Skip to content
Snippets Groups Projects
Commit c3c19ee2 authored by felmer's avatar felmer
Browse files

SSDM-10264: missing removals of proteomics modul references

parent f04e6211
No related branches found
No related tags found
No related merge requests found
Showing
with 0 additions and 198 deletions
import ch.systemsx.cisd.openbis.generic.server.jython.api.v1.DataType as DataType
tr = service.transaction()
file_type_HTML = tr.getOrCreateNewFileFormatType('HTML')
file_type_HTML.setDescription('HTML File')
file_type_MZDATA = tr.getOrCreateNewFileFormatType('MZDATA')
file_type_MZDATA.setDescription('Mass spectrometry data format.')
file_type_MZML = tr.getOrCreateNewFileFormatType('MZML')
file_type_MZML.setDescription('Mass spectrometry data format. \
Unifiying mzXML and mzData formats, as released at the \
2008 American Society for Mass Spectrometry Meeting.')
file_type_MZXML = tr.getOrCreateNewFileFormatType('MZXML')
file_type_MZXML.setDescription('Mass spectrometry data format.')
file_type_RAW = tr.getOrCreateNewFileFormatType('RAW')
file_type_RAW.setDescription('Proprietary file format for Thermo mass sepectrometry data.')
file_type_TGZ = tr.getOrCreateNewFileFormatType('TGZ')
file_type_TGZ.setDescription('gzipped tar')
file_type_WIFF = tr.getOrCreateNewFileFormatType('WIFF')
file_type_WIFF.setDescription('Proprieatry file format for Sciex and Agilent mass spectrometry data.')
file_type_ZIP = tr.getOrCreateNewFileFormatType('ZIP')
file_type_ZIP.setDescription('A zipped package')
vocabulary_TREATMENT_TYPE = tr.getOrCreateNewVocabulary('TREATMENT_TYPE')
vocabulary_term_TREATMENT_TYPE_PH = tr.createNewVocabularyTerm('PH')
vocabulary_term_TREATMENT_TYPE_PH.setDescription(None)
vocabulary_term_TREATMENT_TYPE_PH.setUrl(None)
vocabulary_term_TREATMENT_TYPE_PH.setLabel('ph')
vocabulary_term_TREATMENT_TYPE_PH.setOrdinal(1)
vocabulary_TREATMENT_TYPE.addTerm(vocabulary_term_TREATMENT_TYPE_PH)
exp_type_BIOLOGICAL_EXPERIMENT = tr.getOrCreateNewExperimentType('BIOLOGICAL_EXPERIMENT')
exp_type_BIOLOGICAL_EXPERIMENT.setDescription('A biological experiment')
exp_type_MS_INJECT = tr.getOrCreateNewExperimentType('MS_INJECT')
exp_type_MS_INJECT.setDescription('MS injection experiment')
exp_type_MS_QUANTIFICATION = tr.getOrCreateNewExperimentType('MS_QUANTIFICATION')
exp_type_MS_QUANTIFICATION.setDescription('Quantification of LC-MS data')
data_set_type_MZXML_DATA = tr.getOrCreateNewDataSetType('MZXML_DATA')
data_set_type_MZXML_DATA.setDescription('standardized format for ms data')
data_set_type_RAW_DATA = tr.getOrCreateNewDataSetType('RAW_DATA')
data_set_type_RAW_DATA.setDescription(None)
prop_type_PARENTDATASETCODES = tr.getOrCreateNewPropertyType('PARENT-DATA-SET-CODES', DataType.VARCHAR)
prop_type_PARENTDATASETCODES.setLabel('Parent Dataset Codes')
prop_type_PARENTDATASETCODES.setManagedInternally(False)
prop_type_PARENTDATASETCODES.setInternalNamespace(False)
prop_type_TREATMENT_TYPE1 = tr.getOrCreateNewPropertyType('TREATMENT_TYPE1', DataType.CONTROLLEDVOCABULARY)
prop_type_TREATMENT_TYPE1.setLabel('Treatment Type 1')
prop_type_TREATMENT_TYPE1.setManagedInternally(False)
prop_type_TREATMENT_TYPE1.setInternalNamespace(False)
prop_type_TREATMENT_TYPE1.setVocabulary(vocabulary_TREATMENT_TYPE)
prop_type_TREATMENT_TYPE2 = tr.getOrCreateNewPropertyType('TREATMENT_TYPE2', DataType.CONTROLLEDVOCABULARY)
prop_type_TREATMENT_TYPE2.setLabel('Treatment Type 2')
prop_type_TREATMENT_TYPE2.setManagedInternally(False)
prop_type_TREATMENT_TYPE2.setInternalNamespace(False)
prop_type_TREATMENT_TYPE2.setVocabulary(vocabulary_TREATMENT_TYPE)
prop_type_TREATMENT_TYPE3 = tr.getOrCreateNewPropertyType('TREATMENT_TYPE3', DataType.CONTROLLEDVOCABULARY)
prop_type_TREATMENT_TYPE3.setLabel('Treatment Type 3')
prop_type_TREATMENT_TYPE3.setManagedInternally(False)
prop_type_TREATMENT_TYPE3.setInternalNamespace(False)
prop_type_TREATMENT_TYPE3.setVocabulary(vocabulary_TREATMENT_TYPE)
#
# Data Store Server data source for the database storing protein identification and quantification results.
#
# Variables:
# proteomics-basic-database-name
# First part of the database name. Default value is 'proteomics'.
# proteomics-database-kind
# Second part of the database name. Default value is 'productive'.
#
database-driver = org.postgresql.Driver
database-url = jdbc:postgresql://localhost/${proteomics-basic-database-name:proteomics}_test_js_common
import ch.systemsx.cisd.openbis.generic.server.jython.api.v1.DataType as DataType
tr = service.transaction()
vocabulary_TREATMENT_TYPE = tr.getOrCreateNewVocabulary('TREATMENT_TYPE')
vocabulary_TREATMENT_TYPE.setDescription('Type of treatment of a biological sample.')
vocabulary_TREATMENT_TYPE.setUrlTemplate(None)
vocabulary_TREATMENT_TYPE.setManagedInternally(False)
vocabulary_TREATMENT_TYPE.setInternalNamespace(False)
vocabulary_TREATMENT_TYPE.setChosenFromList(True)
exp_type_MS_SEARCH = tr.getOrCreateNewExperimentType('MS_SEARCH')
exp_type_MS_SEARCH.setDescription('MS_SEARCH experiment')
samp_type_MS_INJECTION = tr.getOrCreateNewSampleType('MS_INJECTION')
samp_type_MS_INJECTION.setDescription('injection of a biological sample into a MS')
samp_type_MS_INJECTION.setListable(True)
samp_type_MS_INJECTION.setSubcodeUnique(False)
samp_type_MS_INJECTION.setAutoGeneratedCode(False)
samp_type_MS_INJECTION.setGeneratedCodePrefix('S')
samp_type_SEARCH = tr.getOrCreateNewSampleType('SEARCH')
samp_type_SEARCH.setDescription('pointer to an MS_INJECTION sample used as placeholder for searches')
samp_type_SEARCH.setListable(True)
samp_type_SEARCH.setSubcodeUnique(False)
samp_type_SEARCH.setAutoGeneratedCode(False)
samp_type_SEARCH.setGeneratedCodePrefix('S')
data_set_type_PROT_RESULT = tr.getOrCreateNewDataSetType('PROT_RESULT')
data_set_type_PROT_RESULT.setDescription('protXML file')
proteomics-application-context-required = true
#
# Data source for the database stroing protein identification and quantification results.
#
# Variables:
# proteomics-database.url-host-part
# The host and optionally port. Default is 'localhost'.
# proteomics-basic-database-name
# First part of the database name. Default value is 'proteomics'.
# proteomics-database-kind
# Second part of the database name. Default value is 'productive'.
# proteomics-sql-root-folder
# Path to root folder of SQL scripts. Default value is an empty string.
#
version-holder-class = ch.systemsx.cisd.openbis.etlserver.proteomics.DatabaseVersionHolder
databaseEngineCode = postgresql
urlHostPart = ${proteomics-database.url-host-part:localhost}
basicDatabaseName = ${proteomics-basic-database-name:proteomics}
databaseKind = ${proteomics-database-kind:productive}
scriptFolder = ${proteomics-sql-root-folder:}sql/proteomics
#
# Drop box for MS spectra data.
#
# Variables:
# incoming-root-dir
# Path to the directory which contains incoming directories for drop boxes.
incoming-dir = ${incoming-root-dir}/incoming-ms-injection
# Determines when the incoming data should be considered complete and ready to be processed.
# Allowed values:
# - auto-detection - when no write access will be detected for a specified 'quite-period'
# - marker-file - when an appropriate marker file for the data exists.
# The default value is 'marker-file'.
incoming-data-completeness-condition = marker-file
data-set-info-extractor = ch.systemsx.cisd.openbis.etlserver.proteomics.DataSetInfoExtractorForMSInjection
storage-processor = ch.systemsx.cisd.etlserver.DefaultStorageProcessor
type-extractor = ch.systemsx.cisd.openbis.etlserver.proteomics.TypeExtractorForMSInjection
#
# Drop box for protein identification and quantification data.
#
# Variables:
# incoming-root-dir
# Path to the directory which contains incoming directories for drop boxes.
#
# This drop box assumes that data source 'proteomics-db' has been defined.
#
incoming-dir = ${incoming-root-dir}/incoming-ms-search
incoming-data-completeness-condition = marker-file
data-set-info-extractor = ch.systemsx.cisd.openbis.etlserver.proteomics.DataSetInfoExtractorForProteinResults
data-set-info-extractor.separator = +
type-extractor = ch.systemsx.cisd.etlserver.SimpleTypeExtractor
type-extractor.file-format-type = XML
type-extractor.locator-type = RELATIVE_LOCATION
type-extractor.data-set-type = PROT_RESULT
type-extractor.is-measured = false
storage-processor = ch.systemsx.cisd.openbis.etlserver.proteomics.StorageProcessorWithResultDataSetUploader
storage-processor.processor = ch.systemsx.cisd.etlserver.DefaultStorageProcessor
storage-processor.assuming-extended-prot-xml = false
storage-processor.database.basic-name = ${proteomics-db.basicDatabaseName}
storage-processor.database.kind = ${proteomics-db.databaseKind}
storage-processor.database.owner =
storage-processor.database.password =
\ No newline at end of file
#
# Maintenance task which does a database clean up by deleting all data sets deleted in application server.
# This task assumes that data source 'proteomics-db' has been defined.
#
class = ch.systemsx.cisd.etlserver.plugins.DeleteFromExternalDBMaintenanceTask
interval = 300
data-source = proteomics-db
data-set-table-name = data_sets
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment