Newer
Older
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import os\n",
"import pandas as pd\n",
"from scipy.signal import resample\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from itertools import islice"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"#pd.read_csv('../ml-use-case-eeg/train/subj10_series1_data.csv').loc[::100, :]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"train_path = 'data/eeg_use_case/train/'\n",
"test_path = 'data/eeg_use_case/test/'\n",
"all_files = os.listdir(train_path)"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"all_data_files = glob.glob('data/eeg_use_case/train/*data.csv')\n",
"all_event_files = glob.glob('data/eeg_use_case/train/*events.csv')"
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"def load_data(file_names):\n",
" # read the csv file and drop the id column\n",
" dfs = []\n",
" for f in file_names:\n",
" df = pd.read_csv(f)\n",
" df = df.drop('id', axis = 1)\n",
" dfs.append(df)\n",
" #all_dfs = pd.concat(dfs)\n",
" all_dfs = dfs\n",
" return all_dfs\n"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"all_data = np.concatenate(load_data(all_data_files))[:,1:]\n",
"all_events = np.concatenate(load_data(all_event_files))[:,1:]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"outputs": [],
"source": []
},
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Feature extraction"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"def sliding_window(seq, n):\n",
"#returns an iterator for a sliding window\n",
" it = iter(seq)\n",
" result = tuple(islice(it, n))\n",
" if len(result) == n:\n",
" yield result\n",
" for elem in it:\n",
" result = result[1:] + (elem,)\n",
" yield result"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"win_size = 500\n",
"iter_window = sliding_window(all_data, win_size)\n",
"\n",
"all_mean_power = []\n",
"\n",
"for window in iter_window:\n",
" window = np.vstack(window)\n",
" all_mean_power.append(np.mean(window**2, axis = 0))"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 452366.678, 910243.046, 430559.552, 149318.27 , 6119.372,\n",
" 80851.37 , 2663828.942, 124835.9 , 15269.73 , 6140.226,\n",
" 28285.898, 26204.874, 87730.286, 8506.566, 60342.57 ,\n",
" 51062.31 , 35993.902, 33631.49 , 16469.498, 650261.852,\n",
" 26657.906, 68666.258, 92072.606, 24539.54 , 96328.972,\n",
" 36662.188, 129633.254, 40511.972, 42207.442, 27939.102,\n",
" 36481.492, 57098.198])"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mean_power"
]
},
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}