Skip to content
Snippets Groups Projects
import-feature-vectors-with-lists-childOfSegmentationDS-concatcsvGenes.py 19.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • barillac's avatar
    barillac committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
    
    import os, glob, re, csv, time, shutil
    from time import *
    from datetime import *
    
    
    #from ch.systemsx.cisd.openbis.dss.etl.dto.api.v2 import *
    from ch.systemsx.cisd.openbis.dss.etl.dto.api.v2 import SimpleFeatureVectorDataConfig
    #from java.util import Properties 
    from ch.systemsx.cisd.openbis.generic.shared.api.v1.dto import SearchCriteria
    from ch.systemsx.cisd.openbis.generic.shared.api.v1.dto import SearchSubCriteria
    from ch.systemsx.cisd.openbis.dss.etl.dto.api.v2 import FeatureListDataConfig 
       
    
    '''
    Dropbox for importing a feature vector dataset and for creating feature lists datasets from there. 
    
    This dataset is set to be a child of the segmentation dataset produced by Fethallah.
    
    '''
    print '###################################'
    tz=localtime()[3]-gmtime()[3]
    d=datetime.now()
    print d.strftime("%Y-%m-%d %H:%M:%S GMT"+"%+.2d" % tz+":00")
    
    accuracyA1_sirna_list = []
    accuracyA2_sirna_list =[]
    KStestA2_sirna_list = []
    KStestA1_sirna_list = []
    KSdeltaA2_sirna_list = []
    KSdeltaA1_sirna_list = []
    KSpvalueA2_sirna_list = []
    KSpvalueA1_sirna_list = []
    feature_directionA2_sirna_list = []
    feature_directionA1_sirna_list = []
    accuracyA1_gene_list = []
    accuracyA2_gene_list =[]
    KStestA2_gene_list = []
    KStestA1_gene_list = []
    KSdeltaA2_gene_list = []
    KSdeltaA1_gene_list = []
    KSpvalueA2_gene_list = []
    KSpvalueA1_gene_list = []
    feature_directionA2_gene_list = []
    feature_directionA1_gene_list = []
    
    
    def process(transaction):
    	
    	incoming = transaction.getIncoming()
    
    	
    # 	def copyTextFile(incoming):
    # 	  for textfile in glob.glob(os.path.join(incoming, 'OriginalDataDirectory.txt')):
    # 		rawDataFile = incoming + '/RawDataDirectory.txt'
    # 		shutil.copyfile(textfile, rawDataFile)
    # 	   
    # 	copyTextFile(incoming.getPath())
    	
    
    #extract dataset code and plate of original image files from file OriginalDataDirectory.txt
    	def extractImageDataSetCode(incoming):
    		dataSetCode = ''
    		plateCode = ''
    		for textfile in glob.glob(os.path.join(incoming, 'OriginalDataDirectory.txt')):
    		  text = open(textfile, "r")
    		  lineIndex =0
    		  for line in text:
    			lineIndex=lineIndex+1
    		 	if re.match('/raid', line):
    		#	if re.match('/Users', line):
    			  token_list = re.split(r"[/]",line)
    			  token_list = [ item.strip() for item in token_list ]
    			  token_list = filter(lambda x: len(x) > 0, token_list)
    			  dataSetCode = token_list[8] #right position for raid is 8, for local use is 10
    			if re.match('PLATE',line):
    			  plateCode = line
    		
    		return dataSetCode, plateCode    
    		  
    	extractImageDataSetCode(incoming.getPath())
    
    # check if plate code extracted above is the same as one of those in file  AnalysisFethallaExample_location.txt. If so, get the dataset code associated with that plate. This is the dataset 	
    # that contains the analysis matlab files produced by Fethallah, which have been used by Riwal to perform his analysis, so the new dataset registered should be a child of Fethallah's dataset.
    	def extractSegmentationDataSetCode(incoming):
    		segmentationDataSetCode = ''
    		segmentationPlateCode = ''
    		for textfile in glob.glob(os.path.join(incoming, 'FethallahAnalysisOBLocation.txt')):
    		  text = open(textfile, "r")
    		  lineIndex =0
    		  for line in text:
    			lineIndex=lineIndex+1
    			token_list = re.split(r"[\t]",line)
    			token_list = [ item.strip() for item in token_list ]
    			token_list = filter(lambda x: len(x) > 0, token_list)
    			segmentationPlateCode = token_list[1]
    			if (segmentationPlateCode == extractImageDataSetCode(incoming)[1].strip()):
    				segmentationDataSetCode = token_list[0]
    		
    		return segmentationDataSetCode
    
    	extractSegmentationDataSetCode(incoming.getPath())   
    	
    	def parse_gene_csv(incoming):
    		for csv_file in glob.glob(os.path.join(incoming, 'A*gene.csv')):
    			(dirName2, fileName2) = os.path.split(csv_file)
    			(basename2, extension2) = os.path.splitext(fileName2)
    			well_list = re.split(r"[_]",basename2)
    			control = well_list[0]
    			measure = well_list[1]
    			csvfile = open(csv_file, "rb")
    			test = csv.reader(csvfile, delimiter=',', quotechar='"')
    			for i, row in enumerate(test):
    				if i !=0:
    					fnv = row[0]
    					accuracy_value = row[1]
    					KStest_value = row[2]
    					KSdelta_value = row[3]
    					KSpvalue_value = row[4]
    					feature_direction_value = row[5]
    					
    					accuracyA2 = (fnv +"_G_ac_A2").upper()
    					KStestA2 = (fnv+"_G_KSt_A2").upper()
    					KSdeltaA2 = (fnv+"_G_KSd_A2").upper()
    					KSpvalueA2 = (fnv+"_G_KSp_A2").upper()
    					feature_directionA2 = (fnv+"_G_dir_A2").upper()
    	
    					accuracyA1 = (fnv +"_G_ac_A1").upper()
    					KStestA1 = (fnv+"_G_KSt_A1").upper()
    					KSdeltaA1 = (fnv+"_G_KSd_A1").upper()
    					KSpvalueA1 = (fnv+"_G_KSp_A1").upper()
    					feature_directionA1 = (fnv+"_G_dir_A1").upper()
    	
    					
    					accuracyA2_gene_list.append(accuracyA2)
    					accuracyA1_gene_list.append(accuracyA1)	
    					KStestA2_gene_list.append(KStestA2)
    					KStestA1_gene_list.append(KStestA1)
    					KSdeltaA2_gene_list.append(KSdeltaA2)
    					KSdeltaA1_gene_list.append(KSdeltaA1)
    					KSpvalueA2_gene_list.append(KSpvalueA2)
    					KSpvalueA1_gene_list.append(KSpvalueA1)
    					feature_directionA2_gene_list.append(feature_directionA2)
    					feature_directionA1_gene_list.append(feature_directionA1)
    					
    		return accuracyA2_gene_list, accuracyA1_gene_list, KStestA2_gene_list, KStestA1_gene_list, 	KSdeltaA2_gene_list, KSdeltaA1_gene_list, KSpvalueA2_gene_list, KSpvalueA1_gene_list, feature_directionA2_gene_list, feature_directionA1_gene_list
    					
    	parse_gene_csv(incoming.getPath())
    	
    	 
    
    	def parse_sirna_csv(incoming):
    
    		for csv_file in glob.glob(os.path.join(incoming, 'A*sirna.csv')):
    			(dirName2, fileName2) = os.path.split(csv_file)
    			(basename2, extension2) = os.path.splitext(fileName2)
    			if re.search("-", basename2):
    				continue
    			else:
    				well_list = re.split(r"[_]",basename2)
    				control = well_list[0]
    				measure = well_list[1]
    				csvfile = open(csv_file, "rb")
    				test = csv.reader(csvfile, delimiter=',', quotechar='"')
    				for i, row in enumerate(test):
    					if i !=0:
    						fnv = row[0]
    						accuracy_value = row[1]
    						KStest_value = row[2]
    						KSdelta_value = row[3]
    						KSpvalue_value = row[4]
    						feature_direction_value = row[5]
    						
    						accuracyA2 = (fnv +"_S_ac_A2").upper()
    						KStestA2 = (fnv+"_S_KSt_A2").upper()
    						KSdeltaA2 = (fnv+"_S_KSd_A2").upper()
    						KSpvalueA2 = (fnv+"_S_KSp_A2").upper()
    						feature_directionA2 = (fnv+"_S_dir_A2").upper()
    		
    						accuracyA1 = (fnv +"_S_ac_A1").upper()
    						KStestA1 = (fnv+"_S_KSt_A1").upper()
    						KSdeltaA1 = (fnv+"_S_KSd_A1").upper()
    						KSpvalueA1 = (fnv+"_S_KSp_A1").upper()
    						feature_directionA1 = (fnv+"_S_dir_A1").upper()
    		
    						
    						accuracyA2_sirna_list.append(accuracyA2)
    						accuracyA1_sirna_list.append(accuracyA1)	
    						KStestA2_sirna_list.append(KStestA2)
    						KStestA1_sirna_list.append(KStestA1)
    						KSdeltaA2_sirna_list.append(KSdeltaA2)
    						KSdeltaA1_sirna_list.append(KSdeltaA1)
    						KSpvalueA2_sirna_list.append(KSpvalueA2)
    						KSpvalueA1_sirna_list.append(KSpvalueA1)
    						feature_directionA2_sirna_list.append(feature_directionA2)
    						feature_directionA1_sirna_list.append(feature_directionA1)
    					
    		return accuracyA2_sirna_list, accuracyA1_sirna_list, KStestA2_sirna_list, KStestA1_sirna_list, 	KSdeltaA2_sirna_list, KSdeltaA1_sirna_list, KSpvalueA2_sirna_list, KSpvalueA1_sirna_list, feature_directionA2_sirna_list, feature_directionA1_sirna_list
    					
    	parse_sirna_csv(incoming.getPath())
    
    
    
    		
    	def defineGeneFeatures(featuresBuilder, incoming):
    		for csv_file in glob.glob(os.path.join(incoming, 'global_gene.csv')):
    			csvf = open(csv_file,'r')
    			globcsv = csv.reader(csvf, delimiter=',')
    			globcsv.next()
    			result_accuracy = {} # accuracy_label => {measure_well => accuracy_value}	
    			result_kstest ={} # kstest => {measure_well => kstest_value}
    			result_ksdelta = {} # ksdelta => {measure_well => ksdelta_value}
    			result_kspvalue ={} # kspvalue => {measure_well => kspvalue_value}
    			result_feature_direction ={}# feature_direction => {measure_well => feature_direction_value}
    			
    			for row in globcsv:			
    				measure_well 			= row[0]
    				group_well 				= re.split(r"[-]",measure_well)
    				group_well1				= group_well[0]
    				control_well  			= row[1]
    				feature_name			= row[3]
    				accuracy_label  		= feature_name + "_G_ac"
    				accuracy_value  		= row[4]
    				kstest					= feature_name + "_G_KSt"
    				kstest_value 			= row[5]
    				ksdelta 				= feature_name + "_G_KSd"
    				ksdelta_value 			= row[6]
    				kspvalue				= feature_name + "_G_KSp"
    				kspvalue_value			= row[7]
    				feature_direction		= feature_name + "_G_dir"
    				feature_direction_value	= row[8]
    				
    				
    				accuracy_key = "%s:%s" %(accuracy_label, control_well)
    				kstest_key = "%s:%s" %(kstest, control_well)
    				ksdelta_key = "%s:%s" %(ksdelta, control_well)
    				kspvalue_key ="%s:%s" %(kspvalue, control_well)
    				feature_direction_key = "%s:%s" %(feature_direction, control_well)
    				
    				
    				if not accuracy_key in result_accuracy:
    					result_accuracy[accuracy_key] = {}
    				
    				result_accuracy[accuracy_key][group_well1] = accuracy_value
    # 				if not kstest_key in result_kstest:
    # 					result_kstest[kstest_key] = {}
    # 					
    # 				result_kstest[kstest_key][measure_well] = kstest_value
    # 
    # 				
    # 				if not ksdelta_key in result_ksdelta:
    # 					result_ksdelta[ksdelta_key] = {}
    # 					
    # 				result_ksdelta[ksdelta_key][measure_well] = ksdelta_value
    # 
    # 				if not kspvalue_key in result_kspvalue:
    # 					result_kspvalue[kspvalue_key] = {}
    # 					
    # 				result_kspvalue[kspvalue_key][measure_well] = kspvalue_value
    # 
    # 
    # 				if not feature_direction_key in result_feature_direction:
    # 					result_feature_direction[feature_direction_key] = {}
    # 					
    # 				result_feature_direction[feature_direction_key][measure_well] = feature_direction_value
    
    
    
    		for feature in result_accuracy:
    			feature_accuracy = featuresBuilder.defineFeature(feature)
    			for well in result_accuracy[feature]:
    				value = result_accuracy[feature][well]
    				feature_accuracy.addValue(well, value)
    		
    # 		for feature_kst in result_kstest:
    # 			feature_kstest = featuresBuilder.defineFeature(feature_kst)
    # 			for well2 in result_kstest[feature_kst]:
    # 				value2 = result_kstest[feature_kst][well2]
    # 				feature_kstest.addValue(well2, value2)
    #  		
    # 
    # 		for feature_ksd in result_ksdelta:
    # 			feature_ksdelta = featuresBuilder.defineFeature(feature_ksd)
    # 			for well1 in result_ksdelta[feature_ksd]:
    # 				value1 = result_ksdelta[feature_ksd][well1]
    # 				feature_ksdelta.addValue(well1, value1)
    #  		
    # 		for feature_ksp in result_kspvalue:
    # 			feature_kspvalue = featuresBuilder.defineFeature(feature_ksp)
    # 			for well3 in result_kspvalue[feature_ksp]:
    # 				value3 = result_kspvalue[feature_ksp][well3]
    # 				feature_kspvalue.addValue(well3, value3)
    # 
    # 		for feature_fd in result_feature_direction:
    # 			feature_feature_direction= featuresBuilder.defineFeature(feature_fd)
    # 			for well4 in result_feature_direction[feature_fd]:
    # 				value4 = result_feature_direction[feature_fd][well4]
    # 				feature_feature_direction.addValue(well4, value4)		
    		
    		
    		
    		for csv_file2 in glob.glob(os.path.join(incoming, 'global_siRNA.csv')):
    			csvf2 = open(csv_file2,'r')
    			globcsv2 = csv.reader(csvf2, delimiter=',')
    			globcsv2.next()
    			result_accuracy_sirna = {} # accuracy_label => {measure_well => accuracy_value}	
    			result_kstest_sirna ={} # kstest => {measure_well => kstest_value}
    			result_ksdelta_sirna = {} # ksdelta => {measure_well => ksdelta_value}
    			result_kspvalue_sirna ={} # kspvalue => {measure_well => kspvalue_value}
    			result_feature_direction_sirna ={}# feature_direction => {measure_well => feature_direction_value}
    			
    			for row in globcsv2:			
    				measure_well_sirna 				= row[0]
    				control_well_sirna  			= row[1]
    				feature_name_sirna				= row[4]
    				accuracy_label_sirna  			= feature_name_sirna + "_S_ac"
    				accuracy_value_sirna  			= row[5]
    				kstest_sirna					= feature_name_sirna + "_S_KSt"
    				kstest_value_sirna 				= row[6]
    				ksdelta_sirna 					= feature_name_sirna + "_S_KSd"
    				ksdelta_value_sirna 			= row[7]
    				kspvalue_sirna					= feature_name_sirna + "_S_KSp"
    				kspvalue_value_sirna			= row[8]
    				feature_direction_sirna			= feature_name_sirna + "_S_dir"
    				feature_direction_value_sirna	= row[9]
    				
    				
    				accuracy_key_sirna = "%s:%s" %(accuracy_label_sirna, control_well_sirna)
    				kstest_key_sirna = "%s:%s" %(kstest_sirna, control_well_sirna)
    				ksdelta_key_sirna = "%s:%s" %(ksdelta_sirna, control_well_sirna)
    				kspvalue_key_sirna ="%s:%s" %(kspvalue_sirna, control_well_sirna)
    				feature_direction_key_sirna = "%s:%s" %(feature_direction_sirna, control_well_sirna)
    				
    				if not accuracy_key_sirna in result_accuracy_sirna:
    					result_accuracy_sirna[accuracy_key_sirna] = {}
    				result_accuracy_sirna[accuracy_key_sirna][measure_well_sirna] = accuracy_value_sirna
    
    
    
    
    # 				if not kstest_key in result_kstest:
    # 					result_kstest[kstest_key] = {}
    # 					
    # 				result_kstest[kstest_key][measure_well] = kstest_value
    # 
    # 				
    # 				if not ksdelta_key in result_ksdelta:
    # 					result_ksdelta[ksdelta_key] = {}
    # 					
    # 				result_ksdelta[ksdelta_key][measure_well] = ksdelta_value
    # 
    # 				if not kspvalue_key in result_kspvalue:
    # 					result_kspvalue[kspvalue_key] = {}
    # 					
    # 				result_kspvalue[kspvalue_key][measure_well] = kspvalue_value
    # 
    # 
    # 				if not feature_direction_key in result_feature_direction:
    # 					result_feature_direction[feature_direction_key] = {}
    # 					
    # 				result_feature_direction[feature_direction_key][measure_well] = feature_direction_value
    
    				
    				
    		for feature_sirna in result_accuracy_sirna:
    			feature_accuracy_sirna = featuresBuilder.defineFeature(feature_sirna)
    			for well_sirna in result_accuracy_sirna[feature_sirna]:
    				value_sirna = result_accuracy_sirna[feature_sirna][well_sirna]
    				feature_accuracy_sirna.addValue(well_sirna, value_sirna)
    
    # 		for feature_kst in result_kstest:
    # 			feature_kstest = featuresBuilder.defineFeature(feature_kst)
    # 			for well2 in result_kstest[feature_kst]:
    # 				value2 = result_kstest[feature_kst][well2]
    # 				feature_kstest.addValue(well2, value2)
    #  		
    # 
    # 		for feature_ksd in result_ksdelta:
    # 			feature_ksdelta = featuresBuilder.defineFeature(feature_ksd)
    # 			for well1 in result_ksdelta[feature_ksd]:
    # 				value1 = result_ksdelta[feature_ksd][well1]
    # 				feature_ksdelta.addValue(well1, value1)
    #  		
    # 		for feature_ksp in result_kspvalue:
    # 			feature_kspvalue = featuresBuilder.defineFeature(feature_ksp)
    # 			for well3 in result_kspvalue[feature_ksp]:
    # 				value3 = result_kspvalue[feature_ksp][well3]
    # 				feature_kspvalue.addValue(well3, value3)
    # 
    # 		for feature_fd in result_feature_direction:
    # 			feature_feature_direction= featuresBuilder.defineFeature(feature_fd)
    # 			for well4 in result_feature_direction[feature_fd]:
    # 				value4 = result_feature_direction[feature_fd][well4]
    # 				feature_feature_direction.addValue(well4, value4)
    
            		 	
      	config = SimpleFeatureVectorDataConfig()
      	featuresBuilder = config.featuresBuilder
      	defineGeneFeatures(featuresBuilder, incoming.getPath())
    	analysisDataset = transaction.createNewFeatureVectorDataSet(config, incoming)
    	
    
    	rawImagesDataSetSample1 = transaction.getDataSet(extractSegmentationDataSetCode(incoming.getPath())).getSample()
    	rawImagesDataSetSample = transaction.getSample('/SINERGIA/' + rawImagesDataSetSample1.getCode())
    
    #        plateIdentifier = "/SINERGIA/PLATE1-G1-10X"
    #        test = transaction.getSample("/SINERGIA/PLATE1-G1-10X")
    #        analysisDataset.setSample(test)	
    
     	analysisDataset.setSample(rawImagesDataSetSample)
      
    	search_service = transaction.getSearchService()
    	
    	sc = SearchCriteria()
    	sc.addMatchClause(SearchCriteria.MatchClause.createAttributeMatch(SearchCriteria.MatchClauseAttribute.CODE,  extractSegmentationDataSetCode(incoming.getPath()) ));
    	foundDataSets = search_service.searchForDataSets(sc)
    	if foundDataSets.size() > 0:
    	  analysisDataset.setParentDatasets([ds.getDataSetCode() for ds in foundDataSets])
      
         # store the original file in the dataset.
     	transaction.moveFile(incoming.getPath(), analysisDataset)
    
    
    
    
    
    ######################## Create Feature lists Datasets ###########################################
    
    	config_accA2 = FeatureListDataConfig()
    	config_accA2.setName("siRNA-based accuracy (reference well: A2)");
    	config_accA2.setFeatureList(accuracyA2_sirna_list)
    	config_accA2.setContainerDataSet(analysisDataset)
    	transaction.createNewFeatureListDataSet(config_accA2)
    
    #	config_accA1 = FeatureListDataConfig()
    #	config_accA1.setName("siRNA-based accuracy (reference well: A1)");
    #	config_accA1.setFeatureList(accuracyA1_sirna_list)
    #	config_accA1.setContainerDataSet(analysisDataset)
    #	transaction.createNewFeatureListDataSet(config_accA1)
    #	
    #	config_gene_accA2 = FeatureListDataConfig()
    #	config_gene_accA2.setName("gene-based accuracy (reference well: A2)");
    #	config_gene_accA2.setFeatureList(accuracyA2_gene_list)
    #	config_gene_accA2.setContainerDataSet(analysisDataset)
    #	transaction.createNewFeatureListDataSet(config_gene_accA2)
    #
    #	config_gene_accA1 = FeatureListDataConfig()
    #	config_gene_accA1.setName("gene-based accuracy (reference well: A1)");
    #	config_gene_accA1.setFeatureList(accuracyA1_gene_list)
    #	config_gene_accA1.setContainerDataSet(analysisDataset)
    #	transaction.createNewFeatureListDataSet(config_gene_accA1)
    #	
    #	
    # 
    # 	config_KStestA2 = FeatureListDataConfig()
    # 	config_KStestA2.setName("KStest (reference well: A2)");
    # 	config_KStestA2.setFeatureList(KStestA2_sirna_list)
    # 	config_KStestA2.setContainerDataSet(analysisDataset)
    # 	transaction.createNewFeatureListDataSet(config_KStestA2)
    # 
    # 	config_KStestA1 = FeatureListDataConfig()
    # 	config_KStestA1.setName("KStest (reference well: A1)");
    # 	config_KStestA1.setFeatureList(KStestA1_sirna_list)
    # 	config_KStestA1.setContainerDataSet(analysisDataset)
    # 	transaction.createNewFeatureListDataSet(config_KStestA1)
    # 
    # 
    # 	config_KSdeltaA2 = FeatureListDataConfig()
    # 	config_KSdeltaA2.setName("KSdelta (reference well: A2)");
    # 	config_KSdeltaA2.setFeatureList(KSdeltaA2_sirna_list)
    # 	config_KSdeltaA2.setContainerDataSet(analysisDataset)
    # 	transaction.createNewFeatureListDataSet(config_KSdeltaA2)
    # 
    # 	config_KSdeltaA1 = FeatureListDataConfig()
    # 	config_KSdeltaA1.setName("KSdelta (reference well: A1)");
    # 	config_KSdeltaA1.setFeatureList(accuracyA1_sirna_list)
    # 	config_KSdeltaA1.setContainerDataSet(analysisDataset)
    # 	transaction.createNewFeatureListDataSet(config_KSdeltaA1)
    # 
    # 
    # 	config_KSpvalueA2 = FeatureListDataConfig()
    # 	config_KSpvalueA2.setName("KSpvalue (reference well: A2)");
    # 	config_KSpvalueA2.setFeatureList(KSpvalueA2_sirna_list)
    # 	config_KSpvalueA2.setContainerDataSet(analysisDataset)
    # 	transaction.createNewFeatureListDataSet(config_KSpvalueA2)
    # 
    # 	config_KSpvalueA1 = FeatureListDataConfig()
    # 	config_KSpvalueA1.setName("KSpvalue (reference well: A1)");
    # 	config_KSpvalueA1.setFeatureList(KSpvalueA1_sirna_list)
    # 	config_KSpvalueA1.setContainerDataSet(analysisDataset)
    # 	transaction.createNewFeatureListDataSet(config_KSpvalueA1)
    # 
    # 	config_feature_directionA2 = FeatureListDataConfig()
    # 	config_feature_directionA2.setName("Direction (reference well: A2)");
    # 	config_feature_directionA2.setFeatureList(feature_directionA2_sirna_list)
    # 	config_feature_directionA2.setContainerDataSet(analysisDataset)
    # 	transaction.createNewFeatureListDataSet(config_feature_directionA2)
    # 
    # 	config_feature_directionA1 = FeatureListDataConfig()
    # 	config_feature_directionA1.setName("Direction (reference well: A1)");
    # 	config_feature_directionA1.setFeatureList(feature_directionA1_sirna_list)
    # 	config_feature_directionA1.setContainerDataSet(analysisDataset)
    # 	transaction.createNewFeatureListDataSet(config_feature_directionA1)