Skip to content
Snippets Groups Projects
09_eeg_use_case.ipynb 4.31 KiB
Newer Older
  • Learn to ignore specific revisions
  • {
     "cells": [
      {
       "cell_type": "code",
    
       "execution_count": 1,
    
       "metadata": {},
       "outputs": [],
       "source": [
        "import numpy as np\n",
        "import os\n",
    
        "import glob\n",
    
        "import pandas as pd\n",
        "from scipy.signal import resample\n",
    
        "import matplotlib.pyplot as plt\n",
        "\n",
        "from itertools import islice"
    
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
    
        "#### Load data"
    
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 2,
       "metadata": {},
       "outputs": [],
       "source": [
        "#pd.read_csv('../ml-use-case-eeg/train/subj10_series1_data.csv').loc[::100, :]"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 3,
    
       "metadata": {},
       "outputs": [],
       "source": [
        "train_path = 'data/eeg_use_case/train/'\n",
        "test_path = 'data/eeg_use_case/test/'\n",
        "all_files = os.listdir(train_path)"
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 8,
    
       "metadata": {},
       "outputs": [],
       "source": [
    
        "all_data_files = glob.glob('data/eeg_use_case/train/*data.csv')\n",
        "all_event_files = glob.glob('data/eeg_use_case/train/*events.csv')"
    
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 9,
       "metadata": {},
       "outputs": [],
       "source": [
        "def load_data(file_names):\n",
        "    # read the csv file and drop the id column\n",
        "    dfs = []\n",
        "    for f in file_names:\n",
        "        df = pd.read_csv(f)\n",
        "        df = df.drop('id', axis = 1)\n",
        "        dfs.append(df)\n",
        "    #all_dfs = pd.concat(dfs)\n",
        "    all_dfs = dfs\n",
        "    return all_dfs\n"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 21,
       "metadata": {},
       "outputs": [],
       "source": [
        "all_data = np.concatenate(load_data(all_data_files))[:,1:]\n",
        "all_events = np.concatenate(load_data(all_event_files))[:,1:]"
       ]
      },
      {
       "cell_type": "markdown",
    
       "metadata": {},
       "source": [
    
        "#### Visualization"
    
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": null,
    
       "metadata": {},
       "outputs": [],
       "source": []
      },
    
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "#### Feature extraction"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 22,
       "metadata": {},
       "outputs": [],
       "source": [
        "def sliding_window(seq, n):\n",
        "#returns an iterator for a sliding window\n",
        "    it = iter(seq)\n",
        "    result = tuple(islice(it, n))\n",
        "    if len(result) == n:\n",
        "        yield result\n",
        "    for elem in it:\n",
        "        result = result[1:] + (elem,)\n",
        "        yield result"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 32,
       "metadata": {},
       "outputs": [],
       "source": [
        "win_size = 500\n",
        "iter_window = sliding_window(all_data, win_size)\n",
        "\n",
        "all_mean_power = []\n",
        "\n",
        "for window in iter_window:\n",
        "    window = np.vstack(window)\n",
        "    all_mean_power.append(np.mean(window**2, axis = 0))"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 31,
       "metadata": {},
       "outputs": [
        {
         "data": {
          "text/plain": [
           "array([ 452366.678,  910243.046,  430559.552,  149318.27 ,    6119.372,\n",
           "         80851.37 , 2663828.942,  124835.9  ,   15269.73 ,    6140.226,\n",
           "         28285.898,   26204.874,   87730.286,    8506.566,   60342.57 ,\n",
           "         51062.31 ,   35993.902,   33631.49 ,   16469.498,  650261.852,\n",
           "         26657.906,   68666.258,   92072.606,   24539.54 ,   96328.972,\n",
           "         36662.188,  129633.254,   40511.972,   42207.442,   27939.102,\n",
           "         36481.492,   57098.198])"
          ]
         },
         "execution_count": 31,
         "metadata": {},
         "output_type": "execute_result"
        }
       ],
       "source": [
        "mean_power"
       ]
      },
    
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": []
      }
     ],
     "metadata": {
      "kernelspec": {
       "display_name": "Python 3",
       "language": "python",
       "name": "python3"
      },
      "language_info": {
       "codemirror_mode": {
        "name": "ipython",
        "version": 3
       },
       "file_extension": ".py",
       "mimetype": "text/x-python",
       "name": "python",
       "nbconvert_exporter": "python",
       "pygments_lexer": "ipython3",
       "version": "3.6.1"
      }
     },
     "nbformat": 4,
     "nbformat_minor": 2
    }