Newer
Older
{
"cells": [
{
"cell_type": "code",
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style>\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Source+Code+Pro');\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Kameron');\n",
" @import url('http://fonts.googleapis.com/css?family=Crimson+Text');\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Lato');\n",
" @import url('http://fonts.googleapis.com/css?family=Source+Sans+Pro');\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Lora'); \n",
"\n",
" \n",
" body {\n",
" font-family: 'Lora', Consolas, sans-serif;\n",
" \n",
" -webkit-print-color-adjust: exact important !;\n",
" \n",
" \n",
" \n",
" }\n",
" \n",
" .alert-block {\n",
" width: 95%;\n",
" margin: auto;\n",
" }\n",
" \n",
" .rendered_html code\n",
" {\n",
" color: black;\n",
" background: #eaf0ff;\n",
" background: #f5f5f5; \n",
" padding: 1pt;\n",
" font-family: 'Source Code Pro', Consolas, monocco, monospace;\n",
" }\n",
" \n",
" p {\n",
" line-height: 140%;\n",
" }\n",
" \n",
" strong code {\n",
" background: red;\n",
" }\n",
" \n",
" .rendered_html strong code\n",
" {\n",
" background: #f5f5f5;\n",
" }\n",
" \n",
" .CodeMirror pre {\n",
" font-family: 'Source Code Pro', monocco, Consolas, monocco, monospace;\n",
" }\n",
" \n",
" .cm-s-ipython span.cm-keyword {\n",
" font-weight: normal;\n",
" }\n",
" \n",
" strong {\n",
" background: #f5f5f5;\n",
" margin-top: 4pt;\n",
" margin-bottom: 4pt;\n",
" padding: 2pt;\n",
" border: 0.5px solid #a0a0a0;\n",
" font-weight: bold;\n",
" color: darkred;\n",
" }\n",
" \n",
" \n",
" div #notebook {\n",
" # font-size: 10pt; \n",
" line-height: 145%;\n",
" }\n",
" \n",
" li {\n",
" line-height: 145%;\n",
" }\n",
"\n",
" div.output_area pre {\n",
" background: #fff9d8 !important;\n",
" padding: 5pt;\n",
" \n",
" -webkit-print-color-adjust: exact; \n",
" \n",
" }\n",
" \n",
" \n",
" \n",
" h1, h2, h3, h4 {\n",
" font-family: Kameron, arial;\n",
"\n",
"\n",
" }\n",
" \n",
" div#maintoolbar {display: none !important;}\n",
"</style>\n",
" <script>\n",
"IPython.OutputArea.prototype._should_scroll = function(lines) {\n",
" return false;\n",
"}\n",
" </script>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# IGNORE THIS CELL WHICH CUSTOMIZES LAYOUT AND STYLING OF THE NOTEBOOK !\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"%config InlineBackend.figure_format = 'retina'\n",
"import warnings\n",
"warnings.filterwarnings('ignore', category=FutureWarning)\n",
"warnings.filterwarnings('ignore', category=DeprecationWarning)\n",
"from IPython.core.display import HTML; HTML(open(\"custom.html\", \"r\").read())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 7: Regression\n",
"\n",
"Regression belongs like classification to the field of supervised learning. \n",
"\n",
"<div class=\"alert alert-block alert-warning\">\n",
"<i class=\"fa fa-info-circle\"></i> \n",
"<strong>Regression predicts numerical values</strong> \n",
"in contrast to classification which predicts categories.\n",
"</div>\n",
"\n",
"<img src=\"./images/30416v.jpg\" title=\"made at imgflip.com\" width=35%/>\n",
"<div class=\"alert alert-block alert-warning\">\n",
"<i class=\"fa fa-info-circle\"></i> \n",
" Other differences are:\n",
"\n",
"* Accuracy is measured differently\n",
"\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example: Salmon weight\n",
"\n",
"The dataset `salmon.csv` holds measurements of `circumference`, `length` and `weight` for `atlantic` and `sockeye` salmons.\n",
"\n",
"Our goal is to predict `weight` based on the other three features."
]
},
{
"cell_type": "code",
"execution_count": 2,
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>circumference</th>\n",
" <th>length</th>\n",
" <th>kind</th>\n",
" <th>weight</th>\n",
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>25.5</td>\n",
" <td>85.5</td>\n",
" <td>atlantic</td>\n",
" <td>31.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>22.5</td>\n",
" <td>62.5</td>\n",
" <td>atlantic</td>\n",
" <td>12.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>29.0</td>\n",
" <td>88.0</td>\n",
" <td>atlantic</td>\n",
" <td>34.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>32.5</td>\n",
" <td>85.5</td>\n",
" <td>atlantic</td>\n",
" <td>62.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>24.5</td>\n",
" <td>74.5</td>\n",
" <td>atlantic</td>\n",
" <td>24.2</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" circumference length kind weight\n",
"0 25.5 85.5 atlantic 31.2\n",
"1 22.5 62.5 atlantic 12.4\n",
"2 29.0 88.0 atlantic 34.8\n",
"3 32.5 85.5 atlantic 62.7\n",
"4 24.5 74.5 atlantic 24.2"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"\n",
"df = pd.read_csv(\"salmon.csv\")\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 3,
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>circumference</th>\n",
" <th>length</th>\n",
" <th>kind</th>\n",
" <th>weight</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>95</th>\n",
" <td>19.0</td>\n",
" <td>69.5</td>\n",
" <td>sockeye</td>\n",
" <td>18.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>96</th>\n",
" <td>18.5</td>\n",
" <td>67.0</td>\n",
" <td>sockeye</td>\n",
" <td>18.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>97</th>\n",
" <td>24.5</td>\n",
" <td>67.5</td>\n",
" <td>sockeye</td>\n",
" <td>24.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>98</th>\n",
" <td>21.0</td>\n",
" <td>66.5</td>\n",
" <td>sockeye</td>\n",
" <td>26.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>99</th>\n",
" <td>27.5</td>\n",
" <td>86.5</td>\n",
" <td>sockeye</td>\n",
" <td>43.4</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" circumference length kind weight\n",
"95 19.0 69.5 sockeye 18.8\n",
"96 18.5 67.0 sockeye 18.9\n",
"97 24.5 67.5 sockeye 24.7\n",
"98 21.0 66.5 sockeye 26.0\n",
"99 27.5 86.5 sockeye 43.4"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.tail()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let us inspect the features and their distributions:"
]
},
{
"cell_type": "code",
"execution_count": 4,
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMgAAAQdCAYAAACrPXSTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3X94U+X9P/5nTmjTpi1r+ovS2kC1TadYqNhi8f0eIKiz+mVOpggiKhtlDpxMRBzjjV1FnDo+7yGDbYKbbqg4dTh089d7LQUvoNBaC0WgpVBJy4/+gCBN05b2nPP9oyb0R5ImbZKTNs/HdXldJrlzn/vk8jzxfnGf+6hkWZZBREREREREREQUoASlB0BERERERERERKQkFsiIiIiIiIiIiCigsUBGREREREREREQBjQUyIiIiIiIiIiIKaCyQERERERERERFRQGOBjIiIiIiIiIiIAhoLZEREREREREREFNBYICMiIiIiIiIiooDGAhkREREREREREQU0FsiIiIiIiIiIiCigsUBGREREREREREQBjQUyIiIiIiIiIiIKaCyQERERERERERFRQGOBjIiIiIiIiIiIAhoLZEREREREREREFNBYICMiIiIiIiIiooDGAhkREREREREREQU0FsiIiIiIiIiIiCigjVB6ANTT2rVrcezYMXz3u9/FqlWrlB4OEdGQwOwkInIfs5OIiOgKFsj8zLFjx3DgwAGlh0FENKQwO4mI3MfsJCIiuoK3WBIRERERERERUUBjgYyIiIiIiIiIiAIaC2RERERERERERBTQAm4PMlEU8eabb+K9995DTU0NQkNDcf311+Ohhx7CtGnTerQ9e/Zsn/e6mzhxIrZt2+bdARMRERERERERkVcFXIFs5cqV2LFjB8LDwzF58mR0dHTgwIED2LNnDx5//HEsWbLE1vbIkSMAgLS0NBgMhj59JScn+2zcRERERERERETkHQFVIPvoo4+wY8cOJCcn44033kBMTAwA4Pjx45g7dy42btyIu+66C2PHjgUAHD16FACwcOFC/OAHP1Bq2ERERERERERE5EUBtQfZBx98AABYvny5rTgGAKmpqZg5cyYkScKePXts71tXkI0bN863AyUiIiIiIiIiIp8JqBVkGzZswNdff21bIdZdS0sLAECtVtveO3r0KLRaLW+lJCIiIiIiIiIaxgKqQBYcHGx3L7GdO3fik08+gVarxa233goAuHjxIs6cOYNx48bhtddew44dO3Dq1ClERETglltuwWOPPYZRo0b5+hSIiIiIiIiIiMjDAqpA1l1bWxtWrFiB6upqnDhxAgkJCXjppZdst15a9x/76quvUFVVhaysLMTHx6OiogLvvPMOdu7cib/97W+4+uqr+z3W9u3b8f7777s0LutxiYgCHbOTiMh9zE4iIqKBCdgC2ZkzZ/Dpp5/2eK+yshJZWVkAruw/ZjAY8Ic//AFJSUkAAIvFgtWrV+Nf//oXli9fju3bt/d7rNOnT+PAgQMePgMiouGN2UlE5D5mJxER0cAEbIEsPj4excXFEAQBe/fuxdq1a7FmzRpYLBYsWrQIjzzyCG6//XaEhYUhKirK9j2tVovnnnsOJSUl+Oqrr1BeXo6MjAynx0pMTMSkSZNcGtfRo0fR3Nw8qHMjIhoOmJ1EniFKEtSC4PA1DS/MTqKhgdlM5H9UsizLSg/CH5SXl2POnDkICwvD3r17odFonLZfsWIFduzYgWeeeQbz5s3z2Djmz5+PAwcOYNKkSdi6davH+iUiGs6YnUR9iZIMtaBCeVUDCkpqYWpuhy5CgxlZScgwxNk+p8DF7CTyPWYzkf8K2BVkvWVkZECv1+PUqVOora1FSkqK0/bWvcpaW1t9MTwiIiIil4mSDEtbB/K3FKPSaOrxWVFZHdL0OuTlZkMbEsSJGBGRjzCbifxbwKzhlGUZL730Ep544gl0dnbabRMcHAwA6OzsxMaNG/H444+jsrLSbtu6ujoAXbdqEhEREfkTtaCyOwGzqjSakL+lmBMwIiIfYjYT+beAKZCpVCoUFBTgo48+wp49e/p8Xltbi5qaGmi1WiQnJ6OyshKffvopPv744z5tz58/jz179iAoKAg33XSTL4ZPRERE5BJRklBe1eBwAmZVaTShvKoRosTdNoiIvI3ZTOT/AqZABgCzZ88GADz33HM4d+6c7f36+nosW7YMnZ2deOCBB6DRaHD//fcDAF577TV88cUXtrYtLS341a9+BbPZjHvvvRexsbG+PQkiIiIiJ9SCgIKSWpfaFpYauVKBiMgHmM1E/i+g9iB76KGHsH//fuzatQs5OTmYOHEiRFHEwYMHYbFYMHXqVCxduhQA8N///d9YsGABXnvtNTz44IOYOHEidDodSktLYTKZkJmZiaefflrhMyIiIiLqy9Tc7tF2REQ0eMxmIv8WUAWyoKAg/PGPf8Rbb72F7du3o6SkBIIgwGAwYNasWZg9ezaEbo/W/eUvf4kJEybgjTfewJEjRyBJEvR6PRYuXIiHH34YQUFBCp4NERERkX26COdP43a3HRERDR6zmci/BVSBDADUajXmz5+P+fPnu9Q+JycHOTk5Xh4VERERkWeIkoQZWUkoKqvrt+30TD1ESfb7W3lESYK6219i9n7tahsiot58lR3+ms3MTqIrAq5ARkRERDScqQUBGYY4pOl1TjeDTtPrkGHw771UrRPEiuomFJTUwtTcDl2EBjOykpBhiLNtYt1fG38vABKR77mSL57MDn/LZl+fP9FQwAIZERER0TAjSjLycrORv6XY7kQsTa9DXm62X0+AREmGpa3D7jkUldXZziFUMwLPvLIPX1Y1OmyjDQny2/MkIt9zNV88nR3+ks1KnT+Rv2OBjIiIiGiYUQsqaEOCsG7pFJRXNaKw1GhbHTA9U48MQ6xfF8eArnNwNIkEgEqjCflbirFu6RSkJun6FMh6tyEisnInXzx9XH/IZqXOn8jfsUBGRERENAxZJ1jpKdE9btfpfluivxIlCRXVTU5vQwK6JnFfVjXgjslj8N7O45C+PbfebcqrGpGeEuPX50xEvuFOvngjO5TOZqXPn8ifcfc9IiIiomGs92bLQ2GioxYEFJTUutR2Z2ktYnVa6EdFOGxTWGocEudNRN7nTr54MzuUymZ/OX8if8QCGRERERH5HVNzu1vttCGOb4xwtS8iCgzu5stwE+jnT+QIC2REREREQ5QoSU5f+6oPb/Sli9C41c7S1jnovojIMzyZBd7gbr74gi/z3B/Pn8gfcA8yIiIioiHGuolzRXUTCkpqbZs8z8hKQoYhzqVNnj3Rhzf66upPwoysJBSV1fXb9pbMJDSaLDDWNztsMz1T7/cPJSAaDjydBd4Zo+v54ovs8HWe+9v5E/kTFsiIiIiIhhBRkmFp67D7BLKisjqk6XXIy82GNiTI4aTGE314oy8rtSAgwxCHNL3O6UbSaXodbjDEYetHR+1u0G9t030jbCLyDm9kgTe4ky/ezg4l8tyfzp/I3/AWSyIiIqIhRC2o7E6ErCqNJuRvKXY6AfVEH97oqztRkpGXm400vc7u59ZJX6coocrBsa1tRAfFMyLyHG9lgTe4mi/ezg6l8txfzp/I33AFGREREdEQIUoSKqqbnP6tP9A1ISqvakR6SkyfiZUn+vBGX72pBRW0IUFYt3QKyqsaUVhqtN02ND1TjwxDrG3ytubRm5228YcJOdFw5s0s8AZX88W7t1Yql+f+cP5E/ogFMiIiIqIhQi0IKCipdaltYanR7u0xnujDG33Z779rcpaeEt3ju9bCWPfJmyttiMg7vJ0F3uBOvnjn+MrmudLnT+SPeIslERER0RBiam4fdDtP9OGNvhxRC0Kv130nbq60ISLv8UUWeIOS2eEPec7sJLqCBTIiIiKiIUQXoRl0O0/04Y2+iGjoYha4z9/ynCjQsUBGRERENESIkoQZWUkutZ2eqbe7wfJg+xAlyaPjIaKhbzhnQffMs/d6MP0qnedE1BP3ICMiIiIaItSCgAxDHNL0OqebMqfpdQ73+BloH9YNmyuqm1BQUgtTczvumDwG/z0hcVDjIaKhzxPZ5G/sZZ4uQoMZWUnIMMQNehN7JfOciOzjCjIiIiKiIUSUZOTlZiNNr7P7eZpeh7zcbKcrBdztQ5RkWNo6sPzl3Vj9yj4UldXh4PFG/OG9gzh3vgWrf3LToMZDREOfJ7LJXzjKvKKyOqx+ZR+Wv7wblraOQZ+LEnlORI5xBRkRERHREKIWVNCGBGHd0ikor2pEYanRtrJheqYeGYbYflc2uNuHWlAhf0txnxUKzZYOPLN5H55dNHlQ4yGioc8T2eQvHGWeVaXRhPwtxVi3dMqgj+PrPCcix1ggIyIiIhpirBOd9JToPrdBdv/cE32IkoSK6iaHE8WzTS1Ytn4XciYn475bUwc8HiIa+jyRTUrrL/OsKo0mlFc1Ij0lZpC3Wvouz4nIOd5iSURERDREqQWh12v3J0H99aEWBBSU1Drto9nSgXcKqvDHfxwc9HiIaOjzRDYpxZXMsyosNXrs3HyR50TkHAtkREREROSUqbndpXYXLrnWjojIn7maea62I6KhgQUyIiIiIgWIkuT0tT/RRWg82o6IyF/Yy15mHlFg4h5kRERERD5k3Sy5oroJBSW1ts2UZ2QlIcMQ53ebKYuShBlZSSgqq+u37fRMvd+Nn4jIHntZHDVSgyX3TmDmEQUoFsiIiIiIfESUZFjaOuw+Ha2orA5peh3ycrOhDQnymwmXWhCQYYhDml7ndNPqNL2ux+bQRET+ylkWx+q0mJ9zLTOPKADxFksiIiIiH1ELKrsTMqtKown5W4r9pjhmJUoy8nKzkabX2f3cWtizPjGNiMifOcvij/fW4Nz5Fqz+yU3MPKIAwxVkRERERD4gShIqqpucrkgAuopk5VWNSE+J8ZtCmVpQQRsShHVLp6C8qhGFpUbbraHTM/XIMMTyNiMiGhL6y+JmSwee2bwPzy6azMwjCjAskBERERH5gFoQUFBS61LbwlKj3926Y50IpqdE9xibdQUFJ4pENBS4ksVnm1qwbP0uLL53Aianj2bmEQUI3mJJRERE5CMjw4IxdvRICP1MrEzN7T4akfvUgtDrNSeJRDS0uJKxzZYOfFp8iplHFEC4goyIiIjIy0RJgloQkPvDdABA48VWfLLva3y8twbNlo4+7XURGh+P0Lesv4ej10QUWHydCa5mbH/tmGVEwwsLZEREREReYt2jpqK6CQUltd32sEnC/JxrcdskPZ7ZvA9nm1p6fG96pn5Y7m/j6PeYkZWEDEPcsDxnInJMiUwQJQkzspJQVFbXb1tHWcwsIxqeWCAjIiIi8gJRkmFp67D7pLSisjqk6XVY/ZOb8OyiyVi2fpdtJVmaXud3+495giu/R15uNrQhQZxYEgUApTJBLQjIMMQhTa9z+tAUR1nMLCMavrj+k4iIiMgL1ILK7gTKqtJowpo/70d8dBhyJicDgG1iZd0Eejhx5ffI31LMCSVRgFAyE0RJRl5uNtL0OrufO8tiZhnR8MUVZEREREQeJkoSKqqbnK5OALomUl9WNeAHU65GekoMMgyxw/LWHHd+j/KqRqSnxAy734CIrlA6E9SCCtqQIKxbOgXlVY0oLDV2uwVe7zCLlR43EXkXC2REREREHqYWBBSU1LrUdmdpLW54IA7pKTHffnf4Tabc+T0KS43D8hZTIrrCHzLBmrXpKdE9+reuGrOXxf4wbiLyHt5iSUREROQFpuZ2t9oNx8JYd+7+HkQ0vPlLJvR+6mR/Wewv4yYiz2OBjIiIiMgLdBEaj7Yb6vh7EFF3QzUThuq4iah/LJAREREROSFKktPXjr4zIyvJpf6nZ+q9sin/QMbtLf7wexCRdwzVjByIoTpuInIN9yAjIiIissO6QXNFdRMKSmptGzjPyEpChiHO6Wb6akFAhiEOaXqd082c0/Q6j+9RM5hxe4uSvwcReYcvM1Lyk0ITs4xoeGOBjIiIiKgXUZJhaetA/pbiPpOgorI6pOl1yMvNhjYkyOEEUJRk5OVm2+0DgK0PTxasPDFub1Hi9yAi7/BVRq7+yU1outgKTbBakdyyh1lGNHyxQEZERETUi1pQOZz8AECl0YT8LcVYt3SK0z60IUFYt3QKyqsaUVhqtK2wmJ6pR4Yh1uMTKE+M21uU+D2IyDs8nZFfVjVgZ+mVVWi3ZCbhBkMczp1vwTOb92GkNliR3LKHWUY0fLFARkRERNSNKEmoqG5yevsM0DUBLK9qRHpKjJPbiLreT0+J7nG7jXVfGk9OoDw5bm/x5e9BRN7h2ayRcbapBVfFhmPZAzfa3m00WbD1o6P4aG8NzK0dOIsWxXLLHmYZ0fDEAhkRERFRN2pBQEFJrUttC0uNLu0zoxaEXq89P3nyxri9xRe/BxF5hyezRi0IeOvTSuwuPw39qAhoQ0bA0tYJY31zn33HlM4te5hlRMMLC2REREREvZia2z3azleG6riJaGjxZNaYmtshSTK+PnvJI8ckIhooof8mRERERIFFF6HxaDtfUWrcoiQ5fU1Ew4sns8ZXucWcIqL+cAUZERERUTeiJGFGVhKKyur6bTs9U+83mzErMW5rHxXVTSgoubLB9oysJGQY4vzmtyEiz/Fk1vgit5hTROQqFsiIiIiIulELAjIMcUjT65xuQp2m1/nVfji+HrcoybC0ddh9kl1RWR3S9Drk5WZDGxLEySfRMOLJrPF2bjGniMgdvMWSiIiIqBdRkpGXm400vc7u59ZJldhrE2ml+XLcakFld9JpVWk0IX9LMSedRMOQJ7PGm7nFnCIid3AFGREREVEvakEFbUgQ1i2dgvKqRhSWGm235UzP1CPDEOuXt+X4atyiJKGiusnpig+ga/JZXtWI9JQYv/utiGjgPJk13sot5hQRucsvC2QtLS0ICwtTehhEREQUwKwTpfSU6B639lhXMfjrRMoX41YLAgpKal1qW1hq9KtbUYnIMzyZNd7ILeYUEbnLL26xPHfuHF544QXceeedGDduHLKysgAA9fX1ePDBB1FYWKjwCImIiChQqQWh12v/LIz15u1xm5rbPdqOiIYmT2aNp3OLOUVE7lB8Bdnnn3+OZcuWwWw2Q5a7/oZApeoKwrq6OpSWluKLL77AkiVL8Nhjjyk5VCIiIiL6li5C49F2RESexpwiIncouoLMaDTi8ccfR3NzM+644w5s3LgR1113ne3zsWPH4p577oEsy9i0aROKioqUGywRERHRAImS5PT1UCNKEmZkJbnUdnqm3u8eZkDkj4ZbTiiNOUVE7lJ0Bdkrr7yC1tZW/OIXv8Cjjz4KAPjLX/5i+zw6Ohq/+c1vcM0112DdunV46623MG3aNIVGS0REROQe68bSFdVNKCiptW08PSMrCRmGOL/c6N8VakFAhiEOaXqd0w2w0/Q67utD1I/hmhNKY04RkbsULZDt2bMH3/nOd5Cbm+u03YIFC/Dqq6/i0KFDPhoZERER0eCIkgxLWwfytxT3mZwVldUhTa9DXm42tCFBQ3LyK0oy8nKz7Z4fANv5cXJP5NhwzwmlMaeIyB2KFsjOnz+PtLQ0qNVqp+3UajWuuuoqHDt2zEcjIyIiIhoctaByOCkDgEqjCflbirFu6RQfj8wz1IIK2pAgrFs6BeVVjSgsNdpWvkzP1CPDEMtJJ1E/hntOKI05RUTuULRANnLkSJw5c8altvX19YiMjPTyiIiIiIgGT5QkVFQ3Ob2tB+ia/JZXNSI9JWZITtCsY05Pie5xi5J1L5+heE5EvhIoOaE05hQRuUrRTfozMjJgMpnwySefOG330UcfobGxERMmTPDRyIiIiIgGTi0IKCipdaltYalxyE/Q1ILQ6/XQPh8iXwi0nFAac4qI+qNogeyRRx6BLMtYvXo1/vnPf6K9vb3H552dnXjvvfewatUqqFQqzJs3b9DHFEURf/vb3/CDH/wA6enpmDRpEn784x87fEJmTU0Nli1bhqlTp2LChAmYOXMmtm7dColPlSEiIiInTM3t/Tdyox0RDT/MCSIi/6HoLZZZWVl4/PHHsWHDBqxcudJWCAOAmTNnoq6uDm1tbZBlGQsWLMDNN9886GOuXLkSO3bsQHh4OCZPnoyOjg4cOHAAe/bsweOPP44lS5bY2h47dgzz5s2D2WzGxIkTkZ6ejv379+O5557DwYMHsW7dukGPh4iIiIYnXYTGo+08QZSkHqsoer8mIt/yRk7wOiciGhhFC2QAsHjxYqSkpGDDhg2orq62vX/8+HEAQGJiIhYvXowf/ehHgz7WRx99hB07diA5ORlvvPEGYmJibMeaO3cuNm7ciLvuugtjx46FLMtYsWIFzGYzXnrpJdx9990AgAsXLuCRRx7Bhx9+iNtuuw3f//73Bz0uIiIiGl5EScKMrCQUldX123Z6pt7rm0Rb+6+obkJBSa1tk+oZWUnIMMRxk2oiBXg6J3idExENjuIFMgC4/fbbcfvtt6O2thbV1dUwm80IDQ3F2LFjkZKS4rHjfPDBBwCA5cuX24pjAJCamoqZM2firbfewp49ezB27Fjs2bMHlZWVmDRpkq04BgBRUVH49a9/jblz52Lr1q0skCns5Fr3CqdXr/qHl0ZCRER0hVoQkGGIQ5pe53QD7jS9rsem0d4gSjIsbR12n5RXVFaHNL0OebnZ0IYEcfJM5EOezAle50REg+c3a20bGxuRlJSEW265BTNnzsStt96Kixcv4tixYx47xoYNG/Dhhx9iypS+j0luaWkBAKjVagDA559/DgC49dZb+7SdOHEioqOj8cUXX8BsNntsfERERDR8iJKMvNxspOl1dj+3TlitT1LzFrWgsjtptqo0mpC/pZiTZiIFeConeJ0TEQ2e4ivI6uvrsXLlShw4cAB79+7FyJEjbZ9t2bIFu3fvRnZ2Nn7zm98gPj5+UMcKDg6GwWDo8/7OnTvxySefQKvV2gpi1ts97bUHgOTkZJw/fx4nTpzg0zWJiIioD7WggjYkCOuWTkF5VSMKS422W56mZ+qRYYj1wa2VEiqqm5yuTgG6Js/lVY1IT4nhBJrIhzyRE7zOiYg8Q9ECWWNjI2bPno36+nqMGDECDQ0NPQpko0aNQkhICPbt24f58+dj+/btiIiI8Mix29rasGLFClRXV+PEiRNISEjASy+9ZLv1sqGhAQAQG2t/ObP1/aampn6PtX37drz//vsujevo0aMutSMiGu6YnTQcWCeh6SnRPW6Rsq4G8fYkVS0IKCipdaltYanR67d7kvcxO4eeweYEr3MiIs9QtEC2adMm1NfXIzs7G7/97W/7FKOeffZZLFu2DE8++ST27t2LzZs348knn/TIsc+cOYNPP/20x3uVlZXIysoCALS2tgIAQkJC7H7f+r7FYun3WKdPn8aBAwcGM1wiooDD7KThpPcT5Hy5esPU3O7RduTfmJ1D12Bygtc5EdHgKVog2717N0JDQ7F+/XpERkbabRMZGYnf/va3uOWWW/DZZ595rEAWHx+P4uJiCIKAvXv3Yu3atVizZg0sFgsWLVpk24tMpXL+B5MkSf0eKzExEZMmTXJpXEePHkVzc7NLbYmIhjNmJ5Fn6CI0Hm1H/o3ZGZh4nRMRDZ7it1impqY6LI5ZRUVFITk5GSdOnPDYsbVaLbRaLQAgJycHo0ePxpw5c/DKK6/g4YcfRmhoKICuWzHtsb4fFhbW77FmzZqFWbNmuTSu+fPn82/9iIjA7CTyBFGSMCMrCUVldf22nZ6p9/qeaOR9zM7Aw+uciMgzFH2KZWRkJEwm55tJWpnNZltByxsyMjKg1+thNptRW1uLuLg4AI73GGtsbATgeI8yIiIiIqWpBQEZhjiHT8izStPrkGGI5aSZaAjidU5E5BmKFsiuu+46nDt3Dv/5z3+cttuzZw/q6uowbty4AR9LlmW89NJLeOKJJ9DZ2Wm3TXBwMACgs7MTqampAK48zbJ3XydPnoRarcY111wz4DEREREReZsoycjLzXY4eU7T65CXm23bEJyIhh5e50REg6foLZZz587Frl27sGLFCjz99NO4++67e2yKf/nyZfzrX//CCy+8AJVKhblz5w74WCqVCgUFBfj666/xwx/+EFOnTu3xeW1tLWpqaqDVapGcnIzvfe97ePXVV1FQUIB58+b1aFtWVoYLFy5g0qRJCA8PH/CYiIiIiLxNLaigDQnCuqVTUF7ViMJSI0zN7dBFaDA9U48MQyxvuSIa4nidExENnqIFsmnTpmHu3LnYtm0bfv3rX2PNmjVITExEWFgYLBYLTp8+jc7OTsiyjNmzZ+O2224b1PFmz56Nl156Cc899xzS0tIQHx8PAKivr8eyZcvQ2dmJRx55BBqNBpMmTUJqair27NmDd955B7NnzwYAXLhwAfn5+QCABQsWDO4HICIiIvIB66Q4PSUaGYYr20NYV5Nw0kw09PE6JyIaHEULZACQl5eH9PR0vPLKKzh16hROnTrV4/PRo0dj0aJFg1o9ZvXQQw9h//792LVrF3JycjBx4kSIooiDBw/CYrFg6tSpWLp0KQBAEAQ8//zzePjhh7F69Wq89957iIuLw4EDB/DNN99g9uzZmD59+qDHREREROQrakHo9ZoTZqLhhtc5EdHAKF4gA648befUqVMwGo24ePEiQkNDMXbsWKSkpHjsOEFBQfjjH/+It956C9u3b0dJSQkEQYDBYMCsWbMwe/ZsCN3+QBk/fjzeffddbNiwAfv378fx48cxZswYLFu2DPfdd5/HxkVERERERERERMrxiwKZ1ZgxYzBmzBivHkOtVmP+/PmYP3++S+1TUlKwYcMGr46JiIiInBMlqceqiN6vB9t+KBiO50Q0lHnjmnTWJzOAiMi7/KZA1tLSArPZDEmSIMuOn66SkJDgw1ERERGRkqybSldUN6GgpNa26fSMrCRkGOL6bDrtbvuhYDieE9FQ5o1r0lGfOTePRdqYKGYAEZEPKF4g+89//oP169fjxIkT/bZVqVQ4cuSID0ZFREREShMlGZa2DuRvKUal0dTjs6KyOqTpdcjLzYY2JAhqQeV2+6FgOJ4T0VDmjWvSUZ+gbHxUAAAgAElEQVQR2iA8eMd3YbZcxpo/72cGEBF5maJrcvfu3Yuf//znqK6uhizL/f4jSZKSwyUiIiIfUgsqu5NQq0qjCflbim2TQnfbDwXD8ZyIhjJvXJOO+sy5ORmjosPsFscGczwiIrJP0RVkr776KmRZRlZWFn7xi18gOTkZISEhSg6JiIiI/IAoSaiobnI4KbSqNJpQXtWI9JRoN9vH+P2E0v3fwP/PiWgo88Y16ahPQVDhjslj8WVlAzOAiMhHFF1BdujQIYSFheFPf/oTbrzxRkRFRUGr1Tr9h4iIiIY/tSCgoKTWpbaFpUaoBQEHjze50d7/J5Hu/wb+f05EQ5k3rklHfepHRSA2MhSFpcwAIiJfUbRAJooixo4di7CwMCWHQURERH7I1NzuVrvLHaJH+/UH7v4GRORd3rgm7bXVhozw2vGIiMg+RQtkycnJqKurU3IIRERE5Kd0ERq32gUHqT3arz9w9zcgIu/yxjVpr62lrdNrxyMiIvsULZDNnTsX33zzDd566y0lh0FERER+RpQkzMhKcqnt9Ew9REnChNQYN9rLgxmeT7j/G/j/ORENZd64Jh31aaxvRuPFVkzPZAYQEfmKopv033fffTh06BCef/55VFdXY8qUKRg1ahSCgoIcficlJcWHIyQiIiIlqAUBGYY4pOl1TjeoTtPrkGGIBQC32/u7gfwGROQ93rgmHfUpSTI+2fc15udcywwgIvIRRQtkEydOBNC1F9m2bduwbds2p+1VKhWOHDnii6ER2XVy7Y9cbnv1qn94cSRERMOfKMnIy81G/pZiu5PDNL0OebnZECUZakHldvuhYDieE9FQ5o1r0lGfH++twW2T9Fj9k5uw5s/7mQFERF6maIHMYrG41V6WuWyYiIgoUKgFFbQhQVi3dArKqxpRWGqEqbkduggNpmfqkWGI7TEpdLf9UDAcz4loKPPGNemszwuX2pE2RssMICLyAUULZMeOHVPy8EREROTnrJO+9JToHrcQWffa6T0pdLf9UDAcz4loKPPGNemsT2YAEZFvKLpJPxEREZEr1ILQ67XzCaG77YeC4XhOREOZN65JZ30yA4iIvMuvCmTnz59HaWkpdu7cCQCQJAlms1nhURERERERERER0XCm6C2WVgUFBdi0aROOHj0K4Mpm/HV1dfjhD3+I+++/H08++SRGjPCL4RIREZEfECWpx4oKSZIgo+cqi95tBtLvQPpQsn8iUk7363kw1/pAvstsISIaHMUrThs3bsSmTZsgyzJUKhXUajVEUQQAnD59GhaLBa+//jqqqqqwefNmqNVqhUdMRERESrLuyVNR3YSCkloIggoL/r9xiIzQoLyqAQUltbZNrGdkJSHDEOfSJta9+x1IH0r2T0TKsV6/ladMSIgJR2SEBoeON6Gw1L1rfSA5wWwhIvIMRQtk+/btw8aNGxEeHo7ly5fjzjvvxKOPPoovv/wSAHDTTTfhhRdewJo1a7B3715s27YNDz74oJJDJiIiIgWJkgxLWwfytxSj0mhChDYIv/vFVKhUwPKXd6PSaOrRvqisDml6HfJys6ENCXI6Ke3e70D6cGfcnu6fiJRjvb5/u7UUS+6dMOA8GkhOMFuIiDxH0TW3f/3rX6FSqfDb3/4Wc+bMwciRI3t8LggCfvjDH2L9+vWQZRkffPCBQiMlIiIif6AWVD0mgjk3J2NUdBjW/Hl/n8mhVaXRhPwtxU4nh737HUgf7ozb0/0TkXKs13eqXjeoPBpITjBbiIg8R9ECWXl5OeLj43HLLbc4bfe9730PCQkJqK6u9tHIiIiIyN+IkoTyqgbbRFAQVLhj8lh8WdngcHJoVWk0obyqEaIk99vvQPpwZ9ye7p+IlGO9vo/XXRxUHg0kJ5gtRESepWiBrKWlBTqdzqW2UVFR6Ozs9PKIiIiIyF+pBQEFJbW21/pREYiNDEVhaa2Tb11RWGp0sGqjZ78D6cMZb/dPRMqxXt+DzaOB5ASzhYjIsxTdgywuLg41NTXo7Ox0+oTKy5cvo6amBrGxsT4cHREREfkbU3O77d/DtUF93nP1u719Y27H2NEjoQ0ZAUtbJ4z1zZDsrLZw9VgD/d435oH1T0TKMTW3QxvSNZfRBKtxXXKU0xyxfseV9/r7bn/fEQQV9KMiMDIs2KW+iYgCmaIFsv/6r//Cu+++iz/96U947LHHHLbbtGkTWlpacOedd/pwdERERORvdBEaRGiDkHNzMu76r2Tbe65+15GnHpyIiLAQ2+vzF1vw0T4jPt5bg2ZLh0t9DPTYAGzndM+U5B7vy5IIlcAneBP5s9HRWowZPRKiJOGx+zJs7zdebMUn+77ukyOA/UwYSJY5+o41U+6crEd0ZJjtfXuZ0vs95g4RBSpFC2SLFi3Chx9+iE2bNuH06dO466670NbWBgD45ptvcOLECbz99tv48MMPodFo8OMf/1jJ4RIREZGCRElCzs1j8eAd38Wo6DB8WdmAEWoVpmcmoaisrt/vT8/UQ5TkHrcZyZIElSBAXV+JhooiiOaLUIdHIix9GubnTMDtk5KwenMxzja1OOzDlXHPyHI8xtExYXjup9mIiwqH5eTBHuMIHz8N2uQJtnESkX8RJQk/+cH1CNGMQHlVAwpKamFqbocuQoPpmUmYn3MtbpukxzOb99lyBOibJf3lRHfW7wKy3e90z5SWkwfRsMt+pgCAShDQeuowzIeYO0REihbIrrrqKmzYsAFPPPEE3n//ffzzn/+0fZadnQ0AkGUZGo0GL774IpKTkx11RURERMOcWhCQNiYKZstlLH95NyqNJsy+1YD5OdciTa9zulF1ml6HDEPPrRpkSYLU3oJzb69F+5njPT4zH94NTUIq4mb/CmsWZeOJ9buREBPepw9Xx51hiLM7xghtEJ77aTZ0GgmnX/ulw3HEz1kFQRPGySqR31GhQ5TwP99mUndFZXVI0+uw+ic34dlFk7Fs/S40Wzrs5pGznOiu53dVfb7jSqaEJk9A/P2/gnS51Wn+MXeIKNAonnbf+973sGPHDjzwwAOIj4+HLMu2f3Q6He655x5s374dd9xxh9JDJSIiIoWpBRXW/Hm/bTL48d4anDvfgtU/uQlpevsP/knT65CXm93nCW4qQbA7ObRqP3McDe88j1HR4Zifc63dPlwlSjLycrP7jDHn5mTERYWj4Z3nnY7j3NtrOUkl8kNqQYX8LcUOi1qVRhPW/Hk/4qPDkDM52WEeAY5zwsred3t/x5VM0SSkQKUe0W/+MXeIKNAouoKstrYWSUlJSExMxDPPPINnnnkGLS0tMJvN0Gq1iIiIUHJ4RERE5EdESUJFdVOPiWizpQPPbN6HZxdNxrqlU/BlVQN2lna/xUmPDEOsnVsrRbSeOuxwcmjVfuY4LDWHcEf29ZCgGvBT4NSCCtqQIKxbOgXlVY0oLDXiG3M77pmSDMvJgy6PI3TM9ZywEvkJe5lkT6XRhPKqBtx3ayrm33mtw9u07eVEf1nW+zspiRHOM0UlYOTE22E5Wc7cISLqRdEC2eLFi9Ha2or33nsPkZGRAICwsDCEhYX1800iIiIKNGpBQEFJbZ/3zza1YNn6XciZnIw7Jo/BsgdutH1mXWnRezKqEtQwHypy6bjmQ0XQJo/HYLesto4hPSW6x+1VDRXujYOI/IOjTLKnsLQWGYa4b7/nuNDuKCccZVnv76gFwWmmBMcmYcTIGFzY+aZL42buEFEgUbRAZjQacdVVV9mKY0RERETOmJrb7b7fbOnAOwVVeG/ncehHRWBCagwW3p3udCIqmi+6dEyxxfnqEHepe63EUGocRDR4jjJpoO2seueEK6tXrd9xlimCRttvm+6YO0QUSBRdKzty5EjbUyuJiIiI+qOL0Dj9XJJkfH32Ei61XO63L3W4a39Bpw6zvx+Qp/jLOIjIff1lkrvtPMFZpkjtln7b9OiLuUNEAUTRAtnPfvYznD59Gi+++CJaW1uVHAoRERH5OVGSMCMryaW20zP1TjfUlyUR4eOnudRX+PhpkCWpz/edvXZG7NaXkuMgIteIva4762tPZlJ/HF3r9t53limXG2vReakJ4elTXTquvdwhIhquFL3Fsr29HRkZGXj99dfx5ptvIjU1FbGxsdBo7P8Ni0qlwvr16308SiIiIvIHakFAhiEOaXqd002x0/S6Hnv32KMS1NAmT4AmIdXpRtWahNQe++/IkgSVIKD11GGYDxVBNF+EOjwS4eOnQZs8wfa5PdbNtSuqm1BQ0vUggTsmj8F/T/DtOIjINfauWV2EBjOykpBhiIMKKo9lkiP2rvXgUWOhm3I/VMHqPhkQOWW282yTJVwq+wxR0x5wO3eIiIY7RQtkL774IlQqFWRZxuXLl/HVV185ba9SDezJUYHu5Nofudz26lX/8MgxZz65wyP9AMCH/+9uj/WlhMH8FkP93ImIPE2UZOTlZiN/S7HdCWmaXoe83GyHT4nrTpYkxM9ZhXNvr7U7SdQkpCJ+zirbBFWWJEjtLXbbmw/vtrUXNGF9ilOiJMPS1tFn3CdPX0TqVd9B3P2r0PB374+DiFzj6JoFgKKyOlvWaENGeCyTerN3rQuh4Yi561HIHe04/eav+2SA5UQZrlr4v06zrf1MNWSx0638IyIKBIoWyJYsWcKiFxEREblMLaigDQnCuqVTUF7ViMJSo21Vx/RMPTIMsS5PRFWCAEEThsQFL8BSc6hrFUaLCeow3bcrscb3mByqBMHhZBIA2s8cx7m31yJxwQt2x21vAt1s6cDqzcVYsyjbJ+MgItc4umatKo0m5G8pxrqlUzyWSb3Zu9ZHTvw+giJH4fRrv7SbAVKrGWfeyEPCg/n9Zoo7+UdEFAgULZD9/Oc/V/LwRERENARZJ5rpKdE9bluy7u/jzkTUOvkLHTOuzy2M3T+XJRGtpw47vR0J6CpOWWoOIXTM9bbvipKEiuomhxPts00teGL9buRMTsb9t16LOC+Ng4hc0981a1VpNKG8qhHpKTEAPJNJVnavdZWAkRNvh+VkudMM6DSdRd2ry5DwyIv9ZhvQf/4REQUKph4RERENSepek7eBTEKtVIK612uhz+fmQ0Uu9WU+VNTj+2pBQEFJrdPvNFs68E5BFTb945DXxkFErnHlmrUqLDXassfTmdT7Wg+OTcKIkTEwV+zq9/tSqxkXP3+n32yzHqu/NkREgcAv0s9isWDr1q3Izc3FrbfeiuzsbADAhQsX8PTTT+Po0aMKj5CIiIgCnWi+6Fq7lr6rTkzN7S5998Kl/tsNZhxE5BpXr1lX2w1E72td0Gjtvu/w+8wAIiK3KHqLJQB89dVX+PnPf46zZ89ClruWIVv3JautrcWOHTvw73//G88++yxmzZql5FCJiIgogKnDI11rF6br854uwv4TugfSbjDjICLXePKaHaje17rUbrH7vsPvMwOIiNyi6AqyxsZG5Obm4syZMxg/fjxWrlyJa665xvZ5TEwMbrrpJnR2dmLVqlUoKytTcLREREQUqGRJRPj4aS61DR8/zbaHD9C1n9GMrCSXvjs9U2/bt8jT4yAi13jymh0oe9f65cZadF5qQnj6VJf6YAYQEblH0QLZ5s2bceHCBcybNw9///vf8fDDD+M73/mO7fPExET89a9/xUMPPQRZlvH6668rN1giIiIKWCpBDW3yBGgSUp220ySkQps8vs8eZBmGOKTpna/mSNPrkGGIdbpv0WDGQUSu8eQ1O1B2r3VZwqWyz6C9OoMZQETkBYomZlFREbRaLZ566imn7Z588kmEh4dzBRkREREpRpYkxM9Z5XBiqklIRfycVXZXbIiSjLzcbIcT7jS9Dnm52S6tRBnMOIjINZ68ZgfK3rV+qexTdJjqET97JTOAiMjDFN2DrL6+HgaDASEhIU7baTQajBkzBpWVlT4aGREREVFPKkGAoAlD4oIXYKk5BPOhIogtJqjDdAgfPw3a5PGQJcnuig21oII2JAjrlk5BeVUjCkuNMDW3QxehwfRMPTIMsRAl2aWVKIMZBxG5xpPX7EA5utYvffEJdFPuZwYQEXmYogWy0NBQNDQ0uNTWZDIhPDzcyyMiIiIicsw64QwdMw7a5PG2960rNZxNSK0T6fSUaGQYYm3vW1eguDPRHsw4iMg1nrxmB6q/a50ZQETkOYom5/XXX4/Gxkbs37/fabt9+/bhzJkzGDdunI9GRkREROSYSlD3eu36/1Kpe7UdzCR7MOMgItd48podKEfXOjOAiMhzFE3QuXPnQpZlrFixAiUlJXbb7Nu3D8uXL4dKpcK9997r4xESEREREREREdFwp+gtlrfeeivuu+8+vPvuu3jooYcQHR0Ni8UCAHj00UdRU1MDo9EIWZaRk5ODnJwcJYdLREREXiBKUo8VGr1f+yNZEnus3Oj9moj8i9I5w8wgIvJ/ihbIAGDNmjW4+uqr8corr6Cpqcn2flFREQBAq9XikUcewZIlSxQaIREREXmDdYPriuomFJTU2jbAnpGVhAxDnNc3wB4I68bXracOd22Mbb4IdXjktxtjT+DG2ER+RumcYWYQEQ0dPiuQFRcXIzExEUlJSX0+W7BgAebNm4cvvvgCJ06cgNlsRmhoKMaOHYvMzEyEhYX5aphERETkA6Ikw9LWgfwtxag0mnp8VlRWhzS9Dnm52dCGBPlNkUyWJEjtLTj39lq0nzne4zPz4d3QJKQifs4qCJowTniJ/IDSOcPMICIaWnyWxCtWrMDixYt7vLdx40Zs374dABAcHIzJkyfjwQcfxKOPPoqHH34YU6dOZXGMiIhoGFILKruTVqtKown5W4r9pjgGdG1+bW+ia9V+5jjOvb2WE10iP6F0zjAziIiGFp+lsclkwogRPResbdy4Ef/4xz98NQQiIiLyA6IkobyqweGk1arSaEJ5VSNESfbRyByTJRGWmoMOJ7pW7WeOw1JzCLIk+WhkRGSP0jnDzCAiGnp8doulTqdDVVUV3nvvPWRmZiI4OBgAcPnyZZw5c8blfhISErw1RCIiIvIBtSCgoKTWpbaFpUZkGGK9PKL+qQQ1zIeKXGprPlQEbfJ47w6IiJxSOmeYGUREQ4/PCmS333473njjDaxevdr2nkqlwuHDhzFjxgyX+lCpVDhy5Ii3hkhEREQ+Ympud/iZIKigHxUBbcgIaIL85ylvovmia+1anK9YISLfcJYzA2nnLtF8EVAJCI5NgqDRQmq34HJjLSD3XC3GzCAi8g8+K5A99dRTsFgs+OSTT2CxWAB0Fbxk2fXlzO60JSIiIv+li9D0eS9CG4Scm5Nx52Q9oiOv7EEqSyJUgncKZaIkQd1t/5/er7tTh0e61Kc6TGf7995j7/7anWMTkfvs5cxg2rkrYuJtiJ25BCNGxtje67zUhEtln+FS2aeQWs0AemYG4N3MIyIix3xWINNoNHj++efx/PPP4/Lly+jo6MCNN96IG264AX/+8599NQwiIiJSmChJmJGVhKKyOtt7o2PC8NxPsxEXFY6WkwfRsKsIovki1OGRCB8/DdrkCZAlyWObWYuSDLWgQkV1EwpKamFqbocuQoMZWUnIMMTZPreSJRHh46fBfHh3v32Hj59mm+C2njoM8yH751J5yoSP937d77GJyH32csaR6Zl6j193siQi/NqbYTlZjgs737ySAelTETXtAURMmIGz29ag03QW4eOnQbRcQsM/10Md9h2vZB4REfXPZwWy7oKDgxEcHIyEhASMGjUKWq1WiWEQERGRAtSCgAxDHNL0OlQaTYjQBuG5n2ZDp5Fw+rVf9tnU2nx4NzQJqYifswqCJmzQE0ZRkmFp67D7dLuisjqk6XXIy82GNiTINmFWCWpokydAk5DqdNNtTUIqtMnjIXW048xfVzk8l7j7VyF6pAZfHKtHs6XD6bGJyH29c8aRNL3O4/uPyZIIqd1i9wmWtjybvRKj565G08evQJs8HheK3kJrzcGebTyUeURE5BpFCmRWhYWFSh6enDi59kdutb96lfefRjrzyR22f//w/93t9eMRuav7f6ODxf/GabgTJRl5udnI31KMCYZYxEWF2y2OWbWfOY5zb69F4oIXBn1staCyWxyzqjSakL+lGOuWTunxvixJiJ+zyu6kF4BtQitLEs6984LTc2n4e9e55ExOxjsFVf0em4jc1z1n7F3v1oK0p1ePqQS1w5wAvs2zd36DxAUvYNS9K9BhqselLz7t28ZDmUdERK5RtEBmdenSJVRVVaGlpaXftlOnTvXBiIiIiMib1IIK2pAgrFs6BZcvd8By8qDTlVlA14TRUnMIoWOuH/CKClGSUFHd5HRFCdBVqCqvakR6Sky3VWQCBE0YEhe8AEvNoa5bJ1tMUIfpvr0lajxkSUTb6Uq0fX2o/3M5eRA5k1Pw3s7jkKQr+6zaOzYRua97zpRXNaKw1Gi7pXl6ph4Zhliv3FrZ+vVh1/Ms6VqcfXstpDaz4zaDyDwiInKdogWyzs5O5Ofn4/3334coiv2251MsiYiIhg/rpDQ4OAgXK4pc+o75UBG0yeMHcUwBBSW1LrUtLDX2ufXKOkkNHTOuxzhkSfr2czWayz5zqX9zxS7E3T0B+lER+PrspX6PTUTus+ZMekp0j2tK/LYo7ekitEpQw+xmngkjHE/JBpt5RETkOkULZBs3bsS7774LoGtfssjISIxw8geEJ4iiiG3btuH999/HyZMnIYoikpKScOedd2LhwoXQaK48xaa0tBTz5s1z2NfMmTOxbt06r46XiIgoEIjmi661a3G+8ssVpub2Qbfr/YS57qs73D0XbUjf//dxdYxE5JreT4j15upMdzNA0Djej9kTmUdERK5RtED2wQcfQKVS4emnn8b8+fOhVnv3ccaiKGLx4sUoKiqCVqvFhAkTMGLECBw8eBAbNmzArl278Ne//hWhoaEAYFutdsMNN+Cqq67q09/EiRO9Ol4iIqJAoQ6PdK1dmG7Qx9JFaPpv5Ea73tw9F0tbp8eOTUTK0ySkQBY7ILVbcLmxFpAlu+2sGSC1Wxz25YnMIyIi1yhaIGtsbIRer8cjjzzik+O9++67KCoqQlpaGrZs2YJRo0YBAC5cuIDFixfjyy+/xB/+8Ac8+eSTAICjR48CAJ566inceOONPhkjERGRvxElqcfqi96vB0uWRISPnwbz4d39tg0fPw2yJA1qD7IZWUkoKqvrt+30TH2f/YlkSeyxeszea5fPJX0qmkwtMNY3u3RsIvI9d/NPlkRE3XLlDpTOS024VPYZLpV9Cqm15z5j4elT0flNY1cRzYHBZh4REblO0QJZbGwsBB+G/fvvvw8A+NWvfmUrjgFAVFQUfv3rX+Puu+/Gv//9b1uB7MiRIxAEAddee63PxkhEROQvrAWaiuomFJTU2ja3npGVhAxDnMcKOCpBDW3yBGgSUp1ubK1JSB30XjxqQUCGIQ5pep3TjfrT9Loe+xVZJ6itpw53bc5vvgh1eOS3m/NPsH3u1rlcPQH/+Ohojw367R2biHzP3fxzmBHpUxE17QFETJiBs9vWoNN0FsCVDLhQ9JbDFWaeyDwiInKdogWynJwcvP766zh27Bi++93vev14Op0OV199NcaP7/sHzdixYwEADQ0NAIDLly/jxIkTuPrqq6HVOt4XgIiIaDgSJRmWtg7kbynuU0gqKqtDml6HvNxsaEOCPFIkkyUJ8XNW4dzba+0WljQJqYifs8ojKylESUZebrbdcwNgOzfrBFiWJEjtLXbHZj682zY2QRMGlSC4dC5x969C/XkzPtpb4/TYROR77uafSxkxeyVGz12N06+tQJBuNOLnrIIkdqLttP1Cuiczj4iIXKNogeyxxx7D559/jsceewz5+fm46aabvLpJ/5/+9CeHn1VUVAAA4uPjAQDHjx9HR0cHEhMT8bvf/Q6fffYZTp8+jZiYGHz/+9/Hz372M4wcOdJrYyUiIlKSWlA5LCABQKXRhPwtxVi3dIpHjqcSBAiaMCQueAGWmkNdKzBaTFCH6b5dpTXeYxNFtaCCNiQI65ZOQXlVIwpLjbbVIdMz9cgwxPYoUKkEwWGxCwDazxzHubfXInHBC26dy/n6i8i6bpTTYxOR77mbfy5lxDu/QeKCF5DwyIsIjopHc0sbNKKMhHl5Xs88IiJyjaIFstDQUCxfvhyPPvooFi5cCLVajfDwcKhU9v+nUKVSYe/evR4fhyzLePnllwEAt99+O4ArG/Tv2rULJSUlyMrKQnx8PCoqKvCXv/wFhYWF2LZtG6Kiojw+HiIiIiWJkoSK6iantyACXZPE8qpGpKfEeOhWy66JYOiYcT1uK5IlqcfnnmAdb3pKdI/bGcVvb3e0fi5LIlpPHXZ6uyTQNQG21BxC6Jjrv73Vsv9zSRsTieuSr+xx2vvYROR77ubfhJQoNzNiHAAgIizEds37IvOIiKh/ihbI9uzZg8WLF0OWZciyjM7OTly86PixyI4KZ4P1v//7vygpKUFMTAwWLlwI4MoG/ZMmTcLLL79sK4RduHABy5Ytw759+5CXl4ff//73/fa/fft22/5n/bEel4go0DE7laMWBBSUON40urvCUqPH98vqvul912vvTRJ7b7bduzilEtQwHypyqS/zoaI++wU5O5f+jk00EMzOwXEn/w5VNyLDEDvgjLiyStV3mUdERI4pWiDbtGkTOjs7cd1112Hu3LlISEhAUFCQT8fw8ssvY/PmzQgODsb69etthbCVK1di/vz5iI2NRXh4uK19VFQUXnzxRdxxxx34v//7PzQ0NCAuLs7pMU6fPo0DBw549TyIiIYbZqeyTM3ttn8XBBX0oyKgDRkBS1snjPXNto3lu7cbrkSz47+869GuxfmKEyJfYHYOniZYDUFQ9XmARu8s7OgUATAjiIiGC0ULZMeOHcPIkSOxdetWhIWF+fTYnZ2dePbZZ/H3v/8dGo0Gv//975GVldo1qT4AACAASURBVGX7PCgoCMnJyXa/O2rUKFx33XUoLS3FkSNH+i2QJSYmYtKkSS6N6+jRo2hu7vu4dyKiQMPs9AxRknqsVOr92tF7uggNIrRByLk5GXdO1iM68sqf0+cvtuCjfUZ8vLcGugiNR8bgiz6ckSWxxyqO7q/V4ZEu9aEO03lsPEQDNVyz01MZYK8fFQAVZNs1/9h9GZh7W6ot5wDYzUJLa9dfEDAjiIiGB0ULZEFBQUhMTPR5caylpQVLly7F559/jpEjR+IPf/hDj+KYK2JiYgAAra2t/badNWsWZs2a5VK/8+fP59/6ERGB2TlY1o3eK6qbUFBSa9sIfkZWEjIMcT32u+reJmqkBkvunYCcm8difk4a4qLC0XLyIBp2FUE0X4Q6PBJh6dMwP2cCbp+UhPOXLjvcVN6VMfR3W6En+nDGugl266nDXZtkf3uOXZtkT4AsiQgfPw3mw7v77St8/DRuqk2KG27ZaS1oHapuQmG3DJielYQbDHEuF8rsZUlywkg8eEcaNMFBsNQc7JEB1pzLydZDpQKiI8P6ZGF4+jTIY693OyMA3kZJROSPFC2Q3XDDDSgpKUFLS4vPimTffPMNFixYgK+++gqjR4/G5s2bYTAY+rRbs2YNzp07h2effRbR0dF9Pq+rqwNw5amXRERE/kKUZFjaOuw+ha2orA5peh3ycrMRqhmBZ17Zhy+rGnu0SYyLwOzpKehsa8Hp137ZZ/Np8+Hd0CSkIu7+VYjTRULloDjmyhi0IUEOC1ye6MMZWZIgtbfYffqc9RxHP5gPbfIEaBJSnW7CrUlI7bP/GBENjihJsLR2Iv9VJxmwMBva0BFOi2T2siRCG4THZ4+H0NGK02+udpgB8XNWQRUcirNvPYvWmoN92sTk/BQjJ97uckZ888WnCL/uZgiaMBbJiIj8jKKp/Nhjj6G9vR3/8z//A4vF4vXjXb58GYsWLcJXX32FlJQUvP3223aLYwDw5Zdf4j//+Q8KCwv7fFZVVYWjR48iMjIS48aN8/awiYiI3KIWVHaLSlaVRhPytxRjhFpAalLfW366bjUS0PD3voUjq/Yzx9Hw97UOJ3iujsFZYcsTfTijEgS7xTGr9jPH0XJkL2RJQvz9v4ImIdVuO01CKuLv/5VtZQgReYZaEOwWx6wqjSbkv1rc7woye1mSc3My4qLC0fDO804z4NzbayGoR0CTkGK3zYWiN9F56Tzi56xynhGzV6LDVA9T0Vs497bj7CQiIuUouoKsvr4e99xzD959913s3bsXN954I0aNGoXQ0FC77VUqFZ566qkBH2/Dhg0oLy/H6NGjsXXrVtuG/Pbcf//9eOaZZ/C73/0OEydOxDXXXAOg6ymWK1euhCiKWLhwIYKDgwc8HiIiIk8TJQkV1U0OJ5RWlUYTvqxqwB2Tx+C9ncdtm1ELggozMq9Cy8mDTldDAF2TR0vNIYSOub7HZM+dMZRXNSI9JaZPkcsTfTgjSyJaTx12fo4qAaHJ6Wirq8SIiCgkLngBlpMHYa7YBbHFBHWYDuHpU6G9egI6TPW4fP4MQhINnPgSeYAoSTjkVgZE2y2U2csSQVDhzsl613Pu5EGMvOE2XNz7PiD3LIRLrWaceSMPVy1c15URNYe6btW0kxFnt62B1GZ2mJ1ERKQsRQtkS5YsgUrV9T+z33zzDQoLC22ve5NleVAFMpPJhK1btwLoehLl888/77DtunXrcN9992HPnj349NNPcffddyMzMxOhoaHYv38/WlpakJOTgx//+McDGgsREZG3qAUBBSW1LrXdWVr7/7N37+FRVff++N+zZ5JJZiYhE8iVJiFpLqLkQgQFWiVCBbG1WusXkR76lXrr8dtqvbRVOGiVqpzzwx7tOT1VrOV7yhcVrEWPFdRzgIAVaMGQm1ICJiRcQi4wIZmZZJLZa//+mMwkk7ntCUkmkPfrefqU2XvNWp+Z55k37sXaa+PR5VcjMyUOJ5o7AQCZKXGYnGBE655yVX1Yq8t9bi0Mp4Zdh5pQkp/kc3wk+ghGI2lhrS4P2iY6KQO6+Ck4v3sz7F9WIL50MeJn3ojkWx/ytHFeaMP58jfQ+dlHMORejdiMK8Kqg4j800oSdo1ABvjLkrBzrmYPkm99CNFJGehtbfQ577Q048Jf/wzzdXdAnzINhgAZIXqsA336yU4iIoqsiE6Q3XbbbQEnxEbawYMH0dPTAwD4/PPP8fnnnwdsu379ekiShJdffhlbtmzB22+/jcOHD0OSJOTm5mLp0qW44447xqx2IiKicFi6HEHPS5IGmSlxiDe6VkGbYgf+c8AQ4/qzbO1QNZZs87+6w9Ll8IxjiNHB3uNEU0uXZ6WamlovWIP34T43yTS81dwBP6NGQnRSBmIyprva2S5AdFvR8ek76Nj/Hoz5s6A1JkC2dcBWdwgQzv52wVe6EFF4QmWZ2nb6aC0kSePJjuHmXHRqNiS9AcJhR2+ba9ItOikDkt4AREW5avn0T5A72yHbOyF6rOhtP43oKVMRnZQx8D5FMC+IiMahiE6QrVu3bszGWrRoEY4ePRrWezQaDZYtW4Zly5aNUlVEREQjzxyn93s8zhCFJfOycfPcTExOGHg4zs9XzML7n57Ajn0NsPe4Jnu0pgRVY2mNvnuYAcBNc7PwyLJir3HOddiwfX8TduxrQJe9z6dWRcjQSFrP69V3z4ZTAMbYKM+xto5u7Dp0EhooWDgrE5MTBrZlcD/NTu1T7YZ+RinW5FolVroIuvgpnuPJt/0EnYf/G1AUxBWVeZ1zdrajs+JjdFZ8FPC7IKLhCZRlwdr5y4Ef/a8S3HljAT7cf3E5l3zLjwfG6bEBigJtrMlzTBEyptx4NwDA2XUOve2nED3lK9DFDTzwy50Zsn1gNRkREY0PEZ0gI3r/xVtHpS0R0UQlC4GFszNQXnHK63jaFCN++cAcJCeaYKuvQuuecsjWDmhNCTAWlmHFkmIsuiYDT7/2V5zrsMFYWAZr7d6Q45mKyqAI4bWPjiJkfL14atBx1mw4gOZ2G26am+2ZGOturHXt3dPf3lRUBmN2MS50deP3fz4CIRQsmTsNdyzIg1bSoLKuFf/3gy9g6XLAHKfHglkZmFmQjL4+Aa1egiyUgPuSKUKGqWjgM+rMaUhbvgZRCSmw11fi/O7NA3UUlsH8te9CEQI9p/4+5Nx8JJYtR1zxQjitFp/vgoiGRxYCC/xkmT8LZmV6JsTcv//qY+3YdeikVz6sWDIdN16TiV+8diDsnBO9PWj/cAMADRIXroDOmAB7Q5V3ZhWWwZBTDKetA30drTBkF0P09uDc//wneltOeGWG6O1hXhARjTOcICMiIrqMaCUJJfnJKMg0ezaljjNE4ZcPzIFZL3B64xM+m1Jba/dCn56H5KWr8Mx912LnoVNY+o1i6NPzgm5grU/P89lDRxECwmH3+3TIweOsvX8Ofv/+F5ielQDhsIVsv3xRPta8uh//cNMVsNp7sfb1v/ps3l1ecQoFmWasuedaWLv7oI/WwhAT5XeSTCNpYch2fcY+SzPSlq+BFBUT9PtJvXMVdHGTYf+yAqLb6nMuZlISL3aJRohWkjBzSJb5U5BpRkl+Ehy9TnR0O6DTSvinV/YFzYdf3Dcn7Jw7X/4G7Mc/w9Qf/As00ATPiqVPQmdKRPMbzyL51ocRf/VNOL3xZxAnrANtlq2GRseHfRERjScRnSCbPn16WO01Gg2++OKLUaqGIqn+ue+G1T5n9TsjMu4tj72nqt3luHpN7WdX43L8foguZbJQ8PR9c/DMawdwtMmCJfOykZxo8ntB5+Y4cwytW5/H1JXroCganL9gR+qy1X4nrgB4LvCGroDQSFLA9wwd56f/cHVY7f/xjmKkTDbi8Zf3BrxgPtpkwdrX/4r1D1+PHfsasGRedsDvSRECqctWw3ZkP6ISUkJ+P2e3uOqIL12Mjk/f8XuOiEaOLASevncOnvndAb+/+YJMM56+bw5koeCTyjP4xjWZqvNBUTRoOWdF8tJVaN36fOCcu3MV+iwt6PzsI8RfvVhdVmx9AVNXroM+Pdfz58G54ThzDGffeo6ZQUQ0zkR0gkxRlNCN+sXFxY1iJURERJcPraSBISYK6x++HpV1bcidGgd7fVXQVRKA66LNXl+N78yfjujoKChCxtSV62BvqHbdRmSzQGs0w1RUBkN2kd9bK7sba9WN01CN2KyrYG9QW1cVinKuwuGjrUFXkwCui+DDda2YNT0FlXVtKMydEmAVmQRJb0RcycIwvp8qxM+8ER37tgGK8POZZnAVGdEI0UoSDLE6T5btOtQ06JbJTJTkJ0EWAkcbz6M4P0l1PlTWtWLxnExsKz+O5YsKguZcn6UFzW+uhXDYEV+6CPb6yrCzwl9uMDOIiMafiE6Qvf/++wHPdXd3o62tDTt37sS7776L7373u3jiiSfGsDoiIqJLl3tCqDB3MrSShNaaclXvs9aUIznHdduke8P82KyrvG6lVIToP+99UaeRtLBWqxun50QtDNlFqttba/bAkFOM6uPtqtrvPnQSjy6/Gjv2n0BJflLAdu7PYFX9/exB8q0PITopA72tjd7nqst9bjkloovj3mi/MHey129Z7s8hrSTh0Bct+P43r8QfPlB3p8mu/nxYecsMtHfY0dDchQI/OWc9sg/t21+F6LEiOjkLuvgpOL97s6oxBmdFoNxgZhARjS8RnSDLy8sL2WbhwoW44oor8MILL2DGjBn41re+NQaVERERXR7cF5eytUNVe9nmu/pi8JMlXa8Dr3ZQO45wOoZVV2+frKq9pcsRVvtw65D0hoDniGjkDX0y7eDXjv7fuft3H4q73UtvVmB3xSlckWXGP//oOrR98Fv0nTsNXUIKkr/9Y3RV/DdEj2u/QfdvfjhZESg3mBlEROPLJbGe93vf+x7MZjM2bdoU6VKIiIguSVpTgrp2RvOYjCPp9GG1d9cVHaUN0dLFHKcPq324dQiHPeA5IhpbqYmuiSf37z4Ud7svT1+AEArsPU4AgOLsRc/JI+htaQDgnQvu3/xwsiJQbjAziIjGl0tigkyr1SItLQ11dXWRLoWIiGjcct9yNPS1ImSYispU9WEqKvPcQhmucMaJmTYjvLoK50N2OlGUO0VV+xtmZaDNYkdRbhJkEXzP03DrcF5oQ2/bSd9zF/HdEZGvQJk29Ngt138VshBYODtDVb/ufGhq6QIANLV04VyHDcbCMgBAb9tJODvbYSqc73mPv2PBDM6KQLnBzCAiGl8uiQkyq9WKEydOICoqKtKlEBERjTvuCaCa4+14cfNn+KdX9uHFzZ+hpn+/LgUSDNnF0KcH39pAn553UfvhhDuORtKqb59TjOr685hZkIyCzOCrLgoyzZiZn4xDR1pQkp/kd4P+wcKto/Pwf3tt0O/9mS6J/7QiGtdCZZosFJ82uw+dQkm++nz4cH8jRH8fQijYvr8Jxpz+HFAEOis+hiGnZCAX/B0LYHBW6NO+6jc3mBlERONPRBO5u7s74P/sdjs6Ojpw+PBh/OM//iPsdjtKSkoiWS4REdG4IwsF9p4+PP7yXqx5dT/KK06h6lgbyitOYc2r+/H4y3th6+mDImSkLlsd8MJOn56H1KVPwtl5DsJhC3tVgywU2Hr6cP6CHclLVwUfZ9lqT/+KECHrSl66Ci3nrPiPP1bh7Dkb1txzbcCL4IJMM9bccy3aO7rx9ZKpIVePuampI/XOVeiztKDzs4+CfiYiGr5QmfbUq/ugKL5tfv9+rap8ePq+OXDKAnVDnna5Y18DWs5ZkXynKwc6Kz5Cn6UFqUuf9OSCv2NDubO0z9KCntPHPH8enBvMDCKi8Smim/SXlpaqaqcoCrRaLe6///5RroiIiOjSopU0eOa1Azja5H+z56NNFjzz2gGsf/h6SHojpq5cB3t9Faw1eyDbLNAazTAVzochpxh9lhY0v7kW2lgTpq5cN6w6Ou29WHv/nADjlMGQUwRFCM+qCY0kDdTVUA1rdflA+6IyGLKLcKGrG298fATTpyXifKcDBVkGrH/4elTWtWHXoSZYuhwwx+lxw6wMzMxPRo/DiUkmPWShhFw95qamDkUI9J47A0Pu1X7PcSUI0cULlWl5mWbotJJPmy57H57asB/P3j8X6x++HofrWrH70ElPPiyYlYmS/IFbrtf+cJ5Phpzr7EWyOcGTA52ffYhJ197ilQuWv2xF4oIV/rOiP0udtg44rRakf+9piN4edO5/F/q0HGYGEdE4F9EJMkVR96+6BQUFeOihhzBr1qxRroiIiOjSIQuBmuPtAS8k3Y42WVBZ14bi3ET0nm9G9OR0JN/6kOe880Ibzpe/gc7PPoLoscJpAewN1YjNmqHqAm5oHY+8tBdL5mZjydxcJN9a7GnXbrHhQrsNyYkGDN463z1GbNZVXrd4KkJACIFJcbF45K7S/rEGJr0KcyejJD9pUB2u/66I6t+YX+3kmJo63OdjpuYhNuMKv+eI6OKEyjRJ0uCmudNw+Gir3zbN7TY8+tIeLJmbjZvmZuHR5VcP6tuVD4NzwV+GaPrPD82Boa/lHhv0qTl+s0JnTIAUHeuaBNNFYfI3/rdPG2YGEdH4E9EJsp07dwY9r9PpEB8fj9jY2DGqiIiI6NKhlSTsPOi7Wbw/1cfbUJKfhI5PtsL6+V8QnZQBSW+AcNhdG0cP2VPLWl2uej+yoXV02fuwdWcd/rj7GDJT4mCI0cHe40RTSxfmz5zqddE6mEbSDnktYegU1+CLW+2QC0z3uXAnxtTUoeYcEV2cUJmWmRKHpIRY/OGDLwK2GZw/370hF9+/+cr+vn1zIVCGAP5+667Xlk/ehu3v+z0b7g9kaTeg0UCKjoFw2BGdko3kb//YZ0xmBhHR+BXRCbKpU6cGPS+EgMS/RIiIiAKydDlUtevtkwEAsrUDUAR6WxuDtpdtwVelqalDCAUnmjtDtiMicguWEYYYXcg2bkIoOHayY8Tqcus5eQQAEPOVgoD/wAAAWuOkER+biIhGV0QnyNz+/Oc/47333sNvf/tb6HQDJf30pz9FfX09Vq5ciW9/+9sRrJCIiGh8MsfpVbWLdt92aEpQ1V5rDP4kuOHWobZdMIqQvVZ3DH1NRJeuYBlh73GGbKO2L3/UZEvybT+B1hDvee3sbEdnxcforPgIotsKAJBiTYibuYhZRUR0iYn4HmSrVq3Cu+++CwBobGzEV7/6Vc/5xsZGHDlyBD//+c9x6NAhPPvss5EqlYiIaNyRhcDC2RkorzgVsu2s6alQhAxTURmstXtDtjcVlaneRDqcOhbMygxr8/zB3BeX3SdqYa0ph2ztgNaU0L/5fzEvPokucaGypKmlC20d3Vgwa2Tzxp113Y21rk333dlSVAZDdrHXvmGOsw1D8mc+EsuWI654IZrfXAsASFu+BlEJKbA3VAXsj7daEhGNPxGdIHvrrbewbds2GAwG/OhHP0JaWprX+Q0bNuDjjz/Gr371K7z99tuYM2cObr755ghVS0RENL5oJQkl+ckoyDQH3ah/Zn4SpmclQJH7YMguhj49D44zxwK216fnqd5/LJw6CjLNXhtih0MRMoTDjrNvPedTu7V2L/TpeUhdthqS3sBJMqJLVKgsEULBh/tPYMWS6SOWN4oQEA5bwGyJzS5G6p2rIHq7g+fP0ieRtvwp1z5kUXqc3vhEiKwycpKMiGiciWgqv/POO9BoNNiwYQN+8IMfwGAweJ1PTEzEsmXL8O///u9QFAVvvPFGhColIiIan2Sh4On75qAg0/8tkQWZZqxeeQ00koSWt/8ZfZYWpC59Evr0PL/t3Rdv7hUTI1nH0/fN8TxJLlwaSev34tTNceYYzr71HCfHiC5xobLkWJMFTlmMWN5oJClotujTc6HR6kLnz9YXEJWQjKhJSTi75XkVWcXJMSKi8SaiK8i+/PJLZGdnY9asWUHbXXPNNcjIyMAXXwR+Yg0REdFEpJU0MMREYf3D16Oyrg27DjXB0uWAOU6PBbMyUZKfBEXIsDdUobuhCs1vrkXaXWswdeU62OurYK3ZA9lmgdZohqlw/qBbFcO7eFNTx8XcWtl9ojboqjfAdeFpb6hGbNZVnCgjukSpzZKRyBtFyOhuDJItGgnxpYtgr68MnT/NX0L0OdBz6u9hZNUMTpQREY0jEZ0gkyQJUVFRqtrGxcWhra1tlCsiIiK69LgvAgtzJ3vdUuRePaGRtLBWlwMAnJZmnN74M8SXLkb8zBuRfOtDnvbOC22wHtkH0/R5o1LHcCbHPPXXlKtqa60uD+v2UCIaf8LJkovJm8HZ6E90UgZ08VNwfvfmkH1FJ2VAitIH7W8wZhUR0fgT0QmyrKws1NXV4ezZs0hNTQ3Yrr29HXV1dcjOzh7D6oiIiC4t2iErEQZfIMrWDs+fRbcVHZ++g45921wXdXoDhMOO3raTiJ02Y9gTZGrqGK7B9QdtZwu8JxERXVrUZMnF5k2wbJH0hpBthtMWYFYREY1HEV3Te9NNN8HpdOKRRx6BxeL/L4muri489thjkGUZixcvHuMKiYiILg9aU4LvQUWgt7URPSePoLe1EVAEtEb/e/pEmt/6/bUbp/UT0fgULFuEwx6yDTQSopOzoDOnerftPx6TeSWMV8xFTOZViE7OAjSuyy9mFRHR+BPRFWTf+9738O677+Lw4cP4xje+gbKyMuTn58NgMKC7uxvHjx9HeXk5Ojs7kZWVhbvvvjuS5RIREY1LshBeqyiGvlaEDFNRGay1e0P2ZSoqgyJE0H1xXHuUaQO+ViOcPhQhw1QYTv3++wo05nDqJyL1QmXUWPD3+wc0MJUsDJgtvW0n4exsh6lwvk8bKdbkulW9dBF08VM8fZpKFkI3KQnxVy+GLm6yz/jOrnPo/OwjxGQXh8xaIiIaWxGdIDMajfjd736Hn//85zh48CA++OADbN++3XNeUVx7CBQXF+Nf//VfYTKZIlUqXabef/HWSJcQMUM/+y2PvRehSohouNybUNccb8fOgyc9m1QvnJ2Bkvxkz3mNpIUhuxj69Lygm0fr0/OC7onjvpjrbqyFtbocsrUDWlMCTEVlMKi82BtOHxpJC0PO8OsPOGbhfBhySqA4+6CJ1vJilWiEqc2o0RQqc2IzroThijmw//2Avzejs+JjJJYt98ofnTkNacvXICohBfb6SpzfvRmytQPx194CQ04JDFkzYG+owvld/88nbyS9EYlly5k3RETjUEQnyAAgPT0dmzZtwuHDh1FeXo6TJ0+io6MDMTExmDZtGq677jrMnTs30mUSERGNK7JQYO/pwzOvHcDRJu9tCsorTqEg04yn75sDQ0wUtJIGihBIXbYaZ996zu8kkz49D6nLVge8aFOEgHDY/L7fWrvX835Jbwx40XcxfShCVln/0FUiKsZc+iScPTZooqKD1k9E6oWbUaNBbeak3PYIzm55Ht0NVT59OM4chyI7PfnTZ2lG2vI1kKJicHrjE55+pVgTopMymDdERJewiE6Qbd68GV/96lcxZ84czJw5EzNnzoxkOTSB1D/33bDa56x+Z5QqGXmR/GwjvQrNvcptJPsdzT6JxpJW0vi98HQ72mTBM68dwPqHrwcAaCQJkt6IqSvXwd5Q7VpJYbNAazT3r6QoCrqiQSNJASenAMBx5hjOvvUcpq5cF7Dmi+lDI2kh6Q0h6ve9VVLVmFtfwNSV63Dhs48w6Wrud0o0EsLNqNEQTuakLX8qaDa687PXchZRCSlek2MAEF+6GFGTknyO+4zHvCEiGrciOkH2yiuvwGq1Ys+ePYiPj49kKURERJcMWQjUHG8PeOHpdrTJgsq6NhTmTum/1dI1+RWbdZXXrYiKEAAQZOWXjO7G2qC3NwKuiz97QzVis2b4XQF2sX24J79865e9zg9rzPoqGHNLA45NROoNN6NG0nAyR002Rk1Kgr2hyrtfjYT40kWw11cyb4iILmERTeMLFy4gOzubk2NERERh0EoSdh48qartrkNNPhee/lZZBaORtLBWl6saz1pd7re/kehjcF/BXg9rzJo90E1KQveJGl6sEl2ki82okTCczFGTjf76jU7KgC5+Cqw1e9SNx7whIhqXIrqCbPr06Th+/DgsFgvMZj7qmIiISK0LVgempcXDEKODvceJppYuAEBmSpzXMUuXY0TGk60d6trZAq8Yka0dgKSDMX82tMZJkG0XYKs7CAin6j7C5VW3RkJ0UgYkvQHCYUdv20lAEV5jKs7eERubaCJTmz0jlVH+aHR6QOOagIpOzkJ0ShYADXpbTqC3tdHn96+WJ1f6MyUmY7r38VDvZ94QEY1LEZ0ge/7553HPPffgrrvuwj333IOSkhIkJSVBr9cHfE9sbOwYVkhERDQ+/fQfShFnjPG8tnf3AlBgiB34O/Rchw3HT3UCcN3ypB20UmHo61C0pgR17YyB/8Er8caViJ6cBo02ynNMkfvQ3fQF2ne8CqelJWQf4dKaEiDFmhBfuhjxpYugi5/iOefsbEdnxcforPjIM6ZGFz1iYxNNZOa4wP89P1jaZAOA0BklhIAChMyxwXsRJn3zh0hcuAIarQ5SlN6rjejtQeehHbjwt/d9Msf3YR/er3XmVCRMzfPJlHBzknlDRDS+RHSC7Cc/+Qk0Gg0aGxvx1FNPhWyv0WjwxRdfjEFlRERE45N7I31ty1G01pQDGgmJC1fAYEyAvaEKrdXlkK0d0JoSYCwsw7UziqEIgaONFuzYdwKWLgfMcXosnJ2BkvxkyEIJeXuTImSYispgrd0bsj5TUZnfzf4VIUOfnAl7fRWsNQM1mgrLYMgpxlfufxlntzyPnhPVAfsIlyJkxJUugnn+MkQlpMBeX4nzuzcPGns+EsuWI654IZxd5+G80IbYaYUjMjbRRCYLgYWzM1BecSpou7QpRvzglhkAgJrj7dh58KQnoxbMzsDM/GRYvmIo+gAAIABJREFUuhzQSkC8UY/KulavNoNzTIICjSShu7HWtdG++3deVAZDdjGctg6c37kJUIQndxLm3Q5TYRmcne1e+40F6sPVRsHkb/xvSNExA5liu4Dk234CU6HKnCycz7whIhqHIjpBduxY8E0sh1IUZZQqISIiGv8UISAcNs9T2aRYE6b+4F+ggcbvk9OstXuhT89D8p2rMTlej8/+3oIuex8AoLziFAoyzXj6vjkwxEQFnCSThQKnU4Ehuxj69LygG1Dr0/O8NrgeqFuGcNj9Pk3OXWPqstVIvXMVWt99yW8fw6GRtIiZWgDRYw36/aTeuQoxkwrQVV2O+JIFIzI20USmlSSU5CejINMccKP+OEMUXnjwa+iTBf7p5b0+7corTmFmfhKeumcOuh1OPB6kzS/uvRaiN0TGLH0S5uuW4vTGn3n99nWmBOjiEgHAK1/99rFsNSS9AYrch9Mbf+HV7sLf/ozEsuXqcjKnmE+xJCIahyL6zxU7d+4M+39EREQTlUaSvC7e4ksXIyohBWe3vhDwgsxx5hhatzyHlMkmLJmb7XXuaJMFz7x2IOgKMq2kwSeVZ6AIgeQ7V0Ofnue3nXsizr0Kw7turd+LzsE1nn3rOUi6KCR/5xG/fQyXRpJwdsvzwcfe8jw0kgTTVV8b0bGJJjJZKHj6vjkoyPR/y/SKJVdi8qRYPPPagYCTaHmZZuh0Ep75XfA2klZFxmx9AVHmFMSXLh44tuV5aLS6/g36JVU5pZG0sH6xz6ddZ8VH6LO0IHXpk0FzMnXpk3B2noPpynnMGyKicSaiK8imTp0ayeGJiIguGYqQ0d1YO3BRppEQX7oI9vrKoKsVANeFnb2+Ckvm5uKPu49BiIEV2UebLKisa0Nh7hSfiTJZCNQcb0dxfhKOnLBg8iQ9pq5c13+b5B7INgu0RjNMhfNhyClGyzkrzrV0oCDL7OlLETK6T9Sqq7GhGrFZV43Y7UY+39kYjk000WklDQwxUVj/8PWorGvDrkNNA7dPzspEYe5kVNa1Bpz4kiQNbpo7DYePBm9z89xM2OqrVOdg/Mwb0bFvG6AIz7HYrBnoblKfFcbcUpzTSJ5N/gFAdFvR/OZapN21xpWTDdWu2zSH5KTo7YHWOIm3VhIRjUMRnSAjIiIidTSSFtbqcs/r6KQM6OKn4Pzuzareb63Zg+Rbi5GZEocTzZ1e53YdakJJfpLPe7SShOpj7SjJT8YfPvgCn/29BUvmZmPJ3Fwk31rsadduseGd7UewfV8DZl+ZgiuzE73rrin36dtvjdXlI3Z7pWfsQd/ZWI5NRPBMlBfmTvbKGPfehzsPngz43syUOCQlxOIPHwTefzgzJQ6TE4xo3VOuqh5XDj6E6KQM11MsAfQ0fg5DTnFYWTG0DzenpRmnN/4M8aWLMemab8Fw60Oec549zvo35ufkGBHR+DNmE2R33HEHNBoNfv3rXyMtLc1zLBwajQZvv/32aJRHREQ07snWDs+fJb3B51jQ99pcKzAMMb5/9Vu6HAHf5+iTPW267H3YurMOf9x9DJkpcTDE6GDvcaKppcuzKs1fX+HWOJIiOTYRuQx90qR74ixY9rizSk2bcH/n7vwEAOF0XHQfg4luKzo+fQeO5uNIu2vgIWTuCTFOjBERjV9jNkFWW1sLjUaDnp4er2Ph0GiCP2WLiIjocqY1JXj+LBx2n2NB32t07QNk73H6nDPH6QO+Tx+l9WkjhOKzCi1YX+HWOJIiOTYRBRcse9xZFaxNT69rAj/c37k7PwFA0ukvug+/7Qzq+iMiovFjzCbIXnjhBQBAUlKSzzEiIqKJThEyNJLW72tFuC4CTUVlsNbuBQD0tp2Es7MdpsL5nmPBmArno91iQ1NLl8+5BbMyPbc8DSYLgaK8KWjr6MaCWRkorzgVcpyhfSlChqmwTF2NRWWuJ15C47XiRBbCZwWKGoqQvb6z0GNzTyCisSILgYWzA+dKU0tXwOyJM0RhybxsfHNeVni/88L5cF5oQ2+b69ZOKdYEU/ENYWfF4D6CtWOmEBFdWsZsguw73/lOwGM9PT3YtWsXbr75Zq/zW7ZsgcPhwG233Yb4+PgxqZOIiGgsuS+guhtrXRs6WzugNSXAVFQGQ3YxFCHQc6oOss0C0/R50KfnuTaSVgQ6Kz5GYtnygWMB6NPzYMgpxjvbj3ht0A8ABZlmv/uPAa7bokryk7Fj3wksmTcNBZnmgJtlB+pLI2lhyClWV2P/HmA1da3YefCkZ0PvhbMzUJKf7HcSLxiNpIUhO7yxiWhsuPMlUK4IoeDD/SewYsl0rzZpU4z45QNzkJxogr2hCrYzNu9sDMCdg+fL3wAUAZ05DekrnoUuLhG9luawsuLCZx95bdAfqB0REV1aIv5PGvv27cP8+fPx2GOPoaWlxevcjh078MILL+Cmm27C/v37I1QhERHR6FCEgHDYcHrjEzj7xrOw1u5F94lqWGv34uwbz+L0xicgeqzQxSXi/O7/hz5LC1KXPgl9eh4AoLPiI59jQ+nT85B852q0nLNi+74Gr3MFmWY8fd8cyEMmzQaThYKvl6SjvaMba+65FgWZ/m9FDNaXImSkLlsdtMbUZauhCBnPb/wb1ry6H+UVp1B1rA3lFaew5tX9ePzlvbD39AWt1R9FCJVjB77YJaKRJwsFTlkEzZVjTRY4nQJP3zsHBZlmxBmi8MsH5sCsV
Loading
Loading full blame...