Newer
Older
"For instance, to classify images of digits:\n",
"\n",
"- we could build 10 classifiers `is it 0 or other digit`, `is it 1 or other digit`, etc.\n",
" \n",
" A new image then would hopefully yield `True` for exactly one of the classifier, in other situations the result is unclear.\n",
" \n",
" \n",
"- we could build 45 classifiers `is it 0 or 1`, `is it 0 or 2`, etc.\n",
"\n",
" For a new image we could choose the final outcome based on which class \"wins\" most often.\n",
"\n",
"\n",
"<div class=\"alert alert-block alert-info\"><p><i class=\"fa fa-info-circle\"></i> \n",
" In <code>scikit-learn</code> many classifiers support multi-class problems out of the box and also offer functionalities to implement <strong>one-vs-all</strong> or <strong>one-vs-one</strong> in some cases (cf. <a href=\"https://scikit-learn.org/stable/modules/multiclass.html\"><code>scikit-learn</code> multiclass and multilabel algorithms</a>).\n",
"</p></div>"
]
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
},
"latex_envs": {
"LaTeX_envs_menu_present": true,
"autoclose": false,
"autocomplete": true,
"bibliofile": "biblio.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 1,
"hotkeys": {
"equation": "Ctrl-E",
"itemize": "Ctrl-I"
},
"labels_anchors": false,
"latex_user_defs": false,
"report_style_numbering": false,
"user_envs_cfg": false
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": true,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {
"height": "calc(100% - 180px)",
"left": "10px",
"top": "150px",
"width": "383px"
},
"toc_section_display": true,
"toc_window_display": true