Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Welcome to pyBIS!
pyBIS is a Python module for interacting with openBIS, designed to be used in Jupyter. It offers a sort of IDE for openBIS, supporting TAB completition and input checks, making the life of a researcher hopefully easier.
# SYNOPSIS
## connecting to OpenBIS
```
from pybis import Openbis
o = Openbis('https://example.com:8443', verify_certificates=False)
o.login('username', 'password', save_token=True) # saves the session token in ~/.pybis/example.com.token
o.token
o.is_session_active()
o.get_datastores()
o.logout()
```
## Masterdata
```
o.get_experiment_types()
o.get_sample_types()
o.get_sample_type('YEAST')
o.get_material_types()
o.get_dataset_types()
o.get_dataset_types()[0]
o.get_dataset_type('RAW_DATA')
o.get_terms()
o.get_terms('MATING_TYPE')
o.get_tags()
```
## Users, Groups and RoleAssignments
```
o.get_groups()
group = o.new_group(code='group_name', description='...')
group = o.get_group('group_name')
group.save()
group.assign_role(role='ADMIN', space='DEFAULT')
group.get_roles()
group.revoke_role(role='ADMIN', space='DEFAULT')
group.add_persons(['admin'])
group.get_persons()
group.del_persons(['admin'])
group.delete()
o.get_persons()
person = o.new_person(userId='username')
person.space = 'USER_SPACE'
person.save()
person.assign_role(role='ADMIN', space='MY_SPACE')
person.assign_role(role='OBSERVER')
person.get_roles()
person.revoke_role(role='ADMIN', space='MY_SPACE')
person.revoke_role(role='OBSERVER')
o.get_role_assignments()
o.get_role_assignments(space='MY_SPACE')
o.get_role_assignments(group='MY_GROUP')
ra = o.get_role_assignment(techId)
ra.delete()
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
```
## Spaces
```
space = o.new_space(code='space_name', description='')
space.save()
space.delete('reason for deletion')
o.get_spaces()
o.get_space('MY_SPACE')
```
## Projects
```
project = o.new_project(
space=space,
code='project_name',
description='some project description'
)
project = space.new_project( code='project_code', description='project description')
project.save()
o.get_projects()
o.get_projects(space='MY_SPACE')
space.get_projects()
project.get_experiments()
project.get_attachments()
p.add_attachment(fileName='testfile', description= 'another file', title= 'one more attachment')
project.download_attachments()
```
## Samples
Samples are nowadays called **Objects** in openBIS. pyBIS is not yet thoroughly supporting this term in all methods where «sample» occurs.
```
sample = o.new_sample(
type='YEAST',
space='MY_SPACE',
parents=[parent_sample, '/MY_SPACE/YEA66'],
children=[child_sample]
)
sample = space.new_sample( type='YEAST' )
sample.save()
sample = o.get_sample('/MY_SPACE/MY_SAMPLE_CODE')
sample = o.get_sample('20170518112808649-52')
sample.space
sample.code
sample.permId
sample.identifier
sample.type # once the sample type is defined, you cannot modify it
sample.space
sample.space = 'MY_OTHER_SPACE'
sample.experiment # a sample can belong to one experiment only
sample.experiment = 'MY_SPACE/MY_PROJECT/MY_EXPERIMENT'
sample.tags
sample.tags = ['guten_tag', 'zahl_tag' ]
sample.get_parents()
sample.parents = ['/MY_SPACE/PARENT_SAMPLE_NAME']
sample.add_parents('/MY_SPACE/PARENT_SAMPLE_NAME')
sample.del_parents('/MY_SPACE/PARENT_SAMPLE_NAME')
sample.get_childeren()
sample.children = ['/MY_SPACE/CHILD_SAMPLE_NAME']
sample.add_children('/MY_SPACE/CHILD_SAMPLE_NAME')
sample.del_children('/MY_SPACE/CHILD_SAMPLE_NAME')
sample.get_childeren()
sample.props
sample.p # same thing as .props
sample.p.my_property = "some value" # set the value of a property (value is checked)
sample.p + TAB # in IPython or Jupyter: show list of available properties
sample.p.my_property_ + TAB # in IPython or Jupyter: show datatype or controlled vocabulary
sample.get_attachments()
sample.download_attachments()
sample.add_attachment('testfile.xls')
samples = o.get_samples(
space='MY_SPACE',
type='YEAST',
tags=['*'], # tags must be present
NAME = 'some name', # properties are always uppercase to distinguish them from attributes
**{ "SOME.WEIRD:PROPERTY": "value"} # in case your property name contains a dot or a colon which cannot be passed as an argument name
props=['NAME', 'MATING_TYPE','SHOW_IN_PROJECT_OVERVIEW'] # show these properties in the results
)
samples.df # returns a pandas dataframe object
samples.get_datasets(type='ANALYZED_DATA')
```
Note: Project samples are not implemented yet.
## Experiments
```
o.new_experiment
type='DEFAULT_EXPERIMENT',
space='MY_SPACE',
project='YEASTS'
)
o.get_experiments(
project='YEASTS',
space='MY_SPACE',
type='DEFAULT_EXPERIMENT',
tags='*',
finished_flag=False,
props=['name', 'finished_flag']
)
exp = o.get_experiment('/MY_SPACE/MY_PROJECT/MY_EXPERIMENT')
exp.props
exp.p # same thing as .props
exp.p.finished_flag=True
exp.p.my_property = "some value" # set the value of a property (value is checked)
exp.p + TAB # in IPython or Jupyter: show list of available properties
exp.p.my_property_ + TAB # in IPython or Jupyter: show datatype or controlled vocabulary
exp.attrs
exp.a # same as exp.attrs
exp.attrs.tags = ['some', 'extra', 'tags']
exp.tags = ['some', 'extra', 'tags'] # same thing
exp.save()
```
## Datasets
```
sample.get_datasets()
ds = o.get_dataset('20160719143426517-259')
ds.get_parents()
ds.get_children()
sample = ds.sample
experiment = ds.experiment
ds.physicalData
ds.status # AVAILABLE LOCKED ARCHIVED UNARCHIVE_PENDING ARCHIVE_PENDING BACKUP_PENDING
ds.archive()
ds.unarchive()
ds.get_files(start_folder="/")
ds.file_list
ds.add_attachment()
ds.get_attachments()
ds.download_attachments()
ds.download(destination='/tmp', wait_until_finished=False)
ds_new = o.new_dataset(
type='ANALYZED_DATA',
experiment=exp,
sample= samp,
files = ['my_analyzed_data.dat'],
props={'name': 'we give this dataset a name', 'notes': 'and we might need some notes, too'})
)
ds_new.save()
ds.props
ds.p # same thing as .props
ds.p.my_property = "some value" # set the value of a property (value is checked)
ds.p + TAB # in IPython or Jupyter: show list of available properties
ds.p.my_property_ + TAB # in IPython or Jupyter: show datatype or controlled vocabulary
# complex query with chaining. props adds a "name" column. To filter for some property, the name of the property must be in UPPERCASE
datasets = o.get_experiments(project='YEASTS').get_samples(type='FLY').get_datasets(type='ANALYZED_DATA', props=['MY_PROPERTY'],MY_PROPERTY='some analyzed data')
# another example
datasets = o.get_experiment('/MY_NEW_SPACE/VERMEUL_PROJECT/MY_EXPERIMENT4').get_samples(type='UNKNOWN').get_parents().get_datasets(type='RAW_DATA')
# get a pandas dataFrame object
datasets.df
# use it in a for-loop:
for dataset in datasets:
print(ds.permID)
```
## Semantic Annotations
```
# create semantic annotation for sample type (predicate and descriptor values omitted for brevity)
sa = o.new_semantic_annotation(entityType = 'UNKNOWN')
sa.save()
# create semantic annotation for property type (predicate and descriptor values omitted for brevity)
sa = o.new_semantic_annotation(propertyType = 'DESCRIPTION')
sa.save()
# create semantic annotation for sample property assignment (predicate and descriptor values omitted for brevity)
sa = o.new_semantic_annotation(entityType = 'UNKNOWN', propertyType = 'DESCRIPTION')
sa.save()
# create semantic annotation with additional fields
sa = o.new_semantic_annotation(entityType = 'UNKNOWN',
predicateOntologyId = 'po_id',
predicateOntologyVersion = 'po_version',
predicateAccessionId = 'pa_id',
descriptorOntologyId = 'do_id',
descriptorOntologyVersion = 'do_version',
descriptorAccessionId = 'da_id')
sa.save()
# get all semantic annotations
o.get_semantic_annotations()
# get semantic annotation by perm id
sa = o.get_semantic_annotation("20171015135637955-30")
# update semantic annotation
sa.predicateOntologyId = 'new_po_id'
sa.descriptorOntologyId = 'new_do_id'
sa.save()
# delete semantic annotation
sa.delete('reason')
```
## Tags
```
new_tag = o.new_tag('my_tag', description='some descriptive text')
new_tag.save()
o.get_tags()
tag = o.get_tag('/username/TAG_Name')
tag.description = 'some new description'
tag.save()
tag.get_experiments()
tag.get_samples()
tag.delete()
```
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# Requirements and organization
### Dependencies and Requirements
- pyBIS relies the openBIS API v3; openBIS version 16.05.2 or newer
- pyBIS uses Python 3.3 and pandas
- pyBIS needs the jupyter-api to be installed, in order to register new datasets
### Installation
- locate the `jupyter-api` folder found in `pybis/src/coreplugins`
- copy this folder to `openbis/servers/core-plugins` in your openBIS installation
- register the plugin by editing `openbis/servers/core-plugins/core-plugins.properties` :
- `enabled-modules = jupyter-api` (separate multiple plugins with comma)
- restart your DSS to activate the plugin
### Project Organization
This project is devided in several parts:
- src/python/**PyBis** Python module which holds all the method to interact with OpenBIS
- src/python/**OBis** a command-line tool to register large datasets in OpenBIS without actually copying the data. Uses git annex for version control and OpenBIS linkedDataSet objects to register the metadata.
- src/python/**JupyterBis** a JupyterHub authenticator module which uses pyBIS for authenticating against openBIS, validating and storing the session token
- src/core-plugins/**jupyter-api**, an ingestion plug-in for openBIS, allowing people to upload new datasets
- src/vagrant/**jupyter-bis/Vagrantfile** to set up JupyterHub on a virtual machine (CentOS 7), which uses the JupyterBis authenticator module
- src/vagrant/**obis/Vagrantfile** to set up a complete OpenBIS instance on a virtual machine (CentOS 7)
-