Newer
Older
"""
An Jython dropbox for importing HCS image datasets produced by the scripts that generate platonic screening data.
The folder loaded to the dropbox folder should have the same name as the plate that the data will be attached to.
"""
from ch.systemsx.cisd.openbis.dss.etl.dto.api.v1 import SimpleImageDataConfig, ImageMetadata, Location, Channel, ChannelColor, ChannelColorComponent
from ch.systemsx.cisd.openbis.plugin.screening.shared.api.v1.dto import Geometry
cramakri
committed
from ch.systemsx.cisd.openbis.dss.etl.dto.api.v1.transformations import ImageTransformationBuffer
from ch.systemsx.cisd.openbis.dss.etl.dto.api.v1.thumbnails import ResolutionBasedThumbnailsConfiguration
cramakri
committed
class ImageDataSetFlexible(SimpleImageDataConfig):
cramakri
committed
def extractImageMetadata(self, imagePath):
"""
Extracts tile number, channel code and well code for a given relative path to an image.
Will be called for each file found in the incoming directory which has the allowed image extension.
cramakri
committed
Example file name: bDZ01-1A_wD17_s3_z123_t321_cGFP
Returns:
cramakri
committed
ImageMetadata
cramakri
committed
image_tokens = ImageMetadata()
basename = os.path.splitext(imagePath)[0]
#
token_dict = {}
for token in basename.split("_"):
token_dict[token[:1]] = token[1:]
cramakri
committed
image_tokens.well = token_dict["w"]
fieldText = token_dict["s"]
try:
image_tokens.tileNumber = int(fieldText)
except ValueError:
raise Exception("Cannot parse field number from '" + fieldText + "' in '" + basename + "' file name.")
image_tokens.channelCode = token_dict["c"]
return image_tokens
cramakri
committed
def getTileGeometry(self, imageTokens, maxTileNumber):
"""
Overrides the default implementation which returns (1, maxTileNumber) geometry.
cramakri
committed
Calculates the width and height of the matrix of tiles (a.k.a. fields or sides) in the well.
cramakri
committed
Parameter imageMetadataList: a list of metadata for each encountered image
Parameter maxTileNumber: the biggest tile number among all encountered images
Returns:
cramakri
committed
Geometry
cramakri
committed
return Geometry.createFromRowColDimensions(maxTileNumber / 3, 3);
def getTileCoordinates(self, tileNumber, tileGeometry):
Overrides the default implementation which does the same thing (to demonstrate how this can be done).
cramakri
committed
For a given tile number and tiles geometry returns (x,y) which describes where the tile is
located on the well.
cramakri
committed
Parameter tileNumber: number of the tile
Parameter tileGeometry: the geometry of the well matrix
Returns:
cramakri
committed
Location
cramakri
committed
columns = tileGeometry.getWidth()
row = ((tileNumber - 1) / columns) + 1
col = ((tileNumber - 1) % columns) + 1
return Location(row, col)
cramakri
committed
def getManyChannelTransformations():
cramakri
committed
"""
Create a collection of transformations that are applicable to the image
"""
transforms = ImageTransformationBuffer()
transforms.appendImageMagicConvert("-edge 1", "Edge detection")
transforms.appendImageMagicConvert("-radial-blur 30", "Radial Blur")
transforms.appendImageMagicConvert("-blur 3x.7 -solarize 50% -level 50%,0", "Fuzzy")
transforms.appendImageMagicConvert("-shade 0x45", "3D 1")
transforms.appendImageMagicConvert("-shade 90x60", "3D 2")
transforms.appendImageMagicConvert("-blur 0x3 -shade 120x45 -normalize", "3D 3")
transforms.appendImageMagicConvert("-motion-blur 0x12+45", "Motion Blur")
transforms.appendImageMagicConvert("-fft -delete 1 -auto-level -evaluate log 100000", "FFT")
def getFewChannelTransformations():
"""
Create a collection of transformations that are applicable to the image
"""
transforms = ImageTransformationBuffer()
transforms.appendImageMagicConvert("-radial-blur 30", "Radial Blur")
cramakri
committed
return transforms.getTransformations()
# Set these variables to test various registration scenarios
TEST_SCALE_FACTORS = False
TEST_IMAGE_RESOLUTIONS = False
cramakri
committed
def process(transaction):
incoming = transaction.getIncoming()
if not incoming.isDirectory():
return
cramakri
committed
imageDataset = ImageDataSetFlexible()
imageDataset.setRawImageDatasetType()
imageDataset.setPlate("PLATONIC", incoming.getName())
transforms = getFewChannelTransformations()
if TEST_SCALE_FACTORS:
imageDataset.setGenerateImageRepresentationsWithScaleFactors([0.25, 0.5])
if TEST_IMAGE_RESOLUTIONS:
imageDataset.setGenerateImageRepresentationsUsingImageResolutions(['128x128', '256x256'])
for resolution in ['300x300']:
# Add a generated image representation
imageDataset.addGeneratedImageRepresentationWithResolution(resolution)
# Add a representation with a transformation
representation = imageDataset.addGeneratedImageRepresentationWithResolution(resolution)
for channel in ["DAPI", "GFP", "Cy5"]:
representation.setTransformation(channel, transforms[0].getCode())
channels = [ Channel(code, code) for code in ["DAPI", "GFP", "Cy5"]]
colorComponents = [ ChannelColorComponent.BLUE, ChannelColorComponent.GREEN, ChannelColorComponent.RED]
# Add transforms to the channels
for channel in channels:
channel.setAvailableTransformations(transforms)
imageDataset.setChannels(channels, colorComponents)
# Create the data set
dataSet = transaction.createNewImageDataSet(imageDataset, incoming)
transaction.moveFile(incoming.getPath(), dataSet)