Skip to content
Snippets Groups Projects
README.md 53.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • pyBIS is a Python module for interacting with openBIS. pyBIS is designed to be most useful in a [Jupyter Notebook](https://jupyter.org) or IPython environment, especially if you are developing Python scripts for automatisation. Jupyter Notebooks offer some sort of IDE for openBIS, supporting TAB completition and immediate data checks, making the life of a researcher hopefully easier.
    
    ## Dependencies and Requirements
    
    - pyBIS relies the openBIS API v3
    - openBIS version 16.05.2 or newer is required
    
    - 19.06.5 or later is recommended
    - pyBIS uses Python 3.6 or newer and the Pandas module
    
    ## Installation
    
    ```commandline
    
    pip install --upgrade pybis
    
    That command will download install pyBIS and all its dependencies. If pyBIS is already installed, it will be upgraded to the latest version.
    
    If you haven't done yet, install Jupyter and/or Jupyter Lab (the next Generation of Jupyter):
    
    ```commandline
    
    pip install jupyter
    
    pip install jupyterlab
    
    ### TAB completition and other hints in Jupyter / IPython
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    - in a Jupyter Notebook or IPython environment, pybis helps you to enter the commands
    - After every dot `.` you might hit the `TAB` key in order to look at the available commands.
    - if you are unsure what parameters to add to a , add a question mark right after the method and hit `SHIFT+ENTER`
    - Jupyter will then look up the signature of the method and show some helpful docstring
    
    ### Checking input
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    - When working with properties of entities, they might use a **controlled vocabulary** or are of a specific **property type**.
    - Add an underscore `_` character right after the property and hit `SHIFT+ENTER` to show the valid values
    - When a property only acceps a controlled vocabulary, you will be shown the valid terms in a nicely formatted table
    - if you try to assign an **invalid value** to a property, you'll receive an error immediately
    
    
    ### Glossary
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    - **spaces:** used for authorisation eg. to separate two working groups. If you have permissions in a space, you can see everything which in that space, but not necessarily in another space (unless you have the permission).
    - **projects:** a space consists of many projects.
    - **experiments / collections:** a projects contain many experiments. Experiments can have _properties_
    - **samples / objects:** an experiment contains many samples. Samples can have _properties_
    - **dataSet:** a dataSet which contains the actual _data files_, either pyhiscal (stored in openBIS dataStore) or linked
    - **attributes:** every entity above contains a number of attributes. They are the same accross all instances of openBIS and independent of their type.
    - **properties:** Additional specific key-value pairs, available for these entities:
    
      - experiments
      - samples
      - dataSets
    
    
      every single instance of an entity must be of a specific **entity type** (see below). The type defines the set of properties.
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    
    - **experiment type / collection type:** a type for experiments which specifies its properties
    - **sample type / object type:** a type for samples / objects which specifies its properties
    - **dataSet type:** a type for dataSets which specifies its properties
    - **property type:** a single property, as defined in the entity types above. It can be of a classic data type (e.g. INTEGER, VARCHAR, BOOLEAN) or its values can be controlled (CONTROLLEDVOCABULARY).
    - **plugin:** a script written in [Jython](https://www.jython.org) which allows to check property values in a even more detailed fashion
    
    ## login
    
    In an **interactive session** e.g. inside a Jupyter notebook, you can use `getpass` to enter your password safely:
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    ```python
    
    from pybis import Openbis
    
    o = Openbis('https://example.com')
    
    o = Openbis('example.com')          # https:// is assumed
    
    
    import getpass
    password = getpass.getpass()
    
    
    o.login('username', password, save_token=True)   # save the session token in ~/.pybis/example.com.token
    
    In a **script** you would rather use two **environment variables** to provide username and password:
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    ```python
    
    from pybis import Openbis
    
    o = Openbis(os.environ['OPENBIS_HOST'])
    
    
    o.login(os.environ['OPENBIS_USERNAME'], os.environ['OPENBIS_PASSWORD'])
    ```
    
    
    As an even better alternative, you should use personal access tokens (PAT) to avoid username/password altogether. See below.
    
    
    By default, your SSL-Certification is being verified. If you have a test-instance with a self-signed certificate, you'll need to turn off this verification explicitly:
    
    ```python
    from pybis import Openbis
    o = Openbis('https://test-openbis-instance.com', verify_certificates=False)
    
    
    ### Check session token, logout()
    
    Check whether your session, i.e. the **session token** is still valid and log out:
    
    ```python
    print(f"Session is active: {o.is_session_active()} and token is {o.token}")
    
    print(f"Session is active: {o.is_session_active()"}
    ```
    
    
    ### Personal access token (PAT)
    
    
    As an (new) alternative to login every time you run a script, you can create tokens which
    
    - once issued, do **not need username or password**
    - are **much longer valid** than session tokens (default is one year)
    - **survive restarts** of an openBIS instance
    
    To create a token, you first need a valid session – either through classic login or by assigning an existing valid session token:
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    ```python
    
    from pybis import Openbis
    
    o = Openbis('https://test-openbis-instance.com')
    
    
    o.login("username", "password")
    # or
    o.set_token("your_username-220808165456793xA3D0357C5DE66A5BAD647E502355FE2C")
    
    Then you can create a new personal access token (PAT) and use it for all further pyBIS queries:
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    ```python
    
    pat = o.get_or_create_personal_access_token(sessionName="Project A")
    
    o.set_token(pat, save_token=True)
    
    You may also use permId directly:
    
    ```python
    pat = o.get_or_create_personal_access_token(sessionName="Project A")
    
    o.set_token(pat.permId, save_token=True) 
    
    **Note:** If there is an existing PAT with the same _sessionName_ which is still valid and the validity is within the warning period (defined by the server), then this existing PAT is returned instead. However, you can enforce creating a new PAT by passing the argument `force=True`.
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    
    
    **Note:** Most operations are permitted using the PAT, _except_:
    
    - all operations on personal access tokens itself
    - i.e. create, list, delete operations on tokens
    
    For these operations, you need to use a session token instead.
    
    
    To get a list of all currently available tokens:
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    ```python
    
    o.get_personal_access_tokens()
    
    o.get_personal_access_tokens(sessionName="APPLICATION_1")
    
    ```
    
    To delete the first token shown in the list:
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    ```python
    
    o.get_personal_access_tokens()[0].delete('some reason')
    
    With `pyBIS 1.17.0`, a lot of caching has been introduced to improve the speed of object lookups that do not change often. If you encounter any problems, you can turn it off like this:
    
    
    ```python
    o = Openbis('https://example.com', use_cache=False)
    
    # or later in the script
    o.use_cache = False
    o.clear_cache()
    o.clear_cache('sampleType')
    
    ## Mount openBIS dataStore server
    
    ### Prerequisites: FUSE / SSHFS
    
    
    Mounting an openBIS dataStore server requires FUSE / SSHFS to be installed (requires root privileges). The mounting itself requires no root privileges.
    
    
    **Mac OS X**
    
    Follow the installation instructions on
    https://osxfuse.github.io
    
    **Unix Cent OS 7**
    
    
    ```commandline
    
    $ sudo yum install epel-release
    $ sudo yum --enablerepo=epel -y install fuse-sshfs
    $ user="$(whoami)"
    $ usermod -a -G fuse "$user"
    ```
    
    After the installation, an `sshfs` command should be available.
    
    
    ### Mount dataStore server with pyBIS
    
    
    Because the mount/unmount procedure differs from platform to platform, pyBIS offers two simple methods:
    
    
    ```python
    
    o.mount()
    o.mount(username, password, hostname, mountpoint, volname)
    
    o.get_mountpoint()
    
    Currently, mounting is supported for Linux and Mac OS X only.
    
    
    All attributes, if not provided, are re-used by a previous login() command. If no mountpoint is provided, the default mounpoint will be `~/hostname`. If this directory does not exist, it will be created. The directory must be empty before mounting.
    
    OpenBIS stores quite a lot of meta-data along with your dataSets. The collection of data that describes this meta-data (i.e. meta-meta-data) is called masterdata. It consists of:
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    - sample types
    - dataSet types
    - material types
    - experiment types
    - property types
    - vocabularies
    - vocabulary terms
    - plugins (jython scripts that allow complex data checks)
    - tags
    - semantic annotations
    
    ```python
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    sample_types = o.get_sample_types()  # get a list of sample types
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    sample_types.df                      # DataFrame object
    st = o.get_sample_types()[3]         # get 4th element of that list
    
    st = o.get_sample_type('YEAST')
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    st.code
    st.generatedCodePrefix
    
    st.attrs.all()                       # get all attributes as a dict
    st.get_validationPlugin()            # returns a plugin object
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    
    
    st.get_property_assignments()        # show the list of properties
                                         # for that sample type
    
    o.get_material_types()
    o.get_dataset_types()
    
    o.get_collection_types()
    
    o.get_property_types()
    pt = o.get_property_type('BARCODE_COMPLEXITY_CHECKER')
    pt.attrs.all()
    
    o.get_plugins()
    pl = o.get_plugin('Diff_time')
    pl.script  # the Jython script that processes this property
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    o.get_vocabularies()
    o.get_vocabulary('BACTERIAL_ANTIBIOTIC_RESISTANCE')
    o.get_terms(vocabulary='STORAGE')
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    **Samples** (objects), **experiments** (collections) and **dataSets** contain type-specific **properties**. When you create a new sample, experiment or datasSet of a given type, the set of properties is well defined. Also, the values of these properties are being type-checked.
    
    The first step in creating a new entity type is to create a so called **property type**:
    
    ```python
    
    pt_text = o.new_property_type(
    
    Swen Vermeul's avatar
    Swen Vermeul committed
        code        = 'MY_NEW_PROPERTY_TYPE',
        label       = 'yet another property type',
    
        description = 'my first property',
    
    Swen Vermeul's avatar
    Swen Vermeul committed
        code        = 'MY_NUMBER',
        label       = 'property contains a number',
    
        dataType    = 'INTEGER',
    
    pt_int.save()
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    
    
    pt_voc = o.new_property_type(
    
    Swen Vermeul's avatar
    Swen Vermeul committed
        code        = 'MY_CONTROLLED_VOCABULARY',
        label       = 'label me',
    
        description = 'give me a description',
        dataType    = 'CONTROLLEDVOCABULARY',
    
    pt_voc.save()
    
    
    pt_richtext = o.new_property_type(
    
    Swen Vermeul's avatar
    Swen Vermeul committed
        code        = 'MY_RICHTEXT_PROPERTY',
        label       = 'richtext data',
    
        description = 'property contains rich text',
        dataType    = 'MULTILINE_VARCHAR',
        metaData    = {'custom_widget' : 'Word Processor'}
    )
    pt_richtext.save()
    
    pt_spread = o.new_property_type(
    
    Swen Vermeul's avatar
    Swen Vermeul committed
        code        = 'MY_TABULAR_DATA',
        label       = 'data in a table',
    
        description = 'property contains a spreadsheet',
        dataType    = 'XML',
        metaData    = {'custom_widget': 'Spreadsheet'}
    )
    pt_spread.save()
    
    The `dataType` attribute can contain any of these values:
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    - `INTEGER`
    - `VARCHAR`
    - `MULTILINE_VARCHAR`
    - `REAL`
    - `TIMESTAMP`
    - `BOOLEAN`
    - `HYPERLINK`
    - `XML`
    - `CONTROLLEDVOCABULARY`
    - `MATERIAL`
    
    When choosing `CONTROLLEDVOCABULARY`, you must specify a `vocabulary` attribute (see example). Likewise, when choosing `MATERIAL`, a `materialType` attribute must be provided.
    
    To create a **richtext property**, use `MULTILINE_VARCHAR` as `dataType` and set `metaData` to `{'custom_widget' : 'Word Processor'}` as shown in the example above.
    
    To create a **tabular, spreadsheet-like property**, use `XML` as `dataType` and set `metaData` to `{'custom_widget' : 'Spreadhseet'}`as shown in the example above.
    
    **Note**: PropertyTypes that start with a \$ are by definition `managedInternally` and therefore this attribute must be set to True.
    
    ## create sample types / object types
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    The second step (after creating a property type, see above) is to create the **sample type**. The new name for **sample** is **object**. You can use both methods interchangeably:
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    - `new_sample_type()` == `new_object_type()`
    
    ```python
    
    sample_type = o.new_sample_type(
    
        code                = 'my_own_sample_type',  # mandatory
        generatedCodePrefix = 'S',                   # mandatory
        description         = '',
        autoGeneratedCode   = True,
        subcodeUnique       = False,
        listable            = True,
        showContainer       = False,
        showParents         = True,
        showParentMetadata  = False,
        validationPlugin    = 'Has_Parents'          # see plugins below
    
    When `autoGeneratedCode` attribute is set to `True`, then you don't need to provide a value for `code` when you create a new sample. You can get the next autoGeneratedCode like this:
    
    
    ```python
    
    sample_type.get_next_sequence()    # eg. 67
    sample_type.get_next_code()        # e.g. FLY77
    ```
    
    From pyBIS 1.31.0 onwards, you can provide a `code` even for samples where its sample type has `autoGeneratedCode=True` to offer the same functionality as ELN-LIMS. In earlier versions of pyBIS, providing a code in this situation caused an error.
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    ## assign and revoke properties to sample type / object type
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    The third step, after saving the sample type, is to **assign or revoke properties** to the newly created sample type. This assignment procedure applies to all entity types (dataset type, experiment type).
    
    ```python
    
    sample_type.assign_property(
    
    	prop                 = 'diff_time',   # Mandatory value
    	section              = '',            # Name of the section
    	ordinal              = 1,             # Position of property
    
    	mandatory            = True,
    
    	initialValueForExistingEntities = 'initial value'
    
    	showInEditView       = True,
    	showRawValueInForms  = True
    
    )
    sample_type.revoke_property('diff_time')
    sample_type.get_property_assignments()
    ```
    
    
    ***⚠️ Note: ordinal position***
    
    If a new property is assigned in a place of an existing property, the old property assignment ordinal value will be increased by 1
    
    
    
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    ## create a dataset type
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    The second step (after creating a **property type**, see above) is to create the **dataset type**. The third step is to **assign or revoke the properties** to the newly created dataset type.
    
    ```python
    
    dataset_type = o.new_dataset_type(
    
        code                = 'my_dataset_type',       # mandatory
        description         = None,
        mainDataSetPattern  = None,
        mainDataSetPath     = None,
        disallowDeletion    = False,
        validationPlugin    = None,
    
    )
    dataset_type.save()
    dataset_type.assign_property('property_name')
    dataset_type.revoke_property('property_name')
    dataset_type.get_property_assignments()
    ```
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    ## create an experiment type / collection type
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    
    The second step (after creating a **property type**, see above) is to create the **experiment type**.
    
    The new name for **experiment** is **collection**. You can use both methods interchangeably:
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    - `new_experiment_type()` == `new_collection_type()`
    
    ```python
    
    experiment_type = o.new_experiment_type(
    
    Swen Vermeul's avatar
    Swen Vermeul committed
        code,
    
        description      = None,
        validationPlugin = None,
    
    )
    experiment_type.save()
    experiment_type.assign_property('property_name')
    experiment_type.revoke_property('property_name')
    experiment_type.get_property_assignments()
    ```
    
    ## create material types
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    Materials and material types are deprecated in newer versions of openBIS.
    
    
    ```python
    
    material_type = o.new_material_type(
    
    Swen Vermeul's avatar
    Swen Vermeul committed
        code,
    
        description=None,
        validationPlugin=None,
    )
    material_type.save()
    material_type.assign_property('property_name')
    material_type.revoke_property('property_name')
    material_type.get_property_assignments()
    
    ```
    
    ## create plugins
    
    Plugins are Jython scripts that can accomplish more complex data-checks than ordinary types and vocabularies can achieve. They are assigned to entity types (dataset type, sample type etc). [Documentation and examples can be found here](https://wiki-bsse.ethz.ch/display/openBISDoc/Properties+Handled+By+Scripts)
    
    
    ```python
    
    pl = o.new_plugin(
        name       ='my_new_entry_validation_plugin',
    
        pluginType ='ENTITY_VALIDATION',       # or 'DYNAMIC_PROPERTY' or 'MANAGED_PROPERTY',
        entityKind = None,                     # or 'SAMPLE', 'MATERIAL', 'EXPERIMENT', 'DATA_SET'
        script     = 'def calculate(): pass'   # a JYTHON script
    
    ## Users, Groups and RoleAssignments
    
    
    Users can only login into the openBIS system when:
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    
    - they are present in the authentication system (e.g. LDAP)
    - the username/password is correct
    - the user's mail address needs is present
    - the user is already added to the openBIS user list (see below)
    - the user is assigned a role which allows a login, either directly assigned or indirectly assigned via a group membership
    
    ```python
    
    o.get_groups()
    group = o.new_group(code='group_name', description='...')
    group = o.get_group('group_name')
    group.save()
    group.assign_role(role='ADMIN', space='DEFAULT')
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    group.get_roles()
    
    group.revoke_role(role='ADMIN', space='DEFAULT')
    
    
    group.add_members(['admin'])
    group.get_members()
    group.del_members(['admin'])
    
    group.delete()
    
    o.get_persons()
    person = o.new_person(userId='username')
    person.space = 'USER_SPACE'
    person.save()
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    # person.delete() is currently not possible.
    
    person.assign_role(role='ADMIN', space='MY_SPACE')
    person.assign_role(role='OBSERVER')
    person.get_roles()
    person.revoke_role(role='ADMIN', space='MY_SPACE')
    person.revoke_role(role='OBSERVER')
    
    o.get_role_assignments()
    o.get_role_assignments(space='MY_SPACE')
    o.get_role_assignments(group='MY_GROUP')
    ra = o.get_role_assignment(techId)
    ra.delete()
    
    Spaces are fundamental way in openBIS to divide access between groups. Within a space, data can be easily shared. Between spaces, people need to be given specific access rights (see section above). The structure in openBIS is as follows:
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    - space
      - project
        - experiment / collection
          - sample / object
            - dataset
    
    ```python
    
    space = o.new_space(code='space_name', description='')
    space.save()
    
    o.get_spaces(
    
        start_with = 0,                   # start_with and count
        count      = 10,                  # enable paging
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    
    # get individual attributes
    
    space.code
    space.description
    space.registrator
    space.registrationDate
    space.modifier
    space.modificationDate
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    
    # set individual attribute
    # most of the attributes above are set automatically and cannot be modified.
    space.description = '...'
    
    # get all attributes as a dictionary
    space.attrs.all()
    
    space.delete('reason for deletion')
    
    
    Projects live within spaces and usually contain experiments (aka collections):
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    - space
      - project
        - experiment / collection
          - sample / object
            - dataset
    
    ```python
    
    project = o.new_project(
    
    Swen Vermeul's avatar
    Swen Vermeul committed
        space       = space,
    
        code        = 'project_name',
        description = 'some project description'
    
    	code         = 'project_code',
    	description  = 'project description'
    
    o.get_projects(
    
        space       = 'MY_SPACE',         # show only projects in MY_SPACE
        start_with  = 0,                  # start_with and count
        count       = 10,                 # enable paging
    
    o.get_projects(space='MY_SPACE')
    space.get_projects()
    
    
    project.get_experiments() # see details and limitations in Section 'search for experiments'
    
    
    project.get_attachments()             # deprecated, as attachments are not compatible with ELN-LIMS.
                                          # Attachments are an old concept and should not be used anymore.
    p.add_attachment(                     # deprecated, see above
        fileName='testfile',
         description= 'another file',
         title= 'one more attachment'
    )
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    project.download_attachments(<path or cwd>)  # deprecated, see above
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    # get individual attributes
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    
    # set individual attribute
    project.description = '...'
    
    # get all attributes as a dictionary
    project.attrs.all()
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    
    project.freeze = True
    project.freezeForExperiments = True
    project.freezeForSamples = True
    
    ## Experiments / Collections
    
    Experiments live within projects:
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    - space
      - project
        - experiment / collection
          - sample / object
            - dataset
    
    
    The new name for **experiment** is **collection**. You can use boths names interchangeably:
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    - `get_experiment()` = `get_collection()`
    - `new_experiment()` = `new_collection()`
    - `get_experiments()` = `get_collections()`
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    ### create a new experiment
    
    
    ```python
    
        code='MY_NEW_EXPERIMENT',
    
        type='DEFAULT_EXPERIMENT',
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    ```
    
    ### search for experiments
    
    ```python
    
    experiments = o.get_experiments(
        project       = 'YEASTS',
    
    Swen Vermeul's avatar
    Swen Vermeul committed
        space         = 'MY_SPACE',
    
        type          = 'DEFAULT_EXPERIMENT',
    
    Swen Vermeul's avatar
    Swen Vermeul committed
        tags          = '*',
    
        finished_flag = False,
        props         = ['name', 'finished_flag']
    )
    experiments = project.get_experiments()
    experiment = experiments[0]        # get first experiment of result list
    experiment = experiment
    for experiment in experiments:     # iterate over search results
        print(experiment.props.all())
    dataframe = experiments.df         # get Pandas DataFrame of result list
    
    exp = o.get_experiment('/MY_SPACE/MY_PROJECT/MY_EXPERIMENT')
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    ```
    
    ***Note: Attributes download***
    
    The `get_experiments()` method, by default, returns fewer details to make the download process faster.
    However, if you want to include specific attributes in the results, you can do so by using the `attrs` parameter.
    
    The `get_experiments()` method results include only `identifier`, `permId`, `type`, `registrator`, `registrationDate`, `modifier`, `modificationDate`
    
    
    ```python
    
    experiments = o.get_experiments(
        project       = 'YEASTS',
        space         = 'MY_SPACE',
        type          = 'DEFAULT_EXPERIMENT',
        attrs          = ["parents", "children"]
    )
    
        identifier             permId                type               registrator    registrationDate     modifier    modificationDate     parents                    children
    --  ---------------------  --------------------  -----------------  -------------  -------------------  ----------  -------------------  -------------------------  ----------
     0  /MY_SPACE/YEASTS/EXP1  20230407070122991-46  DEFAULT_EXPERIMENT  admin          2023-04-07 09:01:23  admin       2023-04-07 09:02:22  ['/MY_SPACE/YEASTS/EXP2']  []
    
    ```
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    ### Experiment attributes
    
    ```python
    
    exp.attrs.all()                    # returns all attributes as a dict
    
    exp.attrs.tags = ['some', 'tags']
    exp.tags = ['some', 'tags']        # same thing
    exp.save()
    
    exp.code
    exp.description
    exp.registrator
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    ...
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    exp.project = 'my_project'
    exp.space   = 'my_space'
    
    exp.freeze = True
    exp.freezeForDataSets = True
    exp.freezeForSamples = True
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    
    exp.save()                         # needed to save/update the changed attributes and properties
    ```
    
    ### Experiment properties
    
    **Getting properties**
    
    
    ```python
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    experiment.props == ds.p                  # you can use either .props or .p to access the properties
    experiment.p                              # in Jupyter: show all properties in a nice table
    experiment.p()                            # get all properties as a dict
    experiment.props.all()                    # get all properties as a dict
    experiment.p('prop1','prop2')             # get some properties as a dict
    experiment.p.get('$name')                 # get the value of a property
    experiment.p['property']                  # get the value of a property
    ```
    
    **Setting properties**
    
    ```
    experiment.experiment = 'first_exp'       # assign sample to an experiment
    experiment.project = 'my_project'         # assign sample to a project
    
    experiment.p. + TAB                       # in Jupyter/IPython: show list of available properties
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    experiment.p.my_property_ + TAB           # in Jupyter/IPython: show datatype or controlled vocabulary
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    experiment.p['my_property']= "value"      # set the value of a property
    experiment.p.set('my_property, 'value')   # set the value of a property
    experiment.p.my_property = "some value"   # set the value of a property
    experiment.p.set({'my_property':'value'}) # set the values of some properties
    experiment.set_props({ key: value })      # set the values of some properties
    
    experiment.save()                         # needed to save/update the changed attributes and properties
    
    ## Samples / Objects
    
    
    Samples usually live within experiments/collections:
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    - space
      - project
        - experiment / collection
          - sample / object
            - dataset
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    The new name for **sample** is **object**. You can use boths names interchangeably:
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    - `get_sample()` = `get_object()`
    - `new_sample()` = `new_object()`
    - `get_samples()` = `get_objects()`
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    etc.
    
    ```python
    
    Swen Vermeul's avatar
    Swen Vermeul committed
        type       = 'YEAST',
    
        space      = 'MY_SPACE',
    
        experiment = '/MY_SPACE/MY_PROJECT/EXPERIMENT_1',
    
        parents    = [parent_sample, '/MY_SPACE/YEA66'],   # you can use either permId, identifier
        children   = [child_sample],                       # or sample object
    
        props      = {"name": "some name", "description": "something interesting"}
    
    )
    sample = space.new_sample( type='YEAST' )
    sample.save()
    
    sample = o.get_sample('/MY_SPACE/MY_SAMPLE_CODE')
    sample = o.get_sample('20170518112808649-52')
    
    samples= o.get_samples(type='UNKNOWN')    # see details and limitations in Section 'search for samples / objects'
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    # get individual attributes
    
    sample.space
    sample.code
    sample.permId
    sample.identifier
    sample.type  # once the sample type is defined, you cannot modify it
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    # set attribute
    
    sample.space = 'MY_OTHER_SPACE'
    
    sample.experiment    # a sample can belong to one experiment only
    
    sample.experiment = '/MY_SPACE/MY_PROJECT/MY_EXPERIMENT'
    
    sample.project
    sample.project = '/MY_SPACE/MY_PROJECT'  # only works if project samples are
    enabled
    
    
    sample.tags
    sample.tags = ['guten_tag', 'zahl_tag' ]
    
    sample.attrs.all()                    # returns all attributes as a dict
    sample.props.all()                    # returns all properties as a dict
    
    
    sample.get_attachments()              # deprecated, as attachments are not compatible with ELN-LIMS.
                                          # Attachments are an old concept and should not be used anymore.
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    sample.download_attachments(<path or cwd>)  # deprecated, see above
    
    sample.add_attachment('testfile.xls') # deprecated, see above
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    
    sample.delete('deleted for some reason')
    
    ## create/update/delete many samples in a transaction
    
    Creating a single sample takes some time. If you need to create many samples, you might want to create them in one transaction. This will transfer all your sample data at once. The Upside of this is the **gain in speed**. The downside: this is a **all-or-nothing** operation, which means, either all samples will be registered or none (if any error occurs).
    
    **create many samples in one transaction**
    
    ```python
    
    trans = o.new_transaction()
    for i in range (0, 100):
        sample = o.new_sample(...)
        trans.add(sample)
    
    **update many samples in one transaction**
    
    
    ```python
    
    trans = o.new_transaction()
    
    for sample in o.get_samples(count=100):
        sample.prop.some_property = 'different value'
        trans.add(sample)
    
    **delete many samples in one transaction**
    
    
    ```python
    
    trans = o.new_transaction()
    for sample in o.get_samples(count=100):
        sample.mark_to_be_deleted()
        trans.add(sample)
    
    trans.reason('go what has to go')
    trans.commit()
    ```
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    **Note:** You can use the `mark_to_be_deleted()`, `unmark_to_be_deleted()` and `is_marked_to_be_deleted()` methods to set and read the internal flag.
    
    ### parents, children, components and container
    
    ```python
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    sample.set_parents(['/MY_SPACE/PARENT_SAMPLE_NAME')
    
    sample.add_parents('/MY_SPACE/PARENT_SAMPLE_NAME')
    sample.del_parents('/MY_SPACE/PARENT_SAMPLE_NAME')
    
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    sample.get_children()
    sample.set_children('/MY_SPACE/CHILD_SAMPLE_NAME')
    
    sample.add_children('/MY_SPACE/CHILD_SAMPLE_NAME')
    sample.del_children('/MY_SPACE/CHILD_SAMPLE_NAME')
    
    
    # A Sample may belong to another Sample, which acts as a container.
    # As opposed to DataSets, a Sample may only belong to one container.
    
    sample.container    # returns a sample object
    sample.container = '/MY_SPACE/CONTAINER_SAMPLE_NAME'   # watch out, this will change the identifier of the sample to:
                                                           # /MY_SPACE/CONTAINER_SAMPLE_NAME:SAMPLE_NAME
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    sample.container = ''                                  # this will remove the container.
    
    # A Sample may contain other Samples, in order to act like a container (see above)
    
    # caveat: containers are NOT compatible with ELN-LIMS
    
    # The Sample-objects inside that Sample are called «components» or «contained Samples»
    # You may also use the xxx_contained() functions, which are just aliases.
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    sample.get_components()
    sample.set_components('/MY_SPACE/COMPONENT_NAME')
    sample.add_components('/MY_SPACE/COMPONENT_NAME')
    sample.del_components('/MY_SPACE/COMPONENT_NAME')
    
    ```python
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    sample.get_tags()
    sample.set_tags('tag1')
    sample.add_tags(['tag2','tag3'])
    sample.del_tags('tag1')
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    ### Sample attributes and properties
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    **Getting properties**
    
    ```python
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    sample.attrs.all()                    # returns all attributes as a dict
    sample.attribute_name                 # return the attribute value
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    sample.props == ds.p                  # you can use either .props or .p to access the properties
    sample.p                              # in Jupyter: show all properties in a nice table
    sample.p()                            # get all properties as a dict
    sample.props.all()                    # get all properties as a dict
    sample.p('prop1','prop2')             # get some properties as a dict
    sample.p.get('$name')                 # get the value of a property
    sample.p['property']                  # get the value of a property
    ```
    
    **Setting properties**
    
    
    ```python
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    sample.experiment = 'first_exp'       # assign sample to an experiment
    sample.project = 'my_project'         # assign sample to a project
    
    sample.p. + TAB                       # in Jupyter/IPython: show list of available properties
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    sample.p.my_property_ + TAB           # in Jupyter/IPython: show datatype or controlled vocabulary
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    sample.p['my_property']= "value"      # set the value of a property
    sample.p.set('my_property, 'value')   # set the value of a property
    
    sample.p.my_property = "some value"   # set the value of a property
    
    Swen Vermeul's avatar
    Swen Vermeul committed
    sample.p.set({'my_property':'value'}) # set the values of some properties
    sample.set_props({ key: value })      # set the values of some properties
    
    sample.save()                         # needed to save/update the attributes and properties
    
    ### search for samples / objects
    
    The result of a search is always list, even when no items are found. The `.df` attribute returns
    the Pandas dataFrame of the results.
    
    ```python
    
    samples = o.get_samples(
    
        space      ='MY_SPACE',
        type       ='YEAST',
        tags       =['*'],                # only sample with existing tags
        start_with = 0,                   # start_with and count
        count      = 10,                  # enable paging
    
        where = {
            "$SOME.WEIRD-PROP": "hello"   # only receive samples where properties match
        }
    
        registrationDate = "2020-01-01",  # date format: YYYY-MM-DD
        modificationDate = "<2020-12-31", # use > or < to search for specified date and later / earlier
    
        attrs=[                           # show these attributes in the dataFrame
            'sample.code',
            'registrator.email',
            'type.generatedCodePrefix'
        ],
    
        parent_property = 'value',        # search in a parent's property
        child_property  = 'value',        # search in a child's property
        container_property = 'value'      # search in a container's property
        parent = '/MY_SPACE/PARENT_SAMPLE', # sample has this as its parent
        parent = '*',                     # sample has at least one parent
        child  = '/MY_SPACE/CHILD_SAMPLE',
        child  = '*',                     # sample has at least one child
    
        container = 'MY_SPACE/CONTAINER',
        container = '*'                   # sample lives in a container
    
        props=['$NAME', 'MATING_TYPE']    # show these properties in the result
    
    sample = samples[9]                   # get the 10th sample
                                          # of the search results
    sample = samples['/SPACE/AABC']       # same, fetched by identifier
    for sample in samples:                # iterate over the
       print(sample.code)                 # search results
    
    
    
    samples.df                            # returns a Pandas DataFrame object
    
    
    samples = o.get_samples(props="*")    # retrieve all properties of all samples
    
    ***Note: Attributes download***
    
    
    The `get_samples()` method, by default, returns fewer attributes to make the download process faster.
    
    However, if you want to include specific attributes in the results, you can do so by using the `attrs` parameter.
    
    The `get_samples()` method results include only `identifier`, `permId`, `type`, `registrator`, `registrationDate`, `modifier`, `modificationDate`
    
    
    ```python
    samples = o.get_samples(
    
        space         = 'MY_SPACE',
        type          = 'YEAST',
        attrs          = ["parents", "children"]
    )
    
        identifier                permId                type               registrator    registrationDate     modifier    modificationDate     parents                    children
    --  ---------------------     --------------------  -----------------  -------------  -------------------  ----------  -------------------  -------------------------  ----------
     0  /MY_SPACE/YEASTS/SAMPLE1  20230407070121337-47  YEAST              admin          2023-04-07 09:06:23  admin       2023-04-07 09:06:22  ['/MY_SPACE/YEASTS/EXP2']  []
    
    ```
    
    
    **⚠️ Clarification**
    
    - `get_samples()` method is always downloading object properties
    - Not downloaded properties (e.g `parents`, `children`) will not be removed upon `save()` unless explicitly done by the user.
    - `None` values of list attributes are ignored during saving process 
    
    **Example:**
    ```python
    # get sample with get_sample() method
    sample = o.get_sample('/DEFAULT/DEFAULT/EXP2')
    sample
    
    Out[1]: 
    attribute            value
    -------------------  ------------------------------
    code                 EXP2
    permId               20230823205338303-49
    identifier           /DEFAULT/DEFAULT/EXP2
    type                 EXPERIMENTAL_STEP
    project              /DEFAULT/DEFAULT
    parents              [] # empty list
    children             ['/DEFAULT/DEFAULT/EXP3']
    components           []
    ```
    
    ```python
    # get sample with get_samples() method
    samples = o.get_samples(identifier='/DEFAULT/DEFAULT/EXP2')
    samples[0]
    
    Out[1]: 
    attribute            value
    -------------------  ------------------------------