Skip to content
Snippets Groups Projects
pybis playground localhost.ipynb 39.2 KiB
Newer Older
  • Learn to ignore specific revisions
  •        "  'properties': {},\n",
           "  'registrationDate': 1467670542904,\n",
           "  'registrator': None,\n",
           "  'sample': None,\n",
           "  'tags': None,\n",
           "  'type': None},\n",
           " {'@id': 32,\n",
           "  '@type': 'as.dto.dataset.DataSet',\n",
           "  'accessDate': 1467672114927,\n",
           "  'children': None,\n",
           "  'code': '20160705000958412-193',\n",
           "  'components': None,\n",
           "  'containers': None,\n",
           "  'dataProducer': None,\n",
           "  'dataProductionDate': None,\n",
           "  'dataStore': None,\n",
           "  'experiment': None,\n",
           "  'fetchOptions': {'@id': 33,\n",
           "   '@type': 'as.dto.dataset.fetchoptions.DataSetFetchOptions',\n",
           "   'cacheMode': 'NO_CACHE',\n",
           "   'children': None,\n",
           "   'components': None,\n",
           "   'containers': None,\n",
           "   'count': None,\n",
           "   'dataStore': None,\n",
           "   'experiment': None,\n",
           "   'from': None,\n",
           "   'history': None,\n",
           "   'linkedData': None,\n",
           "   'materialProperties': None,\n",
           "   'modifier': None,\n",
           "   'parents': None,\n",
           "   'physicalData': None,\n",
           "   'properties': 10,\n",
           "   'registrator': None,\n",
           "   'sample': None,\n",
           "   'sort': None,\n",
           "   'sortBy': None,\n",
           "   'tags': None,\n",
           "   'type': None},\n",
           "  'history': None,\n",
           "  'linkedData': None,\n",
           "  'materialProperties': None,\n",
           "  'measured': True,\n",
           "  'modificationDate': 1467670202154,\n",
           "  'modifier': None,\n",
           "  'parents': None,\n",
           "  'permId': {'@id': 34,\n",
           "   '@type': 'as.dto.dataset.id.DataSetPermId',\n",
           "   'permId': '20160705000958412-193'},\n",
           "  'physicalData': None,\n",
           "  'postRegistered': True,\n",
           "  'properties': {},\n",
           "  'registrationDate': 1467670202154,\n",
           "  'registrator': None,\n",
           "  'sample': None,\n",
           "  'tags': None,\n",
           "  'type': None}]"
          ]
         },
         "execution_count": 3,
         "metadata": {},
         "output_type": "execute_result"
        }
       ],
       "source": [
        "sample.dataSets"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "## working with datasets and files"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 4,
    
       "outputs": [
        {
         "data": {
          "text/html": [
           "<div>\n",
           "<table border=\"1\" class=\"dataframe\">\n",
           "  <thead>\n",
           "    <tr style=\"text-align: right;\">\n",
           "      <th></th>\n",
           "      <th>code</th>\n",
           "      <th>properties</th>\n",
           "    </tr>\n",
           "  </thead>\n",
           "  <tbody>\n",
           "    <tr>\n",
           "      <th>0</th>\n",
           "      <td>20160705105115020-196</td>\n",
           "      <td>{'DESCRIPTION': 'This is a new description of ...</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>1</th>\n",
           "      <td>20160705105113015-195</td>\n",
           "      <td>{}</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2</th>\n",
           "      <td>20160705171928021-202</td>\n",
           "      <td>{}</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>3</th>\n",
           "      <td>20160705175418011-204</td>\n",
           "      <td>{}</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>4</th>\n",
           "      <td>20160705001541496-194</td>\n",
           "      <td>{}</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>5</th>\n",
           "      <td>20160705000958412-193</td>\n",
           "      <td>{}</td>\n",
           "    </tr>\n",
           "  </tbody>\n",
           "</table>\n",
           "</div>"
          ],
          "text/plain": [
           "                    code                                         properties\n",
           "0  20160705105115020-196  {'DESCRIPTION': 'This is a new description of ...\n",
           "1  20160705105113015-195                                                 {}\n",
           "2  20160705171928021-202                                                 {}\n",
           "3  20160705175418011-204                                                 {}\n",
           "4  20160705001541496-194                                                 {}\n",
           "5  20160705000958412-193                                                 {}"
          ]
         },
         "execution_count": 4,
         "metadata": {},
         "output_type": "execute_result"
        }
       ],
       "source": [
        "sample.get_datasets()"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 5,
    
       "outputs": [],
       "source": [
        "ds1 = o.get_dataset('20160705105115020-196')"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 7,
    
       "outputs": [
        {
         "data": {
          "text/plain": [
           "['original/1468931666.06/Untitled.ipynb',\n",
           " 'original/1468931666.53/Untitled.ipynb']"
          ]
         },
         "execution_count": 7,
         "metadata": {},
         "output_type": "execute_result"
        }
       ],
       "source": [
        "ds1.file_list()"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 8,
       "metadata": {
        "collapsed": true
       },
       "outputs": [],
       "source": [
        "ds1.download()"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 11,
    
       "outputs": [
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
          "Untitled.ipynb\r\n"
         ]
        }
       ],
       "source": [
        "ls localhost/20160705105115020-196/original/1468931666.06/"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "## Analysis ##\n",
        "An analysis has a name, description and parent dataset. Anytime it is saved, a new version of it is saved. On openBIS, an analysis is a container object which contains the result datafiles and the jupyter notebook. If an analysis is saved a second time, two new datasets are generated, both having parents of their previous datasets set."
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 15,
    
       "outputs": [
        {
         "data": {
          "text/plain": [
           "'20160630105337180-82'"
          ]
         },
         "execution_count": 15,
         "metadata": {},
         "output_type": "execute_result"
        }
       ],
       "source": [
        "s1 = o.get_sample('/VERMEUL/HOW_WONDERFUL2')\n",
        "s1.permid"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 14,
    
       "outputs": [
        {
         "data": {
          "text/plain": [
           "{'@id': 1,\n",
           " '@type': 'QueryTableModel',\n",
           " 'columns': [{'@id': 2,\n",
           "   '@type': 'QueryTableColumn',\n",
           "   'dataType': 'STRING',\n",
           "   'title': 'STATUS'},\n",
           "  {'@id': 3,\n",
           "   '@type': 'QueryTableColumn',\n",
           "   'dataType': 'STRING',\n",
           "   'title': 'MESSAGE'},\n",
           "  {'@id': 4,\n",
           "   '@type': 'QueryTableColumn',\n",
           "   'dataType': 'STRING',\n",
           "   'title': 'RESULT'}],\n",
           " 'rows': [[{'@id': 5, 'type': 'STRING', 'value': 'OK'},\n",
           "   {'@id': 6, 'type': 'STRING', 'value': 'Dataset registration successful'},\n",
           "   {'@id': 7, 'type': 'STRING', 'value': ''}]]}"
          ]
         },
         "execution_count": 14,
         "metadata": {},
         "output_type": "execute_result"
        }
       ],
       "source": [
        "o.new_analysis(\n",
        "    name='my_delightful_analysis', \n",
        "    description='ave, some!', \n",
        "    sample = s1,\n",
        "    notebook_files=['pybis playground localhost.ipynb'],\n",
        "    result_files=['testfile.txt']\n",
        ")"
       ]
      },
      {
    
       "metadata": {
        "collapsed": true
       },
    
       "source": [
        "## Semantic Annotation "
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
    
       "outputs": [],
    
       "source": [
        "# create semantic annotation for sample type\n",
        "o.new_semantic_annotation(entityType = 'UNKNOWN')\n",
        "\n",
    
        "# create semantic annotation for property type\n",
    
        "o.new_semantic_annotation(propertyType = 'DESCRIPTION')\n",
        "\n",
        "# create semantic annotation for sample property assignment\n",
        "o.new_semantic_annotation(entityType = 'UNKNOWN', propertyType = 'DESCRIPTION')\n",
        "\n",
        "# create semantic annotation with additional fields\n",
        "o.new_semantic_annotation(entityType = 'UNKNOWN', \n",
        "                          predicateOntologyId = 'po_id', \n",
        "                          predicateOntologyVersion = 'po_version', \n",
        "                          predicateAccessionId = 'pa_id',\n",
        "                          descriptorOntologyId = 'do_id',\n",
        "                          descriptorOntologyVersion = 'do_version',\n",
        "                          descriptorAccessionId = 'da_id')\n",
        "\n",
        "# get all semantic annotations\n",
        "o.get_semantic_annotations()\n",
        "\n",
        "# get semantic annotation by perm id\n",
        "sa = o.get_semantic_annotation(\"20171015135637955-30\")\n",
        "\n",
        "# update semantic annotation\n",
        "sa.predicateOntologyId = 'new_po_id'\n",
        "sa.descriptorOntologyId = 'new_do_id'\n",
        "sa.save()\n",
        "                          \n",
        "# delete semantic annotation\n",
        "sa.delete('reason')"
       ]
    
    Swen Vermeul's avatar
    Swen Vermeul committed
      }
     ],
     "metadata": {
      "kernelspec": {
       "display_name": "Python 3",
       "language": "python",
       "name": "python3"
      },
      "language_info": {
       "codemirror_mode": {
        "name": "ipython",
        "version": 3
       },
       "file_extension": ".py",
       "mimetype": "text/x-python",
       "name": "python",
       "nbconvert_exporter": "python",
       "pygments_lexer": "ipython3",
    
    Swen Vermeul's avatar
    Swen Vermeul committed
      }
     },
     "nbformat": 4,