Newer
Older
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10000/10000 [==============================] - 0s 49us/step\n",
"The [loss, accuracy] on test dataset are: [0.1360580855519511, 0.9597]\n"
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
"print(\"The [loss, accuracy] on test dataset are: \" , model.evaluate(X_test_prep, y_test_onehot))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Optional exercise: Run the model again with validation dataset, plot the accuracy as a function of epochs, play with number of epochs and observe what is happening."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Code here"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Solution:\n",
"num_epochs = 20\n",
"model_run = model.fit(X_train_prep, y_train_onehot, epochs=num_epochs,\n",
" batch_size=512, validation_data=(X_test_prep, y_test_onehot))\n",
"# Evaluating the model on test dataset\n",
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
"#print(\"The [loss, accuracy] on test dataset are: \" , model.evaluate(X_test_prep, y_test_onehot))\n",
"history_model = model_run.history\n",
"print(\"The history has the following data: \", history_model.keys())\n",
"\n",
"# Plotting the training and validation accuracy during the training\n",
"plt.plot(np.arange(1, num_epochs+1), history_model[\"acc\"], \"blue\")\n",
"\n",
"plt.plot(np.arange(1, num_epochs+1), history_model[\"val_acc\"], \"red\")"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/50\n",
"60000/60000 [==============================] - 3s 53us/step - loss: 1.5752 - acc: 0.8318\n",
"Epoch 2/50\n",
"60000/60000 [==============================] - 1s 22us/step - loss: 0.8282 - acc: 0.9022\n",
"Epoch 3/50\n",
"60000/60000 [==============================] - 1s 21us/step - loss: 0.6734 - acc: 0.9108\n",
"Epoch 4/50\n",
"60000/60000 [==============================] - 1s 23us/step - loss: 0.5963 - acc: 0.9154\n",
"Epoch 5/50\n",
"60000/60000 [==============================] - 1s 24us/step - loss: 0.5494 - acc: 0.9201\n",
"Epoch 6/50\n",
"60000/60000 [==============================] - 1s 22us/step - loss: 0.5158 - acc: 0.9233\n",
"Epoch 7/50\n",
"60000/60000 [==============================] - 2s 26us/step - loss: 0.4909 - acc: 0.9267\n",
"Epoch 8/50\n",
"60000/60000 [==============================] - 1s 22us/step - loss: 0.4721 - acc: 0.9300\n",
"Epoch 9/50\n",
"60000/60000 [==============================] - 1s 21us/step - loss: 0.4544 - acc: 0.9332\n",
"Epoch 10/50\n",
"60000/60000 [==============================] - 1s 22us/step - loss: 0.4393 - acc: 0.9356\n",
"Epoch 11/50\n",
"60000/60000 [==============================] - 1s 21us/step - loss: 0.4266 - acc: 0.9376\n",
"Epoch 12/50\n",
"60000/60000 [==============================] - 1s 23us/step - loss: 0.4142 - acc: 0.9395\n",
"Epoch 13/50\n",
"60000/60000 [==============================] - 1s 24us/step - loss: 0.4044 - acc: 0.9411\n",
"Epoch 14/50\n",
"60000/60000 [==============================] - 1s 24us/step - loss: 0.3966 - acc: 0.9423\n",
"Epoch 15/50\n",
"60000/60000 [==============================] - 1s 23us/step - loss: 0.3868 - acc: 0.9440\n",
"Epoch 16/50\n",
"60000/60000 [==============================] - 1s 23us/step - loss: 0.3792 - acc: 0.9449\n",
"Epoch 17/50\n",
"60000/60000 [==============================] - 1s 22us/step - loss: 0.3711 - acc: 0.9454\n",
"Epoch 18/50\n",
"60000/60000 [==============================] - 1s 23us/step - loss: 0.3640 - acc: 0.9474\n",
"Epoch 19/50\n",
"60000/60000 [==============================] - 1s 23us/step - loss: 0.3578 - acc: 0.9488\n",
"Epoch 20/50\n",
"60000/60000 [==============================] - 1s 22us/step - loss: 0.3535 - acc: 0.9488\n",
"Epoch 21/50\n",
"60000/60000 [==============================] - 1s 24us/step - loss: 0.3472 - acc: 0.9498\n",
"Epoch 22/50\n",
"60000/60000 [==============================] - 2s 25us/step - loss: 0.3399 - acc: 0.9514\n",
"Epoch 23/50\n",
"60000/60000 [==============================] - 1s 22us/step - loss: 0.3356 - acc: 0.9519\n",
"Epoch 24/50\n",
"60000/60000 [==============================] - 1s 23us/step - loss: 0.3325 - acc: 0.9531\n",
"Epoch 25/50\n",
"60000/60000 [==============================] - 1s 24us/step - loss: 0.3278 - acc: 0.9530\n",
"Epoch 26/50\n",
"60000/60000 [==============================] - 1s 22us/step - loss: 0.3234 - acc: 0.9532\n",
"Epoch 27/50\n",
"60000/60000 [==============================] - 1s 25us/step - loss: 0.3199 - acc: 0.9544\n",
"Epoch 28/50\n",
"60000/60000 [==============================] - 1s 24us/step - loss: 0.3153 - acc: 0.9549\n",
"Epoch 29/50\n",
"60000/60000 [==============================] - 1s 22us/step - loss: 0.3129 - acc: 0.9555\n",
"Epoch 30/50\n",
"60000/60000 [==============================] - 1s 24us/step - loss: 0.3087 - acc: 0.9565\n",
"Epoch 31/50\n",
"60000/60000 [==============================] - 2s 25us/step - loss: 0.3054 - acc: 0.9569\n",
"Epoch 32/50\n",
"60000/60000 [==============================] - 2s 25us/step - loss: 0.3028 - acc: 0.9571\n",
"Epoch 33/50\n",
"60000/60000 [==============================] - 1s 24us/step - loss: 0.2991 - acc: 0.9573\n",
"Epoch 34/50\n",
"60000/60000 [==============================] - 1s 23us/step - loss: 0.2964 - acc: 0.9579\n",
"Epoch 35/50\n",
"60000/60000 [==============================] - 1s 22us/step - loss: 0.2932 - acc: 0.9579\n",
"Epoch 36/50\n",
"60000/60000 [==============================] - 2s 26us/step - loss: 0.2911 - acc: 0.9588\n",
"Epoch 37/50\n",
"60000/60000 [==============================] - 2s 27us/step - loss: 0.2895 - acc: 0.9585\n",
"Epoch 38/50\n",
"60000/60000 [==============================] - 1s 22us/step - loss: 0.2875 - acc: 0.9594\n",
"Epoch 39/50\n",
"60000/60000 [==============================] - 1s 24us/step - loss: 0.2840 - acc: 0.9601\n",
"Epoch 40/50\n",
"60000/60000 [==============================] - 1s 23us/step - loss: 0.2819 - acc: 0.9596\n",
"Epoch 41/50\n",
"60000/60000 [==============================] - 1s 23us/step - loss: 0.2805 - acc: 0.9603\n",
"Epoch 42/50\n",
"60000/60000 [==============================] - 1s 24us/step - loss: 0.2769 - acc: 0.9603\n",
"Epoch 43/50\n",
"60000/60000 [==============================] - 1s 25us/step - loss: 0.2755 - acc: 0.9616\n",
"Epoch 44/50\n",
"60000/60000 [==============================] - 1s 23us/step - loss: 0.2734 - acc: 0.9612\n",
"Epoch 45/50\n",
"60000/60000 [==============================] - 1s 24us/step - loss: 0.2711 - acc: 0.9618\n",
"Epoch 46/50\n",
"60000/60000 [==============================] - 1s 24us/step - loss: 0.2699 - acc: 0.9616\n",
"Epoch 47/50\n",
"60000/60000 [==============================] - 1s 22us/step - loss: 0.2698 - acc: 0.9616\n",
"Epoch 48/50\n",
"60000/60000 [==============================] - 1s 25us/step - loss: 0.2676 - acc: 0.9613\n",
"Epoch 49/50\n",
"60000/60000 [==============================] - 1s 24us/step - loss: 0.2648 - acc: 0.9621\n",
"Epoch 50/50\n",
"60000/60000 [==============================] - 1s 23us/step - loss: 0.2644 - acc: 0.9629\n"
]
}
],
"source": [
"# Adding some regularization\n",
"# Building the keras model\n",
"from keras.models import Sequential\n",
"from keras.layers import Dense\n",
"from keras.regularizers import l2\n",
"\n",
"def mnist_model():\n",
" \n",
" model = Sequential()\n",
"\n",
" model.add(Dense(64, input_shape=(28*28,), activation=\"relu\", \n",
" kernel_regularizer=l2(0.01)))\n",
"\n",
" model.add(Dense(64, activation=\"relu\", \n",
" kernel_regularizer=l2(0.01)))\n",
"\n",
" model.add(Dense(10, activation=\"softmax\"))\n",
"\n",
" model.compile(loss=\"categorical_crossentropy\",\n",
" optimizer=\"rmsprop\", metrics=[\"accuracy\"])\n",
" return model\n",
"\n",
"num_epochs = 50\n",
"model_run = model.fit(X_train_prep, y_train_onehot, epochs=num_epochs,\n",
" batch_size=512)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10000/10000 [==============================] - 1s 128us/step\n",
"The [loss, accuracy] on test dataset are: [0.2548498446464539, 0.9646]\n"
]
}
],
"source": [
"print(\"The [loss, accuracy] on test dataset are: \" , model.evaluate(X_test_prep, y_test_onehot))"
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
"## Network Architecture\n",
"\n",
"The neural networks which we have seen till now are the simplest kind of neural networks.\n",
"There exist more sophisticated network architectures especially designed for specific applications.\n",
"Some of them are as follows:\n",
"\n",
"### Convolution Neural Networks (CNNs)\n",
"\n",
"These networks are used mostly for computer vision like tasks. \n",
"One of the old CNN networks is shown below.\n",
"\n",
"<center>\n",
"<figure>\n",
"<img src=\"./images/neuralnets/CNN_lecun.png\" width=\"800\"/>\n",
"<figcaption>source: LeCun et al., Gradient-based learning applied to document recognition (1998).</figcaption>\n",
"</figure>\n",
"</center>\n",
"\n",
"CNNs consist of new type of layers like convolution layer and pooling layers.\n",
"\n",
"### Recurrent Neural Networks (RNNs)\n",
"\n",
"These are used for time-series data, speech recognition, translation etc.\n",
"IMAGE HERE\n",
"\n",
"### Generative adversarial networks (GANs)\n",
"\n",
"GANs consist of 2 parts, a generative network and a discriminative network. The generative network produces data which is then fed to the discriminative network which judges if the new data belongs to a specified dataset. Then via feedback loops the generative network becomes better and better at creating images similar to the dataset the discriminative network is judging against. At the same time the discriminative network get better and better at identifyig **fake** instances which are not from the reference dataset. \n",
"\n",
"IMAGE HERE"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Will remove the example below."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**This beer example is not good for neural networks. Basically the dataset is far too small**"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(225, 4)"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Revisiting the beer example\n",
"\n",
"import pandas as pd\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import MinMaxScaler\n",
"from keras.models import Sequential\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
"\n",
"# Loading the beer data\n",
"beer = pd.read_csv(\"beers.csv\")\n",
"\n",
"# Extracting the features and labels\n",
"#beer_data.describe()\n",
"features = beer.iloc[:, :-1]\n",
"labels = beer.iloc[:, -1]\n",
"features.shape"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [],
"source": [
"# Revisiting the beer example\n",
"\n",
"# Loading and preparing the data\n",
"\n",
"import pandas as pd\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import MinMaxScaler\n",
"\n",
"# Loading the beer data\n",
"beer = pd.read_csv(\"beers.csv\")\n",
"\n",
"# Extracting the features and labels\n",
"#beer_data.describe()\n",
"features = beer.iloc[:, :-1]\n",
"labels = beer.iloc[:, -1]\n",
"\n",
"# Here we split the dataset into training (70%) and validation sets (30%) \n",
"#X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.5, random_state=42)\n",
"X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.3)\n",
"\n",
"# Scaling the data\n",
"# NOTE: The features should be normalized before being fed into the neural network\n",
"scaling = MinMaxScaler()\n",
"scaling.fit(X_train)\n",
"\n",
"X_train_scaled = scaling.transform(X_train)\n",
"X_test_scaled = scaling.transform(X_test)"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Train on 157 samples, validate on 68 samples\n",
"Epoch 1/1000\n",
"157/157 [==============================] - 1s 6ms/step - loss: 0.6730 - acc: 0.5350 - val_loss: 0.6769 - val_acc: 0.5147\n",
"Epoch 2/1000\n",
"157/157 [==============================] - 0s 406us/step - loss: 0.6704 - acc: 0.5350 - val_loss: 0.6754 - val_acc: 0.5147\n",
"Epoch 3/1000\n",
"157/157 [==============================] - 0s 256us/step - loss: 0.6693 - acc: 0.5350 - val_loss: 0.6740 - val_acc: 0.5147\n",
"Epoch 4/1000\n",
"157/157 [==============================] - 0s 215us/step - loss: 0.6679 - acc: 0.5350 - val_loss: 0.6728 - val_acc: 0.5147\n",
"Epoch 5/1000\n",
"157/157 [==============================] - 0s 168us/step - loss: 0.6668 - acc: 0.5350 - val_loss: 0.6716 - val_acc: 0.5147\n",
"Epoch 6/1000\n",
"157/157 [==============================] - 0s 107us/step - loss: 0.6658 - acc: 0.5350 - val_loss: 0.6704 - val_acc: 0.5147\n",
"Epoch 7/1000\n",
"157/157 [==============================] - 0s 303us/step - loss: 0.6652 - acc: 0.5350 - val_loss: 0.6693 - val_acc: 0.5147\n",
"Epoch 8/1000\n",
"157/157 [==============================] - 0s 98us/step - loss: 0.6637 - acc: 0.5350 - val_loss: 0.6682 - val_acc: 0.5147\n",
"Epoch 9/1000\n",
"157/157 [==============================] - 0s 92us/step - loss: 0.6626 - acc: 0.5350 - val_loss: 0.6670 - val_acc: 0.5147\n",
"Epoch 10/1000\n",
"157/157 [==============================] - 0s 90us/step - loss: 0.6616 - acc: 0.5350 - val_loss: 0.6657 - val_acc: 0.5147\n",
"Epoch 11/1000\n",
"157/157 [==============================] - 0s 92us/step - loss: 0.6605 - acc: 0.5350 - val_loss: 0.6644 - val_acc: 0.5147\n",
"Epoch 12/1000\n",
"157/157 [==============================] - 0s 305us/step - loss: 0.6596 - acc: 0.5350 - val_loss: 0.6633 - val_acc: 0.5147\n",
"Epoch 13/1000\n",
"157/157 [==============================] - 0s 142us/step - loss: 0.6587 - acc: 0.5350 - val_loss: 0.6622 - val_acc: 0.5147\n",
"Epoch 14/1000\n",
"157/157 [==============================] - 0s 144us/step - loss: 0.6578 - acc: 0.5350 - val_loss: 0.6612 - val_acc: 0.5147\n",
"Epoch 15/1000\n",
"157/157 [==============================] - 0s 137us/step - loss: 0.6567 - acc: 0.5350 - val_loss: 0.6601 - val_acc: 0.5147\n",
"Epoch 16/1000\n",
"157/157 [==============================] - 0s 179us/step - loss: 0.6558 - acc: 0.5350 - val_loss: 0.6591 - val_acc: 0.5147\n",
"Epoch 17/1000\n",
"157/157 [==============================] - 0s 98us/step - loss: 0.6551 - acc: 0.5350 - val_loss: 0.6580 - val_acc: 0.5147\n",
"Epoch 18/1000\n",
"157/157 [==============================] - 0s 106us/step - loss: 0.6540 - acc: 0.5350 - val_loss: 0.6570 - val_acc: 0.5147\n",
"Epoch 19/1000\n",
"157/157 [==============================] - 0s 97us/step - loss: 0.6531 - acc: 0.5350 - val_loss: 0.6559 - val_acc: 0.5147\n",
"Epoch 20/1000\n",
"157/157 [==============================] - 0s 131us/step - loss: 0.6523 - acc: 0.5350 - val_loss: 0.6549 - val_acc: 0.5147\n",
"Epoch 21/1000\n",
"157/157 [==============================] - 0s 141us/step - loss: 0.6512 - acc: 0.5350 - val_loss: 0.6537 - val_acc: 0.5147\n",
"Epoch 22/1000\n",
"157/157 [==============================] - 0s 288us/step - loss: 0.6506 - acc: 0.5350 - val_loss: 0.6527 - val_acc: 0.5147\n",
"Epoch 23/1000\n",
"157/157 [==============================] - 0s 128us/step - loss: 0.6496 - acc: 0.5414 - val_loss: 0.6517 - val_acc: 0.5147\n",
"Epoch 24/1000\n",
"157/157 [==============================] - 0s 257us/step - loss: 0.6486 - acc: 0.5414 - val_loss: 0.6506 - val_acc: 0.5147\n",
"Epoch 25/1000\n",
"157/157 [==============================] - 0s 95us/step - loss: 0.6477 - acc: 0.5478 - val_loss: 0.6495 - val_acc: 0.5147\n",
"Epoch 26/1000\n",
"157/157 [==============================] - 0s 112us/step - loss: 0.6466 - acc: 0.5414 - val_loss: 0.6483 - val_acc: 0.5147\n",
"Epoch 27/1000\n",
"157/157 [==============================] - 0s 168us/step - loss: 0.6458 - acc: 0.5541 - val_loss: 0.6472 - val_acc: 0.5147\n",
"Epoch 28/1000\n",
"157/157 [==============================] - 0s 257us/step - loss: 0.6447 - acc: 0.5541 - val_loss: 0.6461 - val_acc: 0.5147\n",
"Epoch 29/1000\n",
"157/157 [==============================] - 0s 134us/step - loss: 0.6437 - acc: 0.5541 - val_loss: 0.6449 - val_acc: 0.5147\n",
"Epoch 30/1000\n",
"157/157 [==============================] - 0s 111us/step - loss: 0.6427 - acc: 0.5669 - val_loss: 0.6438 - val_acc: 0.5147\n",
"Epoch 31/1000\n",
"157/157 [==============================] - 0s 153us/step - loss: 0.6417 - acc: 0.5669 - val_loss: 0.6426 - val_acc: 0.5147\n",
"Epoch 32/1000\n",
"157/157 [==============================] - 0s 103us/step - loss: 0.6407 - acc: 0.5669 - val_loss: 0.6414 - val_acc: 0.5147\n",
"Epoch 33/1000\n",
"157/157 [==============================] - 0s 269us/step - loss: 0.6394 - acc: 0.5732 - val_loss: 0.6401 - val_acc: 0.5294\n",
"Epoch 34/1000\n",
"157/157 [==============================] - 0s 119us/step - loss: 0.6384 - acc: 0.5732 - val_loss: 0.6387 - val_acc: 0.5294\n",
"Epoch 35/1000\n",
"157/157 [==============================] - 0s 92us/step - loss: 0.6371 - acc: 0.5732 - val_loss: 0.6373 - val_acc: 0.5294\n",
"Epoch 36/1000\n",
"157/157 [==============================] - 0s 298us/step - loss: 0.6361 - acc: 0.5796 - val_loss: 0.6360 - val_acc: 0.5294\n",
"Epoch 37/1000\n",
"157/157 [==============================] - 0s 193us/step - loss: 0.6349 - acc: 0.5860 - val_loss: 0.6347 - val_acc: 0.5441\n",
"Epoch 38/1000\n",
"157/157 [==============================] - 0s 122us/step - loss: 0.6336 - acc: 0.5860 - val_loss: 0.6333 - val_acc: 0.5441\n",
"Epoch 39/1000\n",
"157/157 [==============================] - 0s 194us/step - loss: 0.6323 - acc: 0.5860 - val_loss: 0.6318 - val_acc: 0.5441\n",
"Epoch 40/1000\n",
"157/157 [==============================] - 0s 321us/step - loss: 0.6310 - acc: 0.5860 - val_loss: 0.6302 - val_acc: 0.5441\n",
"Epoch 41/1000\n",
"157/157 [==============================] - 0s 151us/step - loss: 0.6297 - acc: 0.5924 - val_loss: 0.6286 - val_acc: 0.5441\n",
"Epoch 42/1000\n",
"157/157 [==============================] - 0s 229us/step - loss: 0.6285 - acc: 0.5924 - val_loss: 0.6273 - val_acc: 0.5441\n",
"Epoch 43/1000\n",
"157/157 [==============================] - 0s 201us/step - loss: 0.6271 - acc: 0.5924 - val_loss: 0.6258 - val_acc: 0.5441\n",
"Epoch 44/1000\n",
"157/157 [==============================] - 0s 129us/step - loss: 0.6260 - acc: 0.5924 - val_loss: 0.6243 - val_acc: 0.5441\n",
"Epoch 45/1000\n",
"157/157 [==============================] - 0s 149us/step - loss: 0.6245 - acc: 0.5987 - val_loss: 0.6228 - val_acc: 0.5588\n",
"Epoch 46/1000\n",
"157/157 [==============================] - 0s 113us/step - loss: 0.6234 - acc: 0.6051 - val_loss: 0.6213 - val_acc: 0.5588\n",
"Epoch 47/1000\n",
"157/157 [==============================] - 0s 537us/step - loss: 0.6218 - acc: 0.6178 - val_loss: 0.6197 - val_acc: 0.5588\n",
"Epoch 48/1000\n",
"157/157 [==============================] - 0s 117us/step - loss: 0.6205 - acc: 0.6178 - val_loss: 0.6181 - val_acc: 0.5588\n",
"Epoch 49/1000\n",
"157/157 [==============================] - 0s 146us/step - loss: 0.6191 - acc: 0.6178 - val_loss: 0.6164 - val_acc: 0.5735\n",
"Epoch 50/1000\n",
"157/157 [==============================] - 0s 200us/step - loss: 0.6176 - acc: 0.6178 - val_loss: 0.6146 - val_acc: 0.5882\n",
"Epoch 51/1000\n",
"157/157 [==============================] - 0s 286us/step - loss: 0.6165 - acc: 0.6178 - val_loss: 0.6130 - val_acc: 0.5882\n",
"Epoch 52/1000\n",
"157/157 [==============================] - 0s 254us/step - loss: 0.6152 - acc: 0.6242 - val_loss: 0.6116 - val_acc: 0.6029\n",
"Epoch 53/1000\n",
"157/157 [==============================] - 0s 156us/step - loss: 0.6136 - acc: 0.6242 - val_loss: 0.6100 - val_acc: 0.6029\n",
"Epoch 54/1000\n",
"157/157 [==============================] - 0s 202us/step - loss: 0.6127 - acc: 0.6242 - val_loss: 0.6085 - val_acc: 0.6029\n",
"Epoch 55/1000\n",
"157/157 [==============================] - 0s 108us/step - loss: 0.6114 - acc: 0.6242 - val_loss: 0.6070 - val_acc: 0.6029\n",
"Epoch 56/1000\n",
"157/157 [==============================] - 0s 157us/step - loss: 0.6098 - acc: 0.6242 - val_loss: 0.6053 - val_acc: 0.6029\n",
"Epoch 57/1000\n",
"157/157 [==============================] - 0s 118us/step - loss: 0.6085 - acc: 0.6242 - val_loss: 0.6036 - val_acc: 0.6029\n",
"Epoch 58/1000\n",
"157/157 [==============================] - 0s 128us/step - loss: 0.6070 - acc: 0.6242 - val_loss: 0.6018 - val_acc: 0.6029\n",
"Epoch 59/1000\n",
"157/157 [==============================] - 0s 165us/step - loss: 0.6057 - acc: 0.6242 - val_loss: 0.6001 - val_acc: 0.6029\n",
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
"157/157 [==============================] - 0s 263us/step - loss: 0.6039 - acc: 0.6242 - val_loss: 0.5982 - val_acc: 0.6176\n",
"Epoch 61/1000\n",
"157/157 [==============================] - 0s 244us/step - loss: 0.6023 - acc: 0.6242 - val_loss: 0.5963 - val_acc: 0.6176\n",
"Epoch 62/1000\n",
"157/157 [==============================] - 0s 409us/step - loss: 0.6006 - acc: 0.6306 - val_loss: 0.5943 - val_acc: 0.6176\n",
"Epoch 63/1000\n",
"157/157 [==============================] - 0s 104us/step - loss: 0.5991 - acc: 0.6306 - val_loss: 0.5922 - val_acc: 0.6324\n",
"Epoch 64/1000\n",
"157/157 [==============================] - 0s 193us/step - loss: 0.5981 - acc: 0.6369 - val_loss: 0.5906 - val_acc: 0.6324\n",
"Epoch 65/1000\n",
"157/157 [==============================] - 0s 104us/step - loss: 0.5958 - acc: 0.6433 - val_loss: 0.5889 - val_acc: 0.6471\n",
"Epoch 66/1000\n",
"157/157 [==============================] - 0s 172us/step - loss: 0.5945 - acc: 0.6433 - val_loss: 0.5871 - val_acc: 0.6471\n",
"Epoch 67/1000\n",
"157/157 [==============================] - 0s 378us/step - loss: 0.5929 - acc: 0.6433 - val_loss: 0.5852 - val_acc: 0.6471\n",
"Epoch 68/1000\n",
"157/157 [==============================] - 0s 193us/step - loss: 0.5917 - acc: 0.6497 - val_loss: 0.5836 - val_acc: 0.6471\n",
"Epoch 69/1000\n",
"157/157 [==============================] - 0s 155us/step - loss: 0.5901 - acc: 0.6497 - val_loss: 0.5816 - val_acc: 0.6471\n",
"Epoch 70/1000\n",
"157/157 [==============================] - 0s 180us/step - loss: 0.5885 - acc: 0.6497 - val_loss: 0.5797 - val_acc: 0.6765\n",
"Epoch 71/1000\n",
"157/157 [==============================] - 0s 208us/step - loss: 0.5867 - acc: 0.6561 - val_loss: 0.5778 - val_acc: 0.6765\n",
"Epoch 72/1000\n",
"157/157 [==============================] - 0s 200us/step - loss: 0.5850 - acc: 0.6561 - val_loss: 0.5755 - val_acc: 0.6765\n",
"Epoch 73/1000\n",
"157/157 [==============================] - 0s 279us/step - loss: 0.5831 - acc: 0.6624 - val_loss: 0.5733 - val_acc: 0.6765\n",
"Epoch 74/1000\n",
"157/157 [==============================] - 0s 263us/step - loss: 0.5812 - acc: 0.6688 - val_loss: 0.5712 - val_acc: 0.6912\n",
"Epoch 75/1000\n",
"157/157 [==============================] - 0s 263us/step - loss: 0.5791 - acc: 0.6752 - val_loss: 0.5688 - val_acc: 0.7059\n",
"Epoch 76/1000\n",
"157/157 [==============================] - 0s 223us/step - loss: 0.5771 - acc: 0.6752 - val_loss: 0.5665 - val_acc: 0.7059\n",
"Epoch 77/1000\n",
"157/157 [==============================] - 0s 252us/step - loss: 0.5750 - acc: 0.6879 - val_loss: 0.5643 - val_acc: 0.7059\n",
"Epoch 78/1000\n",
"157/157 [==============================] - 0s 217us/step - loss: 0.5728 - acc: 0.6879 - val_loss: 0.5619 - val_acc: 0.7059\n",
"Epoch 79/1000\n",
"157/157 [==============================] - 0s 123us/step - loss: 0.5708 - acc: 0.6943 - val_loss: 0.5596 - val_acc: 0.7059\n",
"Epoch 80/1000\n",
"157/157 [==============================] - 0s 149us/step - loss: 0.5687 - acc: 0.7006 - val_loss: 0.5570 - val_acc: 0.7206\n",
"Epoch 81/1000\n",
"157/157 [==============================] - 0s 181us/step - loss: 0.5666 - acc: 0.7070 - val_loss: 0.5545 - val_acc: 0.7206\n",
"Epoch 82/1000\n",
"157/157 [==============================] - 0s 109us/step - loss: 0.5643 - acc: 0.7006 - val_loss: 0.5519 - val_acc: 0.7206\n",
"Epoch 83/1000\n",
"157/157 [==============================] - 0s 258us/step - loss: 0.5623 - acc: 0.7134 - val_loss: 0.5495 - val_acc: 0.7206\n",
"Epoch 84/1000\n",
"157/157 [==============================] - 0s 123us/step - loss: 0.5600 - acc: 0.7197 - val_loss: 0.5469 - val_acc: 0.7206\n",
"Epoch 85/1000\n",
"157/157 [==============================] - 0s 120us/step - loss: 0.5577 - acc: 0.7197 - val_loss: 0.5443 - val_acc: 0.7206\n",
"Epoch 86/1000\n",
"157/157 [==============================] - 0s 166us/step - loss: 0.5550 - acc: 0.7197 - val_loss: 0.5411 - val_acc: 0.7353\n",
"Epoch 87/1000\n",
"157/157 [==============================] - 0s 134us/step - loss: 0.5529 - acc: 0.7325 - val_loss: 0.5383 - val_acc: 0.7353\n",
"Epoch 88/1000\n",
"157/157 [==============================] - 0s 185us/step - loss: 0.5498 - acc: 0.7325 - val_loss: 0.5347 - val_acc: 0.7353\n",
"Epoch 89/1000\n",
"157/157 [==============================] - 0s 194us/step - loss: 0.5471 - acc: 0.7516 - val_loss: 0.5314 - val_acc: 0.7647\n",
"Epoch 90/1000\n",
"157/157 [==============================] - 0s 163us/step - loss: 0.5451 - acc: 0.7452 - val_loss: 0.5283 - val_acc: 0.7941\n",
"Epoch 91/1000\n",
"157/157 [==============================] - 0s 292us/step - loss: 0.5430 - acc: 0.7580 - val_loss: 0.5258 - val_acc: 0.8088\n",
"Epoch 92/1000\n",
"157/157 [==============================] - 0s 137us/step - loss: 0.5399 - acc: 0.7580 - val_loss: 0.5234 - val_acc: 0.8088\n",
"Epoch 93/1000\n",
"157/157 [==============================] - 0s 193us/step - loss: 0.5383 - acc: 0.7643 - val_loss: 0.5210 - val_acc: 0.8088\n",
"Epoch 94/1000\n",
"157/157 [==============================] - 0s 231us/step - loss: 0.5356 - acc: 0.7643 - val_loss: 0.5184 - val_acc: 0.8088\n",
"Epoch 95/1000\n",
"157/157 [==============================] - 0s 96us/step - loss: 0.5334 - acc: 0.7643 - val_loss: 0.5158 - val_acc: 0.8235\n",
"Epoch 96/1000\n",
"157/157 [==============================] - 0s 196us/step - loss: 0.5309 - acc: 0.7707 - val_loss: 0.5128 - val_acc: 0.8235\n",
"Epoch 97/1000\n",
"157/157 [==============================] - 0s 214us/step - loss: 0.5291 - acc: 0.7898 - val_loss: 0.5100 - val_acc: 0.8235\n",
"Epoch 98/1000\n",
"157/157 [==============================] - 0s 179us/step - loss: 0.5263 - acc: 0.7898 - val_loss: 0.5074 - val_acc: 0.8235\n",
"Epoch 99/1000\n",
"157/157 [==============================] - 0s 182us/step - loss: 0.5243 - acc: 0.7962 - val_loss: 0.5044 - val_acc: 0.8088\n",
"Epoch 100/1000\n",
"157/157 [==============================] - 0s 144us/step - loss: 0.5234 - acc: 0.7834 - val_loss: 0.5024 - val_acc: 0.8088\n",
"Epoch 101/1000\n",
"157/157 [==============================] - 0s 154us/step - loss: 0.5198 - acc: 0.8025 - val_loss: 0.5002 - val_acc: 0.8088\n",
"Epoch 102/1000\n",
"157/157 [==============================] - 0s 320us/step - loss: 0.5184 - acc: 0.7962 - val_loss: 0.4978 - val_acc: 0.8088\n",
"Epoch 103/1000\n",
"157/157 [==============================] - 0s 142us/step - loss: 0.5162 - acc: 0.8025 - val_loss: 0.4956 - val_acc: 0.8088\n",
"Epoch 104/1000\n",
"157/157 [==============================] - 0s 131us/step - loss: 0.5136 - acc: 0.8025 - val_loss: 0.4932 - val_acc: 0.8088\n",
"Epoch 105/1000\n",
"157/157 [==============================] - 0s 142us/step - loss: 0.5115 - acc: 0.7962 - val_loss: 0.4903 - val_acc: 0.8235\n",
"Epoch 106/1000\n",
"157/157 [==============================] - 0s 144us/step - loss: 0.5091 - acc: 0.8025 - val_loss: 0.4877 - val_acc: 0.8382\n",
"Epoch 107/1000\n",
"157/157 [==============================] - 0s 351us/step - loss: 0.5065 - acc: 0.8089 - val_loss: 0.4851 - val_acc: 0.8382\n",
"Epoch 108/1000\n",
"157/157 [==============================] - 0s 370us/step - loss: 0.5041 - acc: 0.8025 - val_loss: 0.4822 - val_acc: 0.8529\n",
"Epoch 109/1000\n",
"157/157 [==============================] - 0s 345us/step - loss: 0.5016 - acc: 0.8089 - val_loss: 0.4795 - val_acc: 0.8529\n",
"Epoch 110/1000\n",
"157/157 [==============================] - 0s 121us/step - loss: 0.4996 - acc: 0.8025 - val_loss: 0.4765 - val_acc: 0.8529\n",
"Epoch 111/1000\n",
"157/157 [==============================] - 0s 135us/step - loss: 0.4972 - acc: 0.8089 - val_loss: 0.4739 - val_acc: 0.8529\n",
"Epoch 112/1000\n",
"157/157 [==============================] - 0s 266us/step - loss: 0.4944 - acc: 0.8280 - val_loss: 0.4716 - val_acc: 0.8529\n",
"Epoch 113/1000\n",
"157/157 [==============================] - 0s 218us/step - loss: 0.4918 - acc: 0.8153 - val_loss: 0.4686 - val_acc: 0.8529\n",
"Epoch 114/1000\n",
"157/157 [==============================] - 0s 174us/step - loss: 0.4894 - acc: 0.8471 - val_loss: 0.4656 - val_acc: 0.8529\n",
"Epoch 115/1000\n",
"157/157 [==============================] - 0s 157us/step - loss: 0.4869 - acc: 0.8408 - val_loss: 0.4624 - val_acc: 0.8676\n",
"Epoch 116/1000\n",
"157/157 [==============================] - 0s 276us/step - loss: 0.4846 - acc: 0.8089 - val_loss: 0.4592 - val_acc: 0.8676\n",
"Epoch 117/1000\n",
"157/157 [==============================] - 0s 146us/step - loss: 0.4818 - acc: 0.8408 - val_loss: 0.4565 - val_acc: 0.8676\n",
"Epoch 118/1000\n",
"157/157 [==============================] - 0s 246us/step - loss: 0.4792 - acc: 0.8535 - val_loss: 0.4539 - val_acc: 0.8676\n",
"Epoch 119/1000\n",
"157/157 [==============================] - 0s 116us/step - loss: 0.4768 - acc: 0.8408 - val_loss: 0.4506 - val_acc: 0.8676\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 120/1000\n",
"157/157 [==============================] - 0s 229us/step - loss: 0.4756 - acc: 0.8471 - val_loss: 0.4482 - val_acc: 0.8676\n",
"Epoch 121/1000\n",
"157/157 [==============================] - 0s 204us/step - loss: 0.4726 - acc: 0.8599 - val_loss: 0.4463 - val_acc: 0.8676\n",
"Epoch 122/1000\n",
"157/157 [==============================] - 0s 162us/step - loss: 0.4708 - acc: 0.8471 - val_loss: 0.4438 - val_acc: 0.8676\n",
"Epoch 123/1000\n",
"157/157 [==============================] - 0s 245us/step - loss: 0.4682 - acc: 0.8599 - val_loss: 0.4415 - val_acc: 0.8676\n",
"Epoch 124/1000\n",
"157/157 [==============================] - 0s 200us/step - loss: 0.4658 - acc: 0.8535 - val_loss: 0.4390 - val_acc: 0.8676\n",
"Epoch 125/1000\n",
"157/157 [==============================] - 0s 178us/step - loss: 0.4635 - acc: 0.8599 - val_loss: 0.4361 - val_acc: 0.8824\n",
"Epoch 126/1000\n",
"157/157 [==============================] - 0s 156us/step - loss: 0.4614 - acc: 0.8535 - val_loss: 0.4332 - val_acc: 0.8824\n",
"Epoch 127/1000\n",
"157/157 [==============================] - 0s 327us/step - loss: 0.4584 - acc: 0.8726 - val_loss: 0.4307 - val_acc: 0.8824\n",
"Epoch 128/1000\n",
"157/157 [==============================] - 0s 181us/step - loss: 0.4571 - acc: 0.8535 - val_loss: 0.4279 - val_acc: 0.8824\n",
"Epoch 129/1000\n",
"157/157 [==============================] - 0s 268us/step - loss: 0.4550 - acc: 0.8726 - val_loss: 0.4258 - val_acc: 0.8824\n",
"Epoch 130/1000\n",
"157/157 [==============================] - 0s 176us/step - loss: 0.4517 - acc: 0.8599 - val_loss: 0.4230 - val_acc: 0.8824\n",
"Epoch 131/1000\n",
"157/157 [==============================] - 0s 281us/step - loss: 0.4497 - acc: 0.8726 - val_loss: 0.4204 - val_acc: 0.8824\n",
"Epoch 132/1000\n",
"157/157 [==============================] - 0s 149us/step - loss: 0.4476 - acc: 0.8662 - val_loss: 0.4178 - val_acc: 0.8824\n",
"Epoch 133/1000\n",
"157/157 [==============================] - 0s 177us/step - loss: 0.4456 - acc: 0.8726 - val_loss: 0.4153 - val_acc: 0.8824\n",
"Epoch 134/1000\n",
"157/157 [==============================] - 0s 137us/step - loss: 0.4433 - acc: 0.8790 - val_loss: 0.4131 - val_acc: 0.8824\n",
"Epoch 135/1000\n",
"157/157 [==============================] - 0s 121us/step - loss: 0.4409 - acc: 0.8854 - val_loss: 0.4108 - val_acc: 0.8824\n",
"Epoch 136/1000\n",
"157/157 [==============================] - 0s 167us/step - loss: 0.4381 - acc: 0.8726 - val_loss: 0.4082 - val_acc: 0.8824\n",
"Epoch 137/1000\n",
"157/157 [==============================] - 0s 272us/step - loss: 0.4357 - acc: 0.8854 - val_loss: 0.4053 - val_acc: 0.8824\n",
"Epoch 138/1000\n",
"157/157 [==============================] - 0s 286us/step - loss: 0.4338 - acc: 0.8726 - val_loss: 0.4025 - val_acc: 0.8824\n",
"Epoch 139/1000\n",
"157/157 [==============================] - 0s 164us/step - loss: 0.4308 - acc: 0.8726 - val_loss: 0.3994 - val_acc: 0.8824\n",
"Epoch 140/1000\n",
"157/157 [==============================] - 0s 160us/step - loss: 0.4286 - acc: 0.8790 - val_loss: 0.3968 - val_acc: 0.8824\n",
"Epoch 141/1000\n",
"157/157 [==============================] - 0s 196us/step - loss: 0.4266 - acc: 0.8726 - val_loss: 0.3944 - val_acc: 0.8824\n",
"Epoch 142/1000\n",
"157/157 [==============================] - 0s 285us/step - loss: 0.4241 - acc: 0.8790 - val_loss: 0.3924 - val_acc: 0.8824\n",
"Epoch 143/1000\n",
"157/157 [==============================] - 0s 136us/step - loss: 0.4224 - acc: 0.8726 - val_loss: 0.3902 - val_acc: 0.8824\n",
"Epoch 144/1000\n",
"157/157 [==============================] - 0s 243us/step - loss: 0.4204 - acc: 0.8726 - val_loss: 0.3882 - val_acc: 0.8824\n",
"Epoch 145/1000\n",
"157/157 [==============================] - 0s 155us/step - loss: 0.4177 - acc: 0.8726 - val_loss: 0.3860 - val_acc: 0.8824\n",
"Epoch 146/1000\n",
"157/157 [==============================] - 0s 210us/step - loss: 0.4167 - acc: 0.8854 - val_loss: 0.3840 - val_acc: 0.8824\n",
"Epoch 147/1000\n",
"157/157 [==============================] - 0s 155us/step - loss: 0.4133 - acc: 0.8726 - val_loss: 0.3815 - val_acc: 0.8824\n",
"Epoch 148/1000\n",
"157/157 [==============================] - 0s 150us/step - loss: 0.4112 - acc: 0.8790 - val_loss: 0.3791 - val_acc: 0.8824\n",
"Epoch 149/1000\n",
"157/157 [==============================] - 0s 274us/step - loss: 0.4098 - acc: 0.8854 - val_loss: 0.3771 - val_acc: 0.8824\n",
"Epoch 150/1000\n",
"157/157 [==============================] - 0s 162us/step - loss: 0.4075 - acc: 0.8726 - val_loss: 0.3743 - val_acc: 0.8824\n",
"Epoch 151/1000\n",
"157/157 [==============================] - 0s 141us/step - loss: 0.4047 - acc: 0.8854 - val_loss: 0.3721 - val_acc: 0.8824\n",
"Epoch 152/1000\n",
"157/157 [==============================] - 0s 282us/step - loss: 0.4033 - acc: 0.8726 - val_loss: 0.3694 - val_acc: 0.8824\n",
"Epoch 153/1000\n",
"157/157 [==============================] - 0s 167us/step - loss: 0.4013 - acc: 0.9108 - val_loss: 0.3680 - val_acc: 0.8824\n",
"Epoch 154/1000\n",
"157/157 [==============================] - 0s 313us/step - loss: 0.3985 - acc: 0.8854 - val_loss: 0.3655 - val_acc: 0.8824\n",
"Epoch 155/1000\n",
"157/157 [==============================] - 0s 150us/step - loss: 0.3970 - acc: 0.8981 - val_loss: 0.3635 - val_acc: 0.8824\n",
"Epoch 156/1000\n",
"157/157 [==============================] - 0s 156us/step - loss: 0.3944 - acc: 0.8981 - val_loss: 0.3613 - val_acc: 0.8824\n",
"Epoch 157/1000\n",
"157/157 [==============================] - 0s 124us/step - loss: 0.3928 - acc: 0.8981 - val_loss: 0.3594 - val_acc: 0.8824\n",
"Epoch 158/1000\n",
"157/157 [==============================] - 0s 163us/step - loss: 0.3903 - acc: 0.8917 - val_loss: 0.3567 - val_acc: 0.8824\n",
"Epoch 159/1000\n",
"157/157 [==============================] - 0s 128us/step - loss: 0.3881 - acc: 0.8981 - val_loss: 0.3543 - val_acc: 0.8824\n",
"Epoch 160/1000\n",
"157/157 [==============================] - 0s 128us/step - loss: 0.3871 - acc: 0.8917 - val_loss: 0.3523 - val_acc: 0.8824\n",
"Epoch 161/1000\n",
"157/157 [==============================] - 0s 123us/step - loss: 0.3840 - acc: 0.9108 - val_loss: 0.3503 - val_acc: 0.8824\n",
"Epoch 162/1000\n",
"157/157 [==============================] - 0s 133us/step - loss: 0.3833 - acc: 0.8854 - val_loss: 0.3481 - val_acc: 0.8971\n",
"Epoch 163/1000\n",
"157/157 [==============================] - 0s 222us/step - loss: 0.3810 - acc: 0.8917 - val_loss: 0.3463 - val_acc: 0.8971\n",
"Epoch 164/1000\n",
"157/157 [==============================] - 0s 210us/step - loss: 0.3785 - acc: 0.9236 - val_loss: 0.3449 - val_acc: 0.8824\n",
"Epoch 165/1000\n",
"157/157 [==============================] - 0s 278us/step - loss: 0.3774 - acc: 0.9045 - val_loss: 0.3431 - val_acc: 0.8971\n",
"Epoch 166/1000\n",
"157/157 [==============================] - 0s 163us/step - loss: 0.3751 - acc: 0.8917 - val_loss: 0.3406 - val_acc: 0.8971\n",
"Epoch 167/1000\n",
"157/157 [==============================] - 0s 183us/step - loss: 0.3735 - acc: 0.8981 - val_loss: 0.3388 - val_acc: 0.8971\n",
"Epoch 168/1000\n",
"157/157 [==============================] - 0s 144us/step - loss: 0.3711 - acc: 0.9172 - val_loss: 0.3368 - val_acc: 0.8971\n",
"Epoch 169/1000\n",
"157/157 [==============================] - 0s 304us/step - loss: 0.3701 - acc: 0.9108 - val_loss: 0.3346 - val_acc: 0.8971\n",
"Epoch 170/1000\n",
"157/157 [==============================] - 0s 162us/step - loss: 0.3674 - acc: 0.9236 - val_loss: 0.3330 - val_acc: 0.8971\n",
"Epoch 171/1000\n",
"157/157 [==============================] - 0s 287us/step - loss: 0.3666 - acc: 0.9172 - val_loss: 0.3312 - val_acc: 0.8971\n",
"Epoch 172/1000\n",
"157/157 [==============================] - 0s 189us/step - loss: 0.3638 - acc: 0.9108 - val_loss: 0.3291 - val_acc: 0.8971\n",
"Epoch 173/1000\n",
"157/157 [==============================] - 0s 154us/step - loss: 0.3617 - acc: 0.9236 - val_loss: 0.3275 - val_acc: 0.8971\n",
"Epoch 174/1000\n",
"157/157 [==============================] - 0s 136us/step - loss: 0.3595 - acc: 0.9236 - val_loss: 0.3257 - val_acc: 0.8971\n",
"Epoch 175/1000\n",
"157/157 [==============================] - 0s 154us/step - loss: 0.3579 - acc: 0.9236 - val_loss: 0.3240 - val_acc: 0.8971\n",
"Epoch 176/1000\n",
"157/157 [==============================] - 0s 129us/step - loss: 0.3565 - acc: 0.9172 - val_loss: 0.3219 - val_acc: 0.8971\n",
"Epoch 177/1000\n",
"157/157 [==============================] - 0s 191us/step - loss: 0.3540 - acc: 0.9236 - val_loss: 0.3205 - val_acc: 0.8971\n",
"Epoch 178/1000\n",
"157/157 [==============================] - 0s 374us/step - loss: 0.3529 - acc: 0.9108 - val_loss: 0.3181 - val_acc: 0.8971\n",
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
"157/157 [==============================] - 0s 307us/step - loss: 0.3500 - acc: 0.9236 - val_loss: 0.3156 - val_acc: 0.8971\n",
"Epoch 180/1000\n",
"157/157 [==============================] - 0s 319us/step - loss: 0.3485 - acc: 0.9236 - val_loss: 0.3136 - val_acc: 0.8971\n",
"Epoch 181/1000\n",
"157/157 [==============================] - 0s 166us/step - loss: 0.3467 - acc: 0.9236 - val_loss: 0.3116 - val_acc: 0.8971\n",
"Epoch 182/1000\n",
"157/157 [==============================] - 0s 186us/step - loss: 0.3450 - acc: 0.9236 - val_loss: 0.3103 - val_acc: 0.8971\n",
"Epoch 183/1000\n",
"157/157 [==============================] - 0s 282us/step - loss: 0.3439 - acc: 0.9172 - val_loss: 0.3084 - val_acc: 0.8971\n",
"Epoch 184/1000\n",
"157/157 [==============================] - 0s 287us/step - loss: 0.3413 - acc: 0.9172 - val_loss: 0.3064 - val_acc: 0.8971\n",
"Epoch 185/1000\n",
"157/157 [==============================] - 0s 153us/step - loss: 0.3405 - acc: 0.9108 - val_loss: 0.3047 - val_acc: 0.9118\n",
"Epoch 186/1000\n",
"157/157 [==============================] - 0s 238us/step - loss: 0.3376 - acc: 0.9236 - val_loss: 0.3028 - val_acc: 0.9118\n",
"Epoch 187/1000\n",
"157/157 [==============================] - 0s 291us/step - loss: 0.3358 - acc: 0.9299 - val_loss: 0.3014 - val_acc: 0.9118\n",
"Epoch 188/1000\n",
"157/157 [==============================] - 0s 191us/step - loss: 0.3347 - acc: 0.9236 - val_loss: 0.2989 - val_acc: 0.9118\n",
"Epoch 189/1000\n",
"157/157 [==============================] - 0s 231us/step - loss: 0.3334 - acc: 0.9299 - val_loss: 0.2972 - val_acc: 0.9118\n",
"Epoch 190/1000\n",
"157/157 [==============================] - 0s 208us/step - loss: 0.3302 - acc: 0.9299 - val_loss: 0.2961 - val_acc: 0.8971\n",
"Epoch 191/1000\n",
"157/157 [==============================] - 0s 213us/step - loss: 0.3284 - acc: 0.9299 - val_loss: 0.2943 - val_acc: 0.8971\n",
"Epoch 192/1000\n",
"157/157 [==============================] - 0s 184us/step - loss: 0.3265 - acc: 0.9299 - val_loss: 0.2917 - val_acc: 0.9118\n",
"Epoch 193/1000\n",
"157/157 [==============================] - 0s 369us/step - loss: 0.3259 - acc: 0.9299 - val_loss: 0.2908 - val_acc: 0.8971\n",
"Epoch 194/1000\n",
"157/157 [==============================] - 0s 218us/step - loss: 0.3226 - acc: 0.9299 - val_loss: 0.2889 - val_acc: 0.8971\n",
"Epoch 195/1000\n",
"157/157 [==============================] - 0s 203us/step - loss: 0.3237 - acc: 0.9236 - val_loss: 0.2873 - val_acc: 0.8971\n",
"Epoch 196/1000\n",
"157/157 [==============================] - 0s 207us/step - loss: 0.3194 - acc: 0.9236 - val_loss: 0.2857 - val_acc: 0.8971\n",
"Epoch 197/1000\n",
"157/157 [==============================] - 0s 291us/step - loss: 0.3173 - acc: 0.9236 - val_loss: 0.2830 - val_acc: 0.9118\n",
"Epoch 198/1000\n",
"157/157 [==============================] - 0s 235us/step - loss: 0.3165 - acc: 0.9299 - val_loss: 0.2819 - val_acc: 0.9118\n",
"Epoch 199/1000\n",
"157/157 [==============================] - 0s 160us/step - loss: 0.3166 - acc: 0.9236 - val_loss: 0.2805 - val_acc: 0.8971\n",
"Epoch 200/1000\n",
"157/157 [==============================] - 0s 308us/step - loss: 0.3128 - acc: 0.9236 - val_loss: 0.2790 - val_acc: 0.9118\n",
"Epoch 201/1000\n",
"157/157 [==============================] - 0s 149us/step - loss: 0.3109 - acc: 0.9299 - val_loss: 0.2772 - val_acc: 0.9118\n",
"Epoch 202/1000\n",
"157/157 [==============================] - 0s 189us/step - loss: 0.3092 - acc: 0.9236 - val_loss: 0.2755 - val_acc: 0.9118\n",
"Epoch 203/1000\n",
"157/157 [==============================] - 0s 230us/step - loss: 0.3076 - acc: 0.9236 - val_loss: 0.2736 - val_acc: 0.9118\n",
"Epoch 204/1000\n",
"157/157 [==============================] - 0s 123us/step - loss: 0.3056 - acc: 0.9236 - val_loss: 0.2724 - val_acc: 0.9118\n",
"Epoch 205/1000\n",
"157/157 [==============================] - 0s 118us/step - loss: 0.3046 - acc: 0.9236 - val_loss: 0.2703 - val_acc: 0.9118\n",
"Epoch 206/1000\n",
"157/157 [==============================] - 0s 319us/step - loss: 0.3018 - acc: 0.9299 - val_loss: 0.2682 - val_acc: 0.9118\n",
"Epoch 207/1000\n",
"157/157 [==============================] - 0s 156us/step - loss: 0.2998 - acc: 0.9427 - val_loss: 0.2670 - val_acc: 0.9118\n",
"Epoch 208/1000\n",
"157/157 [==============================] - 0s 128us/step - loss: 0.2988 - acc: 0.9299 - val_loss: 0.2651 - val_acc: 0.9118\n",
"Epoch 209/1000\n",
"157/157 [==============================] - 0s 188us/step - loss: 0.2970 - acc: 0.9299 - val_loss: 0.2626 - val_acc: 0.9118\n",
"Epoch 210/1000\n",
"157/157 [==============================] - 0s 141us/step - loss: 0.2945 - acc: 0.9427 - val_loss: 0.2626 - val_acc: 0.8971\n",
"Epoch 211/1000\n",
"157/157 [==============================] - 0s 152us/step - loss: 0.2932 - acc: 0.9299 - val_loss: 0.2599 - val_acc: 0.9118\n",
"Epoch 212/1000\n",
"157/157 [==============================] - 0s 317us/step - loss: 0.2919 - acc: 0.9427 - val_loss: 0.2590 - val_acc: 0.8971\n",
"Epoch 213/1000\n",
"157/157 [==============================] - 0s 241us/step - loss: 0.2898 - acc: 0.9236 - val_loss: 0.2560 - val_acc: 0.9118\n",
"Epoch 214/1000\n",
"157/157 [==============================] - 0s 396us/step - loss: 0.2892 - acc: 0.9427 - val_loss: 0.2547 - val_acc: 0.9118\n",
"Epoch 215/1000\n",
"157/157 [==============================] - 0s 317us/step - loss: 0.2863 - acc: 0.9427 - val_loss: 0.2529 - val_acc: 0.9118\n",
"Epoch 216/1000\n",
"157/157 [==============================] - 0s 254us/step - loss: 0.2870 - acc: 0.9363 - val_loss: 0.2518 - val_acc: 0.9118\n",
"Epoch 217/1000\n",
"157/157 [==============================] - 0s 255us/step - loss: 0.2839 - acc: 0.9363 - val_loss: 0.2511 - val_acc: 0.9118\n",
"Epoch 218/1000\n",
"157/157 [==============================] - 0s 144us/step - loss: 0.2816 - acc: 0.9363 - val_loss: 0.2490 - val_acc: 0.9118\n",
"Epoch 219/1000\n",
"157/157 [==============================] - 0s 228us/step - loss: 0.2807 - acc: 0.9427 - val_loss: 0.2484 - val_acc: 0.9118\n",
"Epoch 220/1000\n",
"157/157 [==============================] - 0s 140us/step - loss: 0.2789 - acc: 0.9427 - val_loss: 0.2471 - val_acc: 0.9118\n",
"Epoch 221/1000\n",
"157/157 [==============================] - 0s 267us/step - loss: 0.2770 - acc: 0.9363 - val_loss: 0.2438 - val_acc: 0.9118\n",
"Epoch 222/1000\n",
"157/157 [==============================] - 0s 251us/step - loss: 0.2760 - acc: 0.9427 - val_loss: 0.2423 - val_acc: 0.9118\n",
"Epoch 223/1000\n",
"157/157 [==============================] - 0s 298us/step - loss: 0.2745 - acc: 0.9299 - val_loss: 0.2407 - val_acc: 0.9118\n",
"Epoch 224/1000\n",
"157/157 [==============================] - 0s 218us/step - loss: 0.2726 - acc: 0.9490 - val_loss: 0.2411 - val_acc: 0.9118\n",
"Epoch 225/1000\n",
"157/157 [==============================] - 0s 293us/step - loss: 0.2707 - acc: 0.9363 - val_loss: 0.2380 - val_acc: 0.9118\n",
"Epoch 226/1000\n",
"157/157 [==============================] - 0s 157us/step - loss: 0.2703 - acc: 0.9427 - val_loss: 0.2386 - val_acc: 0.9118\n",
"Epoch 227/1000\n",
"157/157 [==============================] - 0s 213us/step - loss: 0.2681 - acc: 0.9490 - val_loss: 0.2374 - val_acc: 0.9118\n",
"Epoch 228/1000\n",
"157/157 [==============================] - 0s 149us/step - loss: 0.2680 - acc: 0.9363 - val_loss: 0.2365 - val_acc: 0.9118\n",
"Epoch 229/1000\n",
"157/157 [==============================] - 0s 156us/step - loss: 0.2668 - acc: 0.9236 - val_loss: 0.2342 - val_acc: 0.9118\n",
"Epoch 230/1000\n",
"157/157 [==============================] - 0s 213us/step - loss: 0.2652 - acc: 0.9363 - val_loss: 0.2324 - val_acc: 0.9118\n",
"Epoch 231/1000\n",
"157/157 [==============================] - 0s 170us/step - loss: 0.2634 - acc: 0.9490 - val_loss: 0.2320 - val_acc: 0.9118\n",
"Epoch 232/1000\n",
"157/157 [==============================] - 0s 258us/step - loss: 0.2624 - acc: 0.9427 - val_loss: 0.2310 - val_acc: 0.9118\n",
"Epoch 233/1000\n",
"157/157 [==============================] - 0s 245us/step - loss: 0.2627 - acc: 0.9427 - val_loss: 0.2299 - val_acc: 0.9118\n",
"Epoch 234/1000\n",
"157/157 [==============================] - 0s 396us/step - loss: 0.2597 - acc: 0.9490 - val_loss: 0.2293 - val_acc: 0.9118\n",
"Epoch 235/1000\n",
"157/157 [==============================] - 0s 192us/step - loss: 0.2584 - acc: 0.9490 - val_loss: 0.2292 - val_acc: 0.9118\n",
"Epoch 236/1000\n",
"157/157 [==============================] - 0s 294us/step - loss: 0.2579 - acc: 0.9427 - val_loss: 0.2271 - val_acc: 0.9118\n",
"Epoch 237/1000\n",
"157/157 [==============================] - 0s 200us/step - loss: 0.2564 - acc: 0.9427 - val_loss: 0.2262 - val_acc: 0.9118\n",
"Epoch 238/1000\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"157/157 [==============================] - 0s 251us/step - loss: 0.2542 - acc: 0.9490 - val_loss: 0.2261 - val_acc: 0.9118\n",
"Epoch 239/1000\n",
"157/157 [==============================] - 0s 183us/step - loss: 0.2552 - acc: 0.9363 - val_loss: 0.2241 - val_acc: 0.9118\n",
"Epoch 240/1000\n",
"157/157 [==============================] - 0s 281us/step - loss: 0.2531 - acc: 0.9490 - val_loss: 0.2243 - val_acc: 0.9118\n",
"Epoch 241/1000\n",
"157/157 [==============================] - 0s 158us/step - loss: 0.2508 - acc: 0.9490 - val_loss: 0.2222 - val_acc: 0.9118\n",
"Epoch 242/1000\n",
"157/157 [==============================] - 0s 171us/step - loss: 0.2530 - acc: 0.9427 - val_loss: 0.2201 - val_acc: 0.9118\n",
"Epoch 243/1000\n",
"157/157 [==============================] - 0s 185us/step - loss: 0.2502 - acc: 0.9554 - val_loss: 0.2198 - val_acc: 0.9118\n",
"Epoch 244/1000\n",
"157/157 [==============================] - 0s 125us/step - loss: 0.2478 - acc: 0.9490 - val_loss: 0.2190 - val_acc: 0.9118\n",
"Epoch 245/1000\n",
"157/157 [==============================] - 0s 247us/step - loss: 0.2477 - acc: 0.9490 - val_loss: 0.2185 - val_acc: 0.9118\n",
"Epoch 246/1000\n",
"157/157 [==============================] - 0s 164us/step - loss: 0.2458 - acc: 0.9490 - val_loss: 0.2167 - val_acc: 0.9118\n",
"Epoch 247/1000\n",
"157/157 [==============================] - 0s 188us/step - loss: 0.2445 - acc: 0.9490 - val_loss: 0.2152 - val_acc: 0.9118\n",
"Epoch 248/1000\n",
"157/157 [==============================] - 0s 215us/step - loss: 0.2437 - acc: 0.9299 - val_loss: 0.2130 - val_acc: 0.9118\n",
"Epoch 249/1000\n",
"157/157 [==============================] - 0s 228us/step - loss: 0.2420 - acc: 0.9554 - val_loss: 0.2124 - val_acc: 0.9118\n",
"Epoch 250/1000\n",
"157/157 [==============================] - 0s 305us/step - loss: 0.2404 - acc: 0.9490 - val_loss: 0.2109 - val_acc: 0.9118\n",
"Epoch 251/1000\n",
"157/157 [==============================] - 0s 237us/step - loss: 0.2428 - acc: 0.9618 - val_loss: 0.2121 - val_acc: 0.9118\n",
"Epoch 252/1000\n",
"157/157 [==============================] - 0s 129us/step - loss: 0.2383 - acc: 0.9490 - val_loss: 0.2106 - val_acc: 0.9118\n",
"Epoch 253/1000\n",
"157/157 [==============================] - 0s 235us/step - loss: 0.2370 - acc: 0.9618 - val_loss: 0.2111 - val_acc: 0.9118\n",
"Epoch 254/1000\n",
"157/157 [==============================] - 0s 196us/step - loss: 0.2370 - acc: 0.9490 - val_loss: 0.2096 - val_acc: 0.9118\n",
"Epoch 255/1000\n",
"157/157 [==============================] - 0s 137us/step - loss: 0.2390 - acc: 0.9172 - val_loss: 0.2082 - val_acc: 0.9118\n",
"Epoch 256/1000\n",
"157/157 [==============================] - 0s 151us/step - loss: 0.2338 - acc: 0.9490 - val_loss: 0.2063 - val_acc: 0.9118\n",
"Epoch 257/1000\n",
"157/157 [==============================] - 0s 153us/step - loss: 0.2332 - acc: 0.9554 - val_loss: 0.2063 - val_acc: 0.9118\n",
"Epoch 258/1000\n",
"157/157 [==============================] - 0s 135us/step - loss: 0.2319 - acc: 0.9490 - val_loss: 0.2060 - val_acc: 0.9118\n",
"Epoch 259/1000\n",
"157/157 [==============================] - 0s 214us/step - loss: 0.2329 - acc: 0.9299 - val_loss: 0.2034 - val_acc: 0.9118\n",
"Epoch 260/1000\n",
"157/157 [==============================] - 0s 194us/step - loss: 0.2304 - acc: 0.9490 - val_loss: 0.2044 - val_acc: 0.9118\n",
"Epoch 261/1000\n",
"157/157 [==============================] - 0s 151us/step - loss: 0.2307 - acc: 0.9554 - val_loss: 0.2025 - val_acc: 0.9118\n",
"Epoch 262/1000\n",
"157/157 [==============================] - 0s 205us/step - loss: 0.2277 - acc: 0.9554 - val_loss: 0.2018 - val_acc: 0.9118\n",
"Epoch 263/1000\n",
"157/157 [==============================] - 0s 118us/step - loss: 0.2265 - acc: 0.9554 - val_loss: 0.2022 - val_acc: 0.9118\n",
"Epoch 264/1000\n",
"157/157 [==============================] - 0s 112us/step - loss: 0.2261 - acc: 0.9490 - val_loss: 0.2007 - val_acc: 0.9118\n",
"Epoch 265/1000\n",
"157/157 [==============================] - 0s 183us/step - loss: 0.2256 - acc: 0.9554 - val_loss: 0.1985 - val_acc: 0.9118\n",
"Epoch 266/1000\n",
"157/157 [==============================] - 0s 125us/step - loss: 0.2233 - acc: 0.9618 - val_loss: 0.1982 - val_acc: 0.9118\n",
"Epoch 267/1000\n",
"157/157 [==============================] - 0s 202us/step - loss: 0.2220 - acc: 0.9554 - val_loss: 0.1957 - val_acc: 0.9118\n",
"Epoch 268/1000\n",
"157/157 [==============================] - 0s 125us/step - loss: 0.2226 - acc: 0.9554 - val_loss: 0.1957 - val_acc: 0.9118\n",
"Epoch 269/1000\n",
"157/157 [==============================] - 0s 131us/step - loss: 0.2213 - acc: 0.9554 - val_loss: 0.1935 - val_acc: 0.9118\n",
"Epoch 270/1000\n",
"157/157 [==============================] - 0s 140us/step - loss: 0.2214 - acc: 0.9554 - val_loss: 0.1968 - val_acc: 0.9118\n",
"Epoch 271/1000\n",
"157/157 [==============================] - 0s 165us/step - loss: 0.2187 - acc: 0.9554 - val_loss: 0.1965 - val_acc: 0.9118\n",
"Epoch 272/1000\n",
"157/157 [==============================] - 0s 222us/step - loss: 0.2174 - acc: 0.9490 - val_loss: 0.1925 - val_acc: 0.9118\n",
"Epoch 273/1000\n",
"157/157 [==============================] - 0s 130us/step - loss: 0.2188 - acc: 0.9618 - val_loss: 0.1925 - val_acc: 0.9118\n",
"Epoch 274/1000\n",
"157/157 [==============================] - 0s 112us/step - loss: 0.2157 - acc: 0.9554 - val_loss: 0.1923 - val_acc: 0.9118\n",
"Epoch 275/1000\n",
"157/157 [==============================] - 0s 120us/step - loss: 0.2170 - acc: 0.9490 - val_loss: 0.1908 - val_acc: 0.9118\n",
"Epoch 276/1000\n",
"157/157 [==============================] - 0s 201us/step - loss: 0.2149 - acc: 0.9618 - val_loss: 0.1918 - val_acc: 0.9118\n",
"Epoch 277/1000\n",
"157/157 [==============================] - 0s 128us/step - loss: 0.2140 - acc: 0.9618 - val_loss: 0.1924 - val_acc: 0.9118\n",
"Epoch 278/1000\n",
"157/157 [==============================] - 0s 121us/step - loss: 0.2128 - acc: 0.9554 - val_loss: 0.1899 - val_acc: 0.9118\n",
"Epoch 279/1000\n",
"157/157 [==============================] - 0s 205us/step - loss: 0.2123 - acc: 0.9618 - val_loss: 0.1881 - val_acc: 0.9118\n",
"Epoch 280/1000\n",
"157/157 [==============================] - 0s 146us/step - loss: 0.2115 - acc: 0.9554 - val_loss: 0.1889 - val_acc: 0.9118\n",
"Epoch 281/1000\n",
"157/157 [==============================] - 0s 117us/step - loss: 0.2115 - acc: 0.9490 - val_loss: 0.1863 - val_acc: 0.9118\n",
"Epoch 282/1000\n",
"157/157 [==============================] - 0s 235us/step - loss: 0.2100 - acc: 0.9554 - val_loss: 0.1854 - val_acc: 0.9118\n",
"Epoch 283/1000\n",
"157/157 [==============================] - 0s 127us/step - loss: 0.2099 - acc: 0.9618 - val_loss: 0.1872 - val_acc: 0.9118\n",
"Epoch 284/1000\n",
"157/157 [==============================] - 0s 108us/step - loss: 0.2085 - acc: 0.9618 - val_loss: 0.1867 - val_acc: 0.9118\n",
"Epoch 285/1000\n",
"157/157 [==============================] - 0s 216us/step - loss: 0.2070 - acc: 0.9618 - val_loss: 0.1862 - val_acc: 0.9118\n",
"Epoch 286/1000\n",
"157/157 [==============================] - 0s 142us/step - loss: 0.2061 - acc: 0.9618 - val_loss: 0.1858 - val_acc: 0.9118\n",
"Epoch 287/1000\n",
"157/157 [==============================] - 0s 115us/step - loss: 0.2074 - acc: 0.9554 - val_loss: 0.1866 - val_acc: 0.9118\n",
"Epoch 288/1000\n",
"157/157 [==============================] - 0s 134us/step - loss: 0.2052 - acc: 0.9554 - val_loss: 0.1864 - val_acc: 0.9118\n",
"Epoch 289/1000\n",
"157/157 [==============================] - 0s 155us/step - loss: 0.2045 - acc: 0.9554 - val_loss: 0.1839 - val_acc: 0.9118\n",
"Epoch 290/1000\n",
"157/157 [==============================] - 0s 246us/step - loss: 0.2035 - acc: 0.9618 - val_loss: 0.1817 - val_acc: 0.9118\n",
"Epoch 291/1000\n",
"157/157 [==============================] - 0s 127us/step - loss: 0.2043 - acc: 0.9618 - val_loss: 0.1828 - val_acc: 0.9118\n",
"Epoch 292/1000\n",
"157/157 [==============================] - 0s 137us/step - loss: 0.2014 - acc: 0.9618 - val_loss: 0.1832 - val_acc: 0.9118\n",
"Epoch 293/1000\n",
"157/157 [==============================] - 0s 165us/step - loss: 0.2014 - acc: 0.9554 - val_loss: 0.1829 - val_acc: 0.9118\n",
"Epoch 294/1000\n",
"157/157 [==============================] - 0s 198us/step - loss: 0.2003 - acc: 0.9618 - val_loss: 0.1822 - val_acc: 0.9118\n",
"Epoch 295/1000\n",
"157/157 [==============================] - 0s 155us/step - loss: 0.2019 - acc: 0.9618 - val_loss: 0.1799 - val_acc: 0.9118\n",
"Epoch 296/1000\n",
"157/157 [==============================] - 0s 165us/step - loss: 0.1995 - acc: 0.9554 - val_loss: 0.1778 - val_acc: 0.9118\n",
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
"157/157 [==============================] - 0s 165us/step - loss: 0.1990 - acc: 0.9618 - val_loss: 0.1810 - val_acc: 0.9118\n",
"Epoch 298/1000\n",
"157/157 [==============================] - 0s 189us/step - loss: 0.1975 - acc: 0.9618 - val_loss: 0.1822 - val_acc: 0.9118\n",
"Epoch 299/1000\n",
"157/157 [==============================] - 0s 169us/step - loss: 0.1975 - acc: 0.9490 - val_loss: 0.1800 - val_acc: 0.9118\n",
"Epoch 300/1000\n",
"157/157 [==============================] - 0s 270us/step - loss: 0.1964 - acc: 0.9618 - val_loss: 0.1784 - val_acc: 0.9118\n",
"Epoch 301/1000\n",
"157/157 [==============================] - 0s 249us/step - loss: 0.1957 - acc: 0.9618 - val_loss: 0.1755 - val_acc: 0.9118\n",
"Epoch 302/1000\n",
"157/157 [==============================] - 0s 368us/step - loss: 0.1977 - acc: 0.9618 - val_loss: 0.1741 - val_acc: 0.9118\n",
"Epoch 303/1000\n",
"157/157 [==============================] - 0s 214us/step - loss: 0.1941 - acc: 0.9554 - val_loss: 0.1766 - val_acc: 0.9118\n",
"Epoch 304/1000\n",
"157/157 [==============================] - 0s 283us/step - loss: 0.1930 - acc: 0.9618 - val_loss: 0.1742 - val_acc: 0.9118\n",
"Epoch 305/1000\n",
"157/157 [==============================] - 0s 299us/step - loss: 0.1932 - acc: 0.9618 - val_loss: 0.1752 - val_acc: 0.9118\n",
"Epoch 306/1000\n",
"157/157 [==============================] - 0s 284us/step - loss: 0.1930 - acc: 0.9618 - val_loss: 0.1766 - val_acc: 0.9118\n",
"Epoch 307/1000\n",
"157/157 [==============================] - 0s 217us/step - loss: 0.1914 - acc: 0.9618 - val_loss: 0.1746 - val_acc: 0.9118\n",
"Epoch 308/1000\n",
"157/157 [==============================] - 0s 303us/step - loss: 0.1918 - acc: 0.9490 - val_loss: 0.1736 - val_acc: 0.9118\n",
"Epoch 309/1000\n",
"157/157 [==============================] - 0s 561us/step - loss: 0.1892 - acc: 0.9618 - val_loss: 0.1723 - val_acc: 0.9118\n",
"Epoch 310/1000\n",
"157/157 [==============================] - 0s 379us/step - loss: 0.1897 - acc: 0.9618 - val_loss: 0.1725 - val_acc: 0.9118\n",
"Epoch 311/1000\n",
"157/157 [==============================] - 0s 219us/step - loss: 0.1880 - acc: 0.9618 - val_loss: 0.1721 - val_acc: 0.9118\n",
"Epoch 312/1000\n",
"157/157 [==============================] - 0s 181us/step - loss: 0.1872 - acc: 0.9618 - val_loss: 0.1693 - val_acc: 0.9118\n",
"Epoch 313/1000\n",
"157/157 [==============================] - 0s 206us/step - loss: 0.1880 - acc: 0.9554 - val_loss: 0.1679 - val_acc: 0.9118\n",
"Epoch 314/1000\n",
"157/157 [==============================] - 0s 168us/step - loss: 0.1857 - acc: 0.9618 - val_loss: 0.1690 - val_acc: 0.9118\n",
"Epoch 315/1000\n",
"157/157 [==============================] - 0s 579us/step - loss: 0.1847 - acc: 0.9554 - val_loss: 0.1694 - val_acc: 0.9118\n",
"Epoch 316/1000\n",
"157/157 [==============================] - 0s 199us/step - loss: 0.1843 - acc: 0.9618 - val_loss: 0.1727 - val_acc: 0.9118\n",
"Epoch 317/1000\n",
"157/157 [==============================] - 0s 244us/step - loss: 0.1853 - acc: 0.9554 - val_loss: 0.1714 - val_acc: 0.9118\n",
"Epoch 318/1000\n",
"157/157 [==============================] - 0s 228us/step - loss: 0.1843 - acc: 0.9618 - val_loss: 0.1680 - val_acc: 0.9118\n",
"Epoch 319/1000\n",
"157/157 [==============================] - 0s 249us/step - loss: 0.1815 - acc: 0.9554 - val_loss: 0.1686 - val_acc: 0.9118\n",
"Epoch 320/1000\n",
"157/157 [==============================] - 0s 171us/step - loss: 0.1828 - acc: 0.9618 - val_loss: 0.1669 - val_acc: 0.9118\n",
"Epoch 321/1000\n",
"157/157 [==============================] - 0s 143us/step - loss: 0.1807 - acc: 0.9618 - val_loss: 0.1646 - val_acc: 0.9118\n",