Skip to content
Snippets Groups Projects
08_e-neural_networks.ipynb 22.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • chadhat's avatar
    chadhat committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
    {
     "cells": [
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "# IGNORE THIS CELL WHICH CUSTOMIZES LAYOUT AND STYLING OF THE NOTEBOOK !\n",
        "from numpy.random import seed\n",
        "\n",
        "seed(42)\n",
        "import tensorflow as tf\n",
        "\n",
        "tf.random.set_seed(42)\n",
        "import matplotlib as mpl\n",
        "import matplotlib.pyplot as plt\n",
        "import seaborn as sns\n",
        "\n",
        "sns.set(style=\"darkgrid\")\n",
        "mpl.rcParams[\"lines.linewidth\"] = 3\n",
        "%matplotlib inline\n",
        "%config InlineBackend.figure_format = 'retina'\n",
        "%config IPCompleter.greedy=True\n",
        "import warnings\n",
        "\n",
        "warnings.filterwarnings(\"ignore\", category=FutureWarning)\n",
        "from IPython.core.display import HTML\n",
        "\n",
        "HTML(open(\"custom.html\", \"r\").read())"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "# Chapter 8e: Sequence modeling: Natural language processing\n",
        "## What is Natural language processing?"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "As the name suggests, it refers to processing of data such as text and speech. This involves tasks such as:\n",
        "\n",
        "- Automatic document processing\n",
        "- Topic modeling\n",
        "- Language translation\n",
        "- sentiment analysis\n",
        "\n"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "As we all know, computers cannot process data in text format. They need numbers. So we need some mechanism to convert our text to numbers.\n",
        "\n",
        "**Important to know libraries:**\n",
        "- [Natural language toolkit](https://www.nltk.org/)\n",
        "- [Gensim](https://radimrehurek.com/gensim/)\n",
        "- [Tomotopy](https://bab2min.github.io/tomotopy/v0.12.3/en/)\n",
        "- [fastext](https://fasttext.cc/)\n",
        "\n",
        "## Text prepocessing\n",
        "\n",
        "### Tokenization\n",
        "\n",
        "Text -> tokens\n",
        "\n",
        "The process of reducing a piece of text to tokens is called tokenization. It is genrally done at a word level but can also be done at other levels such as a sentence."
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {
        "tags": []
       },
       "outputs": [],
       "source": [
        "import nltk\n",
        "\n",
        "nltk.download(\"all\")"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "text = \"Is Monty a python or a group of pythons in a flying circus? What about swimming circuses?\""
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "from nltk.tokenize import word_tokenize\n",
        "\n",
        "print(word_tokenize(text))"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "### Lemmatization and Stemming\n",
        "\n",
        "Most of the time we want to also reduce the inflectional forms of the same word. For example, consider a text that has (organization, organizational, organizations)\n",
        "\n",
        "`Stemming`: This is a process of reducing a word to a stem form based on some pre-defined rules. The resulting stem might be a non-sensical word.\n",
        "\n",
        "`Lemmatization`: This is a process of reducing a word to a lemma or the dictionary form of the word. This follows lexicon rules and is much more comprehensive than `stemming`. However, it is also more computationally expensive."
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "from nltk.stem import PorterStemmer, WordNetLemmatizer\n",
        "from nltk.tokenize import word_tokenize\n",
        "from prettytable import PrettyTable\n",
        "\n",
        "words = word_tokenize(text)\n",
        "print(\"Tokens \\n\")\n",
        "print(words)\n",
        "\n",
        "stemmer = PorterStemmer()\n",
        "\n",
        "lemmatizer = WordNetLemmatizer()\n",
        "\n",
        "table = PrettyTable([\"Word\", \"Stem\", \"Lemma\"])\n",
        "\n",
        "for w in words:\n",
        "    table.add_row([w, stemmer.stem(w), lemmatizer.lemmatize(w)])\n",
        "\n",
        "print(table)"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "lemmatizer.lemmatize(\"swimming\")"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "lemmatizer.lemmatize?"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "lemmatizer.lemmatize(\"swimming\", \"v\")"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "# Automatically find POS tag\n",
        "from nltk.corpus import wordnet\n",
        "\n",
        "\n",
        "def get_wordnet_pos(word):\n",
        "    \"\"\"Map POS tag to first character lemmatize() accepts\"\"\"\n",
        "    tag = nltk.pos_tag([word])[0][1][0].upper()\n",
        "    tag_dict = {\n",
        "        \"J\": wordnet.ADJ,\n",
        "        \"N\": wordnet.NOUN,\n",
        "        \"V\": wordnet.VERB,\n",
        "        \"R\": wordnet.ADV,\n",
        "    }\n",
        "\n",
        "    return tag_dict.get(tag, wordnet.NOUN)\n",
        "\n",
        "\n",
        "words = word_tokenize(text)\n",
        "\n",
        "table = PrettyTable([\"Word\", \"Stem\", \"Lemma\"])\n",
        "\n",
        "for w in words:\n",
        "    table.add_row([w, stemmer.stem(w), lemmatizer.lemmatize(w, get_wordnet_pos(w))])\n",
        "\n",
        "print(table)"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "### Other:\n",
        "\n",
        "- Text to lower case\n",
        "- Remove punctuations\n",
        "- Remove stopwords"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "# Text to lower case\n",
        "text = text.lower()\n",
        "print(text)\n",
        "\n",
        "# Remove punctuations\n",
        "import string\n",
        "\n",
        "text = text.translate(str.maketrans(\"\", \"\", string.punctuation))\n",
        "print(text)"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "# Remove stopwords\n",
        "from nltk.corpus import stopwords\n",
        "\n",
        "print(stopwords.words(\"english\"))"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "words = word_tokenize(text)\n",
        "\n",
        "filtered_text = [w for w in words if not w in set(stopwords.words(\"english\"))]\n",
        "\n",
        "print(filtered_text)"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "## Tokens to Vectors\n",
        "\n",
        "Once we have cleaned up our text we have different ways in which we can tokenize them:\n",
        "\n",
        "### Bag-of-Words (BoW)\n",
        "\n",
        "Imagine that all the unique words in our text corpus are put together in one big bag. \n",
        "\n",
        "All or a subset of this bag is then considered as our `vocabulary`.\n",
        "\n",
        "Each unit (document/line/...) in our corpus can now be represented as a vector of length equal to our vocabulary size with each index of the vector representing a word from our `vocabulary`.\n",
        "\n",
        "We count the number of occurences of each word in a unit of text and put this number at the corresponding location in this vector. If the word does not exist in the unit we enter 0."
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "# Let's consider each sentence of our example text as a document/unit we want to process\n",
        "import numpy as np\n",
        "\n",
        "text = [\n",
        "    \"Is Monty a python or a group of pythons in a flying circus?\",\n",
        "    \"What about swimming circuses?\",\n",
        "]\n",
        "\n",
        "for index, value in enumerate(text):\n",
        "    text[index] = value.lower().translate(str.maketrans(\"\", \"\", string.punctuation))\n",
        "\n",
        "lemmatizer = WordNetLemmatizer()\n",
        "\n",
        "unique_words = {}\n",
        "\n",
        "bow_text = []\n",
        "\n",
        "for index, value in enumerate(text):\n",
        "    words = word_tokenize(value)\n",
        "    words = [w for w in words if not w in set(stopwords.words(\"english\"))]\n",
        "    words = [lemmatizer.lemmatize(w) for w in words]\n",
        "    print(words)\n",
        "    for token in words:\n",
        "        if token not in unique_words.keys():\n",
        "            unique_words[token] = 1\n",
        "        else:\n",
        "            unique_words[token] += 1\n",
        "    bow_text.append(words)\n",
        "\n",
        "print(unique_words)\n",
        "\n",
        "unique_words = list(unique_words.keys())\n",
        "\n",
        "bow_vectors = np.zeros((len(unique_words), len(text)))\n",
        "\n",
        "for column, value in enumerate(bow_text):\n",
        "    for _, word in enumerate(value):\n",
        "        if word in unique_words:\n",
        "            bow_vectors[unique_words.index(word), column] += 1\n",
        "print(bow_vectors)"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "Much better way of doing this is:"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "from string import punctuation\n",
        "\n",
        "from sklearn.feature_extraction.text import CountVectorizer\n",
        "\n",
        "# CountVectorizer automatically makes the text lowercase\n",
        "\n",
        "text = [\n",
        "    \"Is Monty a python or a group of python in a flying circus?\",\n",
        "    \"What about swimming circuses?\",\n",
        "]\n",
        "\n",
        "\n",
        "class LemmaTokenizer:\n",
        "    def __init__(self):\n",
        "        self.wnl = WordNetLemmatizer()\n",
        "\n",
        "    def __call__(self, doc):\n",
        "        return [self.wnl.lemmatize(t) for t in word_tokenize(doc)]\n",
        "\n",
        "\n",
        "vectorizer = CountVectorizer(\n",
        "    stop_words=set(stopwords.words(\"english\")).union(set(punctuation)),\n",
        "    tokenizer=LemmaTokenizer(),\n",
        ")\n",
        "\n",
        "bow_vectors = vectorizer.fit_transform(text)\n",
        "\n",
        "print(f\"The vocabulary of our corpus is: \\n {vectorizer.vocabulary_}\\n\")\n",
        "\n",
        "print(f\"Vectorizer from Scikit learn creates sparse matrices: {type(bow_vectors)} \\n\")\n",
        "\n",
        "print(f\"The created vectors are: {bow_vectors.todense()}\")"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "# Other tokenizers\n",
        "from string import punctuation\n",
        "\n",
        "from nltk.tokenize import TweetTokenizer\n",
        "from sklearn.feature_extraction.text import CountVectorizer\n",
        "\n",
        "tokenizer = TweetTokenizer()\n",
        "\n",
        "text = [\n",
        "    \"Is Monty a python or a group of python's in a flying circus?\",\n",
        "    \"What about swimming circuses?\",\n",
        "]\n",
        "\n",
        "\n",
        "class LemmaTokenizer:\n",
        "    def __init__(self):\n",
        "        self.wnl = WordNetLemmatizer()\n",
        "\n",
        "    def __call__(self, doc):\n",
        "        return [self.wnl.lemmatize(t) for t in tokenizer.tokenize(doc)]\n",
        "\n",
        "\n",
        "vectorizer = CountVectorizer(\n",
        "    stop_words=set(stopwords.words(\"english\")).union(set(punctuation)),\n",
        "    tokenizer=LemmaTokenizer(),\n",
        ")\n",
        "\n",
        "bow_vectors = vectorizer.fit_transform(text)\n",
        "\n",
        "print(f\"The vocabulary of our corpus is: \\n {vectorizer.vocabulary_}\\n\")\n",
        "\n",
        "print(f\"Vectorizer from Scikit learn creates sparse matrices: {type(bow_vectors)} \\n\")\n",
        "\n",
        "print(f\"The created vectors are: {bow_vectors.todense()}\")"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "### Term frequency inverse document frequency (Tf-idf)\n",
        "\n",
        "A numerical statistic that is intended to reflect how important a word is to a document in a collection or corpus.\n",
        "\n",
        "A survey conducted in 2015 showed that 83% of text-based recommender systems in digital libraries use tf–idf(*)\n",
        "\n",
        "*[Research-paper recommender systems : a literature survey](https://link.springer.com/article/10.1007/s00799-015-0156-0)\n",
        "\n",
        "$TF-IDF = TF * IDF$\n",
        "\n",
        "**TF = Term frequency**\n",
        "\n",
        "**IDF = Inverse document/text frequency**\n",
        "\n",
        "$T_{t',d}$ = Number of occurences of a particular term ($t'$) in a document ($d$).\n",
        "\n",
        "$\\sum_{t' \\in d} T_{t',d}$ : Total number of terms in the document\n",
        "\n",
        "$N_T$ = Total number of documents/text samples.\n",
        "\n",
        "$N_{t'}$ = Number of documents/text samples that contain the term $t'$-\n",
        "\n",
        "$TF-IDF = \\dfrac{T_{t',d}}{\\sum_{t' \\in d} T_{t',d}} * \\dfrac{N_T}{N_{t'}}$\n"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "### IMDB dataset\n",
        "\n",
        "Let's have a look at a sample dataset.\n",
        "\n",
        "IMDB dataset comprises of 50,000 movie reviews. Each of them has a label `0` or `1` representing a bad or a good review, respectively.\n",
        "\n",
        "`Note`: This dataset is also contained in tensorflow.keras.datasets, however that data is already preprocessed. Therefore, we import it from tensorflow_datasets instead."
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "### Exercise: Explore the IMDB dataset and vectorize the tokens"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {
        "tags": []
       },
       "outputs": [],
       "source": [
        "import tensorflow_datasets as tfds\n",
        "\n",
        "train_data, test_data = tfds.load(\n",
        "    name=\"imdb_reviews\", split=[\"train\", \"test\"], batch_size=-1, as_supervised=True\n",
        ")\n",
        "\n",
        "X_train, y_train = tfds.as_numpy(train_data)\n",
        "X_test, y_test = tfds.as_numpy(test_data)"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "print(f\"Number of: training samples - {len(y_train)}, test_samples - {len(y_test)}\")"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "print(X_train[:5])\n",
        "print(y_train[:5])"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "### Exercise: Apply tokenization and vectorization (e.g. CountVectorizer) to the imdb dataset"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "# Create a vectorizer e.g. CountVectorizer\n",
        "# Pass maximum features=10000 to the vectorizer to avoid running out of memory\n",
        "\n",
        "\n",
        "# train it on the training set (HINT: one can pass an array of texts)\n",
        "\n",
        "\n",
        "# Look at the resulting vocabulary\n",
        "# vectorizer.vocabulary_\n",
        "\n",
        "\n",
        "# Transform the test data"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "# Build a 3 layer simple vanilla neural network\n",
        "# Dont forget to add dropout\n",
        "\n",
        "\n",
        "\n",
        "\n",
        "model.compile(optimizer=\"adam\", loss=\"binary_crossentropy\", metrics=[\"accuracy\"])\n",
        "\n",
        "# We need to convert the sparse vector to dense\n",
        "results = model.fit(\n",
        "    train.todense(),\n",
        "    y_train,\n",
        "    epochs=10,\n",
        "    batch_size=512,\n",
        "    validation_data=(test.todense(), y_test),\n",
        ")"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {
        "tags": [
         "solution"
        ]
       },
       "outputs": [],
       "source": [
        "# Solution\n",
        "vectorizer = CountVectorizer(\n",
        "    stop_words=set(stopwords.words(\"english\")).union(set(punctuation)),\n",
        "    tokenizer=LemmaTokenizer(),\n",
        "    max_features=20000,\n",
        ")\n",
        "\n",
        "train = vectorizer.fit_transform(X_train)\n",
        "\n",
        "print(vectorizer.vocabulary_)\n",
        "\n",
        "test = vectorizer.transform(X_test)"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {
        "tags": [
         "solution"
        ]
       },
       "outputs": [],
       "source": [
        "# Build a 3 layer simple vanilla neural network\n",
        "# Dont forget to add dropout\n",
        "\n",
        "from tensorflow.keras.layers import Dense, Dropout\n",
        "from tensorflow.keras.models import Sequential\n",
        "\n",
        "\n",
        "model = Sequential()\n",
        "model.add(Dense(50, activation=\"relu\", input_shape=(test.shape[1],)))\n",
        "# Hidden - Layers\n",
        "model.add(Dropout(0.5))\n",
        "model.add(Dense(30, activation=\"relu\"))\n",
        "model.add(Dropout(0.5))\n",
        "model.add(Dense(20, activation=\"relu\"))\n",
        "# Output- Layer\n",
        "model.add(Dense(1, activation=\"sigmoid\"))\n",
        "model.summary()"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {
        "tags": [
         "solution"
        ]
       },
       "outputs": [],
       "source": [
        "model.compile(optimizer=\"adam\", loss=\"binary_crossentropy\", metrics=[\"accuracy\"])\n",
        "\n",
        "# We need to convert the sparse vector to dense\n",
        "results = model.fit(\n",
        "    train.todense(),\n",
        "    y_train,\n",
        "    epochs=10,\n",
        "    batch_size=512,\n",
        "    validation_data=(test.todense(), y_test),\n",
        ")"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "### Word embeddings: Featurized representation of words"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "<center>\n",
        "<figure>\n",
        "<img src=\"./images/neuralnets/word_embedding.png\" width=\"700\"/>\n",
        "<figcaption>Embedding words in a higher dimensional feature space</figcaption>\n",
        "</figure>\n",
        "</center>"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "| <div style=\"width:150px\"></div>  | <div style=\"width:150px\"></div> Apple | <div style=\"width:150px\"></div> Orange  | <div style=\"width:150px\"></div> Pants | <div style=\"width:150px\"></div> Tiger |\n",
        "| :-----------: | :-----------: | :-----------: | :-----------: | :-----------: |\n",
        "| Animal |0.01 |0.015 |0.006 | 0.96 |\n",
        "| Fruit | 0.99 | 0.97 | -0.001 | -0.01 |\n",
        "| Clothing | 0.02 | 0.07 | 0.97 | 0.002 |\n",
        "| FeatureX | - | - | - | - |\n",
        "| FeatureY | - | - | - | - |\n"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "Some models to compute word embeddings:\n",
        "- Word2Vec\n",
        "- GloVe\n",
        "- fastText\n",
        "- BERT"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "### Pretrained embeddings\n",
        "\n",
        "Example:\n",
        "https://fasttext.cc/docs/en/crawl-vectors.html"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "!pip install fasttext"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "import fasttext\n",
        "\n",
        "ft = fasttext.load_model(\"./data/cc.en.100.bin\")"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "words = [\"cat\", \"dog\", \"cream\", \"pizza\", \"car\", \"tractor\"]\n",
        "\n",
        "word_vectors = {}\n",
        "for word in words:\n",
        "    word_vectors[word] = ft.get_word_vector(word)"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "import pandas as pd\n",
        "from scipy import spatial\n",
        "\n",
        "\n",
        "def compute_similarity(a, b):\n",
        "    \"\"\"This function computes cosine similarity between two vectors\"\"\"\n",
        "    return 1 - spatial.distance.cosine(a, b)"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "# similarities = np.zeros([len(words)]*2)\n",
        "similarities = pd.DataFrame(columns=words, index=words)\n",
        "for word_a, vec_a in word_vectors.items():\n",
        "    for word_b, vec_b in word_vectors.items():\n",
        "        similarities.at[word_a, word_b] = compute_similarity(vec_a, vec_b)"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,
       "metadata": {},
       "outputs": [],
       "source": [
        "similarities"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "###  Recurrent Neural Networks (RNNs)\n",
        "\n",
        "RNNs are used for problems such as time-series data, speech recognition and translation.\n",
        "\n",
        "<center>\n",
        "<figure>\n",
        "<img src=\"./images/neuralnets/RNNs.png\" width=\"700\"/>\n",
        "<figcaption>Recurrent neural network</figcaption>\n",
        "</figure>\n",
        "</center>"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "There are newer variants that overcome some issues with a vanilla RNN:\n",
        "- Gated Recurrent Unit (GRU)\n",
        "- Long Short Term Memory (LSTM)"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "**Example walkthrough** : https://keras.io/examples/vision/video_classification/"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "###  Transformer models\n",
        "\n",
        "Transformers are models based on an encoder-decoder architecture and mainly using the attention.\n",
        "\n",
        "<center>\n",
        "<figure>\n",
        "<img src=\"./images/neuralnets/transformer.png\" width=\"400\"/>\n",
        "<figcaption>Transformer architecture</figcaption>\n",
        "</figure>\n",
        "</center>\n",
        "\n",
        "[Attention is all you need](https://arxiv.org/abs/1706.03762)"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "### Putting it all together\n",
        "\n",
        "https://paperswithcode.com/sota/sentiment-analysis-on-imdb"
       ]
      }
     ],
     "metadata": {
      "kernelspec": {
       "display_name": "Python 3 (ipykernel)",
       "language": "python",
       "name": "python3"
      },
      "language_info": {
       "codemirror_mode": {
        "name": "ipython",
        "version": 3
       },
       "file_extension": ".py",
       "mimetype": "text/x-python",
       "name": "python",
       "nbconvert_exporter": "python",
       "pygments_lexer": "ipython3",
       "version": "3.10.5"
      }
     },
     "nbformat": 4,
     "nbformat_minor": 4
    }