5LD3S6Zc3tLJEkay7irXD4JfBio7ufHgXeutmGSPcAegG3bto35cdJsrbbyZT3bukpGG2GsGXpVPVFVz1XV88CngJ2n2HZvVS1U1cJgMBg3pyRpiLEKPcmWZQ/fBhxZa1tJ0sYYusslyaeBXcB5SR4DPgTsSrKDpV0uPwDeNcWMkqQRDC30qrpmleFbppBFkjQBT/2XNsBaB1U9WKo+eeq/JDXCQpekRljoktQIC12SGmGhS1IjXOUizdColxRwNYxG4QxdkhphoUtSIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhNdy0f9bXBx/rO/PlbRuztAlqRFDCz3JrUmOJzmybOyVSfYn+W7389zpxpQkDTPKDP02YPeKsfcB91XVRcB93WNJ0gwNLfSqegD46Yrhq4B93f19wNU955IkrdO4B0XPr6pj3f0fA+evtWGSPcAegG3bto35cdKZbdQvwljz9X5Bxhlh4oOiVVVAneL5vVW1UFULg8Fg0o+TJK1h3EJ/IskWgO7n8f4iSZLGMW6h3wVc192/DriznziSpHGNsmzx08BXgYuTPJbkeuCjwJVJvgu8sXssSZqhoQdFq+qaNZ56Q89ZJEkT8NR/zd5GXF5AOgN46r8kNcJCl6RGWOiS1AgLXZIaYaFLUiNc5TIPRlnRMcmqj0lWkcxqtYmrXDbEateIWe26L2tdS8ZrxMwXZ+iS1AgLXZIaYaFLUiMsdElqhIUuSY1wlcuZylUkWsOk346k2XGGLkmNsNAlqREWuiQ1wkKXpEZ4UHSa/OIGzYmNPNA56uUE1D9n6JLUiIlm6El+ADwNPAecrKqFPkJJktavj10uv1lVP+nhfSRJE3CXiyQ1YtJCL+BLSR5KsqePQJKk8Uy6y+U3qurxJL8I7E/yaFU9sHyDruj3AGzbtm3Cj5syV6VIU+EXZGyMiWboVfV49/M48AVg5yrb7K2qhapaGAwGk3ycJOkUxi70JC9L8ooX7gNvAo70FUyStD6T7HI5H/hCkhfe55+q6l97SSVJWrexC72qvg+8rscskqQJuGxRkhpx+lzLZZ5WoMwiyzz990unmTNllY0zdElqhIUuSY2w0CWpERa6JDXCQpekRpw+q1zmnStOpHUb9ZuUprUapbVvV3KGLkmNsNAlqREWuiQ1wkKXpEacuQdFRz2I2ffBzj7fzwOxmrFRD2pupHnMtFGcoUtSIyx0SWqEhS5JjbDQJakRFrokNeL0XuUyq5UqkubCNFa0rOc9V7tMwCy/TMMZuiQ1YqJCT7I7yXeSfC/J+/oKJUlav7ELPckm4G+B3wIuAa5JcklfwSRJ6zPJDH0n8L2q+n5V/S/wGeCqfmJJktZrkkK/APjRssePdWOSpBlIVY33wuTtwO6q+qPu8bXAr1fVDSu22wPs6R5eDHxn/LhTdR7wk1mHGGLeM857PjBjX8zYj1Ez/nJVDYZtNMmyxceBC5c93tqN/Yyq2gvsneBzNkSSg1W1MOscpzLvGec9H5ixL2bsR98ZJ9nl8nXgoiSvSvIS4PeBu/qJJUlar7Fn6FV1MskNwL3AJuDWqnq4t2SSpHWZ6EzRqroHuKenLLM297uFmP+M854PzNgXM/aj14xjHxSVJM0XT/2XpEZY6Msk+XCSw0kOJflSkl+adablknwsyaNdxi8kOWfWmVZK8rtJHk7yfJK5WmEw75eqSHJrkuNJjsw6y2qSXJjkQJJHuv/HN84600pJzk7ytSTf6jLeNOtMa0myKck3k9zd13ta6D/rY1X12qraAdwN/PmsA62wH3hNVb0W+A/g/TPOs5ojwO8AD8w6yHKnyaUqbgN2zzrEKZwE3ltVlwCXAe+ew1/DZ4Erqup1wA5gd5LLZpxpLTcCR/t8Qwt9map6atnDlwFzdYChqr5UVSe7h//O0tr/uVJVR6tqHk8em/tLVVTVA8BPZ51jLVV1rKq+0d1/mqUymquzw2vJM93Dzd1trv4cAyTZCvw28Pd9vq+FvkKSjyT5EfAHzN8Mfbl3Al+cdYjTiJeq6FGS7cClwIOzTfJi3a6MQ8BxYH9VzV1G4K+BPwWe7/NNz7hCT/JvSY6scrsKoKo+WFUXArcDN5z63TY+X7fNB1n65+/tG51v1IxqV5KXA58D3rPiX7Vzoaqe63abbgV2JnnNrDMtl+QtwPGqeqjv9z69v7FoDFX1xhE3vZ2lNfYfmmKcFxmWL8k7gLcAb6gZrTldx6/hPBnpUhU6tSSbWSrz26vq87POcypV9WSSAywdl5inA82XA29N8mbgbOAXkvxjVf3hpG98xs3QTyXJRcseXgU8Oqssq0mym6V/pr21qv5n1nlOM16qYkJJAtwCHK2qT8w6z2qSDF5Y/ZXkpcCVzNmf46p6f1VtrartLP0+/HIfZQ4W+kof7XYdHAbexNJR6HnyN8ArgP3d0sq/m3WglZK8LcljwOuBf0ly76wzwdKlKljahXYvSwfz7pi3S1Uk+TTwVeDiJI8luX7WmVa4HLgWuKL7/Xeom2XOky3Age7P8NdZ2ofe27LAeeeZopLUCGfoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEb8H34J5hL8mzEZAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"products = xor[\"x\"] * xor[\"y\"]\n",
"\n",
"features_class_true = products[xor[\"label\"]]\n",
"features_class_false = products[~xor[\"label\"]]\n",
"\n",
"plt.hist(features_class_true, bins=30, color=\"g\", alpha=.5, histtype=\"stepfilled\")\n",
"plt.hist(features_class_false, bins=30, color=\"r\", alpha=.5, histtype=\"stepfilled\");"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this case a simple classifier would just introduce a threshold of 0 to distinguish both classes."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Other examples of feature engineering\n",
"\n",
"Feature engineering requires understanding your data to extract meaningful and discriminative (?) information.\n",
"\n",
"Proper feature engineering can boost the performance of a classifier significantly.\n",
"\n",
"Examples:\n",
"\n",
"- ~~nudity classifier~~: color histograms of full image and image patches\n",
"\n",
"\n",
"- spam classifier: choice of dictionary, extra feature which counts words only in capital cases or words with unusual characters (like \"pill$\")\n",
"\n",
"\n",
"- to distinguish background noise from speach audio samples, the frequency distribution might help. Also std deviation or a histogram of loudness / energy of a sample might help.\n",
"\n",
"\n",
"- to classify DNA sequences, n-gram histograms (n>=1) can be benefitial (-> GC content).\n",
"\n",
"\n",
"- for geopolitical data a feature \"state\" can be enhanced by \"political system\" and or \"GBP\".\n",
"\n",
"\n",
"- for sales data add a feature \"is week day\".\n",
"\n",
"\n",
"Most cases are beyond the 2- or 3D case and visual inspection can be difficult. Thus engineering features as we did in the 2D examples becomes tricky. But here are some general recommendations:\n",
"\n",
"- use statistics (mean, std deviations, higher order features) as well as histograms if applicable.\n",
"\n",
"- polynomial features (e.g. extend `x, y` to `x, y, x * y, x ** 2, y ** 2`) (see examples section).\n",
"\n",
"- image classification: dig into *computer vision* to learn about image descriptors.\n",
"\n",
"- audio classification: learn about FFT, wavelets, filter banks, power spectrum, ...\n",
"\n",
"- try to incorporate external data.\n",
"\n",
"*Comment*: \n",
"\n",
"We will see later that adding too many features can introduce other problems (-> *overfitting*) but there are also methods for feature selection in this case (see https://scikit-learn.org/stable/modules/feature_selection.html)"
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exercise section"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Modify the weights in the beer classifiers and check if you can improve separation in the histogram.\n",
"\n",
"Try weights `[-0.05837955, 3.69479038, 0.6666397 , 1.62751838]` in the beer classifier. These are the weights the `LogisticRegression` classifier in the previous script computed.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"2. The following script learns classifiers on different data sets and plots decision surfaces."
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"487 out of 500 predicted correctly\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAFpCAYAAACVjP/1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzsnXd4VEXbxn9nNx1Ip2SBECDUUKT3JlJVmoAUBRGlCJZPQXxF4bWhgqAiCCqKgoLSXkEEpCkiVToC0hEhDdJ7srvn+2PY3WxI2WxPODdXrsyenTPz7CyZOXM/z3OPJMsyChQoUKDg3oPK1QYoUKBAgQLXQFkAFChQoOAehbIAKFCgQME9CmUBUKBAgYJ7FMoCoECBAgX3KJQFQIECBQruUSgLgAIFChTco1AWAAUKFCi4R6EsAAoUKFBwj0JZABQoUKDgHoWHqw0oDqGhoXJERISrzVCgQIGCMoOjR4/elmW5siV13XoBiIiI4MiRI642Q4ECBQrKDCRJ+sfSugoFpECBAgX3KJQFQIECBQruUSgLgAIFChTco1AWAAUKFCi4R6EsAAoUKFBwj0JZABQoUKDgHoWyAChQoEDBPQplAVCgQIGCexTKAqBAgQIF9yiUBUCBAgUK7lHYvABIklRTkqRfJUk6J0nSGUmSni+kjiRJ0kJJki5JknRKkqSWtvarQIECBQpsgz20gLTAS7IsH5MkqRJwVJKkHbIsn81Xpx9Q785PO2DJnd8KioJOJ36r1a61Q4ECBeUWNu8AZFmOkWX52J1yGnAOqF6g2kBghSxwEAiUJCnM1r7LLVatggoVwM8Pvv3W1daUH+TlwciREBICjz4Kubmutsgl0Mt6/or/i+i0aLu3fTHhIkeij6CX9XZvW4H9YVc1UEmSIoAWwKECb1UH/s33+sadazH27P8u6PXmZZXK+WVr7nnqKcjJMZVHjXKNHe44NraUv/wSNm6ErCzx+6uvYMIEm9vVy+ZllWRd2db7LSnr9DoGfz+Y3dd2o9frWTFkBUMbD7WLTZ8d+Yxp26chIdE7sjfrh69HRraL3c4YG3exCTArOxJ2WwAkSaoIrAdekGU5teDbhdwiF9HOBGACQHh4uPUG6fWQmCh+6/WQkgIBAeI9Z5VVKuv61mpNn0Ong/h419jhjmOTnAyHDonJPDpaTOBjxlh275UrkJ0tyjk5cPMm3L5t09joJUjMTkEfJMop2SkE+Ig6pSmrJBV6WW/1/ZaWj8ccZ+ulregRD0ev/PIKXcO72sWmN3a/QbZOjO/G8xs5E38Gb7W3zXYXZkd8ejw7ru5AQqJXnV5UrlDZYWPmzO9LJalQSSqC/YKdsgjYZQGQJMkTMfl/J8vyhkKq3ABq5ntdAyh0/ynL8ufA5wCtW7cudJGwCHq9mCy0WvETEwMaDciy88pqtXV9z5oF774ryq+8AgkJrrHDHcdmxgzYssX0Pc+YATVrQmhoyfd26AA1asC//4r6ffuKhwQbxkavgtS0aHK9wtCqICY1Bo2/Bhm5VGW1So1Wr7X6fkvLGbkZxskfIMw3jNuZt+1iU5hfGLdybok5AYk8XR5xaXE2212YHY+vfZxTSacAaBHUgpWPrnTYmDnz+1Kr1HioPAj0DSwbC4AkSRLwJXBOluUFRVTbBEyVJOl7hPM3RZZlx9I/KhX4+5t2AJIEQUEGo51TNjzllvb+wYPhySdFOSnJdXa449hs3YoZPD0hIwOaNSv53vr14cAB8fSu10NwsM1jo5Kgojfo/YLQS2LiC/IVdUpTNjxRSkgE+gRyKu4UmXmZRPlGlbqt4sqNKjdixaAVvLfnPUJ9Qlk4YCHBvsEl2lRUuwE+Acz5bQ4/n/+ZXvV6UT2gOrFpsczuOZuwSmH4ePjYbHdhdhgmf4DjScftMja22mSvdg0/zoA9dgCdgMeB05Iknbhz7VUgHECW5aXAFqA/cAnIBMbZoV/3hE4HFy9Cw4YQGOhqa8ofGjaEc+dMr2vUgO7dTT6TkiBJ4ntJSnKIefbA9F+m88O5H9Cj54XWLzC9y3S7tt+zdk961u5JUlaScQKyFt//9T2fnfgMPXq+PvU1H/f7mO61utvcbkloENCA8ynnAWgc0NimtrR6LRvObSAhM4Gx943Fz9PPHiaWCdi8AMiy/AeFc/z568jAFFv7KhX0ekhNNaeAhDGOK+fmiiiT8+I/Jt99J55MndF3ceX8dIsr7bCHTW++CevWQVoatGkDAwcKXt9FY6NXQXpaNLm+spECAozbekvLapWaNX+tYfbvs8mPj458xPjW461u15ZyfpqjqHrXEq8ZKSUdOq4mXKV+UH2H2/Fu73fZdXkXkiTRs45YzKztY8G+BWz7ZxsAa0+tZd2odXYZG2s/q4fKo2z5ANwSrqCATp4UjkYDvvoKVqwou3SLO9rUqBEsuMM0ugE9Zi8KKEebc9fkD1C7Uu0iKRpHly2hOca2HMvKEytJ06cR4BHA6PtG46Xycrgd9UPq066GSCXKv5Oxpo/d/+w2jvf51PP4ePig8dfcExSQIgVhT1SpYkrgAkFPKFBgAQqLm+9SrQurhq1ygTWWo3ql6hyZfIQ1j6zhz0l/UrVCVVebVGp0rN7RWA6vEI6vh68LrXEuyu8OwBUUkEYDM2fC0qVw330wdaqIMrFXH4cOiYgXjebepYDczA5bKKCM3Aw++OMD8vR5PN36aaa3m868Q/MA+LT/p0QGRlLJqxKJWYkOpXoO3zzM/n/206deHxpWbmi8vvH8Rrac20LTak2Z0m4KSEV/vgDvAHK0OWRrs11CRdlSntdvHt+d/I5b6beY2HYiSdlJCgVU5mEJBbR6NezeDYMGwYMP2ofamDRJZJnam3p59VX45htxbdYsGD7cVCchAS5fhiZNxOJQnikgN7PDFgropW0v8cu1XwDYeWUnp6ac4rHmjxHiF4IkSTZTG5aUT8adZPxP45GRWX5qOdsf347GX8Pp+NPM+nUWOnTsi91Hw6oNGdZ4mNtSUbaWp3eeXqrxViigso5Nm+Dll0VM+aRJsG+fqy0qGtnZpskfYN48U/nPP0UUzNCh4ndGhrOtU2AljkQfMZYz9ZnczrqNWqVGRFY7B3uu7EFGpNvo0fPH9T8AOJ9w3ixf4GL8RafZVBjiM+L59tS37Lyy06V2lDeU3x1ASRTQkSMmqQi9Ho4eNYVtugm9YCxXrWp6UgWhZRN9J49u0SLxOy8PbtyAzZvFDsQd6RZ3tMmFFNCwRsNYenIpAPUC6+Gj9iE6Ndri++1RjgqLgpMYrzUIaUB0ajQdqnfAE0+0aNGjp1udbndRUUv/XMqyo8uo7FOZ2T1n06FmB4fYmqXNovuy7mQgHm5ebv8yD9R5wKnjVLCsUEDuDpUKKlY0UUA6nSmNX6cT4YPLl4v3PDygXz+xAOSvY2vZMGnb2lZwMKxfL3YsQUEwd67J1oYNYWe+p6IGDRxnhzuOjYvtUElQwUOLj28geklo7RjS+0sqz+wxk2bVmyHLMn0j++Kl9kIv6y2+3x7lRlUaEeAdwL7L++jXqB9tqrchITOBEL8QDk88zJ83/0RTUUOzas3M7o/LiGPx0cUA3Mi+wYK9C9j+5HaH2Hr+5nlyMQn3bb2wlVHNRjl1nAqWDRSQI9ota4lg7gm9HtLTTTuA+Hgx0cuyKNepAz/+CPv3C+okJEQ81eWvY2vZ8HRpj7YiI2HxYnMpAg8PGDdOhJ5evixyEKpUEZmujrLDEWNz+bJQP1WpXGuHFffrVZCRFk9uRTValdCo8VB5ICNbVI4MjETjryFXl0tmXmap7y+ynCb0o9QqdYn1W4W1QlNBg8ZfQ3J2svG6t9qb9jXaE5MaQ0p2itk9t9Jvmf25peWm3VXHXuWwimFmdFT76u3t3kdpy4YdgL3ajU6JRpZlfDx98FB5ECqHKjsAm2CJE7hVK7EQuKmD0eLy3LmmcmGx8e7icC3MpldeEfIOer1wdE+Z4ho7iqp34gS88YbYhU2b5rA8gOKcirIsk56TbnFbFxIuMGT1ENJJ59GGj/Jat9fsblOQbxCjGo1i1blVeOLJG73ecJiDNsQvhJ1jdvLNkW+oX60+jzd7nJTsFIf1J8syWXlZTnMCrz2zlhe2vwDA3AfmMrb5WMUJrMBF0OlElq0sO76v5GT4+WeTb+OTTxzfZ2mQnQ1jx4oAgZ9+ghdecLoJ0WnRtFjSgg7LOzDwu4Hk6ko+w+C/u/9LOukArPt7HafiTpVwh3V4tdurXJx6kUvPX6Jddcee71Q/pD7Tuk5z+OR4K/MW7T5vR9sv2/LgygfJystyWF8GTNs+zVh+eefLyM7427uD8rsDcEUeQMFyWXN0XrkCw4YJXZ327WH2bMfaZJBmNiA0VOxg3GVs4uJMixPAhQt32Wc3KQjpjlMxzfy9r499bVTYPBJ/hB/++oGW1VoW367eNIHo0JGcnWyVVIIljk6Nv8Yhsf/F2XHwxkF+u/Ibvev1pkVYC7v2t+b0Gm5m3gTgxO0TrDy1kk41Olk1NhZ/PtRo0RrLaTlphFQIUSggm1CW1UCLK2/YANu3Q6dO8Oyz4pq97PjqK5Oo2pEjcOmS0DJy1Nj4+4s+P/pIOLVnznSv7ygwEDp2hMOHxc5oyhS7UEAXEi7QY3kPbuXcYkrLKXSv252x68aSKWfyUtuXeLHTi8Z7QiqEYIAaNZUrVC5RpuD9vu8zdNVQYrNjmdxyMt0iurlF/D0ybL64mT2X99CldhfGVh1bajvO3DrD05ufRkZm1dlVbBqxiYjACLtRQIEVTAKOxY23Pcfmm0e+YcKGCajUKhY9vAh/H3/FCaygEPzyC/z3v2LC+uMPqF0bHn7Yfu1XrGgqyzL4OiElvm1bk8Szuyl0SpLI6r58WSwGlSvbpdnZO2cbn+oXH1vMurPryJQzAZh/eD7jW48nwFtEh0xpP4UjN49wJPYIjzZ+lD51+5CcnVxs++EB4fzyxC/GiSYpyz3GdculLczcNRMdOrZe20pEUATdanUrVRsH/jlA/ryFgzcOEhEYYTcbJ7SewKHrh9gXvY9B9QcxoP4AUnMKnm9lX3QJ78L+ifuNC4szUX4XgPJIAZ0+bU5JnD4tdgL2smPiRJFYdvUqjB4N4eGOo2TKCj0WGwv16omyIffCRgooO9ec+tJpdWavk7OS0el1Rorl80GfG8uWyBS4a6z78RvH0WH6rEdvHqVplaalsiMqLMpsrBpXbmzX3AmNv4ZPB3xqLKfkpNhtbDJyM/jsz8/w9fJldLPRpOekF9qukgdgD5RHCmjoUCFfIcti0ho+XESn2MuOoCCRb1BcRJG7jo2L7LCGAnqnzzs8vfFpUnWpPNX0KR5u/DBPrH+CFG0Kr3R8hVqBtYq9v6xKMAxpMoS159caOe9BjQZZpHSa346oqlGsG7qOPVf30CuyF600rZwimWGPsRn/v/EcihPHpf965VfWPLrGrE5seixbLmyhUdVGjAsahzNQfheA8oiICCEId/KkeDqPjHS1RfcGEhJECOiVKyJUtU8fm5qLqhLFuefOIcsyydnJBPkGcfa5s+hlvdPpmtj0WM7eOmvGozsKjSs3Zu+TezkZd5LIwEjqBNWxqp0ONTvQMLShw+21NwyTP8DZpLNGBdisvCzm753P8jPLAfDAA51ex8TWEx1uU/ldAMojBRQTIxLBWrYUZUvpGXehW9zRJkvseOcd2LNHXHvySfj1VyG9gX0PhHGk4mVh5b3X9vLMtmdQoUJCYtvobVSrVM2hNmn8NXSu2ZmY1BiLI5OcMTa5ulx2XN5B48qNiQiKcIhNnap1Yl+s0BxrHtSc2LRYVJKKZ396ll9v/ooBWrRsubBFWQBsQklSEGVAZqDc2eGONllih4H7B0H9aLUi4/qOFIS3l3VSEPnLjpIWKK588J+DAMYs2z9u/MFTLZ5yqU2uGBs/Tz+Gfj+Uv5P/BuCTvp/QJbyL3W1aMWwFy48tx9vTmxFNRpCRm0GATwBHY46SHypUDIkagjNQfheAkqQgCpbXrhUZn76+IiEpPNx6mYG1a+GDD8DPD+bPFwfDuIvsgjtKQbi7HZMnw4siNJM2bYQ4X2wseHiQ6wGX9PGE5riXtIAl5ZCKIWZ/MmEVw8ykIFxhkyvG5uyts8bJH2DhvoU0CG7gEJu61upqzJ0wXO9Xrx8/nP8BgEB1IHP7zWV009FOmSbL7wJQGiewr6+Y/AGysgTPu3u3dU7FvDxBGYCIqX/5ZfjttzLt6HSYTTqdWKQDA7Eon8FVYxMVJfSiLl8WCXIqlfgJCsJDBVWAgHzOvFuZtzgWc4xGoY1c5nC1pPxkyyfx8fRhz5U99KzXk4frP+xym1wxNqEVQ1GhMu6Emoc1d9qRkIE+gVStWBU1ampVqsXaEWup4V9DyQNwKmTZ/HX+Yx1Li/xhmmDkiu9J3LollEqrVIGePe9+r08fwbFHRQlhPnfCwYOwcaPQigoIEIt4hw4iMawYnIg9wZgfx6BChRYtv4/9nbrBdZ1jcykhSRJT201larupbpMrYAn2/buPEzEneKTxI1SrWM3m9qpWqMp3Q75j/u/zaVClAbN6zCJP55y/24M3D7L46GJ06LiSdoXFBxfzbu93ndI3lOcFoDROYI1GPPXPmSOe+MaPhzffhK5doVu30jsYJ0+GJUvE69mzC40fdztHp73Lf/8tdHQyRYIT770nTl0z1Pn0U1P5zBlYsQK6dHGPsTlwACZM4C5s3Ch2lV26GOtrPSBWjkYvCYffxrMb0d/5BzBw5UACfQN5tsOz9I7sXSqn4ubzm/lg7wd4qDx4pdsr9KrbyyEOUHdyTJdkx/pz65m9ZzYA8/fNZ8fYHWTnZdvcR5MqTZjTe45RmdVZY3M58bJZbkR8RjypOalKHoDNKG0ewJQpQk75n39gwABxz7p1sGyZyFYtDb0wZQrMmCF4ZElybDy9JWVXUEDR0WJiNWDbNnj8cVOd4GDTe2q12CUUdpylK8bm9m3w9Cx893bjhlnuhYcKqmGigNrWasv6C+uNC0CSPomkjCRm7JzB8CbDkSTJIkpBlmVe/fVVZMTudNaOWQxvMtzsHkeX3ZEC2vXbLuNXISNzJfkKrcNal0laSqvT8skBkwCiChUzus7A39t5UhCKGmh+SNLdJ4UdPmxdW56eYmK7V1G/vjmV1rat+fvjxwte3dMTBg8WB/S4C9q2NfH8Bnh6it+9exd7a7+6/fio70cMazDM7Hoeeca4b0sg3/lngEHd0xWQZZnvTn/HS9teYt+/rj06tVPtTqjuTFs6dERVjirhDvfF9ZTrxGTGGF9X861GZLBzc3vK7w7A2jyApk3N22nRwnoKpyzFutu7rFYLobcff4SwMHjsMUhMNLfpk09MFFxKivuMjV4vzoz+4w+hUBoZKZLvNBrxOt/nKEgBxaTGcH/E/fSI6EGIXwhLj4sjH0c1HEVqTmqpKIWnmz3NF6e+AODZNs9apehpD+pl2bFlfPznxwB8f+571vqspWHlhi6hgEY1GYWHyoNTN08x8r6R+Hg4/xjNor6v0pYlWRJJX3cooFZhrUjOTlakIOwCW6QgduwQlEWXLiLsz1oKx17US6VK4lD4GzdEItKpU7Brl+DUe/Z0TwrIED3zwAPufUhNcXY0aWKy/b77Cv0cBSmg/Fv8qe2mMrHNRHSyDh+1T6kphec7Ps+LXV5EhYo8XZ7LaI6riVfJj3/T/qVjeEeX0S2TWk8iKcr58g8lfV+lLodI7HxiJ8uPLqeSdyVe6PgCPh4+ypGQLkfjxuKp1fDH7mq89hp8+614Ov3mG8jNxZhvsGaNOBdYgXMgy7B3r9gFDBhgThMVgioVqgDWK3L6e/nbdL890K9BPzZf3oyEBEDn8M4us6W8oU5QHd564C2SspLwUns5vf/yuwCUJymIHTswhqoa9PoNn/HAAbHTSUuDo0dF9nPr1tbb8c47YmGpXVtEQjVr5t5jU1R5wwbhv2nVShxyYy87/vtfERwAsH492k8X3kUBgWsoBUfRHHUD67J6yGrO3j5LZFAkfh5+JGYllim6pazYVCbVQCVJ+gp4CIiXZblJIe93BzYChr3kBlmW37RH30WiPKmBDhsmwiZ1OpE0ZTj0Xa2G/v3B2xseekgsArm5YgLv2LH0dpw8Cd9/L65duiR2G1995d5jU1h5yxbTuQmbN4tFrH17+9ixfj1G7N6NR0V/qqnNKSC1Ss0T65/gSNwRRjQawft93ncOpeBAmiOqahSda3UuM8qbZdUmA/1T1iigr4FFwIpi6uyVZfkhO/V3b2HGDMGnX70qnKkxMUKcrFcvoVX/7bdit2MIW1y5ssSEpUKRVeD805s3bbfdFTh79u5zE9q3t0/bDRqIHAcQkhCFRHotOrDIqPz4/bnv6VmvJ201be+qp8C9oJf1fHvqW2JTY+kV2cs4OZdn2GUBkGX5d0mSIuzRlt1QniggEAe/1KkjnkLDwkSCmiEipWJF85j1mjXvjrixxI6aNc3H8MoV5x8Ik5UF8+YJR/fEicKJXFJbSUnigHnD9fvuE7sXA1q3Nh8PW76jpUvh44/F/63p09GmJN1FAd3OvG3sWoeO+Iz4EiNV7iWa465ySgybzm/iZspN2lRvQ+vqrS2240bqDY7HHKdn3Z74evjaZMcbu95g/SWxw1v450L2PbmPCl4VFArITuggSdJJIBqYJsvyGYf2di+pgXbqJCii774TO4Vp00QSWmnt8CrghFKrnT82CxcKxzYIAbZffzUqbxba1nvviR0QiGziHj3Ez65dcOKEyEdo3tx+31FIiLAxIQFCQvBQQShaM+XH/+v8f+y+uptbubdoW6UtwxoPIy0nze7qknm6PFYdX8XZhLM83vLxEhUsS1t2lhropwc/5bMTn6FHj8cxD05MPkGgd2CJdiw6sIilJ0WYbdV9Vfntqd+oUrGK1XYcuXkEA3TouJ15m+r+1Z06NmWVAioJx4BasiynS5LUH/gRqFdYRUmSJgATAMLDw63vsbRqoI4oO1PxsmtXk0RBRob1dkyZAosXi53GjBkmf4O19uXmiqfxihVFsldycvE2nSnwXHDuHNStW3gfp06ZJn8Qch5bt4o6Go1I2oqJKf4z2PgdaT3gthyPSm1SftT4a9g9bjdXEq9QN6QumXmZDlG8XHxoMV+f+xqAw9sOs6jvIrpHdLfoXkvKzlID/eXiL8bMaS1ajtw8QitNq2Lt2Hl5p3HyB4jLjeOXS7/QOLSx1XZ0jujMP+f+AcAXX6pUrGKmjuqMsTHsAELl0PKzA5BlOTVfeYskSZ9KkhQqy/LtQup+DnwO0Lp1a9nqTsuTE9iZdkyeDK+8Iq4lJ5dc/99/4f33xVPyY4/dXWfMGPE0rlIJ5+zKlcXbNHWqOJdYloUkd69ekJ1deN+1apl/55UrW3ZEph2/o+LyACTJsU7FG6k3jB/dAw8ytZllwtGZv5yZl0nNgJpcybgCgDfetKvRDn9v/2LtyNBmUBDNqjajSoUqVtv0StdX6Fq3KzdTb9KjVg+qV6ru9LFx9g7AKb1IklRNkiTpTrntnX4THNrp+fMi+iMsDN5+26FdlTuoVGKCKwmGc4lXroRFi+Cll+6us3u3+K3Xw/HjJSut3n8/7N8PX3wh7vX1LbpuSAh89JH4HRkpqJl7CIE+gcayFi3tNO1caI11GLJ6CHui9wBQz78em0Ztwt/bv8T77q99P8GeJj2pmZ1n0iC0gU22SJLEQ/UeYmKriVSuUNmmtgyITY9l37/7SM91nZRHcbBXGOhqoDsQKknSDWA24Akgy/JSYCgwWZIkLZAFjJBl2fqne0vw3HMQFyfKS5YIHrhz57LrBHZHO27fFjSbAUeO3O00btVKXAdB5cTFCXuKs6lCBfH0n5Ul1ESLs+OBB0Q2dEyMeDovytlr69hs2ACzZoGfH/LChcjhNVFRuBQEOMfh+uuVX8mPs/FnCfELsatD0pFO4BxtDqcTThvtv5h6EQnpLskLtUrNtaRrRKdF065GO2RksnKz2DpmK6fjTlPBowJNqzW1S25CRl4G7+15j7NxZ5naaSrdI7pbPTYnY08y+kdxsEslKvHz2J9LVC4tk05gWZZHlvD+IkSYqPOQ/wlWpRL0gDtTL2XRjsBAaNQILl4Uk+Wjj95dZ/VqsQB7egp5aL2+bI2NLItFZdYsAHYEZTL+5FP4HIOZ/ecwutXYoikgB9MtXSO6surcKgB88OG+sPvKHAVU178ul1MvA9BV07XQg1g+/fNT3vlDHLI08b6JzOoxy/heDf8ads1NeGvPW/zv0v8AeG7bcxwcf7BQmwqOzcpTK3ln1zvUCq7FssHL0Phr+Or4nRwaIIssjsYcpVedXiWOeXl0AjsfH38sokHi4oS2e4NSbg8vXhSJUS1bivBLeyIvT/DhOTkwdGiJcgJuC0kS9M+hQ0KvqEWLu+v4+Qn9IsOEmlR2Dh4hI0PIPVy7Zrz03EOQ4QHqPJix+1WG3zcKXCT6+k6vd6hcoTJJWUk82epJKnlXco0hNmDT6E0sObSEQL9AnrjvCbK12XfVmfvHXGP5sxOf8Wq3Vx1mz4VbF4xlNWqi06KpF1xovIoRN9Nu8squVwD4K/Evpm2ZxtKBS9FU0hjr6NARERjhEJttQfldAOrVE2qOhiig0ih6XrokJIoNePddePhh+1EvM2cKRyeIMMd33imbFJDh6bhbN9N1SXK9TQXLsiwWHgNdZakdP/5oNvkDBGZBtgRVUiFZBbrUZGKleJdJQTxY/0E0/hpkZLurYjorD2BAwwFo/DVkabMKrRPsHUxcjqBzvfAiNTuVmDTH2DS21ViO/3IcgFoVa1EroFah45p/bDLzMs3+j8RlxBGdEs03x0y5KBEVIogMjrQoH6TMUUBuCVuigE6dMm/rzBkRzWLJvfnLhdELubmmyR/ETmDJkrJJAYGI0AkMFJPoa68J/Z0hQ2DSJPegx/R64Q/69VdBQ/38s8iVsMSOgolxkyYx9/HuPPXz02R5ZvD2gA/xCq5MNdnDJRSQo8uW2nToxiFOx59miP8Qgn2D7W7HmhFrmLZ1Guk56XzQ/wOC/YJLFWFVmnJU1SjaVW/H2Vtnub/2/XhkPN3MAAAgAElEQVSpvfBSexU7NoE+gTxS/xHWX1iPBx7M6T2HSj6VSNCa4lxiM2ItGhuFAnIHtG5tKqtUhVMb1sLLS0QmGZ4ymzWzX9vORF4ejB4N+/aJRK3HHhNHJoLIlq1TB0aMcK2NIBbbvXtFOS9PhKyuKE6xJB969oSnnhKfq107GD+eLhoN56f8DUlJ6IODuO0N+pySm7In8nR5PLv5WXZf3U3X8K4sengRapVreKjVf63m5R0vo0fPR/s+Yv/E/RbfK8syCw8tZM3JNTwQ+QCzeswqtF79kPr8OPpHM67fkQgPCKeSVyWL1TklSWLhgwt5ocMLaPw1+Hj4kJiZSJPgJpxLPIcOHQ81cE8VnPK7ANgiBVGzJsydKzRlmjcXT4zWSCIURS98+y18+aWYkF54ofSRK+5AAZ06JSZ/EElRmzaZxl6nK1lGwlkUUFaW+dGUPj6lk8kYPlx8R4brvr7Gsl4FibJMdIZz6ZZlx5ax4eIGADZd2USL4y0Y2nioS6QgVhxdYUziStGmsPfaXiICIizqY9e1Xcw9IPj9ZaeWUblCZXrU7mHT2DirXJhNWXlZZOVlkZmXSUxaDMuHLOen8z+h1WsZ0WSERVFKCgVkL9iaCNa/v3jCBZH2b2/qZd48550V7Ai6JTpaTJ6GuP42bcS1nBwhkjZypHtQQD16wMsvw2eficSxOXPMk8VssEMVGESgH+jUzo248ZTuHE95B3pZ7xDqxRKbutfuzl+Jf6FHjwoVrTSt8FZ7W9TH4ZjDqFAZF5DkrGSLIm7s9fmc8X1NbD2xVFFK5TIRrMwiKwsGDRI0Ta9eYkeRlSUihHKcvO93NzzwgJjkVSoR6//66/D77/DbbyKRKzCwxCachuefF7u5VauEgF4Zx5CoIYT5hAFQ1asqI5q4jmqb1nkaM7vMZHDkYDaO3Ei1itUsvndgg4EEe4mFyxdfRt5XbDQ5WXlZLD2ylI8OfERydrKtpiugPO8A7KEG+vvvJoft2bPiqX3lSkHd+PnB11+L08NcTXO4KuJmxgzhHNdoxE4gMVGU09LcKwrIQXboVZDsAgooOy+bbWO2kZCVQJ42D1mWHXJAi0U2+cPwqOF0qdkFjb+mVHZo/DVsfXwrh24eorWmNRW8KhQbcTNhwwSOJ4kInRVHV7Br/C63ooDs1a5CAdkDtqqBnj5tzmuD0IE3yC5nZgrRNIMYmSvVQN1FlbQs2mSDHSr/APz9oIrkfOXNYL9ggv2CSchMcJhSpzPUQAN8Augc3pkQv5AS7TBM/gBxeXF4e3jj4+HjcLVSRQ20LKIoNdAlS4R0cp064rck3a32mJoKo0aZt9e8uTh7d3++KIdjxxyqNGm3srvY4Y422WCH3suDVEkmPqPsKG9aWlZJKn78+0fi0+PpUKMDzcOaG987GnOUZYeWEeAbwBsPvIGfp1+Rbf2b9C/fnPiGHG0OPWr3sGlsOlXpxL54EXgQ4RdBjjaHbG22S8ZJUQN1dxTmBI6PF5O+LMPlyzB/PixYcLeTz6AhZECNGiJePzHRdEQiCL+AOzg6XZkHUNZtKoNOYGeUP97/MV+d+godOpYfXc7JqSfx9fQlMSuRCT9NQIdw/vv+7suihxYV2dbTe57mYPxBADad28ShSYesHptFAxex8+pOsrXZ9K7Tu0w4ga1pV9kBOApZWeIP3hC5kplZeL26dYUYWXS0mBxG3nFOBQeLA8HXrROLgmGXcOKESBYbMEBIIihwHc6cEUloWq3w2URFudqiMontl7cbJ/kMMriecp0GoQ2ITYs1q3c2/myx7RyKP2Qs38i6QVZeFr6exSi8FgNPtSejmoq/uaSsMiQp4sYovwtAYU7g8HDo21dkg3p5wbPPFi0RsWgRXLggROTCwkwx7f7+IuPVUP+nn2D2bHHf+++LA0kMxxOWA0dnkeWMDFi+XOyWpk4VyWCutgnEonz7zjETjz4Kv/ziMDtc5QR2RrlHrR58c/YbZGT88MPf25/ErET8vfypU6kOl9IuISMzusXoYh2/Hat2ZF+coG1q+9UmW5tdpORDWRkbW2y6lnCNp/c8zYH4A3Ss3JHFgxbjofZQnMB2R1F5AJ9/Lg47DwsTdYqLxW/VSpSLq/O//5n6TE2F69eFr6Cc0BxFlidONCWCHTggJJ9dbVNQkFiY8qMkFViFAiq0/Fbvt2hdqzWxabH0rN2TsEphxve2j9vOwRsH8VH70LZG20Lvz9XnsuzPZTQLa0b/xv2Rka2mbawZG1mWWXFiBedvnWdY02G0qNbCLSigr69/zYH4AwDsv7WfnVd3MqrpKIUCcir8/OynwNmmjVANlWUxkdhbOdQVOHECDh4UUs/dupm/d+aMkHowTP4AsbF3T7yuwuzZ4kQzEBm8Bc85VmARVJKKRxo9gl7W30W3eKm96Fqra5E0jCzL9F/Rn9hsQRd1q96NVcNX2Uzb6PQ6TsedpkrFKnipiv9evzz+JfMOzgNg8+XN/PDID3QM72hT//ZAjtY8fyhH59p8ovK7ANgjD8CS8jPPiMiQM2dg/HghOGaglcoiBbRrl5g4DVixQmghxcQIJ3ifPqJefjRpIkTu3IECevBBcTpYaKg4KawkFViFArK7TRcTLxonf4D9N/fblKegVqnJ0eYwfPVwLqQJueb/dvsvQxsNLfKew9cPG/vXo+do9FEaVW7k8rHpHtGdTec2cT3zOrX9atO7Tm+zsVEoIHvBmWcCv/Za4TSRSiUkqd96S/gf5swRiVLuTAFdvmw+jqdPC1E0SRL6Ph4eplwIjUYsgKNGgbe3e1BAYKLgHGxHeaaAbLGpXnA9moU040zCGXToGNxwsE1SFSpJxdHoo8bJH+CH4z/wdMuni7xndIvR/Hz1ZzzxxEvyok9kH7cYm4aVG3Jg4gFytDlk5t19hrNCAZUnpKYKRUydToinpaWJ5LHSIjtb5DSonaD42Ly5aVIEaNvW9F7jxmICjI8XdSZOFFIZ3t6Ot0tBmYEkSWwYuYGN5zeik3WMbFK8xIMlqFKxitnr8KDwYut3q9WN9cPWE5MeQ6eanfBUeRZb39nwUHmw6fwmJEnikUaPuM4Ol/XsaDiLAiqufPOm+SHo586V7mAaWRZRLNOmidddu5oWEEfRLeHhguM/cgRq1xZ+AIN6pkYjnN4//ihOWGvXrvSfR5GCKPcUkEHmoXfd3sSkxpCSnWKzHb4evrze5XW+P/E9EYERTGgz4a6zgwuWK3lWokGtBsi432E5/9nxH366/BMAX/75JZ8+9KmxXYUCsgdslYKwRzkwELp0MenRv/SSCJcsTVvLlpk+0++/iwm3cWPHyh00agT9+gkV1IJ1AgKESmpIiG1jo0hBmJXtIS2QnZfNudvnqFKhClUqVnELm+wpu/BIo0eY0GoCgEMlMJwxNjsv78SAS2mX8PbyVqQg7IqipCCcLTOwaJE4japePfF0HRNTurb8/O7+XMnJZVN2wR1tKidSEFq9luHfD+dqxlUAXu34KqOajXKpTdaWT8Sd4Pmfniddn847Pd9hYIOBbiWTYY+xaR3Wmr0x4sEwxCOE7NxsUrJTFCkIu8GZTuCiyoanywcesL6t99+H6dNFfsEzz5hOEHMXh6s75SY42Q53cALnanP5+eLPxKbGGid/gB9O/cCUdlPsZtPV5Ku8tfstfNQ+zH9wPppKGoc5oB9b/xgp+hQAXtn1CiObjMRD5eFyp7g9vi9Defkjy1l8aDGyLPNEqyfwkDwUJ7CCQhAWJjKXQUQaKXAbaN3gNI0pG6dw+NZhZMxDcyNDIs1e30y7yf5/91MroBZtq7elNMjT5TH0+6HkIGLWn/zfk2wbs63Ye5Kzk/Hx8ClVPwbk6nLNXutlvVXtuBPydHlM3jSZrde20lXTla+GfMX4VuONC4OrpC3K7wLgDk7gcuDoLLF88aI4ZrFmTfexyR52JCTAG2/AP/+IE8U6djSro42P5Ya/TCa41Kl48JYQWjOgRXALwoPCGdtyrNFJevTmUZ786UnjyVvLByyntaa1xTZdSbpinPwBriRcKTauf8a2GWy5tgWAt7u/zaCGg0o1Hm/0fIPnf3kegGntppGtzSY9N93lTnFbvq/VJ1ez9dpWAH6P/p2lfy6ld93ehbarOIHtAXeigMowzVFsec8ekyBez57w4YfOtykwUERG7dolzu8dOdK6sdHrYfVqEa774IOivGePqDt5ssiHyJfDoVJJVKwUhI/KtZRC48DGnE0WgmwN/BuweexmALNjCC8lXiI/fr/6O73r9i6x/dScVLR6LQ1CGzCg7gB+vvwzOnS81PWlIuP6b6bdNE7+AEsPLWVci3GlGo+oqlEMbjiYhMwEqlSsUuZzJLQ6LcvPLDf7DtQqdZHHXyoUkCtw65YIt0xLE1IC9eq52iL3x5w5pvKvv8L58+JJ2Zn47jvhJ9HrRehqzZrWKYB++aVw2Ov1QuCvWr6jDWVZhMIaFg8nIzY9lrm/zyXAJ4DnOj5n9t6XQ77kx79/BBkGNRpU6P31Q+ubvW6uaV5in6tPr2baThF+7Isvmx/bzOR2k8nV5tK6eusi7/P1MFf69Pf2L7GvwqBWqfFUu1fsvrUoSGkBjLlvDLIsF1LbuSi/C0BpKaBx4+D4nROHhgwxnQbmrtSLO9iRf0LU60XCmkE11Vk2nT5tSlrT68UTvMGu0thx+LCpHRCOe8Npb+3bi51GvpwHfXwsqf4y2Z6Op4D6f9OfuFxxRsWea3v45MFPjHXSstN4vNnjxvpJXnfHxlerUI0P+37I9vPbiQyNpGdEzxKlGWbunGkciiyyeGL9E2wZu0X0UUz8PcD09tP57NBnVK5QmZc6v1RivL696ZbUnFSWHlxKfEY8z3d6nhoBNVxKAaVkp/B4o8dZeW4lALO6zEIv64tsV6GA7IHSUkD//mu61xB+6a7Ui7vYsXAhTJggJtPp04VmkLNteuwx+P570Zafn1i8vb1Lb8eoUWIRUKuFgNwrr8CUKXDtGnTuLOrlu1+lkvCvGISfgymgSt6VjJM/wIWUC4VSByWVo6pGMbTRUDNqqLj6Ib4hRGdFG/vN1GZaLOcw9r6xvNBB6ElZ2p+96JZtl7bx7p53ScxLBOBwzGFOTjlpdd9J2Unk6HII9AlEkiSrKbv3+r7Hc52eIzMvk8jgyGI/qzMpILv0IknSV5IkxUuS9FcR70uSJC2UJOmSJEmnJElqaY9+7YrnhdMJtVrw2VWqFF9fgRij5cvh0CEYOtQ1NjRtKuSoP/lEKJjmp25Kg/vvh+3b4aOPYNs2MdGHh4v2bVSOPRl7knHrxjHhxwnEZcSVfEM+eKg8uL/m/aKMB4/Ud45swMqhKwn0CDS+frv3207p1xZsv7yd6TunGyd/gMS8RDLyrFOq3XFlB02XNOXhHx7miQ1P2EzZaCppCPENsakNe8NeO4CvgUXAiiLe7wfUu/PTDlhy57fjUFoKaNAgEXLp4yNi7WNixBOfO1IvZdUOR9nk42Py2RhkK6yxQ6OBqlVFuQQqy1IKKE+Xx4DVA9Cihdtwdc1VPur/0V31i6MUFvRbwJq/1rDr4i72X9/P/D/m81Lnlxwa6aLx13BgwgFuZ94mMSORuiF1bVL0dAbdcvCaeUQUQIRfBHnaPGLSSt/3m7vexBBeu/P6Tg7fOExFr4qlssmaz1rmKCBZln+XJCmimCoDgRWyWEIPSpIUKElSmCzLMcXcYxusiQJq395UVqncl3opq3a4o01W2mEpBSRJkpj87+BG2o0ioz+KoxRSs1ON8f7L/1pOnwZ96BLexeGRLv7e/gT5BJWJiJuHGz/MZ6c+Q4XKGPJ6PfM6Xxz5ggltJpS67/DAcK6kXzF+dxHBEXipvCyy6XrydTZf3EyLai2o7l/drE5abhof7/8YCYmZPWYS7BNs9lnLHAVkAaoD+Uh2bty5VjZx8ybMmiU48PR0V1ujwI0R6BNI34i+gPjjf67DcyXcUTji0uKMT6MgIoMUmKNFWAs2DNvAtA7TjNf06FlzZo1V7S3ov4DOms5U96nOkv5LqFqhqkX3XU2+ykPfP8TMXTPp910/Dt407UxkWebhbx/m+7+/Z/XfqxmzboxVttkLznICS4VcK5RQkyRpAjABIDy8eMnXYuGoRLDoaHHWrOHc31On4Isv3Jt6cZQdubmwe7c4EKZ6dfewyUljc+zUDn6PzaJDZA/Sc8RDQFHb+rl95tLnSh9qBdaiXkg9M2XKkzEn0aOnRbUWIBVNJ/Wq14v/XfwfWrQEq4JpX729wykZd1EoLY0dFT0rMjxqOJ8c+IQssgBoFdbKKjVQjb+GJQOWGMsFD24pyqatF7YiI6NDKAFv/Gsj7au3R0bmauJVbufeObMaOHnr5D1xIMwNoGa+1zWA6MIqyrL8OfA5QOvWra33ujhKDTQx0TT5g1gAAgMLr5+XB6+/LtRAH39cOJrdUfHy9m1Yu1bw3x06WNaur6+IuLlw55CO0aPF5+zYEd5+u2TV0zKsBrrixAre+2MmV0LVBBwOYeOojSWqQPao3YMQvxCz67uu7uKJjU+gRk14xXAq+1UmT5vHvP7zaBDawOz+tjXacvqZ09xIvUFcWhz/9/P/4aH24MVOL7qt4qWr7AjxC2HHuB0sObCE8OBwnmr1FGk5aaXu++zts5y/fZ42mjalsql9zfYYICHRrlY7tl7eymcHP6N2YG06VO3A4bjD6NDxWNRjBPoEmrVbHhPBNgFTJUn6HuH8TXEo/w+OUwPNyRFyyefOiX4eeqhodc7PP4d160S9Dz6AunXFjzspXubkwIABIgEOxO7m9ddLbvfYMSEDYcB334nf168Lnnzw4HKrBrrx0AoqpIEuWMetnFsc+PcAvb17I1M6RciP9gpnsA4dV9OvcjX9KgBDVw1l74S9d92j8ddQrUI1Hvr2IaM0w9kNZ9nz9J5S921J2VVqoPawI8A7gLEtx6Lx15CZl1nqvledWsXcg3MBUKNm99jdBPsGW2RTRGAEb3d/mxPRJ2hZvSUhPiFM3DoRENLPQ+oN4YPmH5CRm8HABgNJzk42a7fMqYFKkrQa6A6ESpJ0A5gNeALIsrwU2AL0By4BmcA4e/RbLBwpBbF5M2zZIp4Ihw41ZaF6eYloFEP9lBSTPWq1SJRytyMhz583Tf4gzhywpN1KlUxRUgVx61bJn7MMO4GjIjvzV9J59CoxObTStLLKudm4amNOJJ64a/iS9clFxtzr9DozXZ4EXYLLna+OLrvCjr1X9xrHWEbmctJlIoMjLbZpUMNBRgmMny78hCee5CGOUk3ITGB41PBCcyTK5A5AluViz3y7E/0zxR59uQV8fAT9YVDnHDVKnP0rSYL+GDhQXH/qKVizBrKyxITYr5942nQn1Kwp6JysLGF/ly6W3RceLg6r+fBDcQbvgQNw44ZYBJ9+2rE2uxiv3/86IXpfDnnH8XjrcUZqpzSIz4hnaoeppOekcy31GjUq1WDrVcEdT205tcj71Co1w+sPZ92FdcjITGw+0ZaPUmaw4tQKXt31KkGeQXzzyDfUDqzt0P461OrAobhD6O/8i6pshbzIHbTVtKVecD3OJ55Hh+4uOQ9XovxmAjtLDfTGDTH5G64tWABt2ojXoaFCI+fUKXEtL889HZ1Ll8K+fVC5slgALJVzaNMG5s8Xi1turlgE7rtP7LxKOiqyDDuBPWWZKbUG8mD9amR7UmoH43t73uO7c4Iym9xiMnN6z0GtUjPh1gTiM+LpGN6xWAfvU62eYljTYaglNRW9KtosteDuTuBMbSb/2fUfQCR2TfpxEsuHLHdo333r9qWiT0UuxV2iQ0QHKnhWsNgJXLB8O+M2q4au4kLCBSRZokFIgyK/3/LqBHY+nKUG6ukpOGLDk33jxib6w2BDxYrW97F+vchyDQuDefMcQ3O0aiW0b0BM/tba2q2b++cB3L4tdi4BAeKITl9f6+xQWycFodPrjJM/wJLjS3it+2uoJBVtarSxWDohylc8kdpDaqGosrtQQOpcNWZQYZUcRmnLE6tNLHKMrRmbyhUql/h9ldc8gPKLihVFBE2rVsKZ+umn9ms7Ph7++1+hTf/XXzBzZom3OA2yLJ749+xxP1qrKGRkCBru22+FhPTw4bB1a+F+jGKglyDZS/wuLVSSCo98z11BqqDSN3KPIdA7kFc7vQqAJ54s6LfAxRaVH5TfHYAzD4SJjIR33xVP/oZcAbCd5rhxw/wzxcdbTs84mm758EMhoQywcmXRuRDuRAGdPCl8HQYcOQLjx8OwYcJfY2FbehWkpkVzIecqf6dcomalmjSs3NByCqjneyzcv1CEcXZ+kaSspLsoBcNBLPVD6ruMenEXCkitUjOy6Ui61uxK9YDqIJWedisrY6NQQPaCKw+Eyc4WuQFqtW19BwbCww8LfXqVCl57zX1kF1avNo31wYOCBiss8kenE5FFKSkix8CVFFCbNlCrllhYdSJJB1kWR27OmmVxWyoJ/rp1kEd+noBK5YEnnhyYdIAQ3xCLKIG+9foyspmImzBQAvkphei0aAZ9N4hMMulXux+fD/zcJdSLu1BA7mKHM2xSKKCyDJ0OnnhCTDRNmsCVKyXeUiwkSewsTp0SCVedO9vFTLugUSNT2eDnKAxjxwpZ5REj4K23nGNbUfD0FIqfH3wgIrkMaF30ASdFYcOZDejQk0suGWSw59oeu5k557c5ZJIJwPar2zkSfcRubdsTOdocrqdcR6fXudoUBVai/O4AXHEm8B9/wI4d4lpyspjw5s2zvV2NRlAX7iQF8eGH8PHHwqn60kvi8xask5kpoqBALI7LlsEjjzjOJkvH8oEHRITW1q1ilzVmTLFRS7Is80/KPwQm5xBIA/QqaORdA0kGg/egil8Vm6QZ8lMKnirTSVg6dOTp8lxCeRRHc1xPuc6g1YPIJZeavjX55KFPiAyJLFN0S1Hl5Oxkfj7/M02qNqFZtWYKBVQm4SgpiOLKqakmagPEk3FRMhHOLDtCdiEkRGjnJySIcmF1goPFa0NCXJMmJokIV0tBNG0K3bub7PDxKbSeXpvHY9unsPfm7wRkweJR39GldlfGdJ5EkiaAP28epW/DvnQMF0dh2kPuYE6fOcRuiOV84nmebf8sHWp2ICEzwWZJBVmWOZp+lCxdFi2qtUBXsej6apWaSRsncSzmGIMbDObt3m8jSZKx3oZ9G8hFHHV4M+smR2OP0qp6K5vss2RsHC09oVapGfDtABK1iUhIfNjnQ7rX6u40m8pkIphbwlFSEMWVGzQQT5Nffy0okueeK1omwpllS+QOli0TT8T33Sf4cJXKPn1/952gXEJD4dlny5wUxLlz+zh55Xc8dFAhFRZtf5tOI9eSlXabJ5qP4bEWY4hJjSElO4XCpAUO3TzErB2zUKHi44c/plHlRiXKHWj8NawavsooQpZfKsBSKYPCym/ufpM1F4Qy5vD6w3mq9VNF1l91YhV7bgpaa8W5FXSo3YHO4Z2N9Xy8TBSaHj0qSVXkGJQlSYorKVdI1gqtLxmZFX+uoHFIY6fZVCalINwS1jqB1Wp45hlxPvCECULALT5etBcQUHI777wjDpcvS3IHu3fDkiXiyffyZWjZUvgy7NF3UJA4bN1w3ZBnUEbGJqBWPVKOSmTpZTwkaFI1AlVgEBW9Qe8XhF4q2rGn1+vpt6qfURXy+S3Pc2TSEZc5Og2TP8CaC2uYdf+sIuvnyCa5CTEkkpk8xf91/D8u3rrIsbhjDI8aztBGQ8ucw7WwcqBfIBIivleFik61O1l1foPiBHY3HDgAzZuLrf/evUXXmztX8NbJyeLJdfx4cURk48bw44/Os9eZiIkxPxDdwIGXB8TEwKRJ4ufq1VLfXiOgBgv6fEh9/3C6hXXgvd7vWXyvVq81Tv4AKdkppe7fntD4aozlMN+wYutOaT/FeCRkVGAUvev0Nnvfx8OH+f3nc+KZE7za7VUkyYqkCDdE9UrVWT98PQ/VfoiXO77MtM7TSr6pDKP87gAKOoEnTTKF/k2ebIqoKegkvHnTvI1t20yvX3sNfvjBvH5x5bIid9CihRB3S0sTr/v0Kf3Riu7gmC5Yjo2FXr0w4pdf4OhRUS6FHcM1DzB8aE9xPVeNNjmJ9LRocn1ltCqKdOwlZCYw+b7JLDmxBIDpXaYXKwHgaEfnFwO/4M2db+Lj5cP0rtOLdSxr/DX88dQfJGQlkJObQ2ZeJhl5GeUq5l5G5qfzP/H10a8J8QlhaoepNA9rTt3gujzX4Tk0/hpSc1IVJ3CZREEKSKczfz8oSGz1C279X35Z7BCyssTZwKdOme6pVq10ap5lhOYgKkokRV24IK5FRLjeJnuUv/4aM+TmwvTpIjx33Djxua2wQyVhEQUkIfFaj9eY3H4yqTmpRgEzV9EcQb5BfDn0S+N1S2QJgnyDHCo3YUnZUWOTnpvOq7+KDGNSIWtvFj+P/dmlNikUkKPwxhum8muviT/mwtCokZBd2L5dSD4vXy4OSmnaVOj7l1dUqCB2AoZImPKA4GDz115eYkd34QL85z9w7ZrVTculYDxCfEMI9A60ui93gU6vQwj7lg+k5qSavb6ReqOImuUX5XcHUJAC6tBBHGIiyyJ0sSRJBRB+gNathdRBQZkHd6E5XGHHxYvi4JdatcTCYU+b4uOF3+XqVXHWwuzZ1tv64IMiC/nAAeHYvnnTdIIZiM8RHHy3HT/+KPxATZpA//53tatVQ3RuND6+oJPcn+aw2aaUGN7Y/QZrL6zFG29WDVtF/ZD6ZZ4C8lH70KlKJ/bF7wPgiVZPWKysqlBA7o7iooC8vUVZlsVT/Y4d0KOH8A2UNZrD2XakpYkJOj1d0Grz5wsqxV42vfmmyVn7v/8JnZ6oKOvt/uADU/mnn0SElySJMwx69BC7gvx2XLggTkQD+O03Ey2Yr12VCnxlGX8/67b7+//dz5IXOcIAACAASURBVPNbnyfUN5RZPWa5vdzBuVvnWH9hPQA55PDhHx/yw4gfyjwFBLB08FLiM+Px9/bH18PX5TYpeQDOxLZtQmoZxB9+aKhwFisoGn/+KRK7DFFDP/wgVDVtQU6+kMP8yqKSZF+l0c6dRXhvXJyg9TwK+e9/4YLoV5bFZzx9utCmZCujXtJz05n480TxIgle3PIi257YVvxNLoZapUbGRP14qMvPtCFJEg1DGwLCJwKQp8u7Z+Qtys83WRB//im278nJ8MorIusTzCmCy5dN9fV6cTyiNWqb9xIFFBxsHjIaHm6bQumXX4qMYhCJcxMmiCfvxES4/37heykN7VZSWaMRZyvExAgbCo5N48ZiV5CbK+7p0eOuz6f1gFg5Gr1U+i1+bHos+fFP0j+FqoG6EwVUybMSTzd7ms9PfU6IOoTpnYuOZipLFFBh5RUnVzD3gDgLeH6v+fSu29tmmy4nXCYxO5HaQbXJ0+aV+FkVCsgeGD9eTCIAc+aIxaAgRfDooyJJKTtbTASDB7sv9eIudgQFiRPE1q8XHPmYMbbZZJj8ARYuFHTL6dNCYyg0VFxXqZw3NkFBsHMnnD0L9euLU9IK3OOhgmpAgBVb/ECfQHrV7MWuf3ehR8+07tPcngKSkJjdczaze852SUSQs8YmT5dnnPwB3tj9BiOajLDJpsSsRMasG0O2nI2MzLdDviWqalSxn1WhgOyBgtRBYdELlSuLP/a1awVXPHIk/N//iUxed8KRI7B/v4hQyh/Xbg22bxccd4UKQv6hTp3St9G5s5CpBtO5yNbC8LQNYhE2UCtqddH3OBpBQfDQQ6Js6+e7g6SsJBKzEqkTVIcF/RdwO+s2lbwr4aP2KflmBcVCp9eRkpNCgLdtEWwFJ10vtZdN7QH8cvkXUmVTtNG60+voXMt9VH3L7wKwdCn07Sv45WefFXH9hVEVKSnmp3h9+KFYCJKTTXVcSb3s3CkWJQOWLxeRSdbYYYh/N2DcOOFodSUt9eab8N574r2XX7YvBeeg76i0FNDua7t5bps4CLxLtS683uN1NAEaZGRjMpY7U0DubMeF2xcYvm44WrR0qtqJ13u8bnV/8enxzHtgHq/vfB01aub1nWdz4l7B8N8gv6BiI40UCshe6NpVRJMYEsASEopWiAwKEtLFBoSGiidTd1DhzO+nAEGPPPCAdXb4+5u3lZzsOrVSg019+8Lo0eK94r4jN1JK9VBBKFqLFR4XHVhkHPI/Yv8gOTeZRj6NzOo4U/HSHVU4rbXjsz8/Q4vY7R+MO8jllMtEVYuyur8RVUYwoskIEjITCPELsXls+kT24T8d/8PW81vpGN6R8a3GK2qgToFeL86AtUQN9KOPhKZ9SooQc8vIcJzS5BdfiCfxBx8UHHNKijgw5fx54QCdNMm8fkGKJiqq9AqjBjvy8oTfwyBnMX2669RK7aUGCoI2cqIdWg+4LcejUlum8FjZtzIXUkT+gYyMVqe9SznTmYqX7qjCaa0dJ2JOGP80dOgKHVtXj02PiB6Mbjba+KTv7eFdbLuKGqg9UBo10KgokSxkUKosrI49HIzffCMOIwehS7NqlfA//PWXuLZkiVgYwsNNbfXuDRs2CB9Aw4biidkWOxYsEFRLVhbUrm2/z2rr2FjT1jffCN+NSiUOp7FnPkJxUhBqqCZb7gRePHAxk/43ibisOGZ0nUGzas1c5ujML4NwLfUawRWCCasY5lLnq7VO4BxdDnG5cRjggw896/Qs045pZQdQnnHypKksSeKp33BYCojJKD397vvatRM/dnJIUq2a/dpyFbKyxOQPYgKfOROGDHF4t3oJkr1Bn1NyXQMq+1Vm2ZBlxj92Q7y5q5CcnUzXL7uSlJuEhMSGRzdQN6iuS22yBhW9KiIhYchRaBjS0MUWlT2U3wXA3kdCarVw4oTggdu1s87B2LOnoF8kSUz2kZEi7vz330UkTPv24lAZe8a9F2aHq/IR7GlTToEZOCfHtnyEgu8dOSKipbRasdA0awYxMehVkCjLRGeUXYfr0dijJOQmGIdu4A8DmdJyCpPbTnaZTdaMjcZfw0d9PuKdXe8Q5h/Gu73fddrRmYXZdCrmFEgQVSWK+PR4q9tVnMD2gLUHwhRWlmWRV3D8uJgQFiwQXHpp6YUHHxTx89HR0LGjSZLi4kX4918TJaNWux/d4o4UUPPmpl1VTo7wcVSpYrsdAAMHil0GwNSpgqaTJFSBQQT6gU5dNiiFwso5+hxUqNBjSuhbfGwxE9pMINQv1Gk2qVVqMvMyCz1wxdKxGdp4KD1r9zTbXbmCAtp+eTvjNo3DAw8ahzRmxSMrygQFdO+ogdqCq1eFjrwht2DhQuvbatBAUBXVqpmueXiIaBwFpUP+yC0w7ZzsAcPkD+Y0nQOQmJXIJ4c+YfmJ5eTp8gqtcy35Gqv/Ws3FhIs299cyrCUL+iy463qevvC+HYGtl7bS6NNGtPqiFW/sesNp/doL6bnpDPh2AE2WNuGxdY/x0T6R0KhFy9mEs5yOK1xCxN1glx2AJEl9gY8BNbBMluX3Crz/BDAPMJy2skiW5WX26LtIlJYCunJFHP+YmQmvviqSrgx18vLM5Q9q1bLswBR3oV7cxQ572zRsmMjyliSoXl3IPJT2IJui7Jg6VWSJg4gQu9OuXgXJdqSAolOieWzdY9zKuwXAjr93sHjgYrN6FxMuMnjtYAxY2Gch99e+36a+e9buybye85ixawZ69Dxa/1F81D5mce+OpIDe3vm28fOsvbiWZ24/Q2iFUJfTY5aWlx1bxtFb4nChX//9lajAKOPn0aJFlmWLlUXLNAUkSZIaWAz0Am4Af0qStEmW5bMFqv4gy/JUW/uzGKWlgF5+2aRC+cILcOiQqU7DhiJaZ948kT08d654YreV5tBqYdMm8bTZp4970y2usCkpSXwXiYnw/vvQqZN5nVGjxLjFxEC9eoL+sZcd//mPCMtNToa6dY3X7U0BJWYmGid/gCMxR+6qdzTmKPlxNvYsjzR+xOa++9Xrx4imI9DqtWTkZjiMlrqafJU3d7+Jj8qH+Q/Np3ql6lT1r0pKqmlnFeYfRiWvSi6nxwxlZPj21Lf8evlXetTtwbPtnjWr4632NtquQsXQZkOpdb0W19Ou83yH52mpaVkmKCB77ADaApdkWb4CIEnS98BAoOAC4N5IMDnFkOW7nYwdO4qs2aSku+maW7fgqafERPTSSyJ00xLMmCEyffV6+OorsegYpBD0eiFVffw4jB0r+i9v+OQTkYMRGSlO7/IpIIswfrxJv3/kSLh06e42IiPFjyOimkJCxAKRD1o7/10G+QYRXiGc6xnXUaHi/tr331WnWbVmxrIKFQ2r2i/aRSWp8FJ7kUGG3drMjzxdHkO/H0oO4u/pyQ1P8svYX1jQfwH/2fEfErMSmd55OpW8KlnU3vWU68z4ZQYJGQnM6TOH1prWDrF7w/kNzNs/Dx06DsUdomHlhvSqY5JhGddyHJv+3sS5pHO0qdqGMc3HMKzxMLeJ9LIU9lgAqgP/5nt9A2hXSL1HJEnqClwA/k+W5X8LqYMkSROACQDh4eHWW1VaCuill4RqKAh546KkIworP/eciBoBePFFEZ/eqlXJNIdh8gdxWMk//4hdS0yMkLIwUBCbNwste2/v4u0oSxTQ5ctCAgKEg/Xll03jb6iXn9PX6cQ1Q5isC6gobXwsN/xlMsFulEJsWiyrhq3ip/M/4e3hTYfqHe6iDhqFNmJWl1mcjD5Jh1odaBza2Cp6wRWRSVeTrhonf4AriVdIzErES+XF6mGrjfVLkkcw2PHMpme4lC4eBAb/MJhjE45ZHXFTXPls9Fl0mCShz8SdoVVYKzOb1jy6huiUaKoHVCczL7PodlPKMQUESIVckwu8/glYLctyjiRJk4BvgLsfdQBZlj8HPgdo3bp1wXYsR2kpoMcfFyJnPj7iZ80aQf1061byvQbdIBATio+PZTRHz56wa5eoU7268C1Ikvj5+29Tm56e4oDzDh3KFgUUECD8Khs2QM2aIgLKcKayQYrZINWRm3v3ecuvvy52SSC+n1q1HJ+sV8w9KpVExUpB+KjsTzu80OEF9LK+yCiW4VHDmdh6IuC6SBdr2qofWp9BkYPYdGkT+v9n77zDo6q2Nv47ZyaVlJkkkEoLvfeiNBGRIiCCFBELio2rfJZruXoVr3qxXbEAogiICKKANEEFAVFp0qT3LmRIQkgldeac74+dmUlCkplJpiXk5cmTNWf22WfNnrD3Oe9e610oPNf7OcICwirsR2K2NfFLQcFf628ziqgi9th2Y1lxYoXl+KjWo4r5be/YvPHrG3y+73PCfMJYOnapXRFPVY0CugjULfI6DigWjqGqahF+hS+Ad51wXedDpxN32TfdJOSINRqRYGSr4Mkrr4iwUBB1B8wbyLbw3nui7nBODgwaZKV/AMaOhU2bxOQUECB8qmr44w+xxwEizPW99+D118Xrjh3FZ16zRny+f//7+vPHjxd0msEgQj5rUCUxY8gMHk96nHxTPp1iOlWqr2d6PsMbv78BwKhmowj2C3YJ3dIkvAk7H9vJ0eSjxIXEERsc63Afx68cZ/Y+UUf8asFVXvnlFeYMd23si6NwxgKwC2giSVJDRJTPWGBc0QaSJEWrqlr4LM0w4KgTrls+KpoIlpho3Q8wmYRcQ8+e5Z/bsqW4yw0IgLg4cVyWbdMLycki3tx8vCjl1L07LFokks8GD/Z8xE1F7Kys4rLceXlWWkejgbffhoceEnpHGk3pCXBarfhxlUqoA2OjJF0mI0Ql16c4BbTu5DpWHF5BbEgs49qNo3F4Y4/QLd5IAZnt2JBYm1SPPX6MbjmabjHduJB2gZ71e7q0ME1MSAyt67Qu1W97xia7IBu1CBliMppsJqpVOQpIVVWjJElPAusQYaDzVFU9LEnSG8BuVVVXA5MlSRoGGIGrwIOVva5NyDIEBVkpIHvVHqOjxYRTUBgT3beviC6xdW58vNg0LHq8smqgPXuKp4mS/TpqO0OVtCJ28+YiVHPpUmjQQFA6ZpVVs0+ljZs7bUfGRjURVEuHv2xVb0zNTeWfGwvrR1yGtJw05o6cK06tgsqb3uhTST/aRrUlNiQWXYDOa3wqrV14YDiTO03mkz2fUMevDr0b9WbalmmMbDeSgY0GVh81UFVVfwR+LHHstSL2v4B/OeNadkNRrHegjqg9xsQIuYYvvxQT2L33el7x0luUNytiv/YaPPKIGFfzHbWnfarA2CgSpKUnkxGuIV+DRb3xePLxYn92BxMPVkiN0luUN73RJ2/xoyI+PdLlEYY0G8LOhJ38e7OgOX++8DNfDfuK6KDoGjVQl6EyUhDdugmpZvNxrbZqbb56qx/e6JMdfhi0ucw/8A0BGn/ubvUYQRqtZdOua1xXGgc35lzmORQUHun2iNdLQegD9BSYCnhx24tsu7iN2xvfziu9X/G4T94yNq7w6ezBwhyjwtd/Z/5Np5hO1WITuAY1uB5qxQO4vAl5xjxu+6Y/SXlio3FPwTneHfS+5X2trOW7Md9xLOUYkbUiiQqKKqurYth8bjN7E/bSIboDfRv2dYnv5eHrA1/z4znx0L7s2DJaRrbkkY6PuN2PGwVDWgzhy4NfoqLigw/9GvbztEtAdV4AnK0GWhHbW+Lv3enHkSNiYzcrS1A/kyd73qdKjE3iqf0EpqTS/iocjYBfTqzjxVv+VWwDLyU7hXaR7VBR7VKj/P7o97z+2+uYsWTkEtpEtnHrJnByljX7WEHBkF6xjU532N7iR2V8ahLWhOWjlrPj4g76xfcjyDeo1L+VKrcJ7LVwphroDUBzOM1+4QVrstYXX4gs5pLx/VVobKI1On6ZLdaFvyJh5f8GOxzHXtI+nVS8zOfRK0fpVb+XW2mOiZ0nsmjfIlKMKdStVZf72t/nEM1xKfMS6XnptPBvgSzJXkW3eCMFpA/Q0yWuC43DG1e7PIAaVHWcOycqakVEiKidyqCEdEKx3IYqCJ/lKwhVwQTULoAX0u3M8SgHNzW4iUVHF1nkmHvU7VHpPh1FeEA4mx7ahIJCRGAE6bnpdp+77Ogy/u/n/wPgtnq3MX/EfBd5WQNXo/ouADUUkH1+ZGeLXARzRu7OnWIxqOj1Xn5ZUD+pqTBpkngKKy2+35NjYzKJfA97/AgMRELEL18JAjkiGLWSseeN9Y2ZPXQ2Bw0HaRLRhKigKNJy09xOcyRmJRITEkNabppDNMfUTVMxY8OFDRxIPIBW0rrM1+pAATnSbw0F5AzUUED2+ZGSYp38AQ4erNz1WrUS2j62JBs8MTapqWKxO30aOncW+Qn+/qX6MfPkdyw7uIS+zdvyyv33Ie/YRtTYwYQOvAskqdI0QqvIVsQExXAm9QyBPoEE+ARUGZqjcXhjEg1iAZWRaaBvgKIoXkW3eGpsyrJlWeaX078Q5BtEq8hW5fZbUxDG2fj8c2jdWkxOe/fabq+qotJUUT2e6or69UVxGrM2jz11dY8fF1pJly7ZbutNWLBATP4gxPtWrSq12ZYL23h361QOpB5n8cmlzLgrjrQ/f0eZ9JjTKK05e+cwZPEQnvz5SYYuGopJMdk+yUswY+gMbqt3G81CmrFoxCJC/UI97VKFcST5COtOryO7INt24woipyCHW+bewnPrnuPhHx5m3r55LruWo6i+TwBmCig5Gd4Q2iGkpYlCH198IV6XRRG88ILQ6AHRftiw8ttXZQpIVeHTT8WCFx4ukt/Kk13YsUNIX5v7nTdPKJ9WhbEpWUEsJ0f8TZTwI+XMcYJzTGhMEJIBSQmnuZp91XYRGKMRw8uTYf0W1G7dMbz1L6hdevtZO2ZZ9gAOXz3M/sv7qaer53Fqwx6aIyYkhg8Hf2ixXSnHUJ4flbW/P/o9U36bgoREjH8Ms4fNhjDn+7TlwhaS85JREaHRX+/5muHNhtdQQC6FWQqiaGk/8/HypB20WuvkDzBnjpjwvFWC4ehRcSfbrZuQraiIH/Hx0KWLsFNSyr/e5s3WsVEU8TRw663eOTYl7ccfF2Gq+/YJn++5RyitlvCjT+dh+F/+muzcq+RqTAzq9whBtXTUkWxIBXz3Haaffyc0Hfh1G6blmwj9v2dLbd8hugM/nfsJAB98aBTeiFo+tTwuu1DU9lYpCGf1+92B74DC/ZDcRJJzk2nr39bpPrWLaocGDUaELlav+r3Q+euqjxSEV8IsBeHjIySJP/5YKH1OmVJ+2n9kpNCryc8X/cTFea8Ew6VLotA8wMyZQm2zfXvX+tGkiXWMVVWMV3q6941NaXZuLixcaH0yyMoq1Q9dRh5b7/6Rkyknicz3I6OW2KS1KRVwLY2kANDmgKqBJDUJbRmyEFNunULo1lDOXT3H5J6TUVXVvmu40fYWCQZX+dE8vDlHUkXdKiNG/DX+dst4OOKT0WRk0YhFLD6wGJ2/jie7P1nmd10jBeEsFN0EfuEFcRcfFibes7VB+cMPQrhMp4O33oLAQO/cBP7lFzFpmRU3d+4UyqGu9OPhh8Xd8pEjMHSooH+8cWwq6Ye/Xk+rOtGkXUslKFhPoGTHJuE99yMt+w590kmoVw9p9GPltv9g8AcWbf/qsNFZ1fx4f9D7hGwMwZBt4LEuj9E0vKnLfGoV2Yqe9XvarOVQ8wTgKjiyede6teC2i0aPeCM6dxZ3s2bk5opN7rg4aNbMNdeUJFEfwdGx+eQTUf6xdm0hthcf7xr/nIw8Ldj9lxNYC5avANUXAgIhN832OTXwGPy1/vyz9z8tk/Dnuz9nzu45NNI34r/9/2s5Xp1RfReAGyEPICZG0D7PPSeOr1kjfgD+8Q8R8ugOP2zZf/4piroDXLwIzzwjymZ6+QZ5rg+cMCUQEeDgBmNIDGpunldsdHrj5qs3+nE29Sxv/CGCRRJyEnjl51eYddcst/tUswnsLNwoeQDBwcIu+iQAMHcuPPGEd9AtRX0A8Vun82oKSAnTk+0PEflUaZqjOvjkDj/OpJ6hKDIKMjziU00eQA0cQ8+eYhHw8Sl+vH59z/hTGpo2FXUVQGywv/mmZ/2xAUUCoyx+anBjoH1Ue7rX7g6ABg2Te072sEfuQfV9ArgRKCCz/eWXouauyQTz54s72VdeKV5+0dN0y4svwtNPizDTmJhS4++94TtSJLiSaiAjVCU3F/fTHElnYeonqPv3YhgzCB7/V7WmXpzlx6ZzmziedJw2kW3oWb9nha73xm1vYMSIPkBPZm5mueUrayggb8eNQgGB2PDtLu5eGDCg+AatN1BARW0/P+/yqYQfRg1khKoEBocRiAdoju8+Rr92A+SD9Oki9F2HQY+eNs9XVRVVVZ3uk0kxMWXDFFaeWkmkfyRv9H+jXCkDl45NGe1WHlvJlM1TLIl12x7aRv3Q+pW6dqqv7WidGgqoBtfj8GEYPhzatoUPPriem6+B47h2DaZOFfkcx4/bbl8BKBLkayDND/K0DkSMOREZeRns+GstSn6Rg1dSbJ53IPEALT5pQdvP2/L2b2871af1Z9az/NRyUTMg18AjPzzCgcsHWHNyDYsOLOJo8lEGLhhI18+68tmez5x6bXvxx5k/LJO/hMReQ+lyL4qqcOrqKdLz0t3pnlej+j4BlEcBLVsG589Djx5WrtwZlEJuLtx+u9WH//1PPIWY7869hObwmB8V9enZZ2HrVvF62TKR7xAQ4DQ/jIqJq2baB/fRPiUf/R9d8SgnGxtouhP8jXC1aSz07mJTffTZH58lU8kEYMbeGQxsOhBf2dcpPl3JvkJJvLr+VXan7Abg7W3WBefN39+kc1RnArQBTh+b8uiWjrEdWX9hveV1vC7+OnmKi2kXGbd+HAeuHgBg3tB5dInt4nX0WA0F5CyURQGtXw//+Y9os2CBCEdsJR5pK00plJSdAGuheS+iOTzmR0V9KiLKdyEIXt4wmTw/Df/p9DQt9RX/7pQwPYpGJs1HIU2nEhTkXtqnqC1LMqfTTnM5DHo/BnVzYdZDn6LXx9g83zzhmhEeGE6wb/B17fdd3sebG98kRhfD67e+TkxIjE2fRrcczed/fs7pTGsRm7OZZykNGjT4aHxs9lvStqUkaotuGd9uPM3rNOdY0jG6xnWlXVS769rsvLSTI1ePWHyds2sOAxoPcBktVUMBeSt277baiiJE0JyF6Gho06b4sbvucl7/NyrGjRNPDFotjwyHdck72HRxK/evuB/VAYpNkaw/2T5w1V/85GugQOME2mfPLnjxBfjwQ2t2tgN4vNvjAGh9tNSO70i9sIZ2nfe/Qf8j0i8SgOdvep56ofWua5NTkMNdi+9iR9IOlp9YzuOrHrerbx+ND6vuXcWXw77k/zr9H3OHzbVMnAABBOCLeNq4o9EdtI1sa1e/APmmfEYtHkW72e3oOacnKTm26a6y0D++P091f4qm4U1LfT8iIAITVsXVmJCYCl+rOqH6PgGURQF16FC8XePGxdUvr10T0g8VpRQWLBA0hdEoZBnCwkoviOKtdIs3+jR0qPjeUlIo2P88QYUPWj6ZORhTkvGRteX2o0igAGlXDeAHBRo4oSQQke/ER/nLl1HHDscgAaYfUXOvYnhorN39aGQNdzW/i3D/cLQaLV1junI58zKyJNs8PyYkhg0TNljs0tQ5NbKGfKybC4cTD9usX1x0bLrEdKFzTGcMGQZe6PkC9UPrcyblDBM6TyCyViRnUs/QLKIZqbmpdo/Znwl/su3yNkA8VXy85WPGtB1Trh8V/Y4CtAG81vs1vtj5BXFBcTzT45lKqZjWUEDeDrMaqJkCMqs9DhggaJ/Tp6FXLyFNEBoq6JunnhKbjNHR8PXXFVedHDVKSCt7QvHSW5Q3ne1TC1GKcUjQKT46ORskuL3RnfiERQBgVE3IOtFeUU2gF3a+bCI7MhSjDKkhRkKDxHFdjtG5SpMnj4LJB1N+AaH5wI79mCZPdljxske9HoQHhgMgSZLT1C/DAsLoFd2LPwx/ADC5x2TqBNWpkOJleGA4k7pNIiU7pVK+6vx1yMiWDdxg/+BSfXLWdzSx40QmdpxYzG9vUyit0QJyFsxqoOYngKKqkNHRxTXstVpR4MQcYWIwwOzZ8Nproo23qoFWNT+c4NPkJnczqOUAjKZ8mithKBnpGGVIyEkiME/8OWfkJaGgwShDoiaJOkahuGjISULxcZHSZPN41IggkvJS0V4Ddcxwr1C8LGrPGDqDdafXEa+Pp1lEMwwZBo/61Lteb/rV7ccvf/9Ca31rRrcd7dWqpO7wqUYN1FlwNA+gdu3i50dFVZ/NV2/xw4ZPilzE1kjIuuK2UYaLOggPagnA+WtXCakl2uSFgn+gsE0BEFx4XJXcuJn3yxak9avRN20L7doj2VB+dJkf5diDmwz2Kp/m3z2/mEJmafH33iJJ4Q6fap4APIU774R164TEcrduMH68pz2qOFRVPMH8/LOoZvbwwxXuSincG1VkkCtgKxIYtaAt/Hu22CVeKxKkBoAUIOx0IDRQtClq5yDhX3hunlayyDUYZauvbpFwOH8WPngBfLTw3JPQSA+hOhgyFAr/U1cXKKrCd4e/IyEjgX4N+1kmLW+HVgFZdY0tA6hlvKeCn1FFWyh95YgtS9b/Q+6AUxYASZIGAh8DGmCOqqrvlHjfD1gAdAJSgDGqqp5zxrXLREWkICZPhnfesR4PDKwym6+KJGzl8mXktWvgjTdQAHnnTnFX3ae3eK9oOxu2MekyWX5iQs3KSiDIT1zSXruWP6T6qxgwEIXY7EostM0VksyvVVXFUGAgKq9wUyzLQIxciu0tcgePjIOzmagyGE79Cas2esYPN0gwTN08lW+PfwvAtB3T2PrQVoJ8gyp1jcR0A7Iq7CQbtoVuceQcRUWTYEAuLAHik5KAHO48W9ZowWS87j1tGOjyIOzyZeQoMZM7ZGu1oNUiB4ZZau5lRAAAIABJREFU75pciEovAJIkaYCZQH/gIrBLkqTVqqoeKdLsYSBVVdXGkiSNBd4FxlT22uXCw1IQSpiV5iiNznCmbdRKZNURFEmGDkJ+SwJfyNBAiARy6mWU2DDxXiE1Yq8dFCTsggBQAh2z1UA9IRKYZInQACslE1rkEdr82vxelXiUVxSkc5noC4NqpNOJXkspOMOnXQm7MENrgqvXrtAgpB5aBXT+4pxS7e+Xof3wHXR1m8D06WiDotH565FVqO0joZeEHY+EFnFu6bYMKHa0K2LLQC0JufAzhQXhXLvw//Z17wXqkQMAFSj8/yk7Ysuy9ccNcMYTQFfglKqqZwAkSfoWuBMougDcCbxeaC8DZkiSJKmOBHFXAEWpgFJpCBfZ+T6Q7Q+KBhS1bDqjPPvStSOk5KTQQt+MCDvaBxd+k3laCePwYTBzOnm+JowmX+Thd6DIxSkTe+1AM61SkIsybw4YTRjvvgOlcJEoSb2UZlc7yDKMHAIrRU1fxrv2XqYisIfOsIeOUFQY3mAgM/Z9hqqYaHHNn54BzQjad4KItDTkrl0BiEiTLElFEWkS8sWLMPH/iFBBPmSAJ18gYtoH1sSjHJALnxa1RigMBCrTRrGvXclzKPyssr322h/htdeQQ0OFpHqDBqW3L/wpq6+qAmcsALHA30VeXwS6ldVGVVWjJEnpQDhwfZ65k2BE4YKagbHwX2IpNITLbNVAnaIx5mXRGWXYn+3+jJl7ZwLQNLgpy8YtQ5Ik+/rJMEBsDOrmnzHs2wKdbkFTOxRjJWKeVVQMkx+GrfsF4/TTQli8+ro2f6f+LRKzJNtyCt5CeVTYj5cmw8gRqFoNhobRUI5ypKv8kNSK0x9aBer9fRltpA06wmjk7dA76dWhPpcyDIwM7UzIW+/BnDliMn/gAfjnP5ENhsIJVxV2aqqYICnEufPIFxMsbTAYCidRD1Cp586J0GJZLn785El45BHx2mAQZWSXLHEvvVuY8EhYmFueApyxAJR2n1dyHbSnjWgoSY8CjwLUq3d9RqO9kCWZoIAQFFUplWpwtV2Zx/olB5dYPseJzBNk5GfQUNfQsX7q65HqRDqPXvhjP/prwidp9xn0fiKWX0JC56/jxXUvsujoIoLlYJaPW26XzIA3UB6V8qNXoSqmA9E+FfWjJMUS5qdHl1c5+kOug206QlGQVbizRaHkRmoqzCms7QAip+a//72eDm3RAm65BTZvFv289lrFJVGcGcX28svCZ19fWLoUGjWytjHnnZiRkSEmYndG1rmZAnLGVS4CdYu8jgMSymojSZIWCAWultaZqqqzVVXtrKpq59olQzNvEDQPb26xJSRq1yp7HIyKkUNJh3ht42t8suMT8ox5rnGqe1fwl8APaN+i2B/o4eTDLD66GIBMJZMpG6a4xocbAKVFkvgbIT5dok421MmGxmkSETngaxLvaRUs7cx20X7KsiuMOnWsdni4mLxKQpZh4UJRovTQIejTpxIXrCRycuDUKaEptWCBOJafL2pmFEVkpJAdMcOsGVaN4YwngF1AE0mSGgKXgLHAuBJtVgMPANuBu4FNrub/FVUhIzcDo2r0GNWgkTUcTz7O2hNr6VavG91iu9l1/tM9nyZ8XzhJmUmMaTeGAmMBV43XUzhHk48y7vtxFFBg+dw7z+9k+rDpzqdb3nsN1m5BNSoYhvQoRnlkF2RbsjkLT3BIZsDd34u3+WGOdMFotFA3JSka+VICmLBSLEWpFFxkl0VzzJ4t7vqzs0V1t6tXy+7L11fcKZfXxpUU0MWLMGKE8FWnE8fN8PW9Xqbl5ZdF2HR6uqhkV5bfNRSQQCGn/ySwDhEGOk9V1cOSJL0B7FZVdTUwF/hakqRTiDv/sZW9ri3IkkyIv5UCKvlorfPXsfzYcs5dPcf49uOJrBVp9yP7mpNrmL9nPq0iWvH+oPfx0/qV2v58+nnuXno3RozM3T+XL4Z+QbfYbjav0SyiGTOHij2A1HLohalrphab/AEOJB1wDd0SIaF/vIOwS/Hp2a7PMm3nNBoENeD9we8T6hfqnRRQvgxpqUi1oz1ORcmquIuvJ+vRIotdxCLUTVGKBhWvSNaz2CtXWgsOedIPW/YXX4jJH8SkPngwbNgAcXHw8ceibclz9Xrbn62aUEBOyQNQVfVH4McSx14rYucCo5xxLUdQYCpg2rZpHE06ysg2IxnUeJDlvXd+f4dZe2dhwsS8vfPY9fiucnqyYv/l/by88WUUFI6lHSN2Wywv9n6x1LY7Lu6w2AoK606uo1tsyf3xiiPEP6TYawmJkS1HOq1/R/Bcj+d4qONDlkkuNSfVI36Ui99/h0f+IezbesHcb8ADkUo+JhVfk4gXj0iX0IZijnQsFrlSJaGqQkfrxAkYORLat/esP2aKSlXFpDpsGLz3nnXiTfXCv1M3otpmAiuqwpRNU5h7YC4AP537iXXj1hETEoMhw8Cqo6ss8rDpxnT+MvyFzk8HlP/IfuzKMdQi/0OPJx8vU1Wwib4JRqyywB1iOtikRhyxn7npGU5dOcWJtBPcEncLw1oPo7m++XW1TL2B5ihpe8SnGe+AIr49w+7f4cAONM1buc0PWRWTv+7sZXThElpT4aO/QtVXbDXb33wD774r7BUrYOZMwf97KqFy2DAh+f7rr4IK6tHDOeq8NRSQd0OWZI4kHSl2LCU3hZZ1WmJSTNzR9A4+3/85KipBchDtotqRU5BjU7VvYOOBzN87H0O2ASNGJt00CZ2/rlibEyknuJhxkQ7RHVg9ZjWrD6+ma4OuDGo8iJTsFKeoB6Zkp7DhzAYe6PQAtzW8jTpBYmMuMSuR5356jnXn1xFfK56V961E76d3iXJhZWxXqSmWa4fHEWq6ACYwXYPQ2vWQ/ULc4odPvon6hKKVQA4xIQdXQ8XW0FA4ehQLNBpITvasmm14OHz0EaSkCNt8PCEBnntOyL9/8AF07uw+n2z1W9UoIG+EoiqMbTeW7Ze3IyERTDCN9Y1Jy00jKSuJSd0nERUaxZmUM9zX/j7yTfl2qfZdy7/GynErOXblGD6yD430jSx9amUtn+/+nOm7pwMwsulIXr/1dUa3HU1MSEyxduVdw5ZtUkzc9fVdpKri8fW2urfx0R0foaKy8uhK1p1fB8CZa2f46I+PeL7P8zeMmmK59otPos0tQL30N0mPPYRWH4gmL8PlfvgZVfTnk/EN0yIrKiQmgaaaKrbefru485ckcX7TpoJ7d7cftux77hGLAsDo0bB3r+d9Mver1UJERM0TQGUgSzJjW4+ldZ3WnE49TevarYkNiQWsm3CPdHqk3E3W8uyo4KhSz529e7bFh+9PfM97A95zuESeLfty1mXL5A+w8+JOS5sg/yA0aCz0lr+vPzp/nVfE3Be1PbH5+mXqbr7ufY5WtVvxVv/BbvGjtp8eHaANs0p3VGXFVpv2sGFCWTchAXr2FJE23qhmm5GBBQUFQjbG0z5V0TwAr0bL2i25o8kdhPiF2G7sBMQFx1nsWlItfDW+Tr9G7cDaRGhFIRQZmT4NrDHWAxsNpG+9vgA0qNWAJ7o94fTrewLpeen8eOpHTl09VaHz913ex7Q/p5Gcl8zmi5v58I8Pnezh9TBv9PqaKhl3X9XQvLnYAI6M9LQnZeOll6z2U0+Ju+4bENX2U3sqD2D6kOm8su4VVEnl333/TVpumkuu9+mwT/njwh+E+ofSI66HZeM3KSuJjwZ/JNQ1Mw1ISKTlprl9w/VcyjlSAlMICwir9CbwiSsnmPD9BDLVTFRUZgycQZ8GfRzy6Xz6+WJ/H5fSL5Gak+q60n6Kiu8lA3IQYN7sBfdvKnrjRmdp9tGjsHWryBYePNj1fowZIzKVL12Cjh0dz1Oo2QT2btjKA6iMHewXzKxds9h/aT8Tu06ke1x3Sxt9gJ6vR3/tVHpB56/j8rXLlv4BWtZpSY/6PYBycgUqKUlRUXvL31sYs0wIpI1oOoL/9P1PpSig8+nnyVFzMEdfrTq6irta3OWQT4MbD6ZtWFsOXD2AH3480+sZl46NVgFdsIQ2xMOUQmVsd/l06hSMHSs2QkE8Odx2m+v90OvFtbxpbGo2gb0f07ZOY/ru6SgorD+/nq0PbyXIJ8gl1zIpJsYvHc/mS5uRkFg1ZhWdYjq55FrOwn82WVPoV5xYwf3t7ycsMKzC/cXr4y17GgBto9o63IePxodFoxaRbcwmPCCcXGNuhf2xB2Y5hhrYgd27KZah++uvYgGogctRbRcAV1JAW89utUgfqKjsNeylsa7xde01soaU7BTe/e1dJEnisa6P4SP7OHS9DWc2sPnSZsvrNze+yby753l1zH2QbF0MVVSy8rIczk24mHaRjec24qfxIz4knumDprN0/1LidHHc1+6+MnMvyrUzDcSExJBjzHHp2PiaICK9UL5BxfvoFnttd/kUGyvups1o3744JXMjjU0NBeQc2KKAfDW+GLIM1Amqgz5Az6XMS/x86meaRzZncKPB5T7iT+g2gb0/7kVFRe+jp2+DvpgUU6k0x/3L7mdXksgyXn1mNYuGL6JVZKtS+y3NjtfHIyFZ6I9oXTRhAWEO0RHupoCm3zmdB5c+SFJuEpO6TsKQbaBRfiPqhdaz26dHlz/KrqRdqKiMaj6KDwZ9wPDmwyscteWusdGoEnVlPb6hiAQvT1MKlbHd5VPv3vDDD+LOv1EjGD78xh2bGgrI9TiRcoJxS8eRTz5xgXEsv3c5fef25Zp6DQ0a/tXrX4xtVbZc0fBmw4nXxbP/8n6GNhtKiF9ImdIHB5MOFnv9/E/Ps2uSfbITAE3Cm/B6n9eZvn069UPq82a/N+0+11OIC4lj6bilZORn0HdeXwooQEJizbg11A2pa/P87IJstidtt7xecmwJHwz6wJUuOw1mxc0aOIiOHcWPt0oznD4tFqj4eLj1Vk974zRU2wWgPApo1p+zyEVwwBeyLzB311xy1BwATJhYcXAFvev2trQv7XE/LiQODRpUVS2TjtDIGoY0GcKyk8ssfuXk51xHh9iyR7YYyYgWIzBkGNBIGofpj8rQHAmZCXz+5+cUKAU83/t5dP46u8/dcHYDeVjlqZceWMrYtmNt+6Sq1KIW1xAFCOKD4h0eM3eMTUlbUlXykg0ovoCxxCP+xYtChEyrFclR5uM3Is1hy758Gc6ft8pOe3psdu4UCqFmzJolIohqKCDvhSzJBPkFWSigomn5DUIaFGvboW4HfPb5kEceEhKDmg+iTlAdp8gdTBs8jbzVefxw9gdkZN4a+FaVkV0wmozc/tXtJOcnA3Au/Rxr71trdz/to9tb6CsJiXax7Szjasunb8d8y4J9CwjQBjCh4wSvG5tS+1JBE2BCGxgquP+iqf6PPQZ//in+sw8dCjNmiOPVTQqisvb27fD44+LaOh388Ye1trenxuPUKUHRmDeqt20TCW81UhDeC0VVyMrLsjwBFE3RH9ZiGH9n/s1fhr8Y1HQQN8fezLIxy/j2wLe0iGzBnc3uxJBpcJrcwVM3PcUbt72BRtZwOfMy6bnpleq3on44en5CeoJl8gc4kHLAITmLtnXa8t++/+XrPV9zPOM4z617jkldJvFop0dt+uSn8WNK3ymWO2xXjZkzJSl8TCphl5MhXCuK6ZrT+wsKxKRhxqpVQk/f1dICGg0sXiwWnrFjoXt375A7KM+eP19MrIoCV67ACy8I9U5PymTExVknfxBFbr7/Hp5+WjwJ1EhBeB/K3QQOl5g7QqiEmjcV9QF6GuobXhdDD87dYJQluerILoRJ9Intw9ZLWzFi5N4W99q9AZ18LZmzaWcZ12YcL//6MiAksT/Z9QkPtH+AmMAYr5CncOYmsFYBXYSEHFpiY09VhRCZWXumeXP3bCouWQLvvCP6/fVX2LjRsbKMnth8bdWq+GL5ww9iom3e3HMbv336wLJl8Msv8OOP8HdhCfSpU6Fv35pN4Bp4B7Zf3M7f6X8zvPlwp0lQLLh7AevPrCffmM+dze6065wtF7Yw5vsxaNESHxp/3fuJWYnEBMc4xT8zco25qKqKJElO7dcRlFlqUZLEnfj8+eDnBw895B6H9u61hldqNHDkiPNLMyYnQ24uBDkpD+aJJ8QTUlKSeK3VQmamc/ouikuXxAIZGCgKwduacG+6Sfxs3Fj8eK5r80lcjWq7ALgyD8CkmJAlGUOm+zYYbdkzd8xk1r5ZAMzZNYdvR39r8a8yfsSExNA9tjuGDANpuWl2nWvW2TFi5GT6SeJrxXPm2hkAalGL2OBYp8lTmBQTk9dM5reE3wiRQlg8ZrFDuRbO+o5kFWpfQ4igqVy/yQei3KD5eGqq6zdcBwwQdAWICa5lS8e08G35NGeOqKoFYl/j7bcr7/eVKzB9OowfL6izHj3KL81YEfvsWUGJmSuFnTkDL75o37mPPw7PPy/s0aPFgl7yu6zZBPY8XCUFMXXzVBYfW0ywHMzcu+bSKqDsmH5XxN8fSj7E+7+/T0RgBB8M/oAwf0HJfHf4O8tnP5x6mHwl36JC6u48gGa1m7EjaYfl2LQ7ppFVkEVabho96/YkolaE03zal7iPrQlbAchQM/hi9xe8ddtb7qeA/IXqpxyN7cd9RREbmxqN2Px7/31RrWz4cPF0UFkaQVXFnaqPj6BQ9u2DIUNEVI0jZRxtUUBffIEFP/wgPkdwcOWpkFat4ORJETnVsKHzqajjx0VReDO2bBFFbOw5d+BAGDVKLE4BAc4vi1lDAXkvTqScYPGxxQBkKpm89etb/PTAT267fmpuKuO+H2fJQlZ+VJg/Yj4AbSPbsvniZkCokIYFhHEt/5rbfCuKV255hdTcVE6nnuaJbk/QOKyxZbJ0dqlIP40f5iQ5AH8ff6f27wjsUvycPRv+UyiV8fbbYgJZsEBM2p98AvXqiTvLyuCll2DhQnEn2aEDfPmldaJxJmrXFuGaZvj5Oa9vHx8RBZSRIbT79+2Dfv3EZ9FoKtd3gwZiAb56VbweMsSx87Vaa7H78pCZKRbioCCvlbaotguAKyigzLziXKSiKOXGpzubAjqadNQy+QMcTTpqyQl4+/a3mbFtBpcyLvF0j6fJys/ymBSEisqT3Z4kJiQGFbXUMpjO8ql5eHPuaX4PC48tpFlIMx7v8rhDZTed5YevCSLSVOSEch7xL12yTv4A//qXuJs0U0Qmkwg5rCyl8O234rfRCLt2iT4bN64YHVEeBfTvf4tqW1lZgru/dk3YzqSxli0Tkz+IyfSbb+COO6ztDh0Sd/RDhohJ2Z5+r16F5cth7Vqx0Nxzj/PVQM+fhwkTxB4JiLEaM6aGAnIXXEEBdQroxD86/IPP/vqM6MBopg6Y6laZge51u9Mtsht7EvdgxMgLfV4oFpXz3qD3SpVK8ETxFXdG37w76F1euuWlYk8Z7vTDLP+g1QFqOY/4mzdzHe6/X0SW5OeLO96xYytPI3TpIuLpQdylN2rkWD/Hjlk3jOvUKbvdTTcJ6WZwnApJSBAicJ07lx+Z5ONTfLwCAsTkKEmwciW89pqYQL/7Dn7+2bFxevrpilM4tmipffsgLc3q9/LlYpGsoYCqNp7o9gQv3yLCGp1NZ5SF5Oxk/rv5v6Rlp/HugHfJyMtAK2tpF9XOLdevgW3YJf/QoUPx1w89JDjuv/4SfHeDBtaNycpg3jz43//EBDVpkphc7MWvv4oNWDPN8ccfzqV2QHxe8x27ry+sXl02RfXYY7BunXiK6dYN7iwSiTZnjpWGOX5ctDFnD3sa9esXf92li2f8sIFquwB4qiCMK+iFyWsncyz9GADbF2xn+2PbMWQa7JZH8AQFVFV8coYfyekGGqqgLSn/UNKOiRF3qqtWiTvf/v3FnXBMDERHCwrFWfTJmDGiX1V1LPJn8WLx22gUk+uPP4qJ1xk+me0FC8Tv/Hzxs3IlPPpo2WP2ww9i0/XyZUExmd9r2hTOnRPtFQX8/R37rJWN1imPAsrNFZ9z0SKR4ft//2cfzVRDATkHriwI46vxxaSabNb6dRbNcTb9rOVzZZFFgE+AQ3WGqzsF5Gk/NKqEFr1Q/7T1iN+zp4hycZRSAPjtN3GX26vX9W0KCmDPHjHZxMVVnD7q3l1w4+Zj3buLxcmZkS7t2okYfBCfu317++gWWS7+3vTpInrn9Gn45z/FXbezo3Js+WQrmql3b8cjr2ooIO/FimMreHXzqwA81ekpXur9ko0zKo+HOzzMZ399hoLC7fVvJ8AnwOUFTWpgP2QVcHX+2YIFMG2a2Cj+6COxuRsdLd4rKIBBg0RZRUkS1Ij5rt1RTJgAOTmCUhk1SuQOOFuh8/77ITER9u+Hu+6Crl0r1k9QELz5ZvEJtgYOodouAK6igF7f/LrlGtP3TGdCxwn4aHxcSnM80fUJusR1ISErgaFNh7pVDdRVdkV8yjPmMXn1ZP5K+ov+jfvzROcnPOJHUbtcBVBnUQobN4rwR3PJRFUVcgl9+4o2BoOY/M3vvfeeuDuuiB+qKvRtxo0TPjkzAauoPWSIlfaxRdt4Wg3UUZ/+/FNEL3XtCnffXZMI5gmUpwZaGTtYCiZNte7uhwWEoZE1LlWa1AXouK3RbaRkp1hoB08pXjrLrohPs/fMZmuSSPr64dQPdIztSKuoVm73o9j5KkiBJrQBpSiAOkN5c9UqePXV4jHnkiSoJJ1OtAkOphguXRKboSWvkZYm+PawMHEXXlobe3y6EVRJK+pTYiJMnCgm9Z9/FlFMQ4bUqIG6G+WpgVbGfuP2N5i6eSp5xjye7fksWflZZbZ3ptJkZWxv8aOyPl3JvGL9flFIykyqtEpoST8KTAWsPL6S+qH16RLbxfb5iopvahJKgRbZpPLb7pVsyztLr4Y301PbsPLKm2vXFp/877xTZAz7+ooJPSnp+siXrKzSr3HHHXDhgmizcaPISfA2NVBv9sMen3YVKfZkflLr2rV6qoFKkhQGfAc0AM4Bo1VVvY4wlCTJBJhLY11QVXVYZa5rD1y1CXxrw1sZ2XIkYDvevDptdHqDT491e4wlh5aQYkyhUUgjxrcb71Q/dP46Rnwzgp1JO9GgYXKXyTzc6eHyz1dBDpeQA/RsPL2Rp/56nURf+PTc16zoP4/OevGEUuFNxdtvF5SCySTuJl97TYRlljz/lltEnoFWKxaIorH1ly+LZCfz5A9iorKlDOotpRjt9eP0aRFJ5UmfBgyAN96AvDzRZtQoxxVYq9ATwEvARlVV35Ek6aXC1y+W0i5HVdX2lbxWDW5w1A6szaaHNoEkqLf03HSn9p+Sk8LOpJ0AmDAxb+88Hu70sI2zrNh5cQ85hTS9UVHYc+kAnVv1r5xTEydCZCQcOCAkIqKiSt+U/eorEVmj14tJKL3I2Lz+OhwsUprUvLBUJ3z4och9AJFf8aaHSqdGRwtdpzVrxEZ8hw7eW+aSyi8AdwK3FNpfAZspfQFwO6pTHoAte+H+hWw4sYEucV0Y3mK4x/xwx9gkZiUSExJDWm6a0/2oXas2/vhbyoU2C2tmU1ZCo6j4phgIC4LbwtrzUyYkySADvf0bXS/roCjijhzs31Ts2VNk89auXf6mbLt24m4zLa348cREiuGJJ4QEclXZfLXHD/PkDyIRbvJkq6S0u30KDBShujExFZOYqEKbwJGqqhoAVFU1SJJUVhqevyRJuwEj8I6qqisreV2bcGUegDdRL3sS9vDu9ncB+CvlLwL9A3nu5ufc7oc3jk1RO9eYi5/Wz6YfP93/E+/99h6RwZE83/t5VEW1SQFpwyTkQD1dQm9n5kOL2Z51jJ71e9FCG2V9xM/PF5Pu9u1iMv/hB7Hp5w665eWXRcSN0SieDl5+GYvMQnWhgOLiRDY1iPDQiAgxkXqalrp2TWwG+/uLjXd7aDdvooAkSdoARJXy1isOXKeeqqoJkiTFA5skSTqoqurpMq73KPAoQL169Ry4xI2JM2lnLLaCwqkrpzzojXdix6UdjFkyBiNGhjUaxqdDPy2zbdPwprw/6H3LRG9L7kNWQZcPcoB43SayDW2a9xYvij76r14tuHwQXPWcOfDcc9d3WFBg9+eyG127irj+a9fExOKINERVweLFQtM/K0vIUnvLZ7z3XuvG8OrVVqG+0nDhAqxfDy1awMiRbnHP5gKgqmqZOqaSJCVKkhRdePcfDSSV0UdC4e8zkiRtBjoApS4AqqrOBmYDdO7cWbX5CcrAjUIBdYzqSAAB5JGHgkLf+L7XSURUJwqoNNukmJizdw4FBQUMbzUcGblYm3+v/zdGjACsPr2a8X+PR+enc4offkaVsASDyAIu7xH/2rXi0Tx5ecXpAUUR3PXu3YLn/+YbccdeWl8VsWNixKTozIIw3kQBxcTA559bbVflLzg6NkWjgg4dKnv8Dx0SGkwmk1ik582DBx7A1agsBbQaeAB4p/D3qpINJEnSA9mqquZJkhQB9ADeq+R1beJGoYD0AXo2TtjImbQzNA1vSqA2sFgbjazh9NXTNA1v6pB8RFUamykbpzDnwBwAFh1cxIYHNxRrExUcxdG0o5a/jbqhdQn2DXaKH1oF5GgJdDaog3vvFSJoGzdC69bw1FPFi6esXCneB7FH8O23Qhk0OFhQGd5KvVQHP44dE5o9DRsKhVCNxnk+9e4tNoVluXzlU4PBWiBIUUTR+SqwALwDLJEk6WHgAjAKQJKkzsDjqqpOBFoAn0uSpCD2xt5RVfVIJa97Q+Bo8lE+3PohDXQNeLrH02W2C/ELoW+DvkBxyuJM6hlGfzcaBYVAbSAr7llhmcCqEzaetdZpzVFy+Dvjb+JC4yzH3h/4PhOXT+Ts1bO80PcF6oXWq5SSq6qqXMy4iCRJRPjq7DvJx8cqgpaaen3ylm+JGs7ffiuKx+j1gkOuVavC/tagHJw/L6KrzE9nkgTPPuu8/ufPF1nc/v5iQc/JKb1dq1ZWH3x83BalValB/XHkAAAgAElEQVQFQFXVFKBfKcd3AxML7W1Am8pcpyKoKAWUlpvGmuNrUFSF8e3GI0mSR2iO7IJsBi4caKEuTl45yT97/dOhfhb+tdAS0ZJvzGfpoaVM6jap2lFA/Rv2Z/aB2YCohuYn+RWjwWJCYvh61NcWu6iUhqN+qKrKS+tfYu1ZIZg2s+8HPFrQRugBVYZS6NFDlBtcu1ZQQOZIodRUmDlT0AMV6dcdNEdV9mOnCPu1YMcO+1U77fXJHBGUnV12G0kStJ95D+Cxx3AHqm0mcFlSEGm5aaTkpNA4vDE+Gp9i6f15xjyGLRxGQq7g6RLSE3h7wNsekRlIz0vHhMnyeQ5dOUSdoDoO9dMoohHSCQkVFRmZ+PD4Ki0FUZb9777/pkFEA3KNudzV/C4kJKf58fv53zl05RADGg+gTlAdsgqyLJM/wPvbPuTxwWucIy3w2WeQkiI2i594wnpHWKeObdkGV9jeIsHgSj9uvdVa1cxkEgutWWLD3T61aCFuBGS58mUv7US1XQBKk4I4nHSY8SvHo6JSP7A+y+5ZRmpOqiW9/2jyUcvkD7Dm+Bpe7POiRyQYIoMiaRjUkDNZIspnTOsxDvWTkZfB9nPb0ck6/H39Gd16NG1rt620dIKKyqW0S6w4vgINGjpHdfYKeYrOUZ0tJSgNGQan+DFnzxw+2vURAJGbI5l31zx0gcUpnzq+YSjJScgaJ0oL3HyzyNxdvlxU3RozxrvkDqqTH3l5IiR3yxZBy/XqZZXY8IRPVUkKwptR2ibwR9s/QkUEFiVkJ3Ag6QDdYrtZePHWdVoT4RvBlXyhOdO/Sf9iJRfBvRud6x9cz4rjK4jXxdM9rrtDpQ5fWv8SmxM2A6DJ1fBQp4fQSBqnbORO2DiBv1LEhmXP6J58M/Ybt4+Ns+zy/Fh1zBrTkJKfQo4ph/a69swZOofX1r9GbGgss+6YgZxVy/YmsKObiu+9J2oGm9sFBFS/zVdv8qNRI8d1+13hk7flAVQn1Au15hWYMBEVVDy9wUfjwy8P/sLC/Qvx1fjyeJfH3e1iMQT4BDCo0aAKbdyevHrSYktIIoM2OKbSPimqwu6U3ZbXvxl+q3SfrkBCZgJpuWlE1oqscB/d47pz9uhZALRoiQ2JBWBQ40F0j+2OPkCPvxHI8t5U/xrUoDxU2wWgtE3ghzo/xMX0i+y5tIeHujxEvdB616X6x4TE8GCHBzFkGMjMy/TIRuerv7zKytMrifCJ4N0B79ItrpvD157QaQIvbRTFalqEtSCyVqRNWQN77WjfaAz5BstYX0i/QJBvkNfkSCzcv9CSHd0lvAvz7p4HEg778XzP5/GVfckuyGZcu3Fk5maS6lu4ufzpVLSfLyEitCHylP8IGQZv3eisaj7l54ukKDMPfiONTRWTgvBalJUH8Pnwzx2iUipjV4TmOJh4kJWnhVLGlYIrfLn7SwY2Gejwte9rex9t67Qlz5RH55jOyJKMRnYOBTS23Vg+3PWhZazXnljLE12e8BoK6Ks9X1l825Wyi8yCTOqH1q+QH8/3er5YVrA+QA8HDyDNWkxoOmgTT4lQv/nzxQW9meaoCj6lpopoqJQUoXq6aZMo9XijjI2bKSD3XKUGdsO8R2F5rapltLSNeqH16BrbFa3s3HU+0DfQkm0LILvpj9Ve1A2pW+y13t9xCq1c5OaAVPR1TXlOp2HtWkhOFlEx2dnWIvU1cAmq7RNAVZWCiAuOY2jDofxw9gf0Gj0Tuky4TtrBkzH3Kio3x97MTVE3sfXyVtrp2zGs6TCvKlP5bM9n+XTHpyRmJ3J/x/sxKaYy/auQH62aYBjQC+3KP4jwCUAeP/561U9voRSqmk8+PuK3GbVqiaicG2Vsaigg56AqS0G8PeBtZvnPQpIkp9BVFfFDVVXe//19lh5ZSus6rflw8IfWNmESS+5ZAtguiuPssbHHbhPVhm/v+dYu/yrsx/uzCH3fH9nkD6lp3kspOGoX9cETPo0ZIyb8Vauge3eREOXr65gfKSliQW7Y0LFrqypkZooQTE8Vy6mhgJwLk2LimZ+eoctnXZi4YiJ5xjy3Xj+7IJtfz/7Ktr+3UWCyX+lRkiTbjSqJLRe2sOTwEjLyMq5/7+8tLDiygBxy2JW0ixnbZ7jcnyoH/wDxH9dTSEwUmjH79lW+r5wcUW6ybl0YMUJMhJ6AJInw1x07YMoUcTfsCL75RlRHGzkSHn+8+NNEeSgoELkXN98stJoOHRI5Ao89Jo69+qr9fVUhVNsnADMFtPzYcpYcE3erP537iVk7Z9G/kajS5CoK6HDiYX45+Qs+Wh+WHlpKijEFAF98mXvnXDpEd/A4FTV9x3Rm7xPyCTp0bJi4AT+tn6XN5czLxcYz+Vpypakod1FA7vJDq0BEqoqc4AFKISVF6MXkFd7QTJsmJq6K+jF/vlAiBThxAj79VGQjewP14sjYzJghfptMovbC4cPibt7Wub/9JtqCGNOPPhIy2mvWiGPz5kHLltC2bcW+L0c+aw0FVHmYKSCTakJGRkGk1ZtUk92qmNsubWPKhimE+IQwZ8Qc4vXxdlEnk9dOJin/emXsfPLZfHozt8bfavParqaifjn5i8WvdNJJzk6mbWRbS5vhzYezaO8idl3ZhU6r45mez3gFPeYtNJ2ERKi/XjxCqx6IKtmypbi89C+/iAWhon6YJxxznyEhQhLBG2gpR8amaVPrQgaCBqpVy/a5DRtSDHXrikXEDFkWE76ZGirpU0aGeHI5fFjUAX7hhRoKyBtwd8u7iQ+JByDKP4r7O9x/XZufT//M/7b8j4OJ1rqpGfkZPPrDoxhyDBzPOM6ob0dxIf3CdeeWRI4xp9TJ34zQwFC7/D599TSdZnWi9Wetmbp5ql3nOIIusV2QEPSFhER9Xf1i7/tofPjy7i859o9jHHzyIA10DZzuQw0qgVatrBOUWWq4Mhg+XEgXg6hj6wYpYpfggw9g2DAhoTF/vv0qqu3aiQI9kZHQrx888ww8+KBYGEEsEHfdVfb5M2fCnj0iIuybb4TsdxVAtX0CMFNAJtXEintWcCz5GM1qN0OSpGIJUYsPLGbqtsIJdhesGr2K+LB4zl09V6y/y7mX6TGvB/OGzqNzbOdy6YGmwU05kXkCCYmOYR05cfUEWWTRv15/+jXsZxeV8uovr3I5V9AwM/+aya2NbiXYN7jM9uXZpdEcd7e6G62sJduYzcAmA1EUpdRImZiQGNJMzqm/624KaK9hL1/t+YqWUS15uOPDJGUlOdUPj1JAMTHwxRciTLJrVyFp7Eixl5J2SoqVPjEYBA1iNFY9CigvD6ZOtR53JDprwACYMKH4GG/aBEeOCHotP79sn5KTscBkEto+FYkMq6GAnIOSaqBNIppYHt+Lqj0eSDhQ7LyTqSfpGNORlnVaMr7FeBYeXWh5T0Xl5NWT9GvU77p+itoLRi1gy99bCPQJ5I4md5Cak0p4YDgAKdkpdilVakqoAQb7BVOnlmNqoGUpXp66eoqxK8YiI6Pz1fH0zU9XaTXQ0uxsYzYPrnoQBYVNFzdhMpl4tMujTvdDDgUK3Kx4aTSKSW7JEmjeHMaNE+9VJRXOquRHy5ZWqqYsn555RtRtSE+HTp3EE9Xhw+IpIicH/vMfUfHNns9aowVUeZSmBlqaKmSHuh1Yc26N5bwW4S1Iy00jKSuJl/q8RF1dXd7e/jYgFoCo4CibipoZuRkMbDQQjawhIy+jQiqXz/d6nge/f5B0JZ37WtxHdHC0uOt0gvLm3F1zUQr/Xcm/wvKjy3m006MO91uefSb1DGtPriUqKIq6wXVdrgZa0j6Xcc7ynaqobD23leEthjvNjyuZSUTlaiFbdb/i5ddfC5oBRLTKlCnw+utVS4WzKvpRnk+1asHSpWISDwwUd/STJlkLwEyZIjKc09Nr1EDdAXvzAMa0GkOrOq04ePkgnWM60z66fbE2/+j2DwJ8AziWdIwhLYbQtk5bt210Hvm/I1zNvkpYYJjD55bnR3zteCiskKhBQ7OIZk7dWM0z5vHYysdILUhFQeH57s8z+abJTh0bW3Z9fX30vnpS8lOQkXmgywOlbv5X1A+NKqGX9Mh+4h23bnSWDPs8e1ZQBlVF7qAq+aEo8McfIuT2llsc88nHp/j3JElw+jSEh4uiP16wCVxtFwBH0KteL3rV61VqmUBJkhjRYgT6juKLqkwpwYrA3nwAVVX5cPuHrDqyiiHNhvDPnv8ss+3DHR7mVNIpdht2c3fru+lTv4+z3AXg6JWjJBdYOdGlB5daFgB3Icg3iN8f/p1Vx1bRJrINHaM7Ov27kz0VFt6li+CmzRgzxkOO3AB4+mmRa6HVwh13wH//a/+5M2aIzfRr1+DFF8Xm8rVrYnL/6SeIjnad33ai2i4AVVUKoqL2jyd/5IM/PwDgo90foa+l56bYm8r048GOD/JyyMuoqE5TCTXboX7FI52aRTS7buPbXWPTObrzdWUgzW1MiomzqWcJCwwjtyDXoX6T0w00VEFr9MBGZ9++omTkb79Bz54weLB9ZQxdvTHtKlujERvcc+dCXJyorXvlinuu/f334rfRKLKT//EP+8emeXOR0GYwwObN1uQ6RRE0XmllPms2gZ2DqiwFURH79wu/F/v8WXlZFsrD3TH3+gA9S0cuZdnhZdTT1eOeNvd4XR6ASTExYcUE9ifvB2DWkFm0imxl9/kaVUKLHhScT3NcuiTuEGNjRbhnaedMLYxcc6SISWV88iQFZDKJ2PqrV8WxkyfhzTfdc+34eDgjqvJRv37ZeQC2+mrTxnqOLIvvtTS5iRoKqAYVwfAWw/lk2ydkKVkESAGMaDnC5jmnrp5i/p75hPiH8PTNT+Or8XWaPy1qt2DaoGmA+2kze7Dv8j4OJB+w1F2euW0mdzS5w8NeIXTwhw61xvgrivVO8UZFcrKY/EHcLf/+e/ntnYlly8Ri4+8v8gTsQXIyTJwIFy+KcwYNEjkWb78tIrf69hWRW+nprvXdDlTbBeBGo4BiQmL4+YGfmb1rNroAHUbFaKF2SvPjdMppRi0dRQFCn+hC2gXeuO2Najk2pdmKqmDEaPl7CQsIc0jqwikUkMkEGzaI7NXGjQWlsHVr8QzfL78Ud49mTRxvjb93pe3vL/hy8+t+/SqX8+CI7eMjJDFiYsRx83XLG5tnnrFmIz//vIjo6dJFUHUdOoi+0tJq8gBcibIooONXjjP1t6lE1Irg1b6v2i0L4e0UkD5Az6yds5h/aD4SEosPLuan+34q048TnEDFuov51+W/KlX/2F77cuZltvy9hQ5RHYgLifMYBdQ1tivTB07nk+2f0DisMa/c8orDUUCVooBCQwWtsWOHeP2//wluu08fUQ+4oFA48Ngxkdm6dOmNFX1T0o+NG2HhQkGLDRsm7p497ZOiiB8fHwgKsr6XloYFGo0obFMjBeF5mBQTwxYNY/OlzSw7sYwHv3/Q0y45FSuPiUpiKipXcq/wd/rfZbZtqGtIZEAkGkTC2ag2o1zu35nUMwxYNICn1j5Fj7k9OJx0uMJ9JV5LZP6++aw9uZaKFs0Z0WIEvz/8O3OGz0Hnp6uwLxXCuXPw55/CVlX4+GNhm7NPe/WytjUaRSjijYzQUEGbDB/utsnRJg4dEnf2zZqJpwTz3+HLL1vb9OljFenzQlTbJ4DSKKAMvwyylCxLmyNXjjg9AsaTNEf32O58f1JELfjhh6zKpOaklurHlWtXWDp2KetPr0craxnefLjDRV0ctVcdXWVJQAP4/uD3jGw90uG+sguy6Tu3L9e4BsCkjpMY3ny4W7+jSlNAQUHWCQOgQQNrJE9MjJBkLjrph4dXvuhMVaKAEhPhww+FKN2TT0JwsOepqJJj89prQh4CYPVqQU316yeif1auhIAAqxKpLNvfbw0FVHmURQH1q9uPjX9vREZmUtdJ1YoCmjZ4Gk13NSU7P5t72t1DkE+QTT8e6fSI22okd4jpYPl+tGhpX7d9hcb/XNo58sm39LXpzCYmdZ3k1u/IKVFAS5eKaJ4GDcTvkBDre6NHi5jxPXugf3+xiXgjUUCDB4sNcYD9+2H9es9TUSXHRlfkqVGSRIiqM/qtiQJyHb4c8SXrTq8jKijKJclBnoRW1nJv23stk1R5n+1s6lkGfz2Yi9cucm/Le3n79rftTjqrKG5pcAtv9X2LrWe3ckujWxjWdFiFxr9xeGN8JB8K1AJkZPrF93OBt27AzTeLePCik21RDB8uxMlA3P3fKFAU6+QPVp1+b8Nbb4nM3oQE8ZTSrJmnPXIY1XYBKC8KqH5I/TKTg5xpezrSpSw/Tl89zZ1L7rSM1ddHvqZ/k/50iO7gcp+6RndleLPhaGRNhcc/JiSGpWOWsmjfIhrXaczdLe6uMJXnMQqopO0tETfe4lOvXlYKbOhQ1yS6VXZs/P1F4ZySEUKV7beqUECSJI0CXgdaAF1VVd1dRruBwMeABpijquo7lbmuPSipBuoulcuitqsVLyvqx8L9VoVTMwJ8AtD566rM2LSNakts71iLyqqiKm71Qw02oSVUUEDVQfHS23xasEDEzIeFCRE1bxgPd4xNFaOADgEjgM/LaiBJkgaYCfQHLgK7JElararqkUpeu1zYqwbqStvVipcV9SNYG1xsrNrp29E8vLlFBfVGHht7z7+SmYRR1YongBtF8dLdfphj5rOy3OfHtWsiC1uSxD4MuGdsvv1WlJ/s0EFUFqsKaqCqqh4FbHHHXYFTqqqeKWz7LXAn4NIF4EaTgnDEjxdveZHTqac5fOUw49uNZ2KniR73yVvGxt7zfRQJrVTJTeCitrfE3HujT7IM69aJCbJfP5EH4IrrGY0wZIigYxRF7Lv861+uH5uDB+GdQlLkyBGoU0fkgrgB7tgDiAWKBqRfBLq54bo1KANBvkHMHDbTrs3iGlwPWQVdLsj+nvbkBsH27aKYiqLA8uUi8ap7d+df58IFIbJn3oxfvlwsAK7GhQtiMVBVce2TJ11/zULYXAAkSdoARJXy1iuqqq6y4xqlPR6opRwzX+9R4FGAevXq2dF96cg15vLxjo9JykxidJvRlit6cvPVWzaBPeWHN/pUET80iorvFQPhQSCbXLzhmpEhJsDAQLExeqNsAhe1d+ywTsqKIhLozHODM6+n0YCvr7WIS5cuZW8+O3Ns2rQR/L9ZG2jsWKtonIthcwFQVfW2Sl7jIlC3yOs4IKGc680GZgN07ty5zIXCFiatmcTCAwsxYWLp4aVsmrCpytAL1dUPb/SpIn7IKsjhEnKAXtxYuIpuycwUETAZGUIa4osvRHy8M+mPbdvg3Dno0cN7KaA77hDF3k0m4dPQoaUraTrD3rRJSE4EBIjQTh8f11NAer3Iczh/XmhCxcRUmU1ge7ALaCJJUkPgEjAWGOfqi/567leL0mOGKYPEa4lEBZf2IFOD8qCoCnP+msPhhMNM6DyB9lHtPe3SjYO9e8UiYNYFWrhQLADOwldfwbRpYmLVasX1wsOd17+z0LQp/PqrEM7r00dk2roqL6JePSHlkJp6fUUvVyIwUOSFuFnmorJhoHcB04HawFpJkvapqjpAkqQYRLjnYFVVjZIkPQmsQ4SBzlNV1eWZHaNajuKjHR9hwkSkXySSKjmk9nij0xxme+aOmczaNwuAZSeXsWH8BpTCx/EbdWw0iopvioEwV1NAtWpZpQZATHyOxMOrqohT/+knsXA88UTxNj/+aJWdNhphyxZBM3kbBaTRiLvknj0hMtI7cgLKGpvZs8Vi1b07TC6sgldd8wBUVV0BrCjleAIwuMjrH4EfK3MtR/Fu/3dpXrs5V65d4c7md6IoSpWgF7zNj78Mf1nG1BdfEq8l0i6y3Q09Nm6jgLp0EeGBX30lCpO88IKYHP6/vfOOj6rY2/h3NptGSEgjgUDo1Si9I4J0EUG4oFgQEUHsV0XFcq33Ksr1VcGGL14QUBRRkOKVokR8BUQQBOktBExIQkgPCUl23j8mm03PbnbP7mZzHj75MHt2zsyzs8nMmWd+84wtcsaiRarcRYvgqqvUubbmPKNHw5Ej6n0vLyUDlT5b2FaZY/NmNdj06aMGGyG0axtXpyvjtH49vP++GlQPHlTf34032l5uHdoH4LYQQjCuw7iSMFB7I11+PPMjr8W+RrBPMAvHL6RpQ9ef5+kMTO46md2bd2PChL+XPz2a9qDIVORqWhVwMfci646vo01IG65urLH74sED8O130OdaGHittnUNGqR+0tIsZwJYi3PnLIunRUXqpLHSuPtupTmfOqW8hsLDa89z+3aYM0fVt2WL8sUZN6725S1fDi+/rA5PX7YMWre2SGHuir/+ssyoQK2tuDk8dgBw5IEwJ1JPMHXt1JKyZ34zk2WTl3m0zGFOj2ozitCbQjmYdJDxncY77PM4sm0y8zMZtWwU+eQD8EivR5jVa5Y2PI4fxWvCJHxyIDRvIYb33lMaNWgjKdiTHjYMFiyA/HxlWzBkSEW7gkGDlLSSmFjRbdQWTvv2lfUy+uMPS7m28k5Nhblz1bUzZ9RAlZSkNoSNHatO1nJHCahnT3VdSvVz3XW2y1V1SQJyZzjSCqL8UYlJuUlW2Sa4qxWErfcPbzuc7k27l9guuAOn0ukDyQdKOn+AH0/+yJPXPqkNjz07MBSAV17xYRr79qmOzh2tBcLC1MLurl3Qv7+yVE5N1YbTjTfC0qUqXVAAEyYot8za8M7Lowzi4y1P/999pwzy2rat/P6CArVwHh6uNlQ50wqiRw/V3ocPqxPM2ratXbm6BGQ/HGkF4SN8GNp8KD+e/xGAh/o9ZJVtghZ2B3FpcZzJOEPLoJZ1znZBK05NAspGd3Vt2pWMvAwkkoSMBA4lH6JpYFMKiwrt59EzBi9vFS4edgUMXbu6v+1CdLTqrNLTtePUoIHS///4Q3W+zZrZXp85/fvvZf+Yu3RRttigPkd+fuX35+fDpElq1uDjA++9pyJrHNmWNbVNVJQ6ACYxUcX116Zco7FuWEG4M0pbQeQW5PL6T6+zJ3EPYzuM5ZnBz9i8YLhs0jJOXDqBlJKO4R2tutfRC52xcbE8+v2jGDHSwNCAnffvJMgnqM4suGrFKcQ/hK/+9hWbTmyiZWhLxnccT4h/CPmF+Ty44UHO5ZzDhImPbvqImMgY+3hExmD4egOG9f/F0GsgXDdYSSf1ZaGzpnTnzva3xw03UAIh1AL2lClw8iQ8+KAKBa2sjg0bVOcPKnpq/Xo1M3GXtrG2XH0G4Fgs2beEbX9tA2DV0VV0ierCXV3vsqkMIQQdwjpUWEzOL8znUt4lfA2+DuNbFb7Y/wUmTFzhCgWmAnae28motqM0r7cuoHPjzgxoMQCwWFvs+msXcTlxSNR+wiW/LuHGdjfaX1m37hDdCsxRQDocCy8vy2Kq0ahmEz/9VLbTrwyhodW/1lEBHjsAlF4ETslMKbleRBEJmQl27Qn4LeE31h1eh7/Rn1VHV1FIIR0DO/LFlC8wehk1WwRuGdySXy78UvI63C/cKk99W3icST3D7sTdeHt506dpH4fwdtUCeQOvBiWdP0B4QHiF792t9wG4Ou0qTv/+NzzxhKr73/9WUpI1PDp1gjvuUOsE11yj1iG0OkZTq7bRF4Edg9IS0Ox+s1l9aDWpRam0b9S+zKlZtsoOZ9LOMGPdjJJzbc04lnWMA8kHGN5muGbSy1PXPUWToCYcuHCACTET6Nmsp1X32sJj8qbJHM88jkAwNHooSycttZu3q2Sp3s1789r1r7HijxXENI5hzsA5dWsfgKvTruIUEwN/+5vlid8WHs88Y3HSdIQ05+y20SUgxyMiIIJt925DCEGIXwjpeem1Luto6lG88KowAACE+FUzPXUAjAYjTwx8AtDGwfNywWWOZh4teb313NYq8+YV5vHm9jc5eOEgDw98mOtaXudwPmYcTDpIfGY8g1sNpqF3Q5vuHddxHNO6TQN011MdOsrDYweA8vsALmRdICooirS8NLvkhRaBLSiksExd3nhzW8xttAlpU0aScYTMcTL1JLvO78LH6EP/qP61KsdqHlLS2NiYlEIlmXUL6ValVLZ472JWHVsFwI5vdrDlji1IKR3OaXv8dh747gF1D14sGbeEHlE9XCpF6RJQPeWhS0B1B1odCHN15NXM6TeH+bvml9Q1s/tMHuj7gMNlDiklc/47h9PZpxEIrm9+PcsmL7O5HFt4fHPnN6w9shY/ox83d7q5yvwnL50s+fzeeJORn0Gn8E4O57Tt1LaSegSC0xmnGdZ2mN3fY72XgMw7do8fV5Eylblruoss5Q48goPVesSKFWpD3auvqkNqCgrU2oOXV52UgJxrPechuOXqW2ggGmDAgBEjE2ImaFLP5cLLnMo+hURiwsS289tqvslOhPiF8PiAx3mgzwP4e/tXmW9mn5kYMCAQRDWMonvT7prw6R3duyRtwqS9zUN9wZw58Pjj8OijKsTSkViyBFq3Vp5AJ0/WnL8uYMsWWLgQLl6E1atVKOrTT6s1h8ceczW7WsNjZwCOtIIon44KiuL7u74nNi6WAdEDiGwYSUJmQoX8dktAUhLpHUlSQRIAPcN61ip6SYuIm0HRg/hm8jccSD7A6PajyS3I1YTTDW1vICkzibPpZxnZfiRBPkElbXA05SgHkg4QGRhJh5AOtfo8tZWA/C4mYgqswxLQV1+p/4uK1AEr5vh5ezklJCjvflDeOE89pU7WqkttU1k6Lq6sz09ysiW9Zg289JLt5Z4/rza9RURYnvh1Ccgx0PpM4BD/EEL9QzWPdPn6zq/ZeGwj3kZvxncY71YRN72b96ZdWLsK1//K+ovdCbsZaBxIh7AOdnOa3mN6STrtchoh/iFcLrjMzDUzyTRlIhA80vsR5lw7xyltYzRBcJDAGGSnpJCerv74XSFz9OoFu3era5GR0KqVY6QX86lWZkjpGW2s/NkAACAASURBVBLQbbepmU18vLLpDgiwDALlXVStKbewUM3ATpxQA8v8+Sr6SY8C0lEawb7BPNT3IaBuRLHEZ8Qz+D+DucIVDBhYPXk1HcI6OLye46nHyTApuweAtYfXlgwAzoCxYhCY9SgshFtuUadx+fsrLbl9e4dxswqffqo0bYAHHlAdkyPQqhVMm6bK9/ODF15wTLmuRmAg/PwzHDigdjvn5qoT2kwmJaPZikOHlBW3GYsWqUHGyfDYAUBLCcjatCe4gdqa3n52O1dQh5iYMLHqwCru6XmPwzkF+wWXdP4AXSK7OE0e8y2UhCYmYpDUTlJYu1Z1/qDOn33tNXj7befLHLfeqhZ/pazoEgq1l17uuAP+/nclZSQm2r8Zyx0kIHPa11eZ1Xl7w6xZ6r0rV5QPkS1l+fpSBk2bqnbSJSDHwJFuoO7geFlZuoF3A4wGI0UN3ceVtGeznggEEolA0KdlHyIaRlTILxC8/tPrfHnwS0a0H8G/hv+r0nxVpRv5NeLryV+z6dgmmgQ3YVyHcU77jowmMDS2w1HSfOar2T65cWMICnK8G6grHUrNR0u6moc7tk2jRurnnXfUTKl1azVg6m6gjoMj3UDdwfGyfPrN7W/y+dHPMWDgjWFvcEP7G1zCo3y6fWh73hn1DmsOrmFQ20GMaD2CxKzECvm3ntnK+/veB2DlkZW0DG7J0NZDbaov0DuQRwY8UvJ07mf0c8p35FsoCU9JxuBVS0fJVq1gxgwVUti6Ndx3nzr4XSs3UHd0KK2LPBzFKSVFyX7+/uqwG1Azg4wM3Q3UUdB6EdiatL2LrwVFBWT7Zle4npSTxOdHPweUzLJgxwJu73K7ZjxsTU+6ahLDWg+zXBcV8+QW5JbMFAByruQQFRRVJ74jowkMTQUE27Go+NJL6qc2dgf1Kf7enXg4glNmJowapQ63AVWGeQ1G3wegw4zdf+2m/YL29F/Sn8e/fxzzLltQlhCl4evlW/52l6DQVMiOczs4nHK4xrwTOk2giZ/y8Q8yBHFHtzu0pqejMmRnwyefwNdflw1z1KENjh5VawZmbNjgOi548Aygri8CP7PpGQpQpyB9eeRLplw9hQDvAEA9iT7Y/UE+3PchwcZgHrv2sWoXQJ2yCCwld3x5B4cyDgFwf/f7ebDvg9Vy2jh1I3sT9tKtaTf8jH6V7qVwx++o0kXgpCQV724wwL33qv/rwkLnrFmUnF37229lj1t0l8VXd+HhCE6NGpU9OnPgwLLHRuqLwI5BXZeAwhqEQamQ6qZBTWno3bAkz/197+fZIc8Clth4LXhYmz6feb6k8wf48sCXPD/k+Wo5BfkG0T+6v1O/l2C/YI5ePMrlwsuOk4CuXIHhw5WcAyq+f94895c5MjIoc3D5tm1l49ndRXpxFx6O4NSpk2rnNWvUXpB77lHv6xJQ/UZuQS6fHfyMtUfXYpIm5t8wn07BnfDHn5eHvEx0ULSrKVaLUP9QDKV+ndqHOjmu3Uo8tfkpRq4YyfhV43n313cdU2hCQtkNUFurdlF1GS5ehA8+UDuAzVJPUJA6bMWMQYNcw01rHDmizga47jpL+K0r0aaNOu9g4kQctv+ilvDYGUCdkoCk5JaVtxCXGwfAsObDeHfsu3w15SsSM5X1hDUHv7h6H8DbI9/my/1fEhoQyrQe06ySpY5fPM4nez4hPiOeKV2ncHOnmzXjF38pns8Pf17yO/LWjreY3m26/RKQwaCe5i5dUgUPHVp2Wu9qmePcObjzTgu/Q4fgxRfhwgX4/HP44guVb+bMinJEeU6LF6tZw6hR0K6d47lq0Ta33aYib0BtwPv+e9dzqq5cXQKyH3VJAsrMzyzp/AG2n9/uNlKULelhbYYxKWYSYL0s9eGuD9l6Xj0xPx/7PGM7jqVxg8aa8JMhkgY0IJdcAFoGtiTYL9iqtrmYe5GnNz1NfGY8j/R9kOeb3lI2Cig2Vj1d+/nBXXepP153kTnOn7fIU6COVywt9Tz/fOWHp5Tn9Pnn8G7xrGn9eli5UtkXOJKrFm2TlWX57FKqfReu5lRduboEVL8Q6BNIuDG85HXvyN7V5PYsnE4/XeZ1cnZyFTnth0EY+Pr2r+kT0Yd+Ef1YPmm51ff+44d/sC91H6kFqfzrp39yLPV42QxhYTB7NowfX/aPt6BAPXGX7oCdjSZNVKdnxogRtStn715L2mAoa2XgznjuOUv64YfBx6d25UipThu76iq4/XZLKGcdhsfOAOqUBIRk4diF/HjqR/x8/BjRZoRdZxbbw8PZbXNb19v41y//AqBDYAciAyLtkrtqSkcHRfPJxE9IzEykkW8j0vPSrWqbpAzlyAogTCay409DaIfqp/Vnz8JDD1kWWpctg+7dK+bPyVEROE2aKF2+srLsSaekqNnJmjXq2vTp1klU5WWO669XcpE5X5s21ts8bN6sZg+dOin5ydx5XryoDNZ69NBObrn5ZujYUQ3SERGV215Yk46NtWzc2rZNGbjdcovtZaWlKcfUlBRlCNehgy4BORp1zQqic0Rnrm11LQCpualubUnx1va3WHp4KVF+UXww7gO7OE2OmcyYDmNIzkkmOiia0AahbvkdPTf0OcZ9OQ6AQS2G0P3qoTVv+9+yRckvZnz2mepES+fJzlYLlCkpqpN79VVlplZdubW1ZnjiCUhNVZ2LNfeWtzsYM0bJPufPqwVjPz/r6s7OVh0dqEHR1xdeeUUd3v7UU+r6tGnwz386xnZBSrj7bmW1PHWqKrdDB/vtKUrtxQGUJ1BEhO1lzZplcWL9/Xc1QzSXU5esIIQQk4GXgM5AHynlniryxQFZQBFQKKXsZU+91sDTrSBcxeNIyhGWHl4KQEJeAq9ufZVPb/nULk5RQVEE+QbV2s7BGW3TOqQ1G27ZQIBvAM19wuFYIhh9qHbbv4+P6tTNiIhQIaKl8/z8s3r6M3cuy5apJ1Yt7AtsTVdmdxAWBtdcY3mataas5HKy3vHj6torr1iuffqpssTIzrbfdmHZMotctWwZ9OunFqzz8lT7Gwy1a4/+/dWs5/RpNVO7/fbK8xUWqif85GSYPBlatCib55AlXJrLl9UM6O231aAwahQ8+2ydsYL4E5gILLIi7/VSyot21mc16tIisDvyyMjP4GDKQYxeRjqGdyy5HuQXVKadvY3e9adtQm20ghgyRO0HWLxYSR8vvAANGpTN0727+kMvKlLXe/Wq+7Hu5dMdO6rPuW+fev3008oQr0kTy4lhXl7KETMnx34epTdaGY3qJy5OrdGYTHDttWomY+tCPcC336oyzBJNZYvn8+bB8uL1pa1bYePGsnlmz1YdvpnL7t2qXFD+UL17qzxOgF1DjJTyiJTymKPI6HAPZF3JYtDiQczZMofhy4fz/cnvS96LaRzDrR1vBdQh7buSdzH4k8EkZie6iq57Y+pUFXUzb57q/MujaVOlq48apdYLnnjC+Ry1htGoOrgvvoA9e2DkSHV9yRLo1k09IX/2We0XZ8vjkUcsck+fPqq+d96xDAz/939ln8JtgRDq6dxY/OwspZpZlEbpxXIvL8tpa2Y8/riyBP/wQ/W5U1Mt7xUWql3lToKz1gAksFkIIYFFUsqPta6wri0CuxOPY5eOcenKJWTxv092f0L0sOiSPDN6zmBEhxHcu/5eAE5mnuTFrS/yaP9H62zbHEo6xIJfFhCfFc/dPe5myjVTqrzH7vMAyqc7d1YDwL//rRYX331XyUV11e6gqnRoqNL/zQvQUVHqSdmcrmph2lYeUVFqwfb0aWjbVoWBBgZSAdYshK9cCf/6l1rv+PBDy8Y5Ly/VcU+apPZTdOyoIoTatlWRYDt2qMHC31/NdMovlrdurcrMylID1LvvqoEkOBhGj1aDlTtIQEKIrUCTSt56Tkr5rZX1DJRSJgghIoAtQoijUsrtVdQ3C5gF0KJFCyuLrwhdAqo9D38ffwTKqdOAgb4t+lZw6kzLT8OIkUKUxu1l8LLJzVOrtvk5/md+OvUTw9sPp1/zflbzeH/n++xIVrtE//nLP5kYM5HIgMhK73GIG2jpdGGhOqTdZFIRKi+/rDoeT5GA3IHHvHkqHPTsWbXh7Zprar7XaFSdP6jO+R//UJvIzJyWLlWdP6h1jV9/VRLenXdCq1ZqgBg8WHX81fELCVGzkqwsdV+DBu6zCCylHG5vJVLKhOL/k4UQa4A+QKUDQPHs4GOAXr16ycry6KgZ+YX57EnYw9WRV9MssFnNN5RCm5A2rJi4go93fUyP6B482u9RsvKzyuQZED2Ase3GsvbkWiJ8I5g7eK4j6dcKP8f/zO1f344JEx/t/4hvb/2WNiFtrLo3ITuhzOu0y2lEBkRWmtfg6N/K8ufomp8StcbFi2rhNS5OdYozZzqnXlegcWMVCgu135NRPgqotGQlhDolzIyYGEtHb019fn5KDnRSx2+G5hKQECIAMEgps4rTI4FXarjNbtRnCSivMI+Jn08kPjcegE9u+oQ+zfrYVNY1Edfw7JBniQqKIjM/s9I8rw5/ldm9ZtM8uDkSaZObpxZts+3ENkyYSq7FnonFz8vPKh5Te07lpZ9eAqBnaE8iGkRUuh/BIKFxDupJ3VESUNOmKjz0hx/U9Ycftt1KojbpuXNh1y71+qWXoG9faN7cOfYU7mC7YI2UNHeumj14e6uZmXkPgZcXjBun7Jz37VPfX9++jjn+sq7sAxBCTAAWAo2BjUKI/VLKUUKIKGCxlHIMEAmsEcr0yAh8LqX8vspCHYT6LAHtT9pPYq7lKXLZvmWMbjfa5VKU1m0zvONw/vfA/2LChAEDw9sOr1GWMvOY1HkSf+v8N1IvpxLmF1ayH6HCPX4hBAOGpjhW5li+XC0WSqn0YUeVW106q+ysrkSn90QJqLbphx9WZxyb906UPsAnKEh9b6Wf9OuYFYRdA4CUcg2wppLrCcCY4vRpoKs99XgidpzfwfbT2xnVfhTdm3Z3aNnNA5tThOVwj/Zh7unM6WgMaD6Ab275htgzsYxsN5KuTbqSdtn66X6ofyih/qE13uNwCQhUB9CqlXMtIx57TElARUXKl96si+soC/Xw6pHw2J3A7iwB7Ti/g1kbZgGwcO9CVk5cSZhfmMPqjgqK4vVhr7No1yK6RXXjwT4P1mivsPHERj7+9WOiAqJ4Y8wbBPoG1kl5rG1oWxoYG1jtoGorD6MJwtMkhgQPkDlatIBffrFsjsrIcD0nd2kbV3GqSxKQuyI1N5Upq6fw54U/ebDvg9zT/R63kjnWHV1Xhu/hlMPcGnOrQ+u+s8ud3Nj+RqvklnMZ55j7w1wkklPZp3jrl7dYcOOCOicBOYNHI78QtXlGepDMER1tnRuoMzlZw6OwUIXNRkba50pqMilLhubNXf996W6g9uOxTY8RGxfLhcsXeDH2RY5ddK+9agNaDSg5PEUgSM1OZen+peQU5LiET3JOMl54lbyOS4tzCQ8dOqxGWpryI3rySWXJ8N13tSvnr7/U4u2sWepUt8M1n2ftSfDIGUByTjKF0uLBEpceR2GReu0OElCXiC4sGruI2FOx/J7wOx/s+wCAjUc2suq2VSRmJpJ1JYsNRzdgkiZu63IbQgjN5JbIBpF0COnA4TT1y39v73s1deS0hpOrvqPLBZe5b819/HHpD0a1GsUj/R4pc49HSUB1hVNlPDZvVr5B5tDM5cuV54+tdaxdq/x4zPjiC/j733UJqC7j1etf5Zf4X8gpyGFg1ECGth5Kel66W7mBjm43mt5Rven2cbcS3kcyjhDkG0RBQAETPp/A2ZyzAMSnxzNv1DztHC+Divhu6nccuXgEb4M3HcM7urRtXPkdfXbgM36/9DsA38d9T5+WfZjRZEbJPYH+jTCYgAIHOnXWxvHSGWl34VQZj549KYMBA9QuWlvriIlR8ot5ILnqqorlfPstrFoFV1+tooKEUDOPY8fUpq977nHsZ60rUUDuit7NevPXE3+xP3E/EQ0iyLqS5bYunH0b9+XXlF8B6NyoM5n5mRxNPlrS+QOsO7KOuYPnau542TyoOYmZiWTkZbhF27jiO0rLsUThmDBxKedSmfbww0hEhsTgDOdNV6ddzWnXLrV799Il5Z8zapTlvQYN4JNP1BkHzZsrGai806o16Q4d1A7fzZtVBz9yZNlyTpxQJ6YBHDigzOpMJhX/D+psg549oWVLx7W50Vhn3EDdFg19GtIpvJPb7wP4fMrnLD+wnOz8bGb1nEWATwBXRV5FY9/GpOSrc0yHtB1CqH9onV9wdUdO5Xk80P8B1hxZQ9KVJGJCY7iz652evwjsrpzefddilPbWW8ojp3S+mBg1KNgbf3/ffeqnsnKys8vOEFJSyrqNgrKJyMiAP/9Um8dK76WoTZvrM4D6Az+jHzN7zCTtchoBPgEAGA1GNk3bxIr9KzAYDDzY50EXs6w/CPMPY+v0rfh4+xBgDCA9L93VlOovCgrKvi4qqjyflujfX80wLlxQHf/06cpY7o471PsdO6pZ0nXXqUEiMFCd8eDlVX25bgKPHQDceR+ANemooCim95hOYmYiOVdyyCa7zi+4OptTfmE+5zLO0S6snW08slT7pxWmefY+gNLpP/5Qh74XFcFttylTM1dzevhhpbVfuaJ8isz++87m8dFH6sk/Olq1T1QUbN+uIoiCguD99y2zgsxMWLdORRZZU4eUynDuq6/UOQALF6o1CH0R2D7UZysId+XhTE6lN9s93udxnhj4hEN4eKwENHeu5fjKvXvVgOBqTsOGKUtn83VHWC3UNt2tOFjDzCEsDFq1Uq+7d1eHvpgtnHv2VIOENeX+9pvq/IuK1JrH8uVq3UPfB6BDR+3xzKZnStL/s/t/yLqSVU1uHWXOLr540aJ5uxpCuL+cMnOmOtt40CBYtAi62uB8k5urPqMZmZmO51cNPHYG4E4S0I+nf+TFrS+Sacrkod4PMavnLI+TW9yNk6/Bt8zvQ3Z+NpdyL9nNw2MloNGjldc9KGfL9HTXc3KXtrGG0x13wNCh1R9sU1m6Xz+1jnDokAoDnTpVDQK6BGQf3EkCenP7m6Sb1GLigt8WcH+f+wnyCfIYucUdOf3nb/9h1rezSM9NZ/6N82ka2BQ/o58uAVWVnj8fZsxQHK66yj04uUvbaM1p0yaIi4MjR9QC8s0361FAnoSCorLRDNJdptd1EIeSD7Fi/wqaNGzCjF4zSjrn8rgm8hp2ztpJ2uW0KvPUWSxZAgsWKB36/ffVU6S9EEJtpgLnOpLqUG2/dq3loPi331bW4CHa/9567ADgThLQY9c+xrPbnkUimX7NdEwmk+ZWC54oAWVfyebWb24t+Y4PXzjMoomLnMrD5RJQUpKKiQcVmvjkkyrqxJOlF3fhoSWnb7+1hLlevgz79yspTmN47ADgThLQTR1vYmrXqWpQys/0OLnF1nSwXzBbTm/hTPoZBrcYbPX9l/IulfmOT6SfcHrbuFwCyilnGFhXZA5P4KElp+HD4eRJNRh4ealdyU6AHgXkJAgh8DK4eTRDLXA2/SyfHfyMwynWuygu2ruImetm8sr2Vxi7YqzVETqtGrWifVB7vPHGgIGp3afWlnbdRfPmSqsH8PdXVgSOgsmkdrOan0ytRUEBrF+vZiJabNYqKrKcVeCukFKFz/76q+08MzIss7iGDeHrr5W85wR47AzAnSSguii3WJM+k3aGm768qaTN5w+bzw3tb6jx3tUHV1OIcme9zGV2xO+gd7PeVtX9zuh3OJl5kjC/MJKzk4l5N4YcUw6P93+cqV2ner4EJCXceqvaJOXlpa47anPUrFmwY4e6Nm8ejB9vHaeZM2HnTpUeMULJUo5qm7Nn1ca0zEzo3FltVjMa3U8CeuUVZRgHMGEC3H+/9WUtXao2lYGynoiNVe2oRwHVHgZhoKFvwxIJyB2cJp1ZtzN47L2wt0yb/37+d6ZcM6XGe0e1G8WxPccwoaSXXs16EewXbF3dwUV0ieoCQLeF3Uqiq97Y+QYzeszA39tf07aplRuolJCf71jnTfMToqOcN48ft3T+AB9+qEISa+IUGGjp/AG2bFERRY5yA339dUts/JEjsHs3jBnjfg6l5s4flEHdCy9YX1bpxV6DwSIxOQEeOwCYpIns/OySGYAWjpIbjm9gz/k9dI3qysBmA+uM46Wjym0b3LZMm7cOb22Vk+g9Pe8hNCCUc5fO0adFHwwYSM9L52TqSVYfWk1YQBgxYTE18sgryitTf3peOvlF+Zq2jc1uoHFxyjI4Oxtuuglee809nTfLG5w1a6Y6Xms4RUfDuXPqvk6dHMvPx6csLylr5/qptVNqkyZqUR7U4JySAt7e1pU1ZowKBd29G4YMUWGg5l3FGsNjBwCtF4EPJB3g+VhlE7vu5DpeGPwCM5vMLJPHXRZfteIxtM1Q3r/hfX6J+4V+LfsxtNXQCnni0uPYn7yfsIAwmjRsUnJ9Zs+ZmKSpJEwzvzCf+769j7TCNASCmd1m8o/r/1EtjzdveJOH//swJkz0CuvF8v3Lmd1nNlFBUe6zCPzII6rzB3Vq1b33Qtu27rfQ2bmzsiGYN09ZES9YoDxprOG0YYMKXWzYUEkfUjqO3zPPwKlTyppi4kQYO1Zdd7dF4LVrla20t7eycij9ZG9NuR98YClXdwN1fxxIOlCSNmHi4F8HoYcLCbkIg1sO5uZONwOQdrls/Pj+C/sZt3IcJkz44EPsPbEE+gRWWk5cehyphaklr9cdXVcyAJSGlJIFvy5g8/HNDGk9hLhH4xi6ZCh7UvewJ3UPP5z5gVW3rKpwn6NgNFVysbAQ7r5byR/t2qnOwPyH7etbmnzFJ1pn4+uv4dVX1QLyO++oHcBmDB2qfkp77liD8HCYM8dyjyP3ETRqpDibTKpcIRxXtiMRHa0GQS3aQEN47ACg9SJw18iyfh+9onuRdjnNKYuv7rIIXFN61R+rKEJFheSTz/oj6xnSekilnAK8A/DCqyR/18iuFdpTIll5cCVv7HgDgH0X99EkqAknM0+WfA+HLx0mITNBk7ZJSU+ktQDDlXKLeatWqc4fVCjfO+/Ao4+qPI8+qrb5x8crK+HmzSEhwXJv+UXFY8fUgmDbtpbBwlELl3l5lqihrCx19OHOnY5ZmHZU+quv1F6HIUMs6xxa80hMVBvq8vLUjCM01HV7E/QjIR0DrSWgEP8Qvr/9ew4mH6RLZBeaBTZz2/h7V/HoHt2d5YeXY8KEAQPdm3UvkWfKcwrxD2HdlHVsPLaR8MBwJnaaWGm5WfllQ0bTLqcxNHooP577ES+8GNFqhGYSkJcU+BACJspO3wMD1R+uOQTS17fsoSA7d9bsZGkwKBO2u+9W9seFhcpYLCam6ntsTZc++xYsC47VcXKmLLV6tYqmAVi8GL75xjk8Ro60DMpnz8LWrbZLQI7ipEtAdQfNg5pzTeQ1QEX5QwdM6jyJzPxMYk/EMqnrJAZED6i2nVoGt+S5Ic8BVbfnDR1uYPHexRRRhEQyvtN4Zveazco/V9LIrxE3tr+xwiChOW64AX74QXUcbdtaQgBtxU8/qY1e5jjyb75RC4SOgr+/esJ9/XWlVc+b57iyHYGffrKkhVBHMPbqpW2dRUWWzh/g6FFt63MzeOwA4Mx9AEWmIlYdWkVD34aMbjualBx1lKPTpJeMRM5nnifYL5jMvMwKeVwpRU3oNIF+Uf2ICooqY39RW05GYWTz3Zs5dvEYwb7BBPoEknUli55NehIVFEVmfqZm8lhKRiKtJRgLy03fk5OV7FN6Km+LIySoGUR4uKXzBxWJ4+gDUK6/XsXVC1HzHgJnS0D9+6tBD1S90dGKn5Y8kpJUm2zbpq6NG2fdd6dLQO4NZ1pBzPp2FhtPb8QLLzYd38R7Y99zmvRSZCpi5taZ7ErZhREji8ctJiYypkwed5GiHMmpTUibMkZv1t7ra/TFx8sHEVQ7CchYmQTkqKn/oEHK52fDBvXke+ed7hXponV9t9+uFn3j45U1Qni4c3h8+qmaweXmqs1v1kQZeYgE5NFWEEWmIn776zfOpJ/RtJ6Npzeq+igi9nwsi35bREZ+hqZ1mrE3cS+7UnYBUEghC3csdEq9dRFv/fwW7d9rT5t32/DLuV9cTadyjBoFK1aoBVp3PwhFCwwYoCS09u2dV6eXl1oHGDwYh0QZnTgBzz6rjno0hwC7KeyaAQgh5gM3AVeAU8B0KWWFU7SFEKOBdwEvYLGUUnPxsdBUyLjPxvF78u+YMPFkvyeZ1m2aJjJHx0YdOZZxrKTuhXsXsv7oev477b+aSy+GcmN4gHeA20Yj1cRpZ/xO9ifup014G7o07uLQ+pJyklhyaAmgBurnNj3HwOiBjpGAnG0F4Sq7g/rOwxpOeXlqMLlyRV0/dEjtC7Cl3DokAW0BnpFSFgoh3gCeAZ4unUEI4QW8D4wAzgO/CSHWSSmtdw+rBU5dOsW+5H2YUIHbn+37jEf6PQI43mph9W2reWv7Wyw9vLSk/ricOPyMfhgNRk1tHnpE9WDugLks2buE9qHteWn4S25rSVEdpwvZF5j1nTrD14CBJ/o94dDvy/x7YEYj30Y2t40MLMJIIyUBaW0t4KhyPYGTu/CwhlNurqXzBzUARETYVm5diQKSUm4u9XIXMKmSbH2Ak1LK0wBCiC+A8YCmA0B4g3AElulci0YtyMrPQiK5lHsJHy8fh6UNwsBdPe7ibMZZtv2lFpM6NerElaIr5BbkOry+8umRbUZyV9e7kEiSspIqfE7zU67WPGxJl+e045zFh8aEiW0ntjG9+3TH1Se8eKrvU7z363uE+ofyzJBnyMrPsqlt0nMuUSh91Azg0iUVpy8dlDY/UTq6XE/g5C48rOEUEaGOeDxWrAjccovt5RqNTrOCEI46nUoIsR74Ukq5otz1ScBoKeW9xa+nAn2llA/VVGavXr3knj17as3ph9M/803+kgAABwpJREFU8HLsy7Ro1IL5I+fTOKAxoOQho8Ho8LSUkhUHVpBTkMP0btMJ8AnQtD5b0u7CoypOF7Iv0HFBR/KL8vH28mb+yPnM7jXb7drGz/zMVFio/lAdmdaqXE/g5C48rOGUl6cW8iMj1cJ+bcotnbYRQoi9Ukqr4mdrHACEEFuBJpW89ZyU8tviPM8BvYCJslyBQojJwKhyA0AfKeXDVdQ3C5gF0KJFi55nz5615nPo8ACcvHSSNUfWcFXjq7ixw42upqNDR52ELQNAjcOMlHJ4DZVNA8YCw8p3/sU4D0SXet0cSKgkn7m+j4GPQc0AauKnw3PQLrQdTw580tU0dOioN7BLZCqO7nkaGCelzK0i229AeyFEayGEDzAFWGdPvTp06NChw37Yu8rwHhAIbBFC7BdCfAQghIgSQnwHIKUsBB4CNgFHgFVSykN21qtDhw4dOuyEvVFA7aq4ngCMKfX6O+A7e+rSoUOHDh2OhUfvBNahQ4cOHVVDHwB06NCho55CHwB06NCho55CHwB06NCho55CHwB06NCho55CHwB06NCho55CHwB06NCho55CHwB06NCho55CHwB06NCho55CHwB06NCho57CYecBaAEhRApgjx90OHDRQXQcBXfkBDovW6Hzsh7uyAk8l1dLKWVjazK69QBgL4QQe6z1xXYW3JET6Lxshc7LergjJ9B5gS4B6dChQ0e9hT4A6NChQ0c9hacPAB+7mkAlcEdOoPOyFTov6+GOnEDn5dlrADp06NCho2p4+gxAhw4dOnRUAY8aAIQQ84UQR4UQB4QQa4QQwVXkGy2EOCaEOCmEmKsxp8lCiENCCJMQosqVfSFEnBDiYPHRmnu05GQjL6e1VXF9oUKILUKIE8X/h1SRr6i4rfYLITQ7Y7qmzy+E8BVCfFn8/q9CiFZacbGB091CiJRS7XOv1pyK6/2PECJZCPFnFe8LIcSCYt4HhBA93IDTECFERqm2ekFrTsX1RgshtgkhjhT/HT5aSR7t20tK6TE/wEjAWJx+A3ijkjxewCmgDeAD/AFcpSGnzkBHIBboVU2+OCDciW1VIy9nt1VxnW8Cc4vTcyv7Dovfy3ZCG9X4+YEHgI+K01OAL92A093Ae876XSpV73VAD+DPKt4fA/wXEEA/4Fc34DQE2OCCtmoK9ChOBwLHK/keNW8vj5oBSCk3S3UIPcAuoHkl2foAJ6WUp6WUV4AvgPEacjoipTymVfm1hZW8nNpWxRgPfFqc/hS4WeP6qoM1n78039XAMCGEcDEnl0BKuR24VE2W8cAyqbALCBZCNHUxJ5dASpkopfy9OJ0FHAGalcumeXt51ABQDvegRs/yaAacK/X6PBUb3hWQwGYhxF4hxCxXkymGK9oqUkqZCOqPBIioIp+fEGKPEGKXEEKrQcKaz1+Sp/jhIwMI04iPtZwA/lYsG6wWQkRryMcWuOvfXn8hxB9CiP8KIWKcXXmxbNgd+LXcW5q3l9GRhTkDQoitQJNK3npOSvltcZ7ngELgs8qKqOSaXaFQ1nCyAgOllAlCiAhgixDiaPHTiyt5ObytoHpeNhTTori92gA/CiEOSilP2cutHKz5/Jq0UTWwpr71wEopZb4QYjZqhjJUQ07WwtltZQ1+R1knZAshxgBrgfbOqlwI0RD4Gvi7lDKz/NuV3OLQ9qpzA4CUcnh17wshpgFjgWGyWEgrh/NA6Sei5kCClpysLCOh+P9kIcQa1FTfrgHAAbwc3lZQPS8hRJIQoqmUMrF4uptcRRnm9jothIhFPUE5egCw5vOb85wXQhiBRmgrOdTISUqZWurl/6LWw9wBmvw+2YPSna6U8jshxAdCiHAppeYeQUIIb1Tn/5mU8ptKsmjeXh4lAQkhRgNPA+OklLlVZPsNaC+EaC2E8EEt3GkWRWINhBABQohAcxq1mF1p1IKT4Yq2WgdMK05PAyrMVIQQIUII3+J0ODAQOKwBF2s+f2m+k4Afq3jwcBqncjrxOJS+7A5YB9xVHN3SD8gwy32ughCiiXnNRgjRB9UnplZ/l0PqFcAnwBEp5f9UkU379nL26reWP8BJlGa2v/jHHJ0RBXxXKt8Y1Kr7KZQcoiWnCaiRPB9IAjaV54SK6Pij+OeQ1pys5eXstiquLwz4AThR/H9o8fVewOLi9ADgYHF7HQRmaMinwucHXkE9ZAD4AV8V/+7tBto4oY1q4vR68e/RH8A2oJPWnIrrXQkkAgXFv1szgNnA7OL3BfB+Me+DVBMV50ROD5Vqq13AACe11bUoOedAqf5qjLPbS98JrEOHDh31FB4lAenQoUOHDuuhDwA6dOjQUU+hDwA6dOjQUU+hDwA6dOjQUU+hDwA6dOjQUU+hDwA6dOjQUU+hDwA6dOjQUU+hDwA6dOjQUU/x/0XxZFZGnAdGAAAAAElFTkSuQmCC\n",
"<matplotlib.figure.Figure at 0x7ffb380e65f8>"
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.svm import LinearSVC, SVC\n",
"from sklearn.preprocessing import PolynomialFeatures\n",
"from sklearn.tree import DecisionTreeClassifier\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"\n",
"\n",
"def train_and_plot_decision_surface(clf, preproc, features, labels, marker=\".\", N=400):\n",
" \n",
" features = np.array(features)\n",
" xmin, ymin = features.min(axis=0)\n",
" xmax, ymax = features.max(axis=0)\n",
" \n",
" x = np.linspace(xmin, xmax, N)\n",
" y = np.linspace(ymin, ymax, N) \n",
" points = np.array(np.meshgrid(x, y)).T.reshape(-1, 2)\n",
" \n",
"\n",
" if preproc is not None:\n",
" points_for_clf = preproc.fit_transform(points)\n",
" features = preproc.fit_transform(features)\n",
" else:\n",
" points_for_clf = points\n",
" \n",
" clf.fit(features, labels)\n",
" predicted = clf.predict(features)\n",
" print(sum(predicted == labels), \"out of\", len(labels), \"predicted correctly\")\n",
" classes = np.array(clf.predict(points_for_clf), dtype=bool) \n",
" plt.plot(points[classes][:, 0], points[classes][:, 1], \"g\" + marker, markersize=1, alpha=.05);\n",
" plt.plot(points[~classes][:, 0], points[~classes][:, 1], \"r\" + marker, markersize=1, alpha=.05);\n",
"\n",
"\n",
"df = pd.read_csv(\"2d_points.csv\")\n",
"df = pd.read_csv(\"xor.csv\")\n",
"\n",
"features = df.iloc[:, :-1]\n",
"labels = df.iloc[:, -1]\n",
"\n",
"plt.figure(figsize=(6, 6));\n",
"\n",
"clf = LinearSVC()\n",
"# clf = LogisticRegression()\n",
"# clf = SVC(gamma=.1)\n",
"# clf = DecisionTreeClassifier(max_depth=6)\n",
"# clf = KNeighborsClassifier(10)\n",
"\n",
"preproc = PolynomialFeatures()\n",
"# preproc = None\n",
"\n",
"train_and_plot_decision_surface(clf, preproc, features, labels)\n",
"\n",
"colors = [\"rg\"[i] for i in labels]\n",
"plt.scatter(features.iloc[:, 0], features.iloc[:, 1], color=colors, marker='.');"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- modify the script to use the `xor.csv` data set.\n",
"\n",
"- play with the other classifiers which are outcommented in the script and play with their parameters and deactivate the feature engineering step.\n"
]
},
{
"cell_type": "code",
"execution_count": 369,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/uweschmitt/Projects/machinelearning-introduction-workshop/venv3.6/lib/python3.6/site-packages/ipykernel_launcher.py:9: UserWarning: get_ipython_dir has moved to the IPython.paths module since IPython 4.0.\n",
" if __name__ == '__main__':\n"
]
},
{
"data": {
"text/html": [
"<style>\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Source+Code+Pro');\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Kameron');\n",
" @import url('http://fonts.googleapis.com/css?family=Crimson+Text');\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Lato');\n",
" @import url('http://fonts.googleapis.com/css?family=Source+Sans+Pro');\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Lora'); \n",
"\n",
" \n",
" body {\n",
" font-family: 'Lora', Consolas, sans-serif;\n",
" \n",
" -webkit-print-color-adjust: exact important !;\n",
" \n",
" \n",
" \n",
" }\n",
" .rendered_html code\n",
" {\n",
" color: black;\n",
" background: #eaf0ff;\n",
" background: #f5f5f5; \n",
" padding: 1pt;\n",
" font-family: 'Source Code Pro', Consolas, monocco, monospace;\n",
" }\n",
" \n",
" p {\n",
" line-height: 140%;\n",
" }\n",
" \n",
" strong code {\n",
" background: red;\n",
" }\n",
" \n",
" em {\n",
" color: green;\n",
" }\n",
" \n",
" .rendered_html strong code\n",
" {\n",
" background: #f5f5f5;\n",
" }\n",
" \n",
" .CodeMirror pre {\n",
" font-family: 'Source Code Pro', monocco, Consolas, monocco, monospace;\n",
" }\n",
" \n",
" .cm-s-ipython span.cm-keyword {\n",
" font-weight: normal;\n",
" }\n",
" \n",
" strong {\n",
" background: #f5f5f5;\n",
" margin-top: 4pt;\n",
" margin-bottom: 4pt;\n",
" padding: 2pt;\n",
" border: 0.5px solid #a0a0a0;\n",
" font-weight: bold;\n",
" color: darkred;\n",
" }\n",
" \n",
" \n",
" div #notebook {\n",
" # font-size: 10pt; \n",
" line-height: 145%;\n",
" }\n",
" \n",
" li {\n",
" line-height: 145%;\n",
" }\n",
"\n",
" div.output_area pre {\n",
" background: #fff9d8 !important;\n",
" padding: 5pt;\n",
" \n",
" -webkit-print-color-adjust: exact; \n",
" \n",
" }\n",
" \n",
" \n",
" \n",
" h1, h2, h3, h4 {\n",
" font-family: Kameron, arial;\n",
" }\n",
" \n",
" div#maintoolbar {display: none !important;}\n",
" </style>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": 369,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#REMOVEBEGIN\n",
"# THE LINES BELOW ARE JUST FOR STYLING THE CONTENT ABOVE !\n",
"\n",
"from IPython import utils\n",
"from IPython.core.display import HTML\n",
"import os\n",
"def css_styling():\n",
" \"\"\"Load default custom.css file from ipython profile\"\"\"\n",
" base = utils.path.get_ipython_dir()\n",
" styles = \"\"\"<style>\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Source+Code+Pro');\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Kameron');\n",
" @import url('http://fonts.googleapis.com/css?family=Crimson+Text');\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Lato');\n",
" @import url('http://fonts.googleapis.com/css?family=Source+Sans+Pro');\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Lora'); \n",
"\n",
" \n",
" body {\n",
" font-family: 'Lora', Consolas, sans-serif;\n",
" \n",
" -webkit-print-color-adjust: exact important !;\n",
" \n",
" \n",
" \n",
" }\n",
" .rendered_html code\n",
" {\n",
" color: black;\n",
" background: #eaf0ff;\n",
" background: #f5f5f5; \n",
" padding: 1pt;\n",
" font-family: 'Source Code Pro', Consolas, monocco, monospace;\n",
" }\n",
" \n",
" p {\n",
" line-height: 140%;\n",
" }\n",
" \n",
" strong code {\n",
" background: red;\n",
" }\n",
" \n",
" em {\n",
" color: green;\n",
" }\n",
" \n",
" .rendered_html strong code\n",
" {\n",
" background: #f5f5f5;\n",
" }\n",
" \n",
" .CodeMirror pre {\n",
" font-family: 'Source Code Pro', monocco, Consolas, monocco, monospace;\n",
" }\n",
" \n",
" .cm-s-ipython span.cm-keyword {\n",
" font-weight: normal;\n",
" }\n",
" \n",
" strong {\n",
" background: #f5f5f5;\n",
" margin-top: 4pt;\n",
" margin-bottom: 4pt;\n",
" padding: 2pt;\n",
" border: 0.5px solid #a0a0a0;\n",
" font-weight: bold;\n",
" color: darkred;\n",
" }\n",
" \n",
" \n",
" div #notebook {\n",
" # font-size: 10pt; \n",
" line-height: 145%;\n",
" }\n",
" \n",
" li {\n",
" line-height: 145%;\n",
" }\n",
"\n",
" div.output_area pre {\n",
" background: #fff9d8 !important;\n",
" padding: 5pt;\n",
" \n",
" -webkit-print-color-adjust: exact; \n",
" \n",
" }\n",
" \n",
" \n",
" \n",
" h1, h2, h3, h4 {\n",
" font-family: Kameron, arial;\n",
" }\n",
" \n",
" div#maintoolbar {display: none !important;}\n",
" </style>\"\"\"\n",
" return HTML(styles)\n",
"css_styling()\n",
"#REMOVEEND"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",