Skip to content
Snippets Groups Projects
09_eeg_use_case.ipynb 52.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • {
     "cells": [
      {
       "cell_type": "code",
    
       "execution_count": 22,
    
       "metadata": {},
    
       "outputs": [],
    
       "source": [
        "import numpy as np\n",
        "import os\n",
    
        "# import glob\n",
    
        "import pandas as pd\n",
    
        "# from scipy.signal import resample, butter, lfilter\n",
    
        "import matplotlib.pyplot as plt\n",
        "\n",
    
        "from tqdm import tqdm\n",
    
        "# from itertools import islice\n",
    
        "\n",
        "from sklearn.decomposition import PCA\n",
        "from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA\n",
        "from sklearn.linear_model import LogisticRegression\n",
    
        "from sklearn.ensemble import RandomForestClassifier, VotingClassifier, AdaBoostClassifier\n",
    
        "from sklearn.metrics import precision_recall_fscore_support, roc_auc_score, confusion_matrix\n",
        "from sklearn.model_selection import train_test_split\n",
    
        "# from sklearn.preprocessing import StandardScaler\n",
    
        "\n",
    
        "# from multiprocessing import Pool\n",
        "# from multiprocessing.pool import ThreadPool\n",
    
        "\n",
    
        "# import time"
    
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
    
        "# Chapter 9: Use case - prediction of arm movements\n",
        "\n",
        "<center>\n",
        "<figure>\n",
        "    <img src=\"./images/eeg_cap.png\" title=\"made at imgflip.com\" width=35%/> \n",
        "    <img src=\"./images/arm_movement.png\" title=\"made at imgflip.com\" width=35%/>\n",
        "    <figcaption>Setup of an EEG-experiment.</figcaption>\n",
        "</figure>\n",
        "</center>\n"
    
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
    
        "This data contains EEG recordings of subjects performing **grasp-and-lift (GAL)** trials. \n",
        "\n",
        "There are **12 subjects** in total, **10 series** of trials for each subject, and approximately **30 trials** within each series. The number of trials varies for each series. The training set contains the first 8 series for each subject. The test set contains the 9th and 10th series.\n",
        "\n",
        "For each **GAL**, you are tasked to detect 6 events:\n",
        "\n",
        "- HandStart\n",
        "- FirstDigitTouch\n",
        "- BothStartLoadPhase\n",
        "- LiftOff\n",
        "- Replace\n",
        "- BothReleased\n",
        "\n",
        "These events always occur in the same order. In the training set, there are two files for each subject + series combination:\n",
        "\n",
        "the *_data.csv files contain the raw 32 channels EEG data (sampling rate 500Hz)\n",
        "the *_events.csv files contains the ground truth frame-wise labels for all events\n",
        "\n",
        "\n",
        "Detailed information about the data can be found here:\n",
        "Luciw MD, Jarocka E, Edin BB (2014) Multi-channel EEG recordings during 3,936 grasp and lift trials with varying weight and friction. Scientific Data 1:140047. www.nature.com/articles/sdata201447\n",
        "\n",
        "*Description from https://www.kaggle.com/c/grasp-and-lift-eeg-detection/data*"
    
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
    
        "<center>\n",
        "<figure>\n",
        "    <img src=\"./images/eeg_signal_preprocessing.png\" title=\"made at imgflip.com\" width=75%/> \n",
        "    <figcaption>Preprocessing steps for EEG-signals.</figcaption>\n",
        "</figure>\n",
        "</center>"
    
       "cell_type": "markdown",
    
       "metadata": {},
       "source": [
    
        "### Load data"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "Task 1: Load the trainig and test data sets and ... the order of the sessions."
    
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 2,
    
       "metadata": {},
       "outputs": [],
       "source": [
    
        "def filter_data(data, events, subj = None):\n",
        "    # filter data for specific subjects\n",
        "    if subj:\n",
        "        data_filt = list(filter(lambda x: subj + '_' in x, data))\n",
        "    else:\n",
        "        data_filt = data\n",
        "\n",
        "    events_filt = []\n",
        "    for d in data_filt:\n",
        "        subj, series, end = d.split('_')\n",
        "        ix = np.where([subj + '_' in a and series in a for a in events])[0][0]\n",
        "        events_filt.append(events[ix])\n",
        "\n",
    
        "    return data_filt, events_filt\n",
        "\n",
        "def load_data(file_names, path):\n",
        "    # read the csv file and drop the id column\n",
        "    dfs = []\n",
        "    for f in file_names:\n",
        "        df = pd.read_csv(path + f)\n",
        "        df = df.drop('id', axis = 1)\n",
        "        dfs.append(df)\n",
        "    #all_dfs = pd.concat(dfs)\n",
        "    all_dfs = dfs\n",
        "    return all_dfs"
    
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 3,
    
       "metadata": {},
       "outputs": [],
       "source": [
    
        "# define path and list all data and event files\n",
        "path = '../ml-use-case-eeg/train/' \n",
        "\n",
        "all_data_files = list(filter(lambda x: '_data' in x, os.listdir(path)))\n",
        "all_event_files = list(filter(lambda x: '_events' in x, os.listdir(path)))"
    
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 4,
    
       "metadata": {},
       "outputs": [],
       "source": [
    
        "# sort data and event file names\n",
    
        "data_filt, events_filt = filter_data(all_data_files, all_event_files, subj='subj1')"
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 5,
    
       "metadata": {},
       "outputs": [],
       "source": [
    
        "# load all data and event files\n",
        "all_data = np.concatenate(load_data(data_filt, path))\n",
        "all_events = np.concatenate(load_data(events_filt, path))"
    
       "cell_type": "markdown",
    
       "metadata": {},
       "source": [
    
        "### Visualization"
    
       ]
      },
      {
       "cell_type": "markdown",
    
       "metadata": {},
       "source": [
    
        "### Feature extraction"
    
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
    
        "Task .. : Extract time-dependend features.\n",
        "\n",
        "Single steps:\n",
        "- define sliding window of length 500 (datapoints)\n",
        "- compute the average power per window (power: square of the signal)\n",
        "- three consecutive windows predict the event in the following time step\n",
        "- the window slides with a step size of 2 throught the dataset"
    
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "<center>\n",
        "<figure>\n",
    
        "    <img src=\"./images/time_window.001.png\" title=\"made at imgflip.com\" width=75%/> \n",
    
        "    <figcaption>Preprocessing steps for EEG-signals.</figcaption>\n",
        "</figure>\n",
        "</center>"
       ]
      },
    
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "#### Generate windows"
       ]
      },
    
      {
       "cell_type": "code",
    
       "execution_count": 6,
    
       "metadata": {},
    
       "outputs": [
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
    
          "CPU times: user 857 ms, sys: 40.8 ms, total: 898 ms\n",
          "Wall time: 899 ms\n"
    
       "source": [
    
        "win_size = 500\n",
    
        "step_size = 2\n",
        "num_feat = 3\n",
        "num_win = int((all_data.shape[0] - (win_size * num_feat))/step_size)\n",
        "ix_start = np.arange(0, num_win*step_size - win_size*num_feat, step_size)\n",
        "ix_end = ix_start + 500\n",
        "\n",
    
        "all_events_resh = np.array([all_events[end + 1501, :] for end in ix_end])"
    
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
    
        "#### Compute the mean power per time window"
    
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 7,
    
       "metadata": {},
       "outputs": [],
       "source": [
    
        "# def butter_bandpass(fs, lowcut, highcut, order = 5):\n",
        "#     nyq = 0.5 * fs\n",
        "#     low = lowcut / nyq\n",
        "#     high = highcut / nyq\n",
        "#     b, a = butter(order, [low, high], btype='band')\n",
        "#     return b, a\n",
    
        "# def butter_bandpass_filter(data):\n",
        "#     b, a = butter_bandpass(fs = 500, lowcut = 0, highcut = 50)\n",
        "#     y = lfilter(b, a, data, axis = 0)\n",
    
        "#     filt_mean_pow = mean_pow(y)\n",
        "#     return filt_mean_pow"
    
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 8,
    
       "metadata": {},
       "outputs": [],
       "source": [
    
        "def mean_pow(y):\n",
        "    return np.mean(y**2, axis = 0)"
    
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 9,
    
       "metadata": {},
       "outputs": [
        {
         "name": "stderr",
         "output_type": "stream",
         "text": [
    
          "100%|█████████▉| 709629/709696 [02:44<00:00, 4331.54it/s]"
    
         ]
        },
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
    
          "CPU times: user 2min 44s, sys: 1.51 s, total: 2min 45s\n",
          "Wall time: 2min 45s\n"
    
         ]
        }
       ],
       "source": [
        "%%time\n",
    
        "pbar = tqdm(total = len(ix_start))\n",
    
        "filt_data = []\n",
    
        "for start, end in zip(ix_start, ix_end):\n",
        "    pow_1 = mean_pow(all_data[start:end, :])\n",
        "    pow_2 = mean_pow(all_data[start+500:end+500, :])\n",
        "    pow_3 = mean_pow(all_data[start+1000:end+1000, :])\n",
        "    filt_data.append(np.hstack([pow_1, pow_2, pow_3]))\n",
        "    \n",
    
        "    pbar.update(1)\n",
        "    \n",
    
        "filt_data = np.array(filt_data)"
    
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
    
        "#### Dimensionality reduction"
    
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 10,
    
       "metadata": {},
       "outputs": [],
       "source": [
    
        "pca = PCA(n_components=10)\n",
    
        "filt_data_red = pca.fit_transform(filt_data)"
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 11,
    
       "metadata": {},
       "outputs": [
        {
         "data": {
          "text/plain": [
    
           "<matplotlib.collections.PathCollection at 0x2ba7365b2320>"
    
         "execution_count": 11,
    
         "metadata": {},
         "output_type": "execute_result"
        },
        {
         "data": {
    
          "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEQCAYAAACQip4+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAE8lJREFUeJzt3XuQXGWdxvHnmYQBQoJkySwiIQxGhYmRADsViFwUEAvQJX8sYsArG82iLOUdsbJb62pZq1SBtwLckTXorlwCq1YWCIsKMRADOJEEcgFNICwBNMM9KDom+e0f3TNMJt3TpzN9+vSbfD9VXTNz+p3Tz0xmnrxz+u1zHBECAKSjregAAID6UNwAkBiKGwASQ3EDQGIobgBIDMUNAInJrbhtf8/2ZturM4z9uu2V5dtvbL+QVy4ASJ3zWsdt+2RJL0v6QURMr+PzLpZ0TET8fS7BACBxuc24I2KppOeGbrM91fbttlfYvtv2kRU+9TxJ1+eVCwBSN7bJj9cj6cKI+K3t4yRdJenUgTttHybpcEl3NjkXACSjacVte7ykt0q6yfbA5r2HDZsj6eaI2NasXACQmmbOuNskvRARR48wZo6ki5qUBwCS1LTlgBHxkqTHbL9HklwyY+D+8vHuiZKWNysTAKQoz+WA16tUwkfY3mR7rqT3SZpre5WkNZJmD/mUOZJuCE5XCAAjym05IAAgH7xyEgASk8uTk5MmTYrOzs48dg0Au6UVK1Y8ExEdWcbmUtydnZ3q7e3NY9cAsFuy/XjWsRwqAYDEUNwAkBiKGwASQ3EDQGIobgBIDMUNAImhuAEgMRQ3ACSm2RdSGJWFX56vJ1avGvz40OkzdO4/f6XARADQfDVn3LaPGHIh35W2X7L9yWaEG2p4aUvSE6tXaeGX5zc7CgAUquaMOyIekXS0JNkeI+lJST/OOddOhpd2re0AsLuq9xj3aZI2RETm19QDABqr3uKeoypXYLc9z3av7d6+vr7RJwMAVJS5uG23Szpb0k2V7o+Inojojojujo5MZyYEAOyCembcZ0r6dUT8Pq8wAIDa6inu81TlMAkAoHkyFbft/SSdLulH+cYBANSS6QU4EfEHSQfmnAUAkAEveQeAxFDcAJAYihsAEpNEcf/iuoeLjgAALSOJ4l699KmiIwBAy0iiuAEAr0qouPerczsA7J6SKe59Jv6Ddi7p/fSG4z9fRBwAKExSV8AplfeOZn/q2AKSAEBxkplxAwBKKG4ASEwSxT1u/73q2g4Au7MkivuCy07aqaTH7b+XLrjspIISAUBxknlykpIGgJIkZtwAgFdR3ACQGIobABKT9dJlB9i+2fbDttfZnpV3MABAZVmfnPympNsj4hzb7ZLG5ZgJADCCmsVt+zWSTpb0YUmKiH5J/fnGAgBUk+VQyeGS+iQtsP2A7WvKV30HABQgS3GPlXSspKsj4hhJf5B06fBBtufZ7rXd29fX1+CYAIABWYp7k6RNEXFf+eObVSryHURET0R0R0R3R0dHIzMCAIaoWdwR8TtJT9g+orzpNElrc00FAKgq66qSiyX9sLyi5FFJF+QXCQAwkkzFHRErJXXnnAUAkAGvnASAxFDcAJAYihsAEkNxA0BiKG4ASAzFDQCJobgBIDEUNwAkhuIGgMRQ3ACQGIobABJDcQNAYihuAEgMxQ0AiaG4ASAxFDcAJIbiBoDEUNwAkJhMly6zvVHSFknbJG2NCC5jBgAFyXqxYEk6JSKeyS0JACATDpUAQGKyFndIusP2CtvzKg2wPc92r+3evr6+xiUEAOwga3GfGBHHSjpT0kW2Tx4+ICJ6IqI7Iro7OjoaGhIA8KpMxR0RT5bfbpb0Y0kz8wwFAKiuZnHb3s/2hIH3Jb1T0uq8gwEAKsuyquQgST+2PTD+uoi4PddUAICqahZ3RDwqaUYTsgAAMmA5IAAkhuIGgMRQ3ACQGIobABJDcQNAYihuAEgMxQ0AiaG4ASAxFDcAJIbiBoDEUNwAkBiKGwASQ3EDQGIobgBIDMUNAImhuAEgMRQ3ACSG4gaAxGQubttjbD9g+5Y8AwEARlbPjPsTktblFQQAkE2m4rY9WdK7JF2TbxwAQC1ZZ9zfkHSJpO3VBtieZ7vXdm9fX19DwgEAdlazuG2/W9LmiFgx0riI6ImI7ojo7ujoaFhAAMCOssy4T5B0tu2Nkm6QdKrt/8o1FQCgqprFHRFfiIjJEdEpaY6kOyPi/bknAwBUxDpuAEjM2HoGR8QSSUtySQIAyIQZNwAkhuIGgMRQ3ACQGIobABJDcQNAYihuAEgMxQ0AiaG4ASAxFDcAJIbiBoDEUNwAkBiKGwASQ3EDQGIobgBIDMUNAImhuAEgMRQ3ACQmy1Xe97F9v+1VttfY/tdmBAMAVJbl0mV/lnRqRLxsey9J99heHBH35pwNAFBBzeKOiJD0cvnDvcq3yDMUAKC6TMe4bY+xvVLSZkk/jYj7KoyZZ7vXdm9fX1+jcwIAyjIVd0Rsi4ijJU2WNNP29ApjeiKiOyK6Ozo6Gp0TAFBW16qSiHhB0l2SzsgnDgCgliyrSjpsH1B+f19Jp0t6OO9gAIDKsqwqOVjS922PUanoF0bELfnGAgBUk2VVyYOSjmlCFgBABrxyEgASQ3EDQGIobgBIDMUNAImhuAEgMRQ3ACSG4gaAxFDcAJAYihsAEkNxA0BiKG4ASAzFDQCJobgBIDEUNwAkhuIGgMRQ3ACQGIobABJDcQNAYrJcLPhQ23fZXmt7je1PNCMYAKCyLBcL3irpMxHxa9sTJK2w/dOIWJtzNgBABTVn3BHxdET8uvz+FknrJB2SdzAAQGV1HeO23anSFd/vq3DfPNu9tnv7+voakw4AsJPMxW17vKT/lvTJiHhp+P0R0RMR3RHR3dHR0ciMAIAhMhW37b1UKu0fRsSP8o0EABhJllUllvQfktZFxBX5RwIAjCTLjPsESR+QdKrtleXbWTnnAgBUUXM5YETcI8lNyAIAyIBXTgJAYihuAEgMxQ0AiaG4ASAxFDcAJIbiBoDEUNwAkBiKGwASQ3EDQGIobgBIDMUNAImhuAEgMVmuOVmIzktv3Wnbxq++q4AkANBaWnLGXam0R9oOAHuSlixuAEB1FDcAJIbiBoDEZLnm5Pdsb7a9uhmBAAAjyzLjvlbSGTnnAABkVLO4I2KppOeakAUAkEHLruNe336+xgy5RPG2kN7Qf11xgQCgRTSsuG3PkzRPkqZMmTKqfa1vP1/nTD5IG9rbB7dN7e/X+k3nS3pxVPsGgNQ1rLgjokdSjyR1d3fHaPZ1zuSD9MWvj1F7bBvc1u8xOudTB+kno4sJAMlryeWApdKWrFdv7VHaDgB7uizLAa+XtFzSEbY32Z6bd6iB0t4hR3k7AOzpah4qiYjzmhEEAJBNSx4qAQBUR3EDQGIobgBIDMUNAImhuAEgMRQ3ACSmJYt73KzjNXzJdpS3A8CeriWLu3PBgp1Ketys49W5YEFBiQCgdbTs2QEpaQCorCVn3ACA6ihuAEgMxQ0AiaG4ASAxFDcAJIbiBoDEtOxyQLSudXffpduv/oa2b9tWe/Awhx31dp0z/7M5pAL2HC1b3GuO7NrhKjgh6c0Pr6trH+/77nIt2/Dc4McnTP0r/fCjsxoTcA+17u67dNuVV0ixa5cjevzBJbr8vUuqD2g7VPu85j019zPxtfvq/C/yb4k9k2MXfwFH0t3dHb29vbv8+Ze/9907bTtz1QZJ2Qt8aGnfeNtnNaG/8jhL6qrzP4Q9Wc9FF2jLM335PgjljT2Q7RUR0Z1lbKZj3LbPsP2I7fW2Lx1dvJFVKm1JWjxjqhbPmCqrNBuvZXhpD73w8NBbSFqXYX8o2fLsM/k/yPYnMg17/nev5BwEaE01D5XYHiPpSkmnS9ok6Ve2F0XE2rzDVbJ4xtRSrnLZhqQ5n2/Tisc26ZuPnDT4P9HF5bf3dE3VxLHnataKf6u4v4HyXntkl7a0S8c9WHv2feWFd+pPz1+x0/bP3HhLfV9MgiYcOCn/GTeQo40XXKBXlt87+HG1Yw4vt0szM/RBEbLMuGdKWh8Rj0ZEv6QbJM3ON1ZtA7NvS7rha9v1zUdOqPrFPL91oZb/zReq7mtgPxP6pfuO6lLnpbcO3oarVtpS9b8WdicnzfmgZNceCLSg4aUtVf9rfHx/aUI3/LbmyC5d+Llpesu10/XRq6c2/WuQsj05eYikoX+7bpJ03PBBtudJmidJU6ZMaUi4LDz4duQyeWX8IZn2NaFfOrvtHi3afqIkqfPSW7Xxq+8aZcrdR9dJp0jSLq8qyaTt0EzDJr5233weH7ut4aU9kmqNYkkX/09I3q5l0/bV3Kun6uePf2uncXn2RsNWlUREj6QeqfTkZKP2W4RLxi7Uov4Ti47RsrpOOmWwwGv5/iVf0TOPL8++8ypPTG798zpt/eMdkl79z+Lp56XL31t5N5MOm6UPXTY/++MCdWiTdP6S0LI3W/fvW3kCkeekL0txPylp6BRocnlbcgb+N6n1h/7r/GzeUfYYoynPX1z3sFYvfapc2ovr+txnHl/etENXM04/S+/4yMeb8lhoHQe+VNxjZznG/StJb7R9uO12SXMkLco3VnYxeBt5kj/x4HGa9vC6wScjq+1rS7v0VBzY2JDYJWvueUqStPVP9xScZGSrfnqbfnbNVUXHQAb7NvAqWs/u37Bd1a1mcUfEVkn/KOl/Ja2TtDAi1uQVKOvKjDNXbRgs7Tmfb9Mnjlim7VXGHtw1f3C9b9eQ8h5+29IufeRTbbps67lVH/ei75ya9UvBKMXAP+j2LYXmyOLBn99edARk0LlgwU7lPbwHstgu6bq3W4rQzFeavyw10zHuiLhN0m05ZxlU77K6h8pvP5dx/MALbt6y4M07rpCI0Cm/PXvwiUmp8hMMn7nxlop/hu8JywGbyW3l8m6b0PLlHdurTRvQaka6utb9R3VpfJUX6w0ISd/+W2vZtDbNfOWVik9M5q0lXzkJSKM7xt1sbmvTp69vmSOIaJJKS4YH1PvEZMNfOQkU4W3nH6npJ79OY/fu0thxZ0oaU3Skqo467YyiI6AA1co57yXEzLixW7jz2p/ogcULNHS5YLOwqgSNUM+Mm+IGgBbAoRIA2I1R3ACQGIobABJDcQNAYihuAEgMxQ0AiaG4ASAxFDcAJCaXF+DY7pP0eIN2N0lSE65Q23Dkbi5yNxe5G++wiOjIMjCX4m4k271ZX03USsjdXORuLnIXi0MlAJAYihsAEpNCcfcUHWAXkbu5yN1c5C5Qyx/jBgDsKIUZNwBgCIobABLTMsVt+wzbj9heb/vSCvfvbfvG8v332e5sfsqdZcj9adtrbT9o++e2Dysi53C1cg8Z93e2w3bhS6iyZLZ9bvn7vcb2dc3OWEmGn5Eptu+y/UD55+SsInIOZ/t7tjfbXl3lftv+VvnretD2sc3OWEmG3O8r533I9i9tz2h2xlGLiMJvKl1McIOk10tql7RK0rRhYz4u6Tvl9+dIujGR3KdIGld+/2Op5C6PmyBpqaR7JXW3emZJb5T0gKSJ5Y//OoXvtUpPmH2s/P40SRuLzl3OcrKkYyWtrnL/WZIWS7Kk4yXdV3TmjLnfOuRn5MxWyV3PrVVm3DMlrY+IRyOiX9INkmYPGzNb0vfL798s6TTbbmLGSmrmjoi7IuKP5Q/vlTS5yRkryfL9lqQvS/qapD81M1wVWTJ/VNKVEfG8JEXE5iZnrCRL7pC0f/n910h6qon5qoqIpZKeG2HIbEk/iJJ7JR1g++DmpKuuVu6I+OXAz4ha53eyLq1S3IdIemLIx5vK2yqOiYitkl6UdGBT0lWXJfdQc1WaoRStZu7yn72HRsStzQw2gizf6zdJepPtZbbvtd0Kl17PkvuLkt5ve5Ok2yRd3Jxoo1bvz38rapXfybqMLTrAnsL2+yV1S3pb0Vlqsd0m6QpJHy44Sr3GqnS45O0qzaKW2n5LRLxQaKrazpN0bURcbnuWpP+0PT0ithcdbHdm+xSVivvEorPUq1Vm3E9KOnTIx5PL2yqOsT1WpT8pn21Kuuqy5Jbtd0iaL+nsiPhzk7KNpFbuCZKmS1pie6NKxy8XFfwEZZbv9SZJiyLiLxHxmKTfqFTkRcqSe66khZIUEcsl7aPSyZBaXaaf/1Zk+yhJ10iaHRFF90jdWqW4fyXpjbYPt92u0pOPi4aNWSTpQ+X3z5F0Z5SfXShQzdy2j5H07yqVdiscc5Vq5I6IFyNiUkR0RkSnSscBz46I3mLiSsr2M/ITlWbbsj1JpUMnjzYzZAVZcv+fpNMkyXaXSsXd19SUu2aRpA+WV5ccL+nFiHi66FC12J4i6UeSPhARvyk6zy4p+tnRIc/0nqXSDGmDpPnlbV9SqTCk0g/zTZLWS7pf0uuLzpwx988k/V7SyvJtUdGZs+QeNnaJCl5VkvF7bZUO8ayV9JCkOUVnzph7mqRlKq04WSnpnUVnLue6XtLTkv6i0l8zcyVdKOnCId/vK8tf10Ot8DOSMfc1kp4f8jvZW3Tmem+85B0AEtMqh0oAABlR3ACQGIobABJDcQNAYihuABilWie2GjZ21CcVo7gBYPSulZT1FAv/JGlhRByj0rr+q+p9MIobAEYpKpzYyvZU27fbXmH7bttHDgzXKE8qxrlKACAfPSq96Oe3to9TaWZ9qkonFbvD9sWS9pP0jnp3THEDQIPZHq/Seb9vGnL26b3Lb0d9UjGKGwAar03SCxFxdIX75qp8PDwiltseOKlY5nMZcYwbABosIl6S9Jjt90iDl3kbuETaqE8qxrlKAGCUbF+v0pkpJ6l0Url/kXSnpKslHSxpL0k3RMSXbE+T9F1J41V6ovKSiLijrsejuAEgLRwqAYDEUNwAkBiKGwASQ3EDQGIobgBIDMUNAImhuAEgMf8PzJBpgmBBlgYAAAAASUVORK5CYII=\n",
    
          "text/plain": [
           "<Figure size 432x288 with 1 Axes>"
          ]
         },
         "metadata": {
          "needs_background": "light"
         },
         "output_type": "display_data"
        }
       ],
       "source": [
    
        "plt.scatter(filt_data_red[all_events_resh[:,0] == 1, 0], filt_data_red[all_events_resh[:,0] == 1, 1])\n",
        "plt.scatter(filt_data_red[all_events_resh[:,1] == 1, 0], filt_data_red[all_events_resh[:,1] == 1, 1])\n",
        "plt.scatter(filt_data_red[all_events_resh[:,2] == 1, 0], filt_data_red[all_events_resh[:,2] == 1, 1])\n",
        "plt.scatter(filt_data_red[all_events_resh[:,3] == 1, 0], filt_data_red[all_events_resh[:,3] == 1, 1])\n",
        "plt.scatter(filt_data_red[all_events_resh[:,4] == 1, 0], filt_data_red[all_events_resh[:,4] == 1, 1])\n",
        "plt.scatter(filt_data_red[all_events_resh[:,5] == 1, 0], filt_data_red[all_events_resh[:,5] == 1, 1])"
    
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
    
        "### Modeling"
    
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 12,
       "metadata": {},
       "outputs": [],
       "source": [
        "# split of the data\n",
        "X_train, X_test, y_train, y_test = train_test_split(filt_data_red, all_events_resh,\\\n",
        "                                         test_size = 0.33, shuffle = True)"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 19,
    
       "metadata": {},
       "outputs": [
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
    
          "0.5015816548374611\n",
          "[[227893      2]\n",
          " [  6285     20]]\n",
          "0.5021839332037699\n",
          "[[227838      9]\n",
          " [  6325     28]]\n",
          "0.5020450496683306\n",
          "[[227849      1]\n",
          " [  6324     26]]\n",
          "0.5004700720777185\n",
          "[[227818      0]\n",
          " [  6376      6]]\n",
          "0.5048009615038914\n",
          "[[227503    195]\n",
          " [  6434     68]]\n",
          "0.5064005635338957\n",
          "[[227395    311]\n",
          " [  6402     92]]\n",
          "CPU times: user 5min 52s, sys: 402 ms, total: 5min 53s\n",
          "Wall time: 5min 54s\n"
    
        "%%time\n",
        "abc = AdaBoostClassifier()\n",
    
        "all_pred = []\n",
        "all_labels = []\n",
        "for i in range(6):\n",
    
        "    abc.fit(X_train, y_train[:,i])\n",
        "    y_pred = abc.predict(X_test)\n",
    
        "    all_pred.append(y_pred)\n",
        "    all_labels.append(y_test[:,i])\n",
        "    print(roc_auc_score(y_test[:,i], y_pred))\n",
        "    print(confusion_matrix(y_test[:,i], y_pred))"
    
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 20,
    
       "metadata": {},
       "outputs": [
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
    
          "0.5712988484634542\n",
          "[[ 89209 138686]\n",
          " [  1569   4736]]\n",
          "0.5357646342979414\n",
          "[[ 70740 157107]\n",
          " [  1518   4835]]\n",
          "0.5398906933868289\n",
          "[[ 64717 163133]\n",
          " [  1297   5053]]\n",
          "0.5683459761359975\n",
          "[[ 62697 165121]\n",
          " [   884   5498]]\n",
          "0.6282825974068698\n",
          "[[ 63077 164621]\n",
          " [   133   6369]]\n",
          "0.6396764403905532\n",
          "[[ 68905 158801]\n",
          " [   151   6343]]\n",
          "CPU times: user 16 s, sys: 48.9 ms, total: 16.1 s\n",
          "Wall time: 16.1 s\n"
    
        }
       ],
       "source": [
        "%%time\n",
        "lr = LogisticRegression(class_weight='balanced')\n",
        "\n",
        "all_pred = []\n",
        "all_labels = []\n",
        "for i in range(6):\n",
        "\n",
        "    lr.fit(X_train, y_train[:,i])\n",
        "    y_pred = lr.predict(X_test)\n",
        "\n",
        "    all_pred.append(y_pred)\n",
        "    all_labels.append(y_test[:,i])\n",
        "    print(roc_auc_score(y_test[:,i], y_pred))\n",
        "    print(confusion_matrix(y_test[:,i], y_pred))"
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 23,
    
       "metadata": {},
       "outputs": [
    
        {
         "name": "stderr",
         "output_type": "stream",
         "text": [
          "/cluster/apps/python/3.6.1/x86_64/lib64/python3.6/site-packages/sklearn/preprocessing/label.py:151: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.\n",
    
          "  if diff:\n"
         ]
        },
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
    
          "0.7815740181416588\n",
          "[[227810     85]\n",
          " [  2752   3553]]\n"
    
         ]
        },
        {
         "name": "stderr",
         "output_type": "stream",
         "text": [
    
          "/cluster/apps/python/3.6.1/x86_64/lib64/python3.6/site-packages/sklearn/preprocessing/label.py:151: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.\n",
    
          "  if diff:\n"
         ]
        },
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
    
          "0.7835624299156497\n",
          "[[227845      2]\n",
          " [  2750   3603]]\n"
    
         ]
        },
        {
         "name": "stderr",
         "output_type": "stream",
         "text": [
    
          "/cluster/apps/python/3.6.1/x86_64/lib64/python3.6/site-packages/sklearn/preprocessing/label.py:151: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.\n",
    
          "  if diff:\n"
         ]
        },
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
    
          "0.7865354330708662\n",
          "[[227850      0]\n",
          " [  2711   3639]]\n"
    
         ]
        },
        {
         "name": "stderr",
         "output_type": "stream",
         "text": [
    
          "/cluster/apps/python/3.6.1/x86_64/lib64/python3.6/site-packages/sklearn/preprocessing/label.py:151: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.\n",
    
          "  if diff:\n"
         ]
        },
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
    
          "0.8096969591358668\n",
          "[[227817      1]\n",
          " [  2429   3953]]\n"
    
         ]
        },
        {
         "name": "stderr",
         "output_type": "stream",
         "text": [
    
          "/cluster/apps/python/3.6.1/x86_64/lib64/python3.6/site-packages/sklearn/preprocessing/label.py:151: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.\n",
    
          "  if diff:\n"
         ]
        },
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
    
          "0.9251682147781864\n",
          "[[227589    109]\n",
          " [   970   5532]]\n"
    
         ]
        },
        {
         "name": "stderr",
         "output_type": "stream",
         "text": [
    
          "/cluster/apps/python/3.6.1/x86_64/lib64/python3.6/site-packages/sklearn/preprocessing/label.py:151: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.\n",
          "  if diff:\n"
         ]
    
        },
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
          "0.9337942375789381\n",
          "[[227605    101]\n",
          " [   857   5637]]\n",
          "CPU times: user 2min 6s, sys: 346 ms, total: 2min 6s\n",
          "Wall time: 2min 6s\n"
         ]
    
        }
       ],
       "source": [
    
        "lda = LDA()\n",
        "rf = RandomForestClassifier(class_weight = 'balanced')\n",
        "lr = LogisticRegression(class_weight = 'balanced')\n",
        "\n",
        "eclf = VotingClassifier(estimators=[('lda', lda), ('rf', rf), ('lr', lr)], voting = 'soft', weights=[1,1,1])\n",
        "\n",
        "all_pred = []\n",
        "all_labels = []\n",
        "for i in range(6):\n",
        "\n",
        "    eclf.fit(X_train, y_train[:,i])\n",
        "    y_pred = eclf.predict(X_test)\n",
        "\n",
        "    all_pred.append(y_pred)\n",
        "    all_labels.append(y_test[:,i])\n",
        "    print(roc_auc_score(y_test[:,i], y_pred))\n",
        "    print(confusion_matrix(y_test[:,i], y_pred))"
       ]
      },
      {
       "cell_type": "code",
    
       "execution_count": 15,
    
       "metadata": {},
    
    622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
       "outputs": [
        {
         "data": {
          "text/html": [
           "<div>\n",
           "<style>\n",
           "    .dataframe thead tr:only-child th {\n",
           "        text-align: right;\n",
           "    }\n",
           "\n",
           "    .dataframe thead th {\n",
           "        text-align: left;\n",
           "    }\n",
           "\n",
           "    .dataframe tbody tr th {\n",
           "        vertical-align: top;\n",
           "    }\n",
           "</style>\n",
           "<table border=\"1\" class=\"dataframe\">\n",
           "  <thead>\n",
           "    <tr style=\"text-align: right;\">\n",
           "      <th></th>\n",
           "      <th>id</th>\n",
           "      <th>HandStart</th>\n",
           "      <th>FirstDigitTouch</th>\n",
           "      <th>BothStartLoadPhase</th>\n",
           "      <th>LiftOff</th>\n",
           "      <th>Replace</th>\n",
           "      <th>BothReleased</th>\n",
           "    </tr>\n",
           "  </thead>\n",
           "  <tbody>\n",
           "    <tr>\n",
           "      <th>0</th>\n",
           "      <td>subj10_series1_0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>100</th>\n",
           "      <td>subj10_series1_100</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>200</th>\n",
           "      <td>subj10_series1_200</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>300</th>\n",
           "      <td>subj10_series1_300</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>400</th>\n",
           "      <td>subj10_series1_400</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>500</th>\n",
           "      <td>subj10_series1_500</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>600</th>\n",
           "      <td>subj10_series1_600</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>700</th>\n",
           "      <td>subj10_series1_700</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>800</th>\n",
           "      <td>subj10_series1_800</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>900</th>\n",
           "      <td>subj10_series1_900</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>1000</th>\n",
           "      <td>subj10_series1_1000</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>1100</th>\n",
           "      <td>subj10_series1_1100</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>1200</th>\n",
           "      <td>subj10_series1_1200</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>1300</th>\n",
           "      <td>subj10_series1_1300</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>1400</th>\n",
           "      <td>subj10_series1_1400</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>1500</th>\n",
           "      <td>subj10_series1_1500</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>1600</th>\n",
           "      <td>subj10_series1_1600</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>1700</th>\n",
           "      <td>subj10_series1_1700</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>1800</th>\n",
           "      <td>subj10_series1_1800</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>1900</th>\n",
           "      <td>subj10_series1_1900</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2000</th>\n",
           "      <td>subj10_series1_2000</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2100</th>\n",
           "      <td>subj10_series1_2100</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2200</th>\n",
           "      <td>subj10_series1_2200</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2300</th>\n",
           "      <td>subj10_series1_2300</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2400</th>\n",
           "      <td>subj10_series1_2400</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2500</th>\n",
           "      <td>subj10_series1_2500</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2600</th>\n",
           "      <td>subj10_series1_2600</td>\n",
           "      <td>1</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2700</th>\n",
           "      <td>subj10_series1_2700</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2800</th>\n",
           "      <td>subj10_series1_2800</td>\n",
           "      <td>0</td>\n",
           "      <td>1</td>\n",
           "      <td>1</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>2900</th>\n",
           "      <td>subj10_series1_2900</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>1</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>...</th>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "      <td>...</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>259400</th>\n",
           "      <td>subj10_series1_259400</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>259500</th>\n",
           "      <td>subj10_series1_259500</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>259600</th>\n",
           "      <td>subj10_series1_259600</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "    </tr>\n",
           "    <tr>\n",
           "      <th>259700</th>\n",
           "      <td>subj10_series1_259700</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",
           "      <td>0</td>\n",