Newer
Older
{
"cells": [
{
"cell_type": "code",
"execution_count": 10,
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style>\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Source+Code+Pro');\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Kameron');\n",
" @import url('http://fonts.googleapis.com/css?family=Crimson+Text');\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Lato');\n",
" @import url('http://fonts.googleapis.com/css?family=Source+Sans+Pro');\n",
" \n",
" @import url('http://fonts.googleapis.com/css?family=Lora'); \n",
"\n",
" \n",
" body {\n",
" font-family: 'Lora', Consolas, sans-serif;\n",
" \n",
" -webkit-print-color-adjust: exact important !;\n",
" \n",
" \n",
" \n",
" }\n",
" \n",
" .alert-block {\n",
" width: 95%;\n",
" margin: auto;\n",
" }\n",
" \n",
" .rendered_html code\n",
" {\n",
" color: black;\n",
" background: #eaf0ff;\n",
" background: #f5f5f5; \n",
" padding: 1pt;\n",
" font-family: 'Source Code Pro', Consolas, monocco, monospace;\n",
" }\n",
" \n",
" p {\n",
" line-height: 140%;\n",
" }\n",
" \n",
" strong code {\n",
" background: red;\n",
" }\n",
" \n",
" .rendered_html strong code\n",
" {\n",
" background: #f5f5f5;\n",
" }\n",
" \n",
" .CodeMirror pre {\n",
" font-family: 'Source Code Pro', monocco, Consolas, monocco, monospace;\n",
" }\n",
" \n",
" .cm-s-ipython span.cm-keyword {\n",
" font-weight: normal;\n",
" }\n",
" \n",
" strong {\n",
" background: #f5f5f5;\n",
" margin-top: 4pt;\n",
" margin-bottom: 4pt;\n",
" padding: 2pt;\n",
" border: 0.5px solid #a0a0a0;\n",
" font-weight: bold;\n",
" color: darkred;\n",
" }\n",
" \n",
" \n",
" div #notebook {\n",
" # font-size: 10pt; \n",
" line-height: 145%;\n",
" }\n",
" \n",
" li {\n",
" line-height: 145%;\n",
" }\n",
"\n",
" div.output_area pre {\n",
" background: #fff9d8 !important;\n",
" padding: 5pt;\n",
" \n",
" -webkit-print-color-adjust: exact; \n",
" \n",
" }\n",
" \n",
" \n",
" \n",
" h1, h2, h3, h4 {\n",
" font-family: Kameron, arial;\n",
"\n",
"\n",
" }\n",
" \n",
" div#maintoolbar {display: none !important;}\n",
"</style>\n",
" <script>\n",
"IPython.OutputArea.prototype._should_scroll = function(lines) {\n",
" return false;\n",
"}\n",
" </script>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# IGNORE THIS CELL WHICH CUSTOMIZES LAYOUT AND STYLING OF THE NOTEBOOK !\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"%config InlineBackend.figure_format = 'retina'\n",
"import warnings\n",
"warnings.filterwarnings('ignore', category=FutureWarning)\n",
"warnings.filterwarnings('ignore', category=DeprecationWarning)\n",
"from IPython.core.display import HTML; HTML(open(\"custom.html\", \"r\").read())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 7: Regression\n",
"\n",
"Regression belongs like classification to the field of supervised learning. \n",
"\n",
"<div class=\"alert alert-block alert-warning\">\n",
"<i class=\"fa fa-info-circle\"></i> \n",
"<strong>Regression predicts numerical values</strong> \n",
"in contrast to classification which predicts categories.\n",
"</div>\n",
"\n",
"<img src=\"./images/30416v.jpg\" title=\"made at imgflip.com\" width=35%/>\n",
"<div class=\"alert alert-block alert-warning\">\n",
"<i class=\"fa fa-info-circle\"></i> \n",
" Other differences are:\n",
"\n",
"* Accuracy is measured differently\n",
"\n",
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example: Salmon weight\n",
"\n",
"The dataset `data/salmon.csv` holds measurements of `circumference`, `length` and `weight` for `atlantic` and `sockeye` salmons.\n",
"\n",
"Our goal is to predict `weight` based on the other three features."
]
},
{
"cell_type": "code",
"execution_count": 11,
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>circumference</th>\n",
" <th>length</th>\n",
" <th>kind</th>\n",
" <th>weight</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>19.0</td>\n",
" <td>59.5</td>\n",
" <td>sockeye</td>\n",
" <td>5.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>18.0</td>\n",
" <td>53.0</td>\n",
" <td>sockeye</td>\n",
" <td>4.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>28.0</td>\n",
" <td>75.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>33.5</td>\n",
" <td>89.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>23.5</td>\n",
" <td>63.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" circumference length kind weight\n",
"0 19.0 59.5 sockeye 5.1\n",
"1 18.0 53.0 sockeye 4.1\n",
"2 28.0 75.5 atlantic 9.1\n",
"3 33.5 89.0 atlantic 15.6\n",
"4 23.5 63.0 atlantic 5.2"
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 12,
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>circumference</th>\n",
" <th>length</th>\n",
" <th>kind</th>\n",
" <th>weight</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>95</th>\n",
" <td>24.0</td>\n",
" <td>76.0</td>\n",
" <td>atlantic</td>\n",
" <td>6.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>96</th>\n",
" <td>18.5</td>\n",
" <td>67.0</td>\n",
" <td>sockeye</td>\n",
" </tr>\n",
" <tr>\n",
" <th>97</th>\n",
" <td>18.0</td>\n",
" <td>59.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>98</th>\n",
" <td>20.0</td>\n",
" <td>64.5</td>\n",
" <td>atlantic</td>\n",
" <td>4.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>99</th>\n",
" <td>23.0</td>\n",
" <td>75.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" circumference length kind weight\n",
"95 24.0 76.0 atlantic 6.7\n",
"96 18.5 67.0 sockeye 5.0\n",
"97 18.0 59.5 sockeye 4.7\n",
"98 20.0 64.5 atlantic 4.1\n",
"99 23.0 75.0 sockeye 7.2"
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.tail()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let us inspect the features and their distributions:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABMgAAAQdCAYAAACrPXSTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3X18U+XdP/DPOYcSmgRseayptBRJOwVa5El096SKD6t7MTc2sYio3U+cA6cTlQ17Iyri8OG+pwy2qdvcpgI+wdB7TN2AUkdFQIRQeSpQW6C0FEihJyktzTm/P0ICaZP0pE1ykubzfr322p2cq9e50tfyuXt9ua7rCKqqqiAiIiIiIiIiIkpQot4DICIiIiIiIiIi0hMLZERERERERERElNBYICMiIiIiIiIiooTGAhkRERERERERESU0FsiIiIiIiIiIiCihsUBGREREREREREQJjQUyIiIiIiIiIiJKaCyQERERERERERFRQmOBjIiIiIiIiIiIEhoLZERERERERERElNBYICMiIiIiIiIiooTGAhkRERERERERESU0FsiIiIiIiIiIiCihsUBGREREREREREQJjQUyIiIiIiIiIiJKaCyQERERERERERFRQmOBjIiIiIiIiIiIEhoLZERERERERERElNB66D0A8rVo0SLs3bsX3/rWt1BcXKz3cIiI4gKzk4godMxOIiKiC1ggizF79+7Fli1b9B4GEVFcYXYSEYWO2UlERHQBt1gSEREREREREVFCY4GMiIiIiIiIiIgSGgtkRERERERERESU0BLuDDKXy4W3334b77//PiorK5GcnIwRI0bg7rvvRn5+vk/bY8eOtXvvYqNHj8aKFSsiO2AiIiIiIiIiIoqohCuQzZs3D2vWrIHZbMY111yDc+fOYcuWLdi0aRMeeughzJ4929t29+7dAICcnBxkZ2e36ysrKytq4yYiIiIiIiIioshIqALZ2rVrsWbNGmRlZeGtt95C//79AQAVFRWYNm0ali5diu9973sYMmQIAGDPnj0AgPvuuw/f//739Ro2ERERERERERFFUEKdQfbhhx8CAB577DFvcQwArFYrJk+eDEVRsGnTJu/7nhVkw4cPj+5AiYiIiIiIiIgoahJqBdmSJUvwzTffeFeIXczhcAAAJEnyvrdnzx4YjUZupSQiIiIiIiIi6sYSqkDWs2dPv2eJbdiwAR9//DGMRiNuvPFGAEBDQwNqamowfPhwvPHGG1izZg2qqqrQu3dvXH/99XjwwQcxaNCgaH8EIiIiIiIiIiIKs4QqkF3s7NmzmDt3Lg4cOICDBw/CYrHghRde8G699Jw/9vXXX2P//v0YN24c0tLSsGvXLrz77rvYsGED/va3v2Ho0KEd3mvVqlVYvXq1pnF57ktElOiYnUREoWN2EhERdU7CFshqamrwySef+Ly3b98+jBs3DsCF88eys7Pxu9/9DoMHDwYAOJ1OzJ8/H//3f/+Hxx57DKtWrerwXkePHsWWLVvC/AmIiLo3ZicRUeiYnURERJ2TsAWytLQ0bN68GaIooqysDIsWLcLChQvhdDpx//33495778XNN98Mk8mEvn37en/OaDTi2WefxdatW/H1119jx44dGDVqVNB7paenY/z48ZrGtWfPHjQ2NnbpsxERdQfMTqLwUBUXBFEK+Jq6F2YnUfxjbhPpQ1BVVdV7ELFgx44dKCwshMlkQllZGQwGQ9D2c+fOxZo1a/Dkk09i+vTpYRvHjBkzsGXLFowfPx5vvvlm2PolIurOmJ1E7amKAkEU4azcCdlWApfcAMmcAnNuPoxZed7rlLiYnUSxhblNpK+EXUHW1qhRo5CRkYGqqiocPnwYw4YNC9rec1ZZU1NTNIZHREREpJmqKFCaHahduQjNNRU+1+TyUhgsVqQVFkM0mDjZIiKKAcxtIv0lzDdLVVW88MILeOSRR9Da2uq3Tc+ePQEAra2tWLp0KR566CHs27fPb9sjR44AcG/VJCIiIoolgij6nWR5NNdUoHblIk6yiIhiBHObSH8J8+0SBAHr1q3D2rVrsWnTpnbXDx8+jMrKShiNRmRlZWHfvn345JNP8M9//rNd25MnT2LTpk1ISkrC1VdfHY3hExEREWmiKi44K3cGnGR5NNdUwFlpg6ooURoZERH5w9wmig0JUyADgKlTpwIAnn32WdTW1nrfr6urw5w5c9Da2oo777wTBoMBd9xxBwDgjTfewJdffult63A48MQTT0CWZfz4xz/GgAEDovshiIiIiIIQRAmyrURTW9lWwtUIREQ6Y24TxYaEOoPs7rvvxhdffIGNGzeioKAAo0ePhsvlws6dO+F0OjFx4kQ8/PDDAID/+q//QlFREd544w3cddddGD16NFJTU7Ft2zbY7XaMHTsWv/zlL3X+RERERETtueQGbe0c9giPhIiItGBuE+kvoQpkSUlJ+P3vf4/ly5dj1apV2Lp1K0RRRHZ2NqZMmYKpU6dCvKga/6tf/Qp5eXl46623sHv3biiKgoyMDNx333245557kJSUpOOnISIiIvJPMqdoa2dKjfBIiIhIC+Y2kf4SqkAGAJIkYcaMGZgxY4am9gUFBSgoKIjwqIiIiIjCQ1VcMOfmQy4v7bCtOTcfqqLE/HYdVXFBEKWAr7W2ISKKRSHl9qhJ588gU8OSecxOogsSrkBGRERE1J0JogRjVh4MFmvQA58NFiuMWblRHFnoPMW7pqpyyLYSuOQGSOYUmHPzYczK8x5U3VGbWC8AElFi05rbxm9NQPLgKyCIIpyVO7uUeVryldlJiYYFMiIiIqJuRlUUpBUWo3blIr+TLYPFirTC4pieAKmKAqXZ4fczyOWl3s8g9kzGseXPoqlyZ+A2BlPMfk4iIqDj3E7OysOgHzyiLRc7yDzN+crspATDAhkRERFRNyOIIkSDCelFi+GstLlXBzjskEyp51cH5MZ0cQxwf4ZAE0UAaK6pQO3KRUgvWgyDZVi7AlnbNkREsUxLbgPQnIsd3Ssc/RB1NyyQEREREXVDnuJXcuZwn62UF29LjFWq4kJTVXnQrUaAexLnPLQTfa66CQ1lqwFV8d+m0obkzBEx/ZmJiILldki5GCTzwtUPUXfE/6UTERERdWNtD1uOh4mOIEqQbSWa2sq7NqLHJQPQc8DgwG1sJXHxuYmIAP+5HVIuBsm8cPVD1B3xf+1EREREFHNccoO2dg47AEA0GDtsQ0QUz0LNxUj3Q9TdsEBGREREFKdUxRX0dbT6iERfkjlFWztTKgBAaXZ22IaIyJ9wZlck7xNqLka6H6LuhmeQEREREcUZzwH7TVXl7oOc5QZI5pTzBznnaTqAPxx9RKIvd38umHPzIZeXdtjWPHIiWk/Xo6X+cOA2ufkx/1ACIoq+cGdXJO8TUi4Gybxw9UPUHbFARkRERBRHVEWB0uzw+wQyubwUBosVaYXFEA2mgJOacPQRib48BFGCMSsPBos16EHSBosVxqF5OFWy3O8B/d42Fx12TUQERCa7InmfkHLx/JOKw9EPUSJhKZiIiIgojgii6Hei5dFcU4HalYs6mGh1vY9I9HUxVVGQVlgMg8Xq97pnUqm6WnH2qP97e9sEmCgSUeKKVHZF8j6acnHqPLSeORm0P835yuykBMMVZERERERxQlVcaKoqD/qv/oB7wuWstCE5c0S7SVI4+ohEX20JogjRYEJ60WI4K23ubUkOOyRT6vltSRdWSFimLwjahtuDiOhikcyuyN5HhSAluXPx0E7IuzZeyLyRE2Ecmodz9jocW7EQ/QvuD9if1nxldlKiYYGMiIiIKE4IogTZVqKprWwr8bs9Jhx9RKIv//27J2fJmcN9ftZTGLt48qalDREREPnsitR9BFHCiX//EZKxN/pcdRMG3vaQ91rr6XqcKlmOM19+AuWsrCG/tecrUaJggYyIiIgojrjkBm3tHPaI9hGJvgIRRKnNa38rIjpuQ0TkEY3sisR9Wu21aPzqUzSUrUbPAYMhGoxQmp3uB5VcdBaj1v6YnUQXsEBGREREFEckc4q2dqbUiPbhbdO74zZa+yIiipZw5mAwBsswNFWVB3yQSKj38Y5bVdByvKrL/RHRBSwPExEREcUJVXHBnJuvqa05N9/vActd7UNVXD6v+xf8FCnf/hHEZHOnxkNEFG3hyNKO+vfoe/10ZDz4+w5zUst9Ij1uokTHFWREREREcUIQJRiz8mCwWIMe+mywWAOePdPZPjwHNjdVlbsPdJYbIJlTYM7NR9/8O9E7bxKOrViIVvuxkMZDRBRt4chSfwLm5MiJQXNS630iNW4icuMKMiIiIqI4oioK0gqLYbBY/V43WKxIKywOunIg1D5URYHS7MDRN36F2uXPQC4vRdM3Nsjlpahd/gyOvvEriIZkXDptfrsVElrGQ0QUbeHI0rb9BczJFQvdOdmzV7uc7Mx9wjluIrqAK8iIiIiI4oggihANJqQXLYaz0uZepeCwQzKlwpybD2NWrncVQ7j6EEQRtSsXBVyx0FxTgdp3nkN60WL0L/gpGr/6V0jjISKKtnBkadv+OszJd3+N9KLF6DfpHjR9U97p+4Rz3ER0AQtkRERERHHGM/FJzhzebhvkxdfD0YequNBUVR50Ow/gnvw5K20w5UyA+YprQx4PEVG0hSNL3e1Dy0nzyHz0zruh0xkZrnETkS9+c4iIiIjilCBKbV6H/qddR30IogTZVqKpL9lW4vPznKQRUTzoapZ2Nie7mpHh+P8BRHQBv0FEREREFJRLbtDWzmGP8EiIiGITc5Io/rFARkRERKQDVXEFfR1LJHOKtnam1AiPhIgofMKZw8xJovjHM8iIiIiIoshzeHJTVbn7cGW5AZI55fzhynkxd7iyqrhgzs2HXF7aYVtzbn7MjZ+IqK1w5zBzkqh7YIGMiIiIKEpURYHS7PD7pDO5vBQGixVphcUQDaaYmTwJogRjVh4MFmvQA6gNFqvPYdFERLEoEjnMnCTqHmLjLy8iIiKiBCCIot9JmUdzTQVqVy6KmeKYh6ooSCsshsFi9XvdM6H0PEGNiChWRSqHmZNE8Y8ryIiIiIiiQFVcaKoqD7q6AHBPzpyVNiRnjoiZQpkgihANJqQXLYaz0ubekuSwQzKlnt+SlMstQ0QU8yKZw8xJovjHAhkRERFRFAiiBNlWoqmtbCuJuW04nkldcuZwn7F5VkNw0kdEsS7SOcycJIpv/IYSERERRYlLbtDWzmGP8Eg6TxClNq/55yQRxY9o5DBzkig+8ZtKREREFCW9Mq5Ez4GZgBD8TzDJlBqlERERJRbJnKKtHXOYKOFwiyURERFRhKmKC4IoIfU7tyP1O7ej9cwJnNn+Kc5s/wRKk9yuvTk3v1ufVeP5fQR6TUQUSFfyQ1VcMOfmQy4v7bBtOHKYWUcUX1ggIyIiIooQz+SqqarcfWCz3ADJnALzyInom38neudNwrEVC9FqP+b9GYPFGnPnj4VLwN9Hbj6MWXnduihIRF0TjvwQRAnGrDwYLNagB/V3NYeZdUTxiQUyIiIioghQFQVKswO1Kxe1m4jJ5aUwWKxImzoPl06bj6NvzIXSJLvfKyzulpMnTb+PwmKIBlO3++xE1DXhzA9VUZBWWOy3LwBdzmFmHVH8YoGMiIiIKAIEUQw4AQOA5poK1L77a6QXLUb/gp9C7GWGMSu3WxbHAI2/j5WLkF60OMojI6JYF878EEQRosGE9KLFcFba3Cu8HHZIptTzK7y6lsPMOqL4xQIZERERUZipigtNVeVBt/AA7omSs9IGU84E73vdsTgW6u8jOXNEt/w9EFHoIpEfnuvJmcN9tlKqiuJzPRbGSkTRw28jERERUZgJogTZVqKprWwrgSCK3XqS1JnfBxERENn8aHtgflezh1lHFN/4jSQiIiKKAJfcoK2dwx7hkcQG/j6IqLPiKT/iaaxE5IsFMiIiIqIgVMUV9HUgkjlFWztTashj0qKz444UvX8fRBQf/GVVPOVHPI2ViHzxDDIiIiIiPzyHNDdVlbsPcZYbIJlTzh/inBf0EGdVccGcmw+5vLTD+5hz88N6MH9Xxh0pev4+iCg++M2u3qnoX/DTuMkPZh1RfGOBjIiIiKgNVVGgNDv8PolMLi+FwWJFWmExRIPJ7+RGECUYs/JgsFiDHtZssFh9DojWe9yRotfvg4jiQ7Ds6tGnP/rm3xkX+cGsI4pvLFcTERERtSGIot+JmkdzTQVqVy4KWmRSFQVphcUwWKx+r3uKVZ6npoVDOMYdKXr8PogoPgTLrjPbP8E5ex3S7ngiLvKDWUcUv7iCjIiIiOgiquJCU1V50H/9B9zFJmelDcmZIwKsIhMhGkxIL1oMZ6XNvWXIYYdkSj2/3TE3zFsrwzPuSIn274OI4kNH2aU0yTi2YiEunTbff36MnAjj0DwoLWejPHL/mHVE8YsFMiIiIqKLCKIE2Vaiqa1sKwm6TcYzAUrOHO7TzrNyIJwTpHCOO1Ki+fsgovigJbta7cdw9I256F/wU5hyrvbJj9bT9ThVshwuZyMG3PrTCI9WG2YdUXxigYzi2uRH14TU/qP/uS1CIyEiou7EJTdoa+ewa2oniFKb15GZHIV73JESrd8HEcUHLdmlNMlo/OpfMF9xLY5/+Fu0NtRBaXaipf4woCpIjsEzvZh1RPGFBTIiIiKiNiRzirZ2ptQIjyQ0eo1bVVw+E8G2r4mIggk1u1rqKtFyvMrvtVAwu4joYiyQEREREV1EVVww5+ZDLi/tsK05Nz9mzpLRY9yePpqqyt3n7MgNkMwp58/ZyYuZ3w0Rxa6QsmvkRLSernevGmt7LYRcY3YRkT8skBERERFdRBAlGLPyYLBYgx54b7BYdTnHK5Boj1tVFCjNDr9PnpPLS71PahMNJk40iSigkLJraB5OlSwHVKX9NY25xuwiokD4jSciIiJqQ1UUpBUWw2Cx+r3umUB5DlyOFdEctyCKfieYHs01FahduYgTTCLqkKbsuuMJnLPX4cyXn7S/FkKuMbuIKBCuICMiIiJqQxBFiAYT0osWw1lpc2/BcdghmVLPb8HJjcktONEat6q40FRVHnS1B+CeaDorbUjOHBFzvysiih1as6vlZA2Mw8Z0OteYXUQUTEwWyBwOB0wmk97DICIiogTmmRQlZw732brjWaUQq5OmaIxbECXIthJNbWVbSUxtRSWi2KQlu3qlW5E8+Ft+r2m7B7OLiAKLib/samtrsXjxYtx6660YPnw4xo0bBwCoq6vDXXfdhfXr1+s8QiIiIkpUbZ9oFquFsbYiPW6X3KCtncMe1vsSUfcWLLvCkWvMLiIKRPcVZJ999hnmzJkDWZahqioAQBAEAMCRI0ewbds2fPnll5g9ezYefPBBPYdKREREROdJ5hRt7UypER4JEZF2zC4iCkTXfwKtrq7GQw89hMbGRnz3u9/F0qVLceWVV3qvDxkyBD/84Q+hqiqWLVuGkpIS/QZLRERE1Emq4gr6Ot6oigvm3HxNbc25+TH3MAMi0obZxewiSiS6riB79dVX0dTUhF/84hd44IEHAAB//vOfvdf79euHX//617j88svx0ksvYfny5cjPz9dptERERESh8Rwc3VRV7j50Wm6AZE45f7B0Xkwe9K+FIEowZuXBYLEGPezaYLHyDB+iOMTsYnYRJSJdC2SbNm3CJZdcgpkzZwZtV1RUhD/+8Y+w2WxRGhkRERFR16iKAqXZgdqVi9pNxOTyUhgsVqQVFkM0mOJyoqkqCtIKi/1+PgDezxevE2miRMXsYnYRJSpdC2QnT55ETk4OJEkK2k6SJFx22WXYu3dvlEZGRERE1DWCKAacgAFAc00FalcuQnrR4iiPLDwEUYRoMCG9aDGclTb3KhOHHZIp9fwqk1xOMIniELOL2UWUqHQtkPXp0wc1NTWa2tbV1SElRduBikRERER6UhUXmqrKg27hAdwTTWelDcmZI+JyMuYZc3LmcJ/tSJ5ze+LxMxElMmYXs4soken6zR81ahTsdjs+/vjjoO3Wrl2L+vp65OXlRWlkRERERJ0niBJkW4mmtrKtJO4nY4IotXkd35+HKFExu+L78xBR1+iaAPfeey9UVcX8+fPx97//Hc3NzT7XW1tb8f7776O4uBiCIGD69OldvqfL5cLf/vY3fP/738fIkSMxfvx4/OQnPwn4hMzKykrMmTMHEydORF5eHiZPnow333wTCp9oQkREREG45AZt7Rz2CI+EiEg7ZhcRJSpdt1iOGzcODz30EJYsWYJ58+Z5C2EAMHnyZBw5cgRnz56FqqooKirCtdde2+V7zps3D2vWrIHZbMY111yDc+fOYcuWLdi0aRMeeughzJ4929t27969mD59OmRZxujRozFy5Eh88cUXePbZZ7Fz50689NJLXR4PERERdU+SWdvREJIpNcIjuUBVXD4rJtq+JiIKV3Yxb4go3uhaIAOAWbNmYdiwYViyZAkOHDjgfb+iwr3vPT09HbNmzcKPfvSjLt9r7dq1WLNmDbKysvDWW2+hf//+3ntNmzYNS5cuxfe+9z0MGTIEqqpi7ty5kGUZL7zwAm677TYAwKlTp3Dvvffio48+wk033YRbbrmly+MiIiKi7kVVXDDn5kMuL+2wrTk3P+IHQnv6b6oqdx9ILTdAMqecP5A6jwdSExGA8GQX84aI4pXuBTIAuPnmm3HzzTfj8OHDOHDgAGRZRnJyMoYMGYJhw4aF7T4ffvghAOCxxx7zFscAwGq1YvLkyVi+fDk2bdqEIUOGYNOmTdi3bx/Gjx/vLY4BQN++ffHUU09h2rRpePPNN1kgIyIionYEUYIxKw8GizXoYdcGi9XngOhIUBUFSrPD71Pp5PJSGCxWpBUWQzSYOGklSnBdzS7mDRHFs5hJpfr6egwePBjXX389Jk+ejBtvvBENDQ3Yu3dv2O6xZMkSfPTRR7juuuvaXXM4HAAASXIv+/3ss88AADfeeGO7tqNHj0a/fv3w5ZdfQpblsI2PiIiIug9VUZBWWAyDxer3umeiqEb4XFNBFP1OVj2aaypQu3IRJ6tEBKBr2cW8IaJ4pvsKsrq6OsybNw9btmxBWVkZ+vTp4732+uuvo7S0FBMmTMCvf/1rpKWldelePXv2RHZ2drv3N2zYgI8//hhGo9FbEPNs9/TXHgCysrJw8uRJHDx4kE/XJCIionYEUYRoMCG9aDGclTb3ViOHHZIp9fxWo9wobK10oamqPOhKEMA9aXVW2pCcOYITV6IE19nsYt4QUbzTtUBWX1+PqVOnoq6uDj169MDx48d9CmSDBg1Cr1698Pnnn2PGjBlYtWoVevfuHZZ7nz17FnPnzsWBAwdw8OBBWCwWvPDCC96tl8ePHwcADBgwwO/Pe94/ceJEh/datWoVVq9erWlce/bs0dSOiKi7Y3ZSd+CZ/CVnDvfZjuRZeRHpyaEgSpBtJZrayraSiG/3pMhjdlI4dCa7mDdEFO90LZAtW7YMdXV1mDBhAl588cV2xahnnnkGc+bMwaOPPoqysjK89tprePTRR8Ny75qaGnzyySc+7+3btw/jxo0DADQ1NQEAevXq5ffnPe87nc4O73X06FFs2bKlK8MlIko4zE7qTto+uS2aqyZccoO2dg57hEdC0cDspHAKNbuYN0QUz3QtkJWWliI5ORkvv/wyUlL8P044JSUFL774Iq6//np8+umnYSuQpaWlYfPmzRBFEWVlZVi0aBEWLlwIp9OJ+++/33sWmSAIQftRNJwbkp6ejvHjx2sa1549e9DY2KipLRFRd8bsJAoPyez/b6x27UypER4JRQOzk/TEvCGieKb7Fkur1RqwOObRt29fZGVl4eDBg2G7t9FohNFoBAAUFBTg0ksvRWFhIV599VXcc889SE5OBuDeiumP532TydThvaZMmYIpU6ZoGteMGTP4r35ERGB2EoWDqrhgzs2HXF7aYVtzbn7Ez0SjyGN2kl6YN0QU73QtkKWkpMBu17a8VpZlb0ErEkaNGoWMjAxUVVXh8OHDGDhwIPbs2YMTJ07g8ssvb9e+vr4eQOAzyqh7mvzoGs1tP/qf2yI4EiIioo4JogRjVh4MFmvQg7MNFivPAyKiLmHeEFG807Vkf+WVV6K2thb//ve/g7bbtGkTjhw5guHDh3f6Xqqq4oUXXsAjjzyC1tZWv2169uwJAGhtbYXV6n6ssedplm37OnToECRJ8ls8IyIiIooVqqIgrbAYBovV73WDxYq0wmLv4dtERJ3FvCGieKZrgWzatGlQVRVz587FO++80247Y0tLC1atWoVHHnkEgiBg2rRpnb6XIAhYt24d1q5di02bNrW7fvjwYVRWVsJoNCIrKwvf+c53AADr1q1r13b79u04deoUxowZA7PZ3OkxEREREUWaIIoQDSakFy1G2p0LYB4xEclZuTCPmIi0OxcgvWgxRIOJW52IqMuYN0QUz3TdYpmfn49p06ZhxYoVeOqpp7Bw4UKkp6fDZDLB6XTi6NGjaG1thaqqmDp1Km666aYu3W/q1Kl44YUX8OyzzyInJwdpaWkAgLq6OsyZMwetra249957YTAYMH78eFitVmzatAnvvvsupk6dCgA4deoUnn76aQBAUVFR134BRERERFHgmYwmZw732drkWcXBySoRhQvzhojila4FMgBYsGABRo4ciVdffRVVVVWoqqryuX7ppZfi/vvv79LqMY+7774bX3zxBTZu3IiCggKMHj0aLpcLO3fuhNPpxMSJE/Hwww8DAERRxHPPPYd77rkH8+fPx/vvv4+BAwdiy5YtOH36NKZOnYobbrihy2MiIiIiihZBlNq85kSViCKDeUNE8Ub3Ahlw4Wk7VVVVqK6uRkNDA5KTkzFkyBAMGzYsbPdJSkrC73//eyxfvhyrVq3C1q1bIYoisrOzMWXKFEydOhXiRcGdm5uL9957D0uWLMEXX3yBiooKZGZmYs6cObj99tvDNi4iIiIiIiIiItJPTBTIPDIzM5GZmRnRe0iShBkzZmDGjBma2g8bNgxLliyJ6JiIiIgoOFVx+axGaPu6q+3jQXf8TESkTbDvfziygflCRBRDBTKHwwFZlqEoClRVDdjOYrFEcVREREScr01gAAAgAElEQVSkJ1VRIIgimqrKIdtK4JIbIJlTYM7NhzErz3u9s+3jQXf8TESkjZbv/9mj+9G4/dNOZQPzhYjoAt0LZP/+97/x8ssv4+DBgx22FQQBu3fvjsKoiIiISG+qokBpdqB25SI011T4XJPLS2GwWJFWWOx9Ilqo7eNBd/xMRKSNpu//HU+gh7kvnAe3Q2mSfa91kA3MFyIiX7omXVlZGX7+85/jwIEDUFW1w/8o5598QkRERN2fIIp+J24ezTUVqF25yDtxC7V9POiOn4mItNH0/X/nOSSlDkKf0be0v9ZBNjBfiIh86bqC7I9//CNUVcW4cePwi1/8AllZWejVq5eeQyIiIqIYoCouNFWVB5y4eTTXVMBZaUNy5vAQ24+I+Ulf6L+D2P9MRKRNSN//QzvR56qb0FC2GlAV32sBsoH5QkTUnq4pZ7PZYDKZ8Ic//AFjxoxB3759YTQag/6HiIiIuj9BlCDbSjS1PftNeUjtZVtJXEz0uuNnIiJtQvr+79qIHpcMQM8Bg9tfC5ANzBciovZ0TTqXy4UhQ4bAZDLpOQwiIiKKQS65QVM7pbU5pPYuh73TY4q27viZiEibUL//oqH9YoJg2cB8ISLypWuBLCsrC0eOHNFzCERERBSjJHOKpnZiD0NI7SVTaqfHFG3d8TMRkTahfv+VZmfAa+Hon4iou9O1QDZt2jScPn0ay5cv13MYREREFGNUxQVzbr6mtr2GjAipvTk3H2ocPPinO34mItImpO//yIloPV2PlvrD7a8FyAbmCxFRe7oe0n/77bfDZrPhueeew4EDB3Dddddh0KBBSEpKCvgzw4YNi+IIiYiISA+CKMGYlQeDxRr0EGmDxQpjVi4AhNw+1nXmd0BE3UNI3/+heThVstzngH7vtQDZwHwhImpP1wLZ6NGjAbjPIluxYgVWrFgRtL0gCNi9e3c0hkZEREQ6UxUFaYXFqF25yO8EzmCxIq2wGKqiQBDFkNvHg+74mYhIG03f/zuewDl7Hc58+Un7ax1kA/OFiMiXrgUyp7P9PvlgVFWN0EiIiIgo1giiCNFgQnrRYjgrbZBtJXA57JBMqTDn5sOYleszcQu1fTzojp+JiLTR+v1vOVkD47AxIWcD84WIyJeuBbK9e/fqeXsiIiKKcZ6JWXLmcJ9tPp7zcNpO3EJtHw+642ciIm20fP97pVuRPPhbfq+Fo38iokTBxCMiIqKYJ4hSm9fB/4QJtX086I6fiYi0Cfb9D0c2MF+IiGKsQHby5Els27YNGzZsAAAoigJZlnUeFRERERERERERdWe6brH0WLduHZYtW4Y9e/YAuHAY/5EjR/CDH/wAd9xxBx599FH06BETwyUiIqIYoCoun1UP7i1Bapv3XO1WRoTeb+h96Nk/EXUvgTKj7X8Hak9ERNroXnFaunQpli1bBlVVIQgCJEmCy+UCABw9ehROpxN/+ctfsH//frz22muQJIY9xaaP/uc2vYdARJQQPIdGN1WVQ7aVAIKIvpNmoIcpBc7Kne6DpuUGSOaU8wdN52k6aLptv53pQ8/+iah76SgzcP75ZU3f7IK8ayMzhYioi3QtkH3++edYunQpzGYzHnvsMdx666144IEH8NVXXwEArr76aixevBgLFy5EWVkZVqxYgbvuukvPIRMREZGOVEWB0uxA7cpFaK6pgJhsRvpPXoAAAUff+BWaayp82svlpTBYrEgrLIZoMAWcLLbttzN9hDLucPdPRN1LsMxwHtyOy2b+BkKPJGYKEVEY6Vog++tf/wpBEPDiiy/i+uuvb3ddFEX84Ac/QL9+/TBz5kx8+OGHLJB1wuRH12huG65VUIcW/Sgs/QDA0OIPwtZXNCTyZyciijRBFH0mhH1G34KklEF+i2MezTUVqF25COlFizX325k+Qhl3uPsnou4lWGb0GX0LevTu2+XcIyIiX7r+c8KOHTuQlpbmtzh2se985zuwWCw4cOBAlEZGREREsUZVXHBW7rwwIRRE9Bl9M5yHdgScJHo011TAWWk7f05ZB/12oo+Qxh3m/omoewmaGWHKPSIiak/XApnD4UBqaqqmtn379kVra2uER0RERESxShAl95lj5/UcMBg9+vSHvGujpp+XbSV+txq17bczfQQT6f6JqHsJlhnhyj0iImpP17QcOHAgKisrOyx8tbS0oLKyEgMGDIjSyIiIiCgWueQG7/8tGozt3gv6sw67pn4720fQn4tw/0TUvQTKjHDmHhER+dK1QPbtb38bZ8+exR/+8Ieg7ZYtWwaHw4Frr702SiMjIiKiWCSZU7z/t9Jytt17QX/WFHjVejj6CPpzEe6fiLqXQJmhNDuDXm/XDzOFiEgzXQtk999/P3r16oVly5Zh3rx5+M9//oOzZ91/7J4+fRrbt2/H3Llz8dprr8FgMOAnP/mJnsMlIiIiHamKC+bcfIjJZqR8+0dIm/or73tamHPzA55B1tU+gulK/y6eHUTUramKq91rVVFgHjXJb/uW+sNoPXMC5pETNfWvJVPavsfcIaJEpetTLC+77DIsWbIEjzzyCFavXo2///3v3msTJkwAAKiqCoPBgOeffx5ZWVl6DZWIiIh0JogSjFl5uGzmb9Cjd184D+2AcnQ/zFdcC4PFGvTAaoPFCmNWbrv3XYoK6Xy/ne1D67i19v+fHUfx8eYqpPY2YNK4wRiVPfD8OIWQ701EsUlVFAiiiKaqcsi2ErjkBkjmFJhz82HMykPy4Cth/NYEOPdubvuDOLP9U/TNv7PLmQIAkihg14ETWLf1MOyNzcwdIkpouhbIAPcTKtesWYM//elP2LBhA44dO+a91rdvX0ycOBH33XcfLr/8ch1HSURERLFAVVwQeiTh6Bu/QnNNBcRkMwxplyNt6jzUvvtrv5NFg8WKtMJi74TUw6WocJ49hxff3IbZP87FwKlP4Pi7z4XUh/ZxK0grLEbtykUB+x94RzHqTspY9v5OyE3nAAAl248gJyMVC2ZOgLFXEierRN2AqihQmh1+80AuL/XmzaAfPILad55DU+VOnzZntn+CPqNv6TBTBnWQKcmGHnjy1c/x1f56n59l7hBRotK1QHb48GEMHjwY6enpePLJJ/Hkk0/C4XBAlmUYjUb07t1bz+ERERFRjBFEyWdCqDTJOLZiIS6dNh/pRYvhPLQT8q6NcDnskEyp51dj5PotbEmigKdf34x91XbMf20zFt4/IeQ+tI9bhGgwufuvtLlXjLTpv+6kjPmvbfZOZD32Vdvx9Oub8dLD13Xul0ZEMUUQxYCFLQBorqlA7cpFSC9ajEvvfNJvZvTo0w+qqzVoZmnJFOvg1HYFsrZtiIgSha4FslmzZqGpqQnvv/8+UlLcB02aTCaYTCY9h0VEREQxSFVcaKoqbzepbLUfw9E35qLP6FvQ56qbMPC2hy76GfdZOm0LWy5Fwa4DJ7Cv2v2Et2MnHHjk5VIUXJOFgmuGYeBted62LS3noCgqxE4Wxzw8Y0jOHO6zVbOl5RzeXLsHa8sq201kPfZV27Fjfz1GDuvP1RxEcSxQjrXVXFMBZ6UNyZkj2mWG90wxwZ0FyUNGwDjUN7O0ZMpX+4/ju9dk4v0NFVDOb7ls24a5Q0SJRNcCWXV1NS677DJvcYyIiIgoEEGUINtK/F5TmmQ0bPoADWWr0XPAYJi+dS1Sv/PjgCu+JFHEuq2Hfd5rdJ7Du+v24/0NFcgY1BvGXj3gPNuKoel98Mi0MWH9HBdb+r4NG7480uHPrd9WjVHZA8I2DiKKvmA51pZsK/F77qEn1zxZ0tlM2bDtMObcOQYZg3rjm2Nn/LZh7hBRItG1QNanTx/vUyuJiIiIOuKSG4I3UBW0HK+CZLoEwI+DNrU3Nvt9X1FUn8liSm9DqMMMSUOAcbQVaLxEFF86zDFPO4e9U/2fOhNaphh7BZ4SMneIKJF0ba9AF/3sZz/D0aNH8fzzz6OpqUnPoRAREVEckMzaVp1LptQO26RqLHz5a+fybHEK8DoYVXH5vH78rtGYemM2ehuTojoOItJHOHMMaP+9DzXbnGdbO2xDRJQIdF1B1tzcjFGjRuEvf/kL3n77bVitVgwYMAAGg/8gFgQBL7/8cpRHSURERLFAVVww5+ZDLi/tsK05Nz/oofouRcGkcYNRsr3jbUg3jM2AS1EhiYL3v3cdOIF1Ww/D3tiM1N4GTBo3GKOyB3qv+x+/ezxNVeXuA7flBkjmFJhH5mNGQR5uHj8Y81/bjGMnHBEdBxHpJ/Qcc7XbQunRNgdOy8147K4xuCGEbDvX6sK51sCF9Ytzh4iou9O1QPb8889DEASoqoqWlhZ8/fXXQdsLAoOZiIgoUQmiBGNWHgwWa9ADrg0Wq99zey4miSJGZQ9ETkaq96B+f3IyUr3n77gUFc6z57xPvrxYyfYjyMlIxYKZE2DsldRuMqkqCpRmh98n18nlpTBYrBg49QksvH8CHnm5FI1O34O1wzUOItJXqDmmnGsGIPh50Ij/HFhTeggzCq7QnG1nm1vx1MwJmPPyxqC5Q0SUCHQtkM2ePZtFLyIiItJMVRSkFRb7LTQB7kllWmFx0NVjHi5FxYKZE/wWmgB4C02e1ROSKARsC7if+Pb065vx0sPXtbsmiGLAMQPuJ9Ydf/c5pBctRsE1WXh33f6IjIOI9Kcpx6bOwzl7HerX/gGW6QvatQmUA/8sq8RN4zPw5H1X45k/fhEw2+b/v6tRe9KBZe/txMIHru0wd4iIEoGuBbKf//znet6eiIiI4owgihANJqQXLYaz0ubequiwQzKlwpybD2NWrqbiGOCeYBp7JeGlh6/Djv31WL+t2rtV8YaxGRiVPeCiLY0Kdh04EXRFBuAuTu3YX4+Rw/p7J5Wq4kJTVXnQ1SKAu0jmrLThBxOzceCIHZeYwzsOIooN7hwzunPs0E7IuzZeyLGRE2Ecmodz9jocW7EQrfZjcFbakJw5wptrwXKg0XkOT/1xM377aD5eevg6fLX/ODZsu7AN+/qxg3FV9kDUnnTgydc+x7ETDuzYX4/vXzc0YO4QESUKXQtkRERERKHyTBKTM4f7bKVUzx9UraU45uGZ/I0c1s9nK5FLUX2uS6KIdVsPa+pz/bZqn74EUYJsK9H0s7KtBANvy8XT918b9nEQUewQRAnynjL0slgx8LaHvO+3nq7HqZLlOPPlJ1DOygDcuXBx1nWUA0mSiKQeEv6z4yhyMlMx584x3mv1difeXLsHa8sqITe5t1Su31aNOXeOCZg7RESJIiYKZE6nEx988AFKS0tRWVkJWZaxefNmnDp1Cs8//zzuvfdeXHHFFXoPk4iIiGJI24OrQymMtSW1+Vl/E0N7Y7Omvvy1c8kNmn7W5fBdERLucRBR7Gjc/i8cX/0b9BwwGKLBCKXZiZb6w4Da5um0jvYrxYJ9v4293FO8jzdX4cW3v0TGoN4w9uoB59lWVNc1QjlfAAvUFwtjRJSodC+Qff311/j5z3+OY8eOQVXdYe05l+zw4cNYs2YN/vGPf+CZZ57BlClT9BwqERERJbDU3v6fsq2lnWRO0fSzkik1ouMgotghmVMAVUHL8arg7fzkQrDvt/Nsq7eNoqj45tiZoP0zK4iI3Dr/T61hUF9fj5kzZ6Kmpga5ubmYN28eLr/8cu/1/v374+qrr0ZrayuKi4uxfft2HUdLREREicqlKJg0brCmtjeMzfBuUQLcZ5CZc/M1/aw5N9+7VTTc4yCi2NGVXOgoB6rrGlHf0IQbxjIriIhCoWuB7LXXXsOpU6cwffp0vPPOO7jnnntwySWXeK+np6fjr3/9K+6++26oqoq//OUv+g2WiIiIEpYkihiVPRA5GcFXeOVkpGJU9gCfLUqCKMGYlQeDxRr0Zw0WK4xZuUG3inZlHEQUO7qSCx3lgKKo+Pjzb3BVDrOCiCgUuhbISkpKYDQa8fjjjwdt9+ijj8JsNnMFGREREenGpahYMHNCwAlnTkYqFsyc4HclhqooSCssDjgZNlisSCssDrp6LBzjIKLY0ZVc6CgHKqrtaHUpzAoiohDoegZZXV0dsrOz0atXr6DtDAYDMjMzsW/fviiNjOLFR/9zm95DICKiBCGJAoy9kvDSw9dhx/56rN9WDXtjM1J7G3DD2AyMyh4Al6L6XYkhiCJEgwnpRYvhrLRBtpXA5bBDMqXCnJsPY1YuVEXR9KCBroyDiGJHV3JBaw4wK4iItNO1QJacnIzjx49ramu322E2myM8IiIiIqLAPBPJkcP6YVT2AO/7nhUYwSaanklucuZwGLNyve97VoeE8hTOroyDiGJHV3IhlBxgVhARdUzXAtmIESNQVlaGL774AldffXXAdp9//jlqamrw7W9/O4qjS2yTH10TUvtorOQ6tOhHYetraPEHYeuLyIP/GyVKHFKbSWsok0xBlNq87vyJF10ZBxHFjq7kgpYcYFYQEXVM1zPIpk2bBlVVMXfuXGzdutVvm88//xyPPfYYBEHAj3/84yiPkIiIiIiIiIiIujtdV5DdeOONuP322/Hee+/h7rvvRr9+/eB0OgEADzzwACorK1FdXQ1VVVFQUICCggI9h0tEREQRoCoun9UTbV/HIpei+KzIaPuaiOKbnrnEfCEi0oeuBTIAWLhwIYYOHYpXX30VJ06c8L5fUlICADAajbj33nsxe/ZsnUZIREREkeA5fLqpqtx9OLXcAMmccv5w6jzNh9ZHk+dA610HTmDd1sPeA68njRuMUdkDeeA1UZzTM5eYL0RE+opagWzz5s1IT0/H4MGD210rKirC9OnT8eWXX+LgwYOQZRnJyckYMmQIxo4dC5PJFK1hEhERURSoigKl2YHalYvQXFPhc00uL4XBYkVaYTFEgylmimQuRYXz7Dk8/fpm7Ku2+1wr2X4EORmpWDBzAoy9kjiJJYpDeuYS84WISH9R+4tz7ty5mDVrls97S5cuxapVqwAAPXv2xDXXXIO77roLDzzwAO655x5MnDiRxTEiIqJuSBBFv5NQj+aaCtSuXBQzxTHAfai1v8mrx75qO55+fTMnr0RxSs9cYr4QEekvan912u129Ojhu2Bt6dKl+OADPqmNiIgokaiKC87KnQEnoR7NNRVwVtqgKkqURhaYS1GwY//xgJNXj33VduzYXw+XokZpZEQUDnrmEvOFiCg2RG2LZWpqKvbv34/3338fY8eORc+ePQEALS0tqKmp0dyPxWKJ1BCJiIgoCgRRgmwr0dRWtpXAmJUb2QFpIIki1m09rKnt+m3VGJU9IMIjIqJw0jOXmC9ERLEhagWym2++GW+99Rbmz5/vfU8QBJSXl2PSpEma+hAEAbt3747UEImIiChKXHKDtnaO4Csqosne2BzWdkQUW/TMpdNyM4Zc2gfGXj3gPNuK6rpGAEDGoN4+7zFfiIgiJ2oFsscffxxOpxMff/wxnE4nAHfBS1W1LxEOpS0RERHFLsmcoq2dKTWi41AVFwRRCvj6Yqm9DZr6vLidS1EgXXRe0cWvQ7k3EUVepHMp2Hf+8btGo7epl/eas6kZKkSYkpO879U3NGF/1alO3ZuIiDoWtQKZwWDAc889h+eeew4tLS04d+4cxowZg6uuugp/+tOfojUMIiIi0pmquGDOzYdcXtphW/PIfLS0nEPPnklwKWrYDqhWFQWCKKKpqhyyrQQuuQGSOQXm3HwYs/K81z1cioJJ4wajZPuRDvv+7jVZ3kLYrgMnsG7rYdgbm5Ha24CCa4fgiszUkO5NRJEXUi7l5of0PQ2UN72vuhm9LsuBIIqQ6vbh+C7fPDBl5eF0YxP+/H97oCgqbhg7GN/OS29XeCciovCIWoHsYj179kTPnj1hsVgwaNAgGI1GPYZBREREOhBECcasPBgs1qAHYhssVhiH5uLNtXuws6IeC2ZOgLFXUpeLZKqiQGl2+H1anVxeCoPFirTCYogGk3cCLIkiRmUPRE5GatCDtK/KHoCczFQ4z55r90S63sYkzCjIQetZB46/o/3eRBR5IeVSCOePBcobMdmM1ImFUM7KqH3nuYB5MHDqE7jz5mw88nIpSrYfQU5GatiykIiIfOn6l9f69evx8ssv6zkEIiIi0oGqKEgrLIbBYvV73TMxrDspY21ZJfZV2/H065vDMiEURNFvccyjuaYCtSsXtStQuRQVC2ZOQE6G/+1VORmpKC4aD0kU2hXHAKDg2iwM7Gv2Wxzr6N5EFHlacimtsDikJ1gGyps+o29BUsogv8Uxj+aaChx/9zkM6mdGwTVZABDWLCQiIl+6rCBr68yZM9i/fz8cDkeHbSdOnBiFEREREVEkCaII0WBCetFiOCtt7m1HDjskUyrMIyfCODQPdSdlzH9tM+SmcwDcE8Md++sxclj/Tk8OVcWFpqryoCtEAPfE1FlpQ3LmiItWkQkw9krCSw9fhx3767F+W7V36+QNYzMwKnsAXIqCHfuPtyuOiaKAW6/JgOPQzk7dm4giL2gu5ebDmJUb4tbKAHkjiOgz+mY4D+3QlgeHdqLgmmF4f0MFFEUNSxYSEVF7uhbIWltb8fTTT2P16tVwuVwdtudTLImIiLoPzyQzOXO4z5alE3YHPli7B2vLKr3FMY/126oxKntAF+4pQbaVaGor20rabaXyTEZHDuvnMw6Xop6/LmLd1sPt+soY1Bv9Ukw4vrHz9yaiyAuUS55VY6EUrQPlTc8Bg9GjT3+c2vC2pn7kXRsx8LY8ZAzqjW+OnQHQ9SwkIqL2dC2QLV26FO+99x4A97lkKSkp6NEjJha1ERERUZQIooTfvrsDR443wnm2FdV1jVAU/0+utjc2d/l+LrlBWztH4LPG2h6QffEqDn9jNPbqEbZ7E1HktX2ibGdXc/r7zosGY8Brfvs4nweeHAHCk4VERORL12rUhx9+CEEQ8Mtf/hIzZsyAJEX+0eYulwsrVqzA6tWrcejQIbhcLgwePBi33nor7rvvPhgMFx7Nvm3bNkyfPj1gX5MnT8ZLL70U8TETERF1dy3nXNhdearDdqm9DR226YhkTtHWzuT/rLGO+Buj82xrVO5NRLHF33deaXYGvOa3j/N54MkRIDxZSEREvnQtkNXX1yMjIwP33ntvVO7ncrkwa9YslJSUwGg0Ii8vDz169MDOnTuxZMkSbNy4EX/961+RnJwMAN7tnFdddRUuu+yydv2NHj06KuMmIiLSk6q4fFZTtH3dVS5FwaRxg1Gy/UiHbW8YmwGXonbpDDJzbj7k8tIO25pz89udN+RSFJ/VY/5e+/ss1XWNONnggGlk5+9NRNERrswLlDct9YfReuYEzCMnasuDkRNxwu5AdV2j972uZiEREbWna4FswIABEKP4h997772HkpIS5OTk4PXXX8egQYMAAKdOncKsWbPw1Vdf4Xe/+x0effRRAMCePXsAAI8//jjGjBkTtXESERHFAk+Bpqmq3H1YtdwAyZxy/rDqvLAVcCRRxKjsgcjJSG13uP3FcjJSu3zmjiBKMGblwWCxBj0c22Cx+pw/5JmI7jpwAuu2HvYezj9p3GCMyh7ovR7osyiKirWfV2NGQej3JqLoCHfmBcwbVcGZ7Z+ib/6d2vJgaB4+WLvHu/U8HFlIRETt6frPkgUFBaiursbevXujcr/Vq1cDAJ544glvcQwA+vbti6eeegoA8I9//MP7/u7duyGKIq644oqojI+IiChWqIoCpdmBo2/8CrXLn4FcXoqmb2yQy0tRu/wZHH3jV1CaHd6Dq7vKpahYMHMCcjL8by3MyUjFgpkTvIfhd4WqKEgrLIbBYvV73WCxIq2w2PvZXIoK59lzeOyVUsx/9XOUbD+CnRX1KNl+BPNf/RyPvVIK59lz3rEF+iz/LKtE3UkZA+/Qfm8iio5IZV6gvDmz/ROcs9ch7Y4ngubBwKlPoO6kjLVllQDCm4VERORL1xVkDz74ID777DM8+OCDePrpp3H11VdH9JD+1NRUDB06FLm57f9VdsiQIQCA48ePAwBaWlpw8OBBDB06FEajMWJjIiIiikWCKKJ25aKAKxuaaypQu3IR0osWh+V+kijA2CsJLz18HXbsr8f6bdXeVVo3jM3AqOwBYdtOJIgiRIMJ6UWL4ay0uVeKOOyQTKnnV4rk+qwUkUQBT7++OeDqtn3Vdjz9+ma89PB1HX6Wk2daMDA1RfO9iSg6IpV5PnlzyAZ514XvfGvjKfS6JMfvNU8enG5swvJP92DclYPCnoVERORL1wJZcnIyHnvsMTzwwAO47777IEkSzGYzBMF/4AuCgLKysk7f7w9/+EPAa7t27QIApKWlAQAqKipw7tw5pKen4ze/+Q0+/fRTHD16FP3798ctt9yCn/3sZ+jTp0+nx0JERBSrVMWFpqryoNt+APeE0VlpQ3LmiDBttXT///+Rw/r5bB/yrJQI54TQM97kzOE+2xk9q0M8112Kgl0HTgTd+gm4i2Q79tdj5LD+57daBv4swvlrHd2biKIj0pmnADh+QkZS6uUYeNuF7/wJuwMfrjsAQMWksb7XVEWBoii4pHcyHpnmPvc4EllIREQX6Fog27RpE2bNmgVVVaGqKlpbW9HQEPhxx4EKZ12lqipeeeUVAMDNN98M4MIB/Rs3bsTWrVsxbtw4pKWlYdeuXfjzn/+M9evXY8WKFejbt2+H/a9atcq7vbMjnnPPKDZ99D+36T0EooTB7NSPIEqQbSWa2sq2krCflyW1mXhGcjLY9uDttpNeSRSxbuthTX2t31bd7lygYJ+lo3sTdQazM3SRzjxJFLH8k30o3XEUGYN6w9irB5xnW1Fd1+g9V2z5p/uQMag3/ivPgjtuyoEgimibfCyMERFFlq4FsmXLlqG1tRVXXnklpk2bBovFgqSkpKiP43//93+xdetW9O/fH/fddx+AC38wjB8/Hq+88oq3EHbq1CnMmTMHn3/+ORYsWIDf/va3HfZ/9OhRbNmyJRyXFioAACAASURBVHIfgIioG2J26sslB/4HK592juArq7oDe2NzWNsRRRKzs3MinXn2xmYoiopvjp3xe91zLaW3AXd06g5ERNRVuhbI9u7diz59+uDNN9+EyWTSZQyvvPIKXnvtNfTs2RMvv/yytxA2b948zJgxAwMGDIDZbPa279u3L55//nl897vfxb/+9S8cP34cAwcODHqP9PR0jB8/XtN49uzZg8bGxo4bUlgcWvSjsPU1tPiDsPUVDYn82Sk+MDvDQ1VcPiuV2r4O9J5kTtHUv2Tyf6h+qGOIRh/BuBTFZ7XXxa9Texs09aG1HVEkJVp2BsoGLRlxcZtQM69tZngEyhLmCBFR7NO1QJaUlIT09HRdimOtra145pln8M4778BgMOC3v/0txo0b5zO2rKwsvz87aNAgXHnlldi2bRt2797dYYFsypQpmDJliqZxzZgxg//qR0QEZmdXeQ56b6oqdx8ELzdAMqecP/g5z+e8K582vVPRv+CnMOfmQy4v7fA+5tz8gIfKaxlDR9sKw9FHMJ7DrncdOIF1Ww97D9OfNG4wRmUPhEtRMGncYJRsP9JhXzeMzeDh2aS7RMnOgNkwciKMQ0dBbT0HoafkNyN8fnbXRvSbdA/MI7VnnsPZjIojp89nhPs7HyxLRg7rzxwhIooDuhbIrrrqKmzduhUOhyOqRTKHw4GHH34Yn332Gfr06YPf/e53PsUxLfr37w8AaGpqisQQiYiIOk1VFCjNDr9PZJPLS2GwWJFWWAyxZzKOLX8WTZU7fdr06NMfffPvhMFiDXpotcFiDXgWj+YxGEwBC1zh6CMYl6LCefac3ydUlmw/gpyMVCz62bUYlT0QORmpQQ/qz8lIbXf+GBFFhqZsmDoPrWcdEJJ6+mSEv58NNfNkZzNeeHMbLP3NWDBzgvdMsUBZMutHeSi4dghzhIgoxul6GuyDDz6I5uZm/Pd//zecTmdU7nn69GnMmDEDn332GS699FK8/fbbfotjCxcuxOzZs3Hy5Em//Rw54v4XIM9TL4mIiGKFIIp+J44ezTUVqF25CILUAwbLsHbXz2z/BOfsdUi74wkYLFa/fRgsVgy8o9i7Eq3TYwhS2ApHH8FIouB3Quuxr9qORW9sgUtR8eR9E5CT4X87aU5GKub/v6u9T5gjosjSlA3v/ho9+vSDvLvMJyP8/aw386bOC5p5aVPnofXMSZiNBhRck4V91Xb8Z0cNJFEMmiVv/nM3TjQ0YcFM5ggRUSzTdQVZXV0dfvjDH+K9995DWVkZxowZg0GDBiE5Odlve0EQ8Pjjj3f6fi0tLbj//vvx9ddfY9iwYfjTn/4UsMD11Vdf4euvv0Z+fj5uv/12n2v79+/Hnj17kJKSguHDh3d6PEREROGmKi40VZUHXQUBuCeQzkM70eeqm9BQthpQLxS6lCYZx1YsxKXT5iO9aDGclTb3FiaHHZIp9fwWpjzUnZRxsq4BOZmpPtuBQhpDpQ3JmSP8bIHqeh/BuBQFuw6cCLqaAwC+2l+PfVV2WAdfgpcevg5f7T+ODdsubJ+6fuxgXJU9ELUnHTha72j3uyCi8Ao140zDRnszAlD9/my7zDu0E/Kuje0y75y9DsdWLET/785EwTXDsGrjAYy9chC+2n88aJY0Os/hid9vwitz8pkjREQxTNcC2ezZsyEI7vA/ffo01q9f733dlqqqXS6QLfn/7N17eFNlgj/wb07apknT0rS0pcWmtPYiSC9AgdZRQBiRuuPqqIuI4k/lMrv+5pERHW8ssMB62V101Pk544jos7IqIq7OBRjZpRRmBByQ0oswLQyFFuidlDZJmzbn5PdHmrRp7m3aFPr9PM882nPevO97Ms/51vfte97z9ts4efIkEhMTsX37dvuG/K48+OCDWL9+PX7xi19g+vTpuPHGGwFY32L54osvQhRFrFixAmFhYYPuDxERUaDJBDn05SU+ldVXHET8PU8hLC4Z3U0XHM6ZdfW49OFzGF/0E0RkzXZ4lLJFZ8AXe05jz+EazJySgCmpjr9P/epDeYnLxzQDUYcnckHA/mN1PpX945EaTEmdgd//6RwKpk7AmqUz7OeadUZs9/BdEFFgDSbjrp7YZ88Id5+1ZV7U9DsRNe0OxN/zVN+5q824UvIJ2r/7GlKXvrfeXMyanIC4aCU+2n3Ka1/qWwz48PeVePKBPKRMiGKOEBGNQkGdILv33nvdTogFmk6nw/bt2wFY30T5yiuvuC27ZcsW/MM//AO++eYbfP3117jnnnuQn58PpVKJb7/9FgaDAUVFRXjiiSdGpO9ERET+EPVtvpUzWFc8CAqVy/NSpx4dpf8D9eRb8ItPv0NDqxHGLjNqGzsg9T4GpOswBaQPw1WHJ+767q7cn8su4f3fVUKbEGnfc8iX74KIAsvfbLCYu336rNSpR9s3X6Dt8JeIzJuPuLv+CU2/+6V18/5+q2xt9Ub3vnHS13u/vtW6pcx/bD8GfaeZOUJENMoEdYLstddeG7G2jh07hq6uLgDA999/j++//95t2S1btkAQBLz11lv47LPP8Pnnn6O0tBSCICA9PR2LFy/GAw88MGKTe0RERP6Qq6N9Kxdh3QtHMrnfB9RW5tyldpyvb3c6r+kdIA61D0OqQz241Rbu+u6unLHLHJD6iGho/M0XWUjfEx8ePysTEBaXDEGhglw5DgDQ3VjjMDnWv9623sksf7PEYBJd5qk/dRERUeAFdYJsJC1cuBBVVVV+fUYmk2HJkiVYsmTJMPWKiIgosCySCHXOPOuKBy/U2XNhvtqM7mb3jxqqs+eiRWdAbWOHy/Pz87UQJYvTHmQ+9yFnHiySBJkgQJQkyO1vmvNeh6BUI2r6nYj+wf0Oxy2SCJkg99iuKElYMDMZJScueu3j/Hwt9J3duG3aRNw+Ixlx0X17pTa3deKPR85j7+Eal98FEQXWYDJOOSm794UiFpeftWVJ1PSFCIka39eWuQeqzJkwd7RC6tT31ZszD6LZjAxtNPTGbr+yRJQsWPfEbHtudBh7XJZhjhARjbwxM0FGREQ0FsgEOVSpuVAkZXjcxFqRlAFVWi6ulHzitDpiYJkv9py2P/7TX5ZWg7zMOKfjFgi+9yE1B5JkgQxAxdkW7D9WB0GQ4Z/uy/ZYR4gmEYlL1yE0OgHGmjLrSwT0bZCro6HOmQdVaq594s0VuSAgLzMeWVqNx821+1/j/bdnoOr8FXy0+5R9c+35+clYVjQZRYWTMD7a9UuGiChw/M24q999jXEz7rQfH/hZhyw5dxJXDnzclyXZ8xAz9yFE5sxH/aebYdbV23PrcrMeD8zPhChZ/MqSTlMPmq8YsaxoMu6YpcX6946gvsXgUIaIiIIjqBNkkydP9qu8TCbDqVPeN8EkIiIayyyShAlL1qJhx8suB5CKpAxMWLIWkmhG1yXXA0xbmStXjdhzuMbpfJZWgw0rC5xWOoiSBcauHvT0mBG/+CU07XzFYx8skghDl4iNW4+iqlaHSFUo3nx6DuTmLphN7Ziw+EU07HzVoQ5BqUbi0nUQwpS49OELTvXrKw/Z6xcUEW4nyUTJgg0rC+xtu7rGdctno6HVgHc+L8Ozj8xAzLhwfPfXRvuqj5ITF63fxYoChxVwRDR8fMq4xS/C3N4K9ZRb7JPlFkkELBZMePAlNHz2Cnp09dYsCQ33nCWLX0TiQ+vQsvc3GH/Pz9DYqsczbx3CxDg11i2fDWV4CNYvn41N2771mCUtbZ0ICxEQMy4c639zGM88PAObVhVizZsHkTRe7TJTiYho5AR1gsxicf5rtDuRkZHD2BMiIqLrh0wQICgiMPHx12CsKbeurjLoII/QQJ09F6q0XLToDECXCUkPb4DxXBn0FQf7yuTMgyo1BxZJRIxSjucfnYni47X9Vk1pkZcZ53IgJxdk2Lj1KNqN3di8qsDah4H1Z8+DKi3HPmjduPUb+6Cy6JZUxMeocenDFyB26pH40DqnOiKnLURodILLAa2N6fIZNOx4GRMfd7/fqVyQQRUeii2r5+BkdbPDNd6en4xpmfFoaDXYV3hs3vYttqyeg6LCVOzcX22vp6pWh43vH8WW1XMC8P8eEXnjS8ZJ3V2QR4xzWEkqE+Ro+OI/EDv/UUx8/DV0X6n3LUt2voqJj7+GxKXr0diqx7r3jkLf2YOqWp09F6QwC7asnoPS6iYcOF7nNkuiVGHYsnoOMpI19s++vnouEsdHcHKMiCjIgjpB9vvf/97tuc7OTjQ3N2P//v346quvcP/99+OFF14Ywd4RERFdu2wDQmXKzVCl5tiPt+gM+GLPaew5XAOZDCgqTEVRYTri78m1l7FIYm8d1n28stNjHR77EXsftxw4kBMlCRVnW+yTXU+/echl/S06A662GBAfo0RFdZO9vCDIcFehFoZzZfbB6qUPn7PuDTTtDsTf85S9f8aaMo+PVwHWga2xphzKlKkeHrWUQZIk3DTJ8dGmZp0R23u/J32ndbVYVa0OpdVNWFSYgl0Hzjg8dlpVq8PJ6mZkp4/nAJdoBLjLOOteY30b88v67WvYeb4Sxr8eRdeFSkTNWATNDx7wK0ssCVlY89af0G7oeyumLRempo3H5WY9bohTY83SGfbzA7OkHgaHHLHmRiwA50wlIqKRFdQJsoyMDK9lFixYgJtuugmvvvoqpk6dih/96Ecj0DMiIqLrg22Sa8e+KnxTfhm1jR0OEzs791dj14Ez0CZEQhUegpvTYvHoXVMc6hj42KC7QZxcELD/WN+G/x3GHqf6jV1m1DZ24P7b0/HoXVMcymsTIhEbHYGmgyX2Y1KnHm3ffAHj2RO4YcUWtJ/Yh6jpC6EvL4Ev9OUlDoNnVwRBwK92laLmcrtDH13tu3bgeB3WLJ0BbUKk01voio/Xcv8gohE28IUcfavFBKdy+ooSANZcMVYfQ8zch/zKkvh7chATFe4wQQZYc2FaZjz+5y+1+O+Ss055NzBL+ucIc4OIaPS4Jjbpf/jhh/Huu+9i+/btnCAjIiIahMpzrU4TOjaSZLGfCwv1/PZHb3QdJgiCzGmAOLDt7h7RXt5GFW79zxJR3+ZUrxAWbv1cyyW3ZVwRDe43ze7vSrvJ7ffTn62/tr66OkdEo1P/3BAUKqdjHj/bmyWe7v3uHtEhT93pnyPMDSKi0eOamCCTy+VITExEdXW198JERERjlEUSHVZT9P9ZE6nwqQ5fy7mzqDAFTy/JRWx0hP1Ya5sBe47UYu/hGvvm9raJuP7tGbvMAAC5OtqpXslkBAAIoWFuy7gij9D4VM7f78fW18HUQUT+8ZRt/pTrnxu2TPE3Szzd+77+gaF/jiTEqHz6DBERDb9rYoJMr9fj/PnzCA0NDXZXiIiIRh3bJtSdFyqtm1Xr2yBXR/dutp8LiySi6JZJKDlx0Wtd8/O1g34bo0UScWvuRBjOlaHpYF8/IrLnYVlRLhbOSsa6946ivsWAnPQ4iJKEBTOT7f2qbexAa5sBEdnzoK885FB3d3MdzO0tCE+5Geb2Fqiz5zqVcUWdM89hk25XBvbDk9vzk9GsM6K2scPpnPW74ybbRIHiPdtsb6f0Xg6wQN0vW2yZ4nOWZM9Fi87g9t43myXkpI/HrmLP+5kBjjmy/O+nMjeIiEaJoE6QdXZ2uj1nsVjQ3d2NmpoavPHGGzAajbjttttGsHdERESjn0WSIJkMaNjxstNG0/rKQ1AkZWDCkrWYnKLBtMw4lFY3u60rS2vdqN7UbQZCZH4N2Kz9MHrsR/zil7B5VQHe2VVu33MnLzMeWVoNqmp1kCQL9hypxbKiXCiSMhzrsUhoP7EPMfOW2vchcyozgCIpw+v+Y4B177T+/XAnS6vBtMx4bN9z2mlPIdt3R0SB4Wu2CQqV1+yxlouAKq1ftvTLFJ+yJC0XX3i4903dZkzL8i9HMm6IZm4QEY0i/v95OICmT5/u9n8zZsxAYWEhli5dimPHjkEQBKxatSqY3SUiIhp1ZILgcmBoY7p8Bg07XoZMELD28VnI0rp+5DBLq8G65bPR0GrAv37wF79XM/jSj6adryAhVo21j8+yvwlTlCzYsLLA3q+9h2vQ2KpH/OKXoEhyfJlP+4mv0aNrRMRNhTC3t2LC4hedytjYBsW2N9p5M7AfA/X/fvYcrnE6t2Flgf2aiGjofMkUw+kjkAlynzPQIomYsGStPTdsmeItS+IfXIvGVr3Le3/d8tloaeuEIiwE7YZurFs+26ccqa7VMTeIiEaZoK4gs1h8+4WQlZWFp556Cvn5+cPcIyIiomuHRRLReaHS48oHwDpANNaUQ5lyM7asnoPS6iYcOF4HXYcJmkgFbs9PxrTMeDS0GrD+vSOobzHgZHUzstPH+zRRNph+yHrrlQsyqMJDsWX1HJysbkbx8Vp8sq8aT/xoMiY+/hqMNeXWR6YMOsgjNDDrdQgfFweZEAmpu8ta5lwZ9BUH7WWsj1XleH20sj9X/bB9P/PztcjLjIMoWXCp2YCZUxJcnuMjUkSB4VOmyASo0qfDeK7Mj+yZCkGhcsgW3Z93Imb+Mpd50z9LWht1Dvf+wNx88v4cpCWNg8VicZMjycjLjEdbRxeutJuw+R9vYW4QEY0yQZ0g279/v8fzISEhiIqKglKpHKEeERERXTtkghz68hKfyurLS6BKzcGJvzYiOSESa5bOsJ9r1hmxfc9p7DlcA32ndRP94uO1Pj/6M5h+9GcbIGanxzq0KUkWKFNudijff9JLFmLdm1Q5aSpUabkOZaz98m+hvLt+2FZ4yAUZslKiMSV1hstzRBQYvmRKWFwyQqLG48qBj32qc2D2uMoWV8eOVtTjQkM75ucne8zN4uN1yFsaD8CaXe5yJDoyHJER1k36mRtERKNLUCfIJk6c6PG8JEkQBrFJMBER0Vgh6tt8K2ew7onz3V+bsHHbt9AmREIVHgJjlxm1jR1O++roOkzD2g9XBr4YQBBkABzfCtd/0sv2drqBb7Pzd2LMWz/6D2I9nSOiwPGWKYJC5VM5e30DsseX3JAJAv7wTQ3KzjTjk31VHnOzf2Zas8sxGxxzhLlBRDQajYrZpz/84Q9YuXIlzGbH1yb//Oc/x49//GP87ne/C1LPiIiIRje5Otq3chHWPXHCQuWQJAvO17fjVM0VnK9vd5ocAwBNpGJY+0FE5Im3TJFMRp/K2esbZPbYslCSLKht7ICxywxVeAi0CZG9E2HWCbGMZN/6QUREo1fQ9yB76aWX8NVXXwEALly4gBtvvNF+/sKFCzh9+jSef/55HD9+HJs2bQpWV4mIiEYdiyRCnTMP+spDXsuqc+bBIonIzRiPXcWe9+sBgPn5Wp/3x/G/H77vDeaKKEkOK7kG/kxE1zZfMqW7uQ7m9haoswOXPa6yZcHMZHz310YU3ZKKRYWTEBfdt/VLa1sn6po6cENCJMaPU7qth4iIrg1BnSDbsWMHvvzyS6hUKvz0pz9FYmKiw/n33nsP+/btwxtvvIHPP/8cBQUFuOuuu4LUWyIiotFFJsihSs2FIinD4ybViqQMqFJzIEkW5GXGI0urQVWt+0cds7Qan/cfG0w/Bss26Cw/24LiY30vGZg/07pZNgelRNcHnzLFIsF49gSipi8ccvbY/hhQcbYF+/tly9I7s5CXGY9fPns7YscpUVrVhI92n7KfXzDTuvF+p8mMbb+rRM3ldofj3ISfiOjaEtQJsi+++AIymQzvvfeeyzdUxsTEYMmSJUhLS8Ojjz6KTz75hBNkRF7c/cxvPZ7//ev3DFvb516+P6D1pa39IuD1DmedRMFgkSRMWLIWDTtedjlAVCRlYMKStbBIIgxdIkzdItYtn43N2751OUmWpdVgw8oCvwd2vvdjcKvHREmCsdOMje8fdep3yYmL1n6vKIBKGcJJMqLrgC+ZEjG5EBZJHFL2iJIFxq4ebNzqnC1VF67gnefmIyxEjmffOuQ2e9Ytn42/+0Eq1rx5EB3Gnr5MWlkAVXgoJ8mIiK4RQZ0g+9vf/obU1FSXk2P9zZo1C8nJyTh16tQI9YyIiOjaIBMECIoITHz8NRhryqEvL4Fo0EEeoYE6Zx5UqTn2geHGrd+g3diNTasKsWX1HJRWN+HA8b7VErfn21Zi+b/qwZ9+DIZcEFxOjtlU1eqw8f2j2LJ6zqDqJ6LRxZ9MGUr2yAWZy8kxALht2g0IDZHjxXe+8Zg9m7d9iy2r56CoMBU791fbj2/cykwiIrqWBHWCTBAEhIaG+lQ2MjISzc3Nw9wjIiKia49t4KdMudnhMSKLJAEAJAAV1U32Ad6aNw+iqDAViwpTsGbpDHv5Zp0R9S0GxMeohqUfg50cEyUJ5WdbPD4WClgHpCerm5GdHstVZETXAV8zZbDZI0oSKtxkiyDIsKhwEkqrmnzKntLqJiwqTMGuA2fsLz7py6TxXEVGRHQNCOoEWUpKCqqrq9HQ0IAJEya4LdfS0oLq6mqkpqaOYO+IiIiuLTJBPuBn66BQLgjYf6zOfrzD2IOd+6ux68AZaBMioQoPgbHLjNrGDsydNtFh0iyQ/RgsuSCguF//PSk+XuvX/mlENPr5min+Zs/AbOxPmxCJuGglPtrt2xMsB47XYc3SGdAmROJ8fbv9ODOJiOjaEdQ/ry5atAhmsxlPP/00dDrXf5np6OjAM888A1EUceedd45wD4mIiK4Pug6T0zFJsuB8fTtO1VzB+fp2SJLFZbnRwNd+jdb+E9HopAiTY0pqDCYlRkHot8pLFW5dR+Bv9tg+N/A4ERGNfkFdQfbwww/jq6++QmlpKX74wx9i3rx5yMzMhEqlQmdnJ86ePYuSkhK0t7cjJSUFjz32WDC7S0RENOpYJNFh1cTAn200kQqf6vOl3MC3RQ7m7ZH+1hGI/tvaCET/iWjwfM2t4SZKEn76D3n2n5vbOvHHI+ex93ANZL1zZf5mj7HL7PI4ERGNfkGdIIuIiMD777+P559/HseOHcPu3buxZ88e+3mLxfr8fm5uLn7xi19ArVYHq6tERESjim3T6c4LldZNqfVtkKujezelznXYlFqUJCyYmYySExe91js/X+t2k37b8YqzLdh/rG9z/wUzk5Hn4+b+g6lDlCTM96v/AyfArHX29EiQKwSUn2lB8fHB9Z+IBs+f3BpO7nJofn4ylhVNxqKCFEAms2ZPvm/Zc3t+Mpp1RtQ2djgc95SpREQ0ugR1ggwAkpKSsH37dpSWlqKkpAR1dXVoa2tDeHg4Jk2ahNtuuw2FhYXB7iYREdGoYZEkSCYDGna8DNPlMw7n9JWHoEjKwIQlayEoIiATBMgFAXmZ8cjSajxuNp2l1bjdK0eULDB29bh821vJiYvI0mqwYWUBVOGhbgeCg61DLgiYNsj+29rs7hERIhfwz+8eHnT/iWjw/M2t4eIth6ZlxmH98gJ0mszYd7QWRbdM8il7pmXGY/ue0/YN+m3Huf8YEdG1I6jPE3z88cc4evQoAGDatGl4+umn8cYbb+CDDz7Ar371Kzz33HOcHCMiIhpAJgguB5k2pstn0LDjZYdBpihZsGFlAbK0GpefsU0Qif0Gd/3JBZnLAaVNVa0OG7ce9Ti5NJQ6REnChhVe+r+iAGLvW+v6t/nnk5cRO06Jzdu+HVL/iWjwBpNbw8FbDmVoNQgJEbDx/aPYvvcUGloNWLd8tsfsWbd8NhpaDdhzuMbpuLtMJSKi0SeoK8jeffdd6PV6HDx4EFFRUcHsChER0TXBIonovFDpdpBpY7p8BsaacihTpvauIpNBFR6KLavn4GR1M4qP1/Z7rEiLvMw4D49WSqg42+JxBQVgnWQ6Wd2M7PTxLh+THEodckGAShnipf/Oe4tVnG1B/pQElFY1Dan/RDR4g82tQPOWQ4Igw6LCSQ55sf69I9i0qhBbVs9BaXUTDhyvc8qeTpMZXxw4g/TkaGgiFbg9PxnTMuPR0GrApWYDslI0zBQiomtAUCfIrl69ivT0dE6OERER+UgmyKEvL/GprL68BKrUHPvPtgFadnqsw2M/thUO7gZwckHA/mN1PrVZfLzW5SNFgaoDcNV/yeF8//LlZ1qQlxmPj3afGlLbRDR4Q8mtQPKWQ9qESMRFKx3yor7FgDVvHkRRYSoWFaZgzdIZ9nNX9dY3VHaZevDE3VPtx5t1Rmzfcxp7Dtdg5pQETEmNGYarISKiQAvqBNnkyZNx9uxZ6HQ6aDSuly0TERGRI1Hf5ls5g+tVEs4TSd5XNug6TBAEGbQJkVArQzBOrcBVQzf0xh7UNnbY993RdZg81hESImD2lATr5/UmfHuqEWaz5FTOE1cTYe6YekSn/qvCQ2DsMjv029e2iWhwhppbgWK7x13lgSo8xF5m4PldB85g14EzDsdiohTYuOoW/Pt/fQe9scdltjBTiIiuHUGdIHvllVewfPlyPPTQQ1i+fDny8vIQFxcHhcL965CVSuUI9pCIiGj0kaujfSsX0ffHJ4skQibI3f7szaLCFKx5KBcx4yKcPnvlqhG7D1/A3sM10ES6/x2+8p6pSIpTIzSkb0Krxyzh+3Mt+NWuMtS3GgHAYx3+UoTK7f1fvWQa4qL7/juiua0TfzxyHnsP16DD2BPwtomoj6+5FRKdCMBVZkkALH7lmKvHrn/y42wc/2sjbs2d6JQH31bWA/CeF+frrXmRmnQDAEBv7MH5+naXfWCmEBFdO4I6Qfazn/0MMpkMFy5cwPr1672Wl8lkOHXKt0ckiIiIrkcWSYQ6Zx70lYe8llXnzLMPIDsvVEJfXgJR3wa5OhrqnHlQpebCIkle9/qxSCJuzZ0IqbsLANB5vgL6ioMOdS0rysXCWclobe92uZeZKElISYxCaVUTih328EnGtKx4/L/n5mPT+0dRdqYF8/O1bvdD84coScifkoAes7X/pVVN+Gj3KYe2lxVNxh2ztFj/3hHUtxgC1jYR9fE1t0I0iYj94aMAYM8ssSHDWAAAIABJREFUyATELFiGkIhoGGvKfMox28RY+dkWFB/rlzczrXuDJcVFoObiVac8+NGtaRBFyee8uD0/Gc06I2obO9xeEzOFiOjaEdQJsjNnPG/UOZDFwrfAEBHR2CVKFpjNFqhSc6FIyvC44bUiKQOq1ByI3SY0fLzWqay+8hAUSRmYsGQtBEWE20kyiyRBMhlhMfdAJshx6eN/cVtXwoNrEa+JhszF5Jix04yN7zu/Oa7kxEX7GyjXryjA6//1XcD2AJMLArJSYmDo7MGL73zjtu11y2dj06pC/GpXGfcfIxoGMkHuNbcEpRpJyzbBIvbg0ofWnBGUakx84t8hgwyXPnzBpxzzNW+0SVGounDFvnL1u7824pfP3o6wELnHz/bPi2mZ8di+57TTo9o2WVoNM4WI6BoyvO9R9mL//v1+/4+IiGiskgsyvPzhX9DYqkf84pegSMpwWc42WWWRJDR+/prbAanp8hk07HjZ4woymSDAcPoIQiJj0LDzVY91NX7mui65ILgccNpU1eqw8f2jCAuR4+ePzLC/NCAQ5IIMm7y0vXnbt5gQG4G1j88KaNtE1MciSZiwZK3b3IqZ97A1Z3a8bM+ZqOl3IjQ6wWv29M8xf/Lmn+7PtR8vuiUVseOUXj/bPy/MZgnVbspmaTXYsLKAmUJEdA0J6gqyiRMnBrN5IiKia4YoSag424LS6mase+8o/nVVASY+/hqMNeXWR44MOsgjNFBnz4UqLRei2YzOi1XoOl/usV7T5TMw1pRDmTLVaXLLIonovFAJVfp0GM+d9LhizV1doiSh/GyL2wGnTVWtDierm5GdHhuwR5Fs31kw2iYiRzJBgKCIcJtbyklTYawp68sZmYCo6Qv9zJ6bcfJsq8/3/NQbxyMkRIAkWbCocBJKq5r8yguzWcLmf7wFpdVNOODw6LgWeZlxfLSSiOgaE9QJMiIiIvKNXBCw/1gdAKC+xYDXPy3Fv/30NohxmYi/J8derkVnwP4/ncPdt6VBX7rPp7r15SVQpeY4HZcJcnSdr4QqNRdXDnw8qLrkgoDi3n57U3y8NqCPI/X/zka6bSJyZps4V6bc7JAT5o4rkAly655jvcLikhESNd7v7Ck/0+JTeds9P2tyAi63GBAXrcRHu33b69ieF70jqZz08ZiWGW8/b1s1xskxIqJry4hNkD3wwAOQyWR4++23kZiYaD/mD5lMhs8//3w4ukdERDTq6TpMTsf+4+MT0HWYoAoPgbHLjNrGDtyUosHdt6VB1Lf5VK9ocL9iQurptpYZQl2u+u2Kr+X8Ecy2icg1mSBH8+5fo6f1EiSTEUJ4BJKWbXbIGUGhAuB/9nT3iD6Vt93z0ZEKtOlNDsd8/ay832Od/XFijIjo2jRiE2SVlZWQyWTo6upyOOYPmYy/bIiIaOyamhaLq3oTahs7YOwyAwDGqRUorW52KGc7J1dH+1SvPELj9pwQGjbkujSRCp8+62s5fwSzbSJyT66KQkdZMWCREBafYj3WL2ckk9HpmAOZgLC4ZAgKFSSTEXJ1DAAgLFTuU/u2e76tw2TPTOYFEdHYNmITZK+++ioAIC4uzukYERHRWCdKksMqhP4/WyQRMkGOJQuzsGRhFlrbDNh7tBYtVzsxPz8ZJScuOtRV29iB1jYDIrLnQV95yGvb6px5sEiSyz3IwidNhbm9BersuYOqS5QkzJ/p3EdX7piVAkmSIIMFMqFvkGu7fn+JkoQFPrY9P1/L/YKIhln/eznm9ocRNeNOtJ/Yh/bS/3HKme7mOpfZIyjViJp+J6KmL0RI1Hj7canHBIskYVpWHHYVe96zDLDe8z1mCX853QhJsqC5zXWeuvss84KI6PozYhNkP/7xj90e6+rqQnFxMe666y6H85999hlMJhPuvfdeREVFjUg/iYiIRpJtkFVxtgX7j/Vt8nzPnDTcODEKMkGOzvOV0FeUQNS3Qa6ORkT2PDyyKBd6QxemZcUjS6tx2FhakizYc6QWy4pyoUjK8LjBtSIpw+X+Y4D1MShVai7aT+xD1PSFg6pLLgiYluncx4F+kJOIqWkxkAkCjDVl1g28e69XnTMPqtRcl5N4nsgFAXk+tJ2l1XD/MaJhZLt3Oy9UOt7b2XMRM28pInMXQH/6CKJn392XMxYJ7Sf2IWbeUvuxEE0iEpeuQ2h0AoznTuLKgY+dciI7LRY/yEnEN+X1bvtju+dLq5pgNksAgD8eOY9lRZOZF0REY5jv/5U5TA4fPoy5c+fimWeeQWNjo8O5vXv34tVXX8WiRYtw5MiRIPWQiIhoeIiSBcauHjz71iGs+80RlJy4iLIzzai6cAWTEiMhmYy49OELaPh0E/SVh9B5vhz6ykNo/HQTLn34AhTogdlsxvrls5GldXy0ce/hGjS26hH/4FookjJctq9IysCEJWthkSS3fbRIEiImF8Lc3ooJi18cVF2iJGHDigKnPtpMy4zDc4/MgGQyWK/3E8frbfjEer2SyeCxr66IkgUbVrpvO0urwYaVBfZNtYkosCyS5P7e/nQzLn34AoSwcERkzUZPW5NDzrSf+Bo9ukZMWPwilKm5SFy6DkJoeG8ubnabE889MgPT3ExiZWk12LCiAN1mEe/sKrMf33u4Bi1tnR6zinlBRHR9C+pbLMvLy7Fq1SqYzWZkZmaip6fH4fxdd92Frq4unDx5Ek8++SS++OILpKWlBam3REREgSUXZNi49ajTaoUnH8hFSEgILm1/2e2KLdPlM2ja+TImPv4aQkMt2LJ6Dk5WN6P4eK19FVprezfiNdGY+PhrMNaUW1duGHSQR2h6V1vkeF2VJRMECIoIyJSRkLq7rHWdK4O+4qDPdckFASpliMs+zs/X2ldjXNrh+Xobdliv1x9yQQZVeKjHtvmoFNHwkQkCGrzd2ztfxcTHX4P+9BGEayc7ZJbuzzsRM38ZEpeuBwBc+vAFn3Ji009u8XDPS6i51I4pqTFIHB9hPzc+WglRknrzognFx+uYF0REY0hQJ8i2bt0Ks9mMxx9/HM8//7zT+cWLF2Px4sXYsmUL3n//ffzmN7/Bv/3bvwWhp0RERIElShIqzrY4TY6FhAjITouF8VyZx8cZAetg0FhTDmXKVEiSBdnpsQ6P/oiSBbLegZwy5WaHxx9tK7F8eWTRVkYWEmqta9JUqNJy/arLtp+acx8lWCQRnRcq/bpe/x61lLlp2+JwnogCy997OyJrNmSCAIskucgsP+o6V46QGyZj6o2O93yPWUL52Wb8ra4NRT9IxZqlM+zn+vJAgCRJyE4fj7zMeBfnmRdERNeroE6Qfffdd4iJicGzzz7rsdzPfvYzfP755zh8+PAI9YyIiGh4yQUB+4/VOR2fPSUB8hA59BUlPtWjLy+BKjUH1iGb48Ct/0Bu4Cb3/kwwDaxjKHXJB5S1/awvL/Hp87brHQzntjnQJRpOMkE+qHvbVab4VVdFCeLTcvBfe0/hkaIp2Pm/Vfjbxav4y+lG+55j5xva8fRDfRNk/fNAcLkSlnlBRHS9C+oEWUdHB7KysiCXe34zVUhICJKTk1FVVTVCPSMiIhp+ug6T07FxagUAQNS3+VSHaHC/mfS1ZKxdL9FYEch729+6urpFAMCV9i7IZMBNKRoYu8yABYhUhflUFxERjR1BnSCLj49HXV0dRFH0OEkmSRIuXbqE6OjoEewdERHR8NJEKpyOXdVbJ83kat9+58kjXG8mPViiJDmstBr483AZyvVaJNFhVZtFEmGBzGEVyEhdB9FY5OoetP08mHt7YH32Mn7WFamyPha+8t5st7nGbCAiIpugTpDNnj0bX375JX7961/jpz/9qdtyH374IXQ6Hf7u7/5uBHtHREQ0fERJwoKZySg5cdHh+LenGiGaRaiz50FfechrPeqceX7tJ+a+P9aNpyvOtmD/sb6NqRfMTEZeZvywbkxtkUSoc3y/XqmnC7pDOzFu1t0IidSg83wl9BUlEPVtkKuje18akIurHZ344A+nIUmWEbkOorHG9mKOzguV1peADLgH/bq3s+fCrG/DleKPoM6e2/v5vhd/+FuX7qoR98xJBwCUn2lx2HDflge6ji7UtxgwJTWW2UBERMGdIHvsscfwhz/8Ae+88w5qampw3333ISMjAyqVCp2dnTh79ix++9vf4ne/+x1CQkKwYsWKYHaXiIgoYOSCgLzMeGRpNQ4b9ZvNEirOtSIvMxeKpAyPG1IrkjKgSs3B1e++hnrKLda3TQ5ikkyULDB29bh8o2bJiYvI0mqwYWUBVOGhwzKAlAlyqFJ9v17dn3chasadkAmCyzfa6SsPQZGUgfjFL2Hpwkw8/eahEbkOorHEIkmQTAaXb6i03YOJj2z0/d5Oy8WVkk+grzgIfcVBKJIyMGHJ2n65JvOrLnT1oEeU8M9vHXKba+uWz0ZMVDjW/+Ywfr4sn9lARDTGBXU9cWZmJjZt2oTQ0FDs3r0bK1aswNy5czFz5kzMmTMHTzzxBL766isIgoDNmzdj8uTJwewuERFRQImSBRtWFiBL6/jY4K92lcFsNmPCkrVQJGW4/KwiKQMTFr+IHl0jdCWfoGHHy4NeQSYXZC4nx2yqanXYuPXosA4cLZLk/XoffAk9ukYAQGh0Ahp2vup2oGy6fAZNO19BQqwaRYWpAEbmOojGCpkguJwcszFdPoPGz//Nt3u7N8vav/va4fP9c00mCDC3t2LC4hc917VkLbq7e6AKD/Waa5u3fYsJsRHISNYwG4iIKLgryADg3nvvRW5uLj744AMcPHgQTU1N9nMajQa33norli9fjptuuimIvSQiIgo8uSCDKjwUW1bPwcnqZhQfr7U/AnS+Xo8bJ0Zi4uOvwVhTbn18yaCDPEJjffwoLRc9ukbUf7oZUpcepstnYKwphzJlql8TZaIkoeJsi9tBpE1VrQ4nq5uRnT5+mFaRCRAUEa6vN2ceVKk51uvd8a9IengDjOdOelxFAlgH2MZzZSgqTMeuA2cgSZZhvw6iscAiiei8UOn1HuysKUPXpWqET8zwOcv668u1m9F5oRIte7ci8aF11rrOlUFfcdCpLqm7C6EhAk5WN/mUa6XVTVhUmIJdB84wG4iIxrigT5ABQGpqKjZv3gwA6O7uhk6ng1KpRFRUVJB7RkRENLxsA7Hs9FjkZcbZj4uSBbLec4qESVDd85T9nPlqM66UfIL27752GFDqy0ugSs3xs30B+4/V+VS2+HitQx8DzTaxJ8ZlIv6evuuwSBL0pw+jZc9vEBIVi5Co8bhy4GOf6tRXHET8PbnQJkTifH07gOG/DqLrnUyQQ19e4lPZjhP7oEy2/qFbmXKzQ0a5y7L+us5XQpWaA315Ccy6elz68DlETb8TUdPuQLyLXBSNHYi76ycoO9PiU/8OHK/DmqUzoE2IZDYQEY1xo2KCrL+wsDAkJCQEuxtEREQjauBb1PqvYGj66k2IhjYIChUkkxHdzXWARXKqQzR4Xi3hjq7DFNByQ/UfH5+ArsMEVXgIJsSq8PRDM9Bx4n8gdekhxCUDAER9m0912b4TVXjff/KM1HUQXc/8vQcBOLyZsnn3r9FRVuwyy/qTzCaH9qROPdq++QJth79EWFyyUy4qeyfguntEn/pnywNVeAizgYhojBt1E2RERETkSB4xDp01ZT6U03gt40pMlMLpmCDIoE2IhCo8BMYuM2obO1yWGw7j1AqUVjcDAIxdZgCAXB0NAJBMRoefvbF9J7Z6AEATOTLXQXQ98/keVMe4PG4xd3udHAMAIUThuj2LhO6mC87t9d7zYaFyp3Ou2PLA2GVGQozKp88QEdH1iRNkREREo5QoSRBggTpnHvSVh7yWV+fMg0WSvO5BJkqSw4q1//tALuI0Kuw9XAMAKLolFXcVahEbHWEvY+zshiLUsV6LJDqsCAkEUZKwYGYySk5cBADUNnagtc2AiGzrd9DdXAdzewvU2XN9+06y56JFZ0BtY4f92Px8LUTJwn2GiAbJIolec0lQqhE1/U5E/+B+p88CMqjzFvh0D4dPmupTezbqnHkQzWbkpI/HrmLPe6QBwO35yWjWGVHb2IHlfz+V2UBENIZxgoyIiGiUsQ3QKs62QN/Zg1tzc6FIyvC4IbYiKcPr/mP9691/rM7+QoAFM5OxrGgyFhWkQJBZEBsdAcO5MjQdLAFkAmIWLIMqIhrGmjLrBtv6NsjV0b2b5+f6NCnnK7kgIC8zHllaDapqdZAkC/YcqcWyor7voP3EPsTMW+rbd5KWiy/2nIYkWQAAWVoN9xgiGiKZIIcq1X0uhWgSkbh0HUKjE9zmhjJ5ClQ3FcD416Nu2+mfa57aG1i+5vJVTMvqyxF3srQaTMuMx1cHzyLjhmhmAxHRGMcJMiIiolFElCwwdvVg49ajqKrVIVIViowbxiF+8Uto2vmKy8GhIikDE5as9ThRNbDe/kpOXMS0zDhsWDEb6Dbi0ocvwHT5DASlGhOf+HfIILMf609fecjetqCICNgkmShZsGFlgb2vew/XYOGsZPt30H7ia0TmLsCExS+iYeerbr+T+MUvobFVjz29K+OytBpsWFHgtIKOiPxnkSRMWLIWDTtedrgHBaUaiUvXQQhTes2NhHufRsNnr7h8hLwv16wrVd211798/INrIYkikuMjoWvvwoYVBdj4vnPmAdY8WLd8NsxmCbflTcSCmVxZSkQ01nGCjIiIaBSRCzKHSawOYw/WvXcUm1cVYOLjr8F4rgz6ioMQDTrIIzS9qzFyvK7iGljvQBlaDeRyOS71G3xGTb8TodEJLge5NqbLZ9Cw42VMfPy1IV65Y19V4aHYsnoOTlY3o/h4LT7ZV40nfjTZ+h3UlKP9uz9i3Oy77T/ry0ucvpOrHZ34ZN9pzJySgNvzkzEtMx4tbZ2IjAgLWF+JxiqZIEBQRDjdg5HTFvqVG4lL1zvnWvZcqNJyYW5vhUwZ6dyem/KNrXp8+Pl3eOH/zIImKhyiZMGW1XNQWt2EA8f7Vs3a8qCh1YBff1GGF/7PLEiSBQInx4iIxjROkBEREY0SoiSh4myL0yRWfYsBT795CEWFqSgqTEf8Pbn2cxbJusm1p8kxd/XaCIIMdxVqYThX1jeglQmImr4QxnMnPT7SBFgHu8aacihTpgbwUUvrQDU7PdbhsSdJskCZcrPD46QDfzYYTTB0dmNcpBJPPzQdANCsM2L7ntPYc7gGzz86E9np47lShGiIbPd7/3vQIokw1pT5lhvnyqBIvBFhsUmIv+cp+znz1WZcKfkE7d99jfj7noEyZSokAKfOteJkdYtTDrboDPii9/7Wd/agtLoJ2TeOx+kaa/lFhSlYs3SGvXz/PNB39uBkdTOy08cH8JshIqJrESfIiIiIRgm5IGD/sTqX5zqMPdi5vxq7DpyBNiESt+Ym4cE7snyakPJULwBoEyIRGx1h3XOsV1hcMkKixuPKgY996ru+vMTrHmiDMfBRSOsKD8cXA9heFLBjXxW+Kb9s35B/4Fs4bfuQFR+v5V5DRAHU/2UdMkEOfXmJT5/TVxyEKi0XF/9rAwALBIUKksmI7uY6+xsubdkiB7Dv21qUnLhoz0FX9zcAVJxtwbTMeJ/LMxOIiAgYgxNkoiji008/xZdffolz585BFEUkJyfjrrvuwooVK6BQOL76vaKiAu+88w4qKipgNBqRnp6ORx99FHfffXeQroCIiK5nug6Tx/OSZMH5+nZERyrwoB/1XtWbMCkxyuUAURVu/c8BUd9mLy8oVE7HPBEN7jfCHimV51pxvr7d/nP/f+/P23dMREMj6tsAmYCwuGSXk172cr25IYSr0FV7ynVd/bLFdu/actCd7h7Rr/LMBCIiAsbYBJkoinjyySdRUlIClUqF3NxchISEoKysDG+//TYOHjyI//zP/4RSqQQAfPPNN/jJT34CSZIwc+ZMKJVKHDlyBM8++yzOnj2Lp59+OshXRERE1xtNpMJ7IT/K2fz8kemIjAi3/9zaZsCeI7XYe7gGxi4zAECujrafl0xGp2OeyCM0Tsdsm2u7+znQhuu7IyL/RE6/A3F3/1+ERPU9tmhub0H7iX1oP/E1pE49gL7ciP/xGrQf3+twzqZ/tvh674aFyv0qz0wgIiJgjE2Qff755ygpKUFWVha2bt2KhIQEAMCVK1fw5JNPorS0FL/61a/wzDPPoKurCz//+c8BAB988AEKCgoAALW1tVi2bBneffdd3HHHHZg6dWrQroeIiK4voiRhwcxklJy46LXs/Hzf3rhm27xf3liFpooSiPo2yNXRiMieh2VFuVg4Kxkb3v8WrW0GRGTPg77yEACgu7kO5vYWqLPn2o95os6ZZ2/L9s/OC5XWjbt727Runp/r9YUCgzEc3x0R+c8iiVBPvgXGcydx5cDHffd/9lzEzFuKyNwFqP90M8y6eqiz50I0tqO76YLTORtbtkiAz/d4dvp49JhFzM9nJhARke/G1DvOv/zySwDASy+9ZJ8cA4CYmBj8y7/8CwBg9+7dAIDf/va3aG1txd13322fHAMArVaLZ599FgCwffv2Eeo5ERGNBXJBQF5mPLK0zqux+svSapCXGefT5JhkMuDShy+g4dNN0FceQuf5cugrD6Hx00249OELiAmXsHHFbPzv8UuISMuFIinD9mG0n9gHVVpe3zE3FEkZUKXm2CfH7G1+4thmwyfWNiWTwf5ygUAJ9HdHRP6z3v/G3szZ7Hj/f7oZlz58AUJYOBIfWgdlai5Uabm4+pc/OJ0TlGoAjtnizz0+LTMe3/+tFdOymAlEROS7MTVBptFokJaWhpwc502EJ02aBABoamoCAPzpT38CACxYsMCp7O233w65XI5Dh7z/RZ2IiMgfomTBhpUFbgd1WVoNNqwsgNhvg2l3ZIKAhh0vu32bnOnyGTTtfAUJsWrERikgiSImLFlrnxBrP/E1enSNmLD4RbeTZIqkDExYstbhbZre2mzY8XLAV5ABgf3uiMh/Pt3/O19FqCYBCQ88hx5dI9q/+9rpXNT0O52yBfDtHl+3fDYaWg14Z1cZGloNWLd8NjOBiIh8MqYesXz33XfdnquoqAAATJgwAQBw5oz1F3tmZqZTWbVajfj4eNTX16OlpQXjx/O10EREFBhyQQZVeCi2rJ6Dk9XNKD5eC12HCZpIBebna5GXGefjo5UiOi9Uuh2o2pgun4GxphwL8qdCggyCIgITH38Nxppy6MtLoPvzTsTMX+ZwTDToII/Q9D4ymdPv0Ur/2lSmTA3oRFmgvjsi8p/f93/yZNTveBlSl97x3LkyRP/gfsTMW+r0OLYv93hbRxc+3VeFyakxuNJuQlaKiplAREQ+GVMTZO5YLBa89dZbAICFCxcCAJqbmwEAcXGuX/kcFxfn8wTZf//3f9sf7/Tm9OnTvnabyKXfv35PsLtAFBBjOTttg7Xs9FjkZfb9HrKtcvBlMCcT5NCXl/jUnr68BKrUHFi3tbbWrUy5GarUvhXXFklyeczaljDoNgMtEN8d0bUsWNk5mPtfCHEeiugrDkKVlttbp/MEuqd7XJIkREeG4+mHptuPMROIiMhXnCAD8MYbb+DYsWMYP348VqxYAQDo7OwEAISHh7v8jO240Wj0Wv+lS5fwl7/8JUC9JSIaG5id1n21HH/2byAn6tt8K2fQOR0b+LZJVwNVV8eG0mYgDfW7I7pWBTM7/b3/BYXK7TlvXN/jMhfHPJUnIiLqM+YnyN566y289957CAsLw5tvvomYmBgAgFwuh8VigUzm+Zen5MMmwxMnTsSsWbN86s/p06fR0dHhU1kaO869fH/A6kpb+0XA6iIaTszOoZOro30rF+F5E+vR3iYR9Qlmdvp7/0sm5z80MxuIiChYxuwEmdlsxqZNm/DZZ59BoVDgl7/8JWbOnGk/r1Qq0d7eDpPJBIVC4fT5rq4uAEBERITXtu677z7cd999PvVr2bJlY37FBBERwOwcKoskQp0zD/pK7y+UUefMc9rr51ppk4gcBSs7/br/s+fCfLUZ3c11zueYDUREFCRj8jePwWDAP/7jP+Kzzz5DVFQUtm3bhrlz5zqUiY+PB9C3F9lA3vYoIyIiCiaZIIcqNdft2ydtFEkZUKXmBGQwGow2iWh08Ov+T8tFe+n/ABbJ+RyzgYiIgmTM/fa5evUqli1bhj/96U9ITEzExx9/7LByzCYjw/rL/W9/+5vTOb1ej6amJsTExPANlkRENGpZJAkTlqx1O2BVJGVgwpK19s32r9U2iWh08On+f/Al9Oga0f7d187nmA1ERBREY+oRy+7ubqxatQrff/890tPTsW3bNkyYMMFl2dtuuw179+7F//7v/zqtLisuLoYoik7HiYiIRhOZIEBQRGDi46/BWFMOfXkJRIMO8ggN1DnzoErNCfijTMFok4hGB1/v/+7Wy1Clz2A2EBHRqDKmJsjefvttnDx5EomJidi+fbt9Q35X7rzzTrz++uv48ssv8cMf/tA+GVZXV4fXX38dMpkMjz322Aj1nIiIaHBsg01lys1QpebYj9tWaQzHYDQYbRLR6ODL/R8+MQPK5JtcniMiIgqWMTNBptPpsH37dgBATEwMXnnlFbdlt2zZArVajc2bN+Opp57CT37yE8ycORMRERE4evQoOjs78fTTT+Omm25yWwcREdFoIhPkA34e/oFoMNokotHB0/3PbCAiotFozEyQHTt2zP7mye+//x7ff/+927JbtmwBACxYsADbt2/HO++8g7KyMlgsFmRlZeGxxx5DUVHRiPSbiIiIiIiIiIiG15iZIFu4cCGqqqr8/tz06dOxbdu2YegRERFRH1GSIO+3imLgz0OpS5IkWAC39Qei7UD2n4gI6MuRgf90d56IiGgoxswEGRER0WgkShbIBRkqzrZg/7E66DpM0EQqsGBmMvIy4+3nB1NXTFQ4lhVNRkiIgNLqJhT3q7/olknISonOxPeLAAAgAElEQVQZctuB7D8REdA38dXTI0Gu6Ptn+ZkWFB93zhmLxfY55g0REQ0eJ8iIiIiCRJQsMHb1YOPWo6iq1TmcKzlxEVlaDTasLIAqPNSniar+dSXGqvDOc/PRaTJj4zuO9UeqQvHIopugN3Zj87ZvB912IPtPRARYJ8eMnWZ0m0WEygUYunoQIhfwz+8edp8zKwoQrpCjq1tk3hAR0aBxLTIREVGQyAWZy8klm6paHTZuPerTYG9gXU8+kIvQEDk2vu9cf9EtqUiIjXA5OeZP24HsPxERYH0U/M9llxE7TolvyusRO07pPaveP4rQEDnqm/XMGyIiGjROkBEREQWBKEk4Wd3kdtBnU1Wrw8nqZoiSxee6QkIE3Jw2HqVVzvULggyLCie5POdP24HsPxERYM2V0uom5E9JQGlV3z99zZnUidHMGyIiGjROkBEREQWBXBCw/1idT2WLj9d6WcnlWNfsKQkIDRFQfNy5fm1CJOKilS7P+dN2IPtPRARYc6XiTAviopWoONvid1aFhgiobWxn3hAR0aBwgoyIiChIdB2mgJXTdZggCDJMSozCTSkxbj+nCg/xqU5bXVERYUPqlz/liIgiVKEAgG6zCACIigjDpMQoCF4mvWw5w6kxIiIaLG7ST0RE5IHtbWrufh4KTaQiYOUWFaZg9ZJpiItWevycscvssc5IVSiKbknFosJJDnW5uu5A9p+Ixh5X+Xr/7RkAgCV3ZAEAVt6bDQBobuvEH4+cx97DNegw9jjVZcsZPlxJRESDxQkyIiIiF0TJArkgQ8XZFuw/VgddhwmaSAUWzExGXma8/fzg65ewYGYySk5c9Fp2fr7WY3uiJOHW3IkorWrCR7tP4arehGcfmYH5+c711zZ2oLmt0+W5xPER2LyqEAmxEfa63F13IPtPRGOLu3wtKpyErEkxkAsynLnYhuJ+5+bnJ2NZ0WTcMUuL9e8dQX2LwaHO+fla9JglaBOimDdERDQonCAjIiIaQJQsMHb1uHxDY8mJi8jSarBhZQFU4aGDHoTJBQF5mfHI0mo8bkCdpdUgLzPOS1/NTn397aFzWFY02al+SbLgj0fOO52LVIVi86pChCtC8Oxbh3y47sD0n4jGFnf5GqkKxSOLboLe2O3yrZW2DFq3fDY2rSrEmjcP2leS2XKm+sIV5g0REQ0a9yAjIiIaQC7IXE6O2VTV6rBx69Ehr1AQJQs2rCxAllbj8rxtQsrTG9nc9XXv4Ro0tBqwbvlsp/pdnSu6JRUJsREuB6Y2A687EP0norHFXWb5mkGbt32LCbERKCpMBdCbMysK0GMWkRinZt4QEdGgcQUZERFRP6IkoeJsi8dVUYB1oHayuhnZ6eOHsIpMBlV4KLasnoOT1c0oPl7b73EiLfIy47w+Wumurx3GHqx/7wg2rSp0Wf+VdhOyUlT2c2kTo1Ba1eT3dQ+l/0Q0trjLLEGQYVHhJJ8zqLS6CX8/Jw3Z6eORlxkHsyghRC5AEATmDRERDRonyIiIiPqRCwL2H6vzqWzx8dohP85jG8xlp8c61GVbBeFpsOetr/UtBqx58yCKClPx93PSsGbpjH71Sw5tywUBxcf9v+6h9J+IxhZ3maVNiERctBIf7T7lUz0Hjtdh2tJ4ZKfHAgBkMllv/cwbIiIaPD5iSURENICuwxTQcr4Y+IZIXwd63vrQYezBzv3VeOOT79y2Z/v3oVz3YPtPRGOLq/xQhYe4PeepDlvuMG+IiCgQOEFGREQ0gCZSEdByw8nXPoxTey93LV03EV2bXOVHl0kEAExNi8WkxCgIXia8mEFERDQcOEFGRETUS5QkiJKEBTOTfSo/P18bsA2hRUny+LO7zwSir8G8biK6PrnKtIE5E6kKxeIfZuKfl88GACxZmIVfPns73l97Bxb/MBORqlCXdTODiIhoOHAPMiIiGvOs+3EJKD/bAkNnD27NnYgsrcbjZtFZWs2Q9x+ztm3dxL7ibAv2H6uzb3K/YGYy8jLjPW5yLxcE5GXGD7qv/dvWj/B1E9H1yVum2TKr3diNzasKkRAbgdKqJny0+1S/l3wkY1nRZNwxS4v17x1BfYvBXj8ziIiIhgsnyIiIaEwTJQnGTjM2vn8UVbU6RKpCkX5DNNYtn43N2751OVmUpdVgw8qCIb+hUZQsMHb1YOPWo07tlJy4aG9HFR7q4U2WFmxYWeCyDk99Hdj2SF43EV2fvGXaLdmJeO7RfGxYUYBus4gQuYBn3zrkNv/WLZ+NTasKsebNg+gw9jCDiIhoWHGCjIiIxjS5INgnxwDrpvbr3zuCTasKsWX1HJRWN+HA8bp+Kxu0yMuMC8gATS7I3E5sAUBVrQ4btx7FltVzPNahCg/FltVzcLK6GcXHa33q68C2R/K6iej65C3TbkiIhFwQoAiTIzIizOXkmE1VrQ6bt32LLavn4MkHcqFWhjGDiIhoWHGCjIiIxixRklB+tsVpgFbfYsCaNw+iqDAViwpTsGbpjH6fse57M9QBmihJqHDR9kBVtTqcrG5Gdvp4D49aWo9np8c6PHrkrq/u2h6J6yai65O3TBMEGRYVTkJpVROm3jgepdVNPudfYXaS/RgziIiIhgsnyIiIaMySCwKKj9W5PNdh7MHO/dXYdeAMtAmRuDU3CQ/ekRWwwZlcELDfTdsDFR+v9WnPHbkgDPjZ/d5l7toe7usmouuTt0zTJkQiLlqJo+WXMS0r3m32DuRr/hEREQ0V32JJRERjmq7D5PG8JFlwvr4dledaR7xtf8sFsu3hvG4iuj55yhVVeO/f5WXey/paJxERUSBxgoyIiMY0TaQioOXYNhGNVZ7ywthltv6LxXtZX+skIiIKJE6QERHRmCVKEubPTPap7Px8LURJCmjbC/xq23JdtE1E1ydvuVLb2IHmtk7ckBCJHrOE+fnByV4iIiJ3OEFGRERjllwQMC0zHllajcdyWVoN8jLjnPb4GmrbeX61Hbg9wILZNhFdn7zliiRZ8Mcj5zEtKx41l69iWlZwspeIiMgd/rYhIqIxTZQkbFhR4HaglqXVYMOKgmFZwSBKFmxY6aXtlQXDsoIrmG0T0fXJW66cqdXBLEpIHB+BHrMYtOwlIiJyhW+xJCKiMU0uCFApQ7Bl9RycrG5G8fFa6DpM0EQqMD9fi7zMOIiSNCwrGOSCDKrwUC9tW4ZlBVcw2yai65OvuaIKD4VckEEmkwUle4mIiFzhBBkREY15tgFYdnos8jLj7MdtKxeGc4Bmm4BybtvicP56a5uIrk/+5Iqs91+Dkb1EREQD8bcOERFRr4GDsZEcnDm3PXKTU8Fsm4iuT77kiq1MMLOXiIjIhr99iIiIiIiIiIhoTOMEGRERERERERERjWmcICMiIiIiIiIiojGNE2RERERERERERDSmcYKMiIiIiIiIiIjGNE6QERERERERERHRmMYJMiIiIiIiIiIiGtM4QUZERERERERERGMaJ8iIiIiIiIiIiGhM4wQZERERERERERGNaTKLxWIJdieoz5w5c9DY2IjIyEhMnjx5SHVt3749QL0iomBZtmzZ/2fv3uObrO/+j79zhdI2baHlUA4dLUVKRaFF1A7cUIYHwM2b/dB1oDLFA+63Ob2V3W6KKIggt7duiu7kYd4PmU7Rwc3c5nQDKg5EBJTC7+ZMLcip1LbSNKVArvz+KAlNm7RJmzRp8no+HnvM5vrmyjfBhref63t9viE71/nnn685c+aE7HzRJJTfnQDQFN+dABC8WP7uROzqFukJwJvD4ZAk1dbWauPGjR06V35+fiimBABRL5TfnQAQL/juBADgHApkUeZrX/uavvjiC9lsNuXk5ER6OkHbsWOHamtruRLZCj6j1vH5tK29n9H5558fxllFVlf/7myO34PI488gsqLp8+e7M3Ki6d+DWMLnGnp8pi3F8ncnYhe3WCKkZsyYoY0bN6qoqIhbPP3gM2odn0/b+IxiH3/GkcefQWTx+UPi34Nw4XMNPT5TIDbQpB8AAAAAAABxjQIZAAAAAAAA4hoFMgAAAAAAAMQ1CmQAAAAAAACIaxTIAAAAAAAAENcokAEAAAAAACCuUSADAAAAAABAXKNABgAAAAAAgLhGgQwAAAAAAABxzTpv3rx5kZ4EYsvw4cNVVFSk4cOHR3oqUYvPqHV8Pm3jM4p9/BlHHn8GkcXnD4l/D8KFzzX0+EyBrs/icrlckZ4EAAAAAAAAECncYgkAAAAAAIC4RoEMAAAAAAAAcY0CGQAAAAAAAOIaBTIAAAAAAADENQpkAAAAAAAAiGsUyAAAAAAAABDXKJABAAAAAAAgrlEgAwAAAAAAQFyjQAYAAAAAAIC4RoEMAAAAAAAAcY0CGQAAAAAAAOIaBTIAAAAAAADENQpkAAAAAAAAiGsUyAAAAAAAABDXKJABAAAAAAAgrlEgAwAAAAAAQFyjQAYAAAAAAIC4RoEMAAAAAAAAcY0CGQAAAAAAAOIaBTIAAAAAAADENQpkAAAAAAAAiGsUyAAAAAAAABDXKJABAAAAAAAgrlEgAwAAAAAAQFyjQAYAAAAAAIC4RoEMAAAAAAAAcY0CGQAAAAAAAOIaBTIAAAAAAADENQpkAAAAAAAAiGsUyAAAAAAAABDXKJABAAAAAAAgrlEgAwAAAAAAQFyjQAYAAAAAAIC4RoEMAAAAAAAAcY0CGQAAAAAAAOJat0hPAN4WLlyonTt36vzzz9ecOXMiPR0A6BL47gSA4PHdCQDAORTIoszOnTu1cePGSE8DALoUvjsBIHh8dwIAcA63WAIAAAAAACCuUSADAAAAAABAXKNABgAAAAAAgLhGgQwAAAAAAABxjQIZAAAAAAAA4hoFMgAAAAAAAMQ1CmQAAAAAAACIaxTIAAAAAAAAENcokAEAAAAAACCuUSADAAAAAABAXKNABgAAAAAAgLhGgQwAIsBlOlv9GQAAAPCHLAmEXrdITwAA4onLNGUxDNWXb5e9tEROe42sqelKLRgvW26h5zgAAADQHFkSCB8KZADQSVymKbOhTkffWKiGw3u8jtm3r1XiwDz1nzZHRmIKwQZoYv/C60NyniFz/hSS8wAAEAlkSSC8+K0BgE5iMQyfgcat4fAeHX1jIYEGAAAALZAlgfDiNwcAOoHLdMpRttVvoHFrOLxHjrJSuUyzk2YGAACAaEeWBMKPAhkAdAKLYZW9tCSgsfbSEq78AQAAwIMsCYQfvzUA0Emc9prAxtVVh3kmAAAA6GrIkkB4USADgE5iTU0PbFxKRphnAgAAgK6GLAmEFwUyAOgELtOp1ILxAY1NLRhP3wgAAAB4kCWB8KNABgCdwGJYZcstVOLAPPcD6p6Zo6RBw9U9M0eyNH4dJw7Mky23gL4RAAAA8GiRJf0gSwLt1y3SEwCAeOEyTfWfNkd1Oz6SbehodevRx3PszIlKOfZuUcrwsXKZJqEGAAAAXtxZ8ugbC33uZpk4ME/9p80JKku6TKcshtXvz0A8oUAGAJ3EYhgyEm3qMfoaOfZvVdWa1+S018iamq7UkePVY/Q1Z0MJxTEAAAB4a8ySKcqauViOslLZS0vkrKuWNSVDqQXjZcstCLg45h5XX7698TzuTFowXrbcQi7YIi5RIAOATuIyTZkNDp9X/ezb13qu+hmJKQQSAAAAtODOiMk5F8qWW+B53N1zLNDimNlQRyYFmuHfdgDoJBbD8LskXpIaDu/R0TcWEkQAAADQqua3QQaTH8mkgG8x92/88uXLlZ+fr02bNvk8XlZWpvvvv19XXHGFCgsLdd1112np0qUy/ezycezYMT3yyCO68sorVVBQoIkTJ+pXv/qVTp06Fc63ASDGuEynHGVb/QYRt4bDe+QoK2XnIQAAAIQcmRTwL6YKZJ9++qkWLFjg9/jOnTt1ww036K9//asGDhyocePG6ejRo3r88cf1wAMPtBh/9OhRFRcX680331SPHj00fvx41dXVacmSJbr99tt1+vTpcL4dADHEYlhlLy0JaKy9tIQrdgAAAAg5MingX8z0IHvvvff04IMPyuFw+Dzucrn0wAMPyG6368knn9SUKVMkSVVVVbr11lv1zjvv6Oqrr9bEiRM9z5k3b56OHj2qe++9Vz/60Y8kSQ6HQz/+8Y+1fv16LV26VLfddlv43xyAmOC01wQ2rq46zDMBAABAvCKTAr51+XLw0aNH9cADD+iee+6RaZrq06ePz3Hr1q3Trl27VFRU5CmOSVKvXr00b948SdLSpUs9j+/fv18lJSXKzs7WD3/4Q8/jNptNCxculNVq1R/+8IfwvCkAMcmamh7YuJSMMM8EAAAA8YpMCvjW5QtkzzzzjFauXKkRI0bozTff1JAhQ3yO+/DDDyVJV111VYtjo0ePVu/evbV582bZ7XZJ0r/+9S+5XC5961vfktFsWenAgQN1wQUX6NChQ9q7d2+I3xGAWOQynUotGB/Q2NSC8fR7AAAAQMiRSQH/unyBbMiQIfrP//xPvfXWW8rPz/c7zl3IGjZsmM/jubm5Mk1T+/bt8xqfl5fn93Ulaffu3e2eO4D4YTGssuUWKnGg7+8Ut8SBebLlFtDvAQAAACFHJgX86/I9yGbNmhXQuIqKCklS3759fR53P15ZWek1PjMzM6DxrVm+fLlWrFgR0Dx37NgR0DgAXY/LNNV/2hy/22onDsxT/2lz5DJNwoj47gSA9uC7E0BbyKSAb12+QBao+vp6SVJSUpLP4+7H3U3+gx3fmkOHDmnjxo3BTRhAzLEYhozEFGXNXCxHWanspSVy1lXLmpKh1ILxsuUWEESa4LsTAILHdyeAtpBJAd/ipkBmtVolSRaLpdVx5tl7rIMd35qsrCwVFRUFMk3t2LFDtbW1AY0FEBou0ymLYfX7cyi5g0ZyzoWy5RY0eU3T6zj47gSA9uC7E4genZkxg0UmBVqKmwJZcnKyJOnkyZM+j7sfT0lJCWq8zWZr87WnTp2qqVOnBjTPGTNmcNUP6CTuK2P15dsbr5zZa2RNTT975awwrFfOmocjQkhLfHcCQPD47gQiL5IZM1hkUuCcuCmQZWZmaseOHaqsrNR5553X4vjx48clnest5u495q/HmHu8vx5lAKKbyzRlNtT57L1g377W03vBSEwhKAAAACAgZEyg64qb30j3bpTu3Smbcrlc2r9/v6xWq6d41tp4SZ7dLv3tigkgulkMw29jUklqOLxHR99YSHABAABAwMiYQNcVN7+V48aNkyStWrWqxbEtW7aoqqpKF198sVJTU73Gr1mzpkWfscOHD2vHjh3KysrS0KFDwzxzAKHmMp1ylG31G1zcGg7vkaOs1NOLAQAAAPCHjAl0bXFzi2VRUZHy8vK0bt06LVu2TMXFxZKkqqoqzZ8/X5I0c+ZMz/hBgwZp3Lhx+vDDD/Xss8/qvvvuk9S4a+XDDz8sp9PpNR5A12ExrLKXlgQ01l5a4tW4FOiqrpu9st3PfefpKSGcCQAAsYmMCXRtcVMgMwxDixYt0i233KK5c+fq7bffVmZmpjZu3KivvvpKxcXFmjBhgtdzHn30UU2fPl2//e1vtXr1auXm5mrLli06fvy4Lr/8ck2fPj1C7wZARzntNYGNq6sO80wAAAAQK8iYQNcVN7dYSlJBQYHeeustTZw4UeXl5Vq3bp0GDhyo+fPna968eS3GDxo0SG+99ZamTp2qqqoqlZSUqGfPnpo9e7aef/55desWN/VFIOZYU9MDG5eSEeaZAAAAIFaQMYGuK+YqPEuXLm31+NChQ7VkyZKAzzdgwAA98cQTHZ0WgCjiMp1KLRgv+/a1bY5NLRgfVVtxAwAAIDqRMYGujd9GAHHHYlhlyy1U4sC8VsclDsyTLbeA4AIAAIA2kTGBro3fSABxyWWa6j9tjt8AkzgwT/2nzWn37kIu09nqzwAAAIg94c6Y3q9F3gRCKeZusQSAQFgMQ0ZiirJmLpajrFT20hI566plTclQasF42XIL2rXs3f2c+vLtjee018iamn72nIUspQcAAIhh4cqYTZE3gfCgQAYgbrmDQ3LOhV7bbLuv6LWnOGY21OnoGwvVcHiP1zH79rWeK4ZGYgqhBQAAIEaFOmM2Rd4EwoffGAAxoSNLzC2GtdnP7ftqtBiGz7Di1nB4j46+sZCwAgAAEAXCfYtiqDJm83OQN4HwYAUZgC4tWpaYu0yn6su3+w0rbg2H98hRVqrknBEEFwAAgAiIlvwYLPImEF4UyAB0WdG0xNxiWGUvLQlorL20xGu5PQAAADpHNOXHYJE3gfCKrt94AAhCtC0xd9prAhtXVx3mmQAAAMCXaMuPwSJvAuETnb/1ANAGl+mUo2xrwEvMQ7GVdlusaRmBjUsJbBwAAABCJxrzY7CsqemBjSNvAkGjQAagSwp2iXk4rgI2b+TaZ/JdSv/G9TKSU1t9XmrB+KgMXAAAALGss/JjuJr/u0ynUgvGBzSWvAkEjx5kALqsSC0xb62xa6/xNyqt8Eod+eMCnak+0uK5iQPz6AcBAAAQIeHMj+Fu/m8xrLLlFipxYF6rq+DIm0D7UCAD0GVFYol5QI1dv/+QBkyfq0OvPCCz3u457m76Gq07IwEAAMS6cOXHzmr+7zJN9Z82x28fNfIm0H4UyAB0Se4l5vbta9sc615iHoqQEFBj1zcXKWvmYvWZfJdqP/2HrCkZZ68cFhBWAAAAIiSc+THQ5v9ZMxcHNWdfr2Mkpihr5mI5ykobV6rVVZM3gRCgQAagS4rEEnOX6VR9+faAG7um5I9R6vDLzj7XPDtvwgoAAEAkhCs/BpsRk3NGdPBWy8bnJudc6DVP8ibQMfzmAOiy3EvMEwfm+TzedIl5KHSksStBBQAAIPLCkR8jtXmUxbA2+5m8CXQEK8gAdFmRWGIeqY0BAAAA0HHhyo9kRKDro0AGoEvr7CXmkdgYAAAAAKETjvxIRgS6PtZgAogJnbHE3N3YNRDuxq4AAACITqHKj2REIDZQIAOAADVt7Noad2NX+kAAAADEPjIiEBv4zQSAIHT2xgAAAACIfmREoOujBxkABCESGwMAAAAgupERga6PAhkABCmQxq4u0+nV16L5zwAAAIgOocptnb15FIDQokAGAO3kq7Gr+8pgffn2xiuH9hpZU9PPXjks5MohAABAlAhXbuuMzaMAhB4FMgAIEZdpymyo09E3Fqrh8B6vY/btaz29J4zEFIISAABABJHbADTHbzoAhIjFMHyGLLeGw3t09I2FhCwAAIAII7cBaI7fdgAIAZfplKNsq9+Q5dZweI8cZaXsYAQAABAh5DYAvlAgAxA1XKaz1Z+jmcWwyl5aEtBYe2kJVyMBAEBMi+ZcR24D4As9yABEXKw0tnfaawIbV1cd5pkAAABERlfJdeQ2AM1RIAMQUbHUINWamh7YuJSMVo+HaqtxAACAztSVcl2ocls4kAWByIju/9oEEPNipUGqy3QqtWB8QGNTC8b77GXhfqy+fLsqVj6rI6/NV8XKZ1Vfvt3rOAAAQDTqKrkuFLktHMiCQGSxggxAxLhMp+rLtwfcIDU5Z0TEA5U/FsMqW26hEgfmtfp+EgfmyZZb0OLxrnTFFQAAoLmulOs6mtvCgSwIRB6/WQAiprMapHZWk1iXaar/tDlKHJjn87g72Pi6+tdVrrgCAAD40hm5LpSZriO5LRzIgkDkxd0KstOnT2vp0qX6n//5H33++edKS0tTYWGhZs2apVGjRrUYX1ZWpueee06bN29WTU2NsrOzVVxcrJtuukkGX05Ah4WzQWpnN4m1GIaMxBRlzVwsR1lp42vWVcuaknH2NQt8vmZXuuIKAADgT7hyXTgyXXtzWziQBYHoEFcFslOnTun222/Xxo0blZCQoIKCAiUnJ+ujjz5SSUmJHnnkEU2bNs0zfufOnbrppptkt9s1evRojRw5Uh9//LEef/xxbd26VU899VQE3w0QG8LVIDVSy9Td50rOudBrSb776qOv1wr2imtnLfUHAAAIRjhyXTgzXXtyWziQBYHoEFdl51//+tfauHGjsrKytHz5cr3++ut6+eWX9e6772ro0KF67LHHtHPnTkmSy+XSAw88ILvdrieffFJ//OMf9fzzz+u9995Tfn6+3nnnHb333nsRfkdA1xbOBqmRXqbefKehtl6HrcYBAEBXFq5c1xmZLtjcFg5kQSDy4qpA9vbbb0uSFixYoGHDhnke79+/vxYsWCCn06nnnntOkrRu3Trt2rVLRUVFmjJlimdsr169NG/ePEnS0qVLO2/yQAxq2iC1Ne4GqYGGFZfplKNsa8DL1KNhR6Bo3mocAACgLeHIdV0x07UXWRCIvLgpkFVVVen48eNKSkrS2LFjWxx33265bt06OZ1Offjhh5Kkq666qsXY0aNHq3fv3tq8ebPsdnvY5w7EsnA0SO2s5v+hEq1bjQMAAAQj1Lmuq2W69iILAtEhbnqQmWe/RJKTk30217dYLDIMQ3V1dTp8+LD27t0rSV4rzZrKzc3Vl19+qX379qmwsDB8EwdiXLgapHalZerRuNU4AABAsMKR67pSpmsvsiAQHeKmQNarVy/17NlT1dXV2rdvn8477zyv4zt37lRdXZ0kqbq6WhUVFZKkvn37+jyf+/HKyso2X3v58uVasWJFQPPcsWNHQOOAQDlNU9YmIaT5z9EgHA1SI71M3WU6vfpZNP+55fjGK67+emw0veLaVa+OBovvTgAIHt+d8KUz82Coc12kM10otZYPyYJA5MVNgcwwDP3bv/2bli5dqp/97Gf61a9+pX79+klqLHI98sgjnrGnTp1SfX29JCkpKcnn+dyPOxyONl/70KFD2rhxY0ffAhAUp+mS1bBo295KrfrkoKprG5SRlqgrLx2kUcMyPcejSagapLqXqdu3r21zrHuZeqiCRnu3IY+mrcajBd+dABA8vjvRVCTzYChyXSQzXSgFmg/JgkBkxQYhsJIAACAASURBVE2BTJL+/d//XZs3b9a2bds0adIkjRo1SoZhaOvWrerbt6/GjBmjDRs2qFu3brJaG7/QLZbW/8IwA7j/OysrS0VFRQHNcceOHaqtrQ1oLOCP03TJcfK05r+4QbsOeC83L9nyhfKzM/TonWNkS0qIuiJZKERqmXpHtyGPlq3GowXfnQAQPL474RYLeTAWbj1sTz4kCwKREVcFstTUVL322mv63e9+p7/85S/65JNPlJmZqWnTpumHP/yh7rnnHklSWlqakpOTJUknT570eS734ykpKW2+7tSpUzV16tSA5jhjxgyu+qHDrIbFZxhy23WgWvNf3KCn7r28k2fWeSKxTD3QbcizZi5u4zyR32o8GvDdCQDB47sTbrGSB7v6rYftyYdkQSAy4qpAJkk2m0333Xef7rvvvhbH9u/fL4vFogEDBigzM1M7duxQZWVli35lknT8+HFJ/nuUAZHiNE1t21vpNwy57TpQrc92H9fIoX2i9qphR3T2MnWX6VR9+faAtyFPzhlB2AEAAGERS3mwK996SD4Eupa4KpDt2bNHhw4d0mWXXabu3bt7HSsvL9eRI0d03nnnyWazKS8vTx988IH27t2rr3/9615jXS6X9u/fL6vV6rN4BkSS1TC06pODAY1dvemARg0LfZE32Ab14dKZy9SD3YY8Wm8DAAAAXV+geTDNlqC6+lMyZEqKfHbzp6veekg+BLqW6PwmCZPf/OY3uuuuu7Rp06YWx9544w1J0qRJkyRJ48aNkyStWrWqxdgtW7aoqqpKF198sVJTU8M4Y6B9qmsbQjouUO6QUl++XRUrn9WR1+arYuWzqi/f7nW8s3XWMvV42IYcAAB0DW3lvAF9UvTMfZfrG4VZUZfd/OmKtx6SD4GuI65WkF155ZX661//qmeffVajRo2SzWaTJP3zn//Uq6++qh49eujWW2+VJBUVFSkvL0/r1q3TsmXLVFxcLEmqqqrS/PnzJUkzZ86MyPsA2pKRlhjScYHoaIP6WBBL25ADAICurbWcl2ZL0ON3jVFGoqlDr/w8brNbZyAfAl1HXH3Tffvb39YVV1yhzz77TNdcc43uvvtufe9739OPf/xjJSQk6Pnnn1ePHj0kSYZhaNGiRbLZbJo7d66Ki4t19913a9KkSdq1a5eKi4s1YcKECL8joCWnaerKSwcFNHbCJdlymq6QvG6gDUhjNWC5tyEPhHsbcgAAgHBoKw9OvixXmb1SVbFsUdxmt85APgS6lrj7tluyZIl++MMfqnv37iopKdGXX36p7373u1q+fHmLXmMFBQV66623NHHiRJWXl2vdunUaOHCg5s+fr3nz5kXmDQBtsBqGRg3LVH5261eh8rMzNGpY35A0ZHWZTjnKtgbcgDQW//Jvug15a9zbkBM2AQBAuLSWBw3DomvHZqtuf3xnt85APgS6lri6xVKSkpKS/O5i6cvQoUO1ZMmSMM8KCC2n6dKjd47xu7V3fnaGHr1zjJymKyQFMhqQNurq25ADAIDY4S8PZvdLU+/0FFV8UBLQeWI5u3UG8iHQdcRdgQyIB1bDIltSgp6693J9tvu4Vm86oOraBmWkJWrCJdkaNaxvyIpjbjQg7drbkAMAgNjiLw+OGNJbEtmts5APga6DAhkQo9zFr5FDe2vUsL6ex909x6yGRU7TlLXJX8bNfw7q9WhAKqnrbkMOAABij788KJHdOhP5EOgaKJABMa55wauxMNa4emzb3kqt+uSgZ3XZlZcO0qhhmUGvLnM3ILVvX9vmWHcD0lgPAl1xG3IAABCbmudBsltkkA+B6EaBDIgzTtMlx8nTPvuTlWz5wtOfzJaUEHCRrGkD0taavbobkAIAACByXDLIbgDQDCVrIM5YDYvf5v2StOtAtea/uCHo/mTuBqT+dulp2oAUAAAAkWMYFlV95VBm8UNkNwA4ixVkQBxxmqa27a30Wxxz23WgWp/tPq6RQ/sEsYqMBqQAAADRzp0Hf/2nUi2YNaYxu+3fKvu2D85lt5FXyDakUA0Np9VNFlnbPi0AdHkUyIAo4TKdXn0Jmv8cClbD0KpPDgY0dvWmAy2aubYlFhuQdsafCwAAiG+dmTfcefBIZZ3ue2atJo/N1eSxQ5U5pdAzprK6Tn/62w7VOhr0oxtGhWUe0YCcB6ApCmRAhLlXVdWXb29cdWWvkTU1/eyqq8KQr7qqrm0I6ThfYqEBaWf/uQAAgPgTqbzhznm1jtNatmq33l6zR9n90mRL6ibHyTM6cKxWpukK+mJpV0HOA+ALBTIgglymKbOhTkffWNiiQap9+1pP7wcjMSVkf0n36pEY0nGxKBJ/LgAAIL5EMm9kpHnnPNN06fMjJ9ocFwvIeQD84TceiCCLYfj8y9mt4fAeHX1jYYf+cnaZTq+f776hQMVXDVOaLcHn+DRbgoqvGqYfX++9Y1Hz88SyzvhzAQAA8a2jeaN5Ngs0qzlNU1deOiigsRMuyZbTdAU0tqsg5wHwhxVkQIS4TKfqy7e3urW21PiXtKOsVMk5I4L6i7q1peMzJhfqmqJBmvvCBh2prPM8Z0CfFD1+1xhl9kqVo2yrauJwyXm4/1wAAAA6kjc6enug1TA0alim8rMzWt24KT87I+ZusSTnAWgNBTIgQiyGVfbSkoDG2ktLvJretyWQpeOZ35+jBbPG6L5n1qrWcVpptgQ9ftcYZSS5dOiVn0flkvNwNVJteh6LYVViv1ylf+N6ndjynsx6u9/nBfvnAgAAILU/B4bq9kCn6dKjd47R/Bc3+CySXTSsr+bMLIrKJvYdmVM48zeAro8CGRBBTntNYOPq/F/d8yWQpeMVby5U1szF+tENhXpvQ7kmjclRZq9Un8Wxps87+kbj8zpTuBqp+j3vyCvUa/yNSiu8Ukf+uEBnqo/4fH6wfy4AAABu7cmBgd4e2FZWsxoW2ZIS9NS9l+uz3ce1etMBVdc2KCMtUZPG5mp4TroshiFH2daoaWIfqjwYrvwNoOujQAZEkDU1PbBxKRkBnzPYpePfGDlC3yzMkst0ylG2NeqWnIerkWpA5y1+UAOmz9WhVx7wuZIsmD8XAACApoLNgaG+PdBqWCRJI4f29rqV0mU6o66JfSjzYDjyN4DYwA3VQIS4TKdSC8YHNDa1YLxcphnQ2GCXjrtDRHufF27haqQa0HmXPaGEjH7qMXqizzHB/LkAAAC4uUynUkeOD2hs6sgrzq6OCk9WszYbZzGsUdfEPlR5MFz5G0BsoEAGRIjFsMqWW6jEgXmtjkscmCdbbkFQIaS9S8ejbcl5sKvaAg0xQZ13/1b1uOhqyeL9+bfnzwUAAEA6mwOHBJgDhxR68ka4s1q4sldHhHJO4czfALo+fuOBCHKZTvWfNsfvX9Lu5eKBbtvt1t6l49G25DxcV0qDOu+2D9StZ19173tuO/Rzfy5cVQQAAO1zpq5G/YsfbD0HFj+oM3XnimLhzmrReEdBqOfkMs0A8zc5D4g39CADIshiWPXVKauyZi6WY/9W2bd9IGddtawpGUodeYVsQwpV9ZVDvZID3y3IvXTcvn1tm2PdS8cthtHu54VbuK6UBnvepMEj1T1z8NlGsAURaU4LAABig8t06nTVEXVL7dVqDjxdfUxnaqtUcypBFouUMjL8WS3a7iiQQjsni2HISExp/NzLShsb/rs/d3IeENcokAER4jRNbdtbqSeXbtLksbmaPHaoMqcUeo5XVtfpT3/bob+tL9PPfnCpRg7t42mm2pqmS8dbW4ruXjre0eeFW7iulAZ73j5Xz5Qkz9VEQhO6mneenuLz8etmr+zkmQAALIZVyYOG68jrjylx4FD1uOhqZU65x3P8zFfHVVXyuk4e2qOBNz2qt/+2Q7JIMyaHP6tF2x0FUujn5M5xyTkXen1W5DwgvlEgAyLEahha9clB1TpOa9mq3Xp7zR5l90uTLambHCfP6MCxWpmmS5K0etMBr92F2uJeOu6vmWnTpeNNA0B7nxcu4VrV1pHzEpgAAEAouExTmf/nPh19Y6Fq1q9Q976DZCTaZDY4dOr4QSUOOE+ZxQ/p2Jd2/W19mSwW6ZqiQcosfkgVyxaFJatF4x0F4ZyTxbA2+5mcB8QzCmRABFXXNnj+2TRd+vzIiTbHBaK9S8ejbcl5uFa1RetqOSAQ+xdeH5LzDJnzp5CcpyvryOo5fyvyACBQ/nJX956D1evKW2QbUqhjX9o194UNstefliTNfWGDFswaE7asFo0ZKRrnBCA2USADIigjLTGk45pq79LxaFtyHq5VbdG2Wg4AAMQff7mraasNd3FMko5U1um+Z9bqRzcU6hsjw5PVojEjReOcAMSesBTIvvjiC7388sv69NNPVVNTo4YG/6tfLBaL1q9fH45pAFHNaZq68tJBKtnyRZtjJ1ySLafpCqgHWXPtXToeLUvOw7WqLdpWywEAgPhlMaxymqb2H/pKS978zKvVRnO1jtNKTe4uU4asXucITWaJxowUjXMCEHtCXiA7ePCgrr/+etXW1srl8v2l3pTFEvx/8AOxwGoYGjUsU/nZGdp1wP+OO/nZGS36jzlNU9YAA0DzscE8N1qEa1VbtK2WAwAA8ctqGMoblKHEBKvf4pjUMhuGI+tFY0aKxjkBiC0hL5A999xzOnHihPr27atbbrlFQ4cOlc1mC/XLADHBabr06J1jNP/FDT6LZPnZGXr0zjE62XBGL/95u4586VBGWqKuvHSQRg3LbHVVmfvYtr2VWvXJQVXXNgT83GgVrlVt0bJaDgAAxC/n2aLYI3eM0WMvtZ4N3WPDnfWiMSNF45wAxIaQF8jWr1+vhIQELV26VIMHDw716YGYYjUssiUl6Kl7L9dnu49r9aYDnnAz4ZJsjRrWV5U19Zr9m7U6UlnneV7Jli88AcmWlNAi/DhNlxwnT/ssvLX1XAAAAHQud3b71Vuf6dbvXKin7r1cn+6u0JpNB1tkQ3dxjKwHAKEV8gLZiRMnlJubS3EMMau1ZextLXFv7eeRQ3s3Wy7v0rvry/Tq33Z4NWd123WgWvNf3KCn7r28xTGrYfG7Kq2t5wIAACB0As2Dzy/7TOu3HVHp3kpNHpurSWNzdP+NF3vGVZ84KUmeghdZDwBCK+QFsgEDBsjhcIT6tEDEBXLL4q7yar27/nMfxxqDT+tL4L2D0ra9lfr1n0pbndOuA9X6bPdxjRzaxxOW3M9tra+Zv+cCAAAgNJpmx807K/R/xg9Vrx5JKt1bqdVN8uCESwfpomGZmn3zxap7aYO27qnUslW79faaPcrulyZbUjc5Tp7RgWO1mn/nWI0c2pusBwBhEPIC2bXXXqvf/va3Wrdunb7xjW+E+vRARARyy+Lc27+uXj2StHnnMdU6Gld8bd55TM/99Fvq3s2q+T56SfhbAm81DK365GBAc1u96YDXyrOOPDdWuUynV7+K5j8DAACEUtPseLjSrl/++xWyGhb99Nm1/vPgHWP0yB1jdPeTq3XkS4dM06XPj5zwGlu697hGDesb01mP3AYgUkLe0fDOO+9Ufn6+Zs+erXfeeUd1dXVtPwmIcoHcsrjg5Y/Vv3eKJo/N9Tw++bJc9e6Z7LM41vS581/c0OLKXnVtQ0Bz8zWuI8+NJe5djerLt6ti5bM68tp8Vax8VvXl272OAwAAhFLT7Dj5slz1652iBS9/3HoefGmDunez6v9eX+j3vKdOOyXFZtYjtwGItA6tIBs7dqzPx0+dOiWHw6EHHnhAkmSz2dS9e3efYy0Wi9avX9+RaQBhFcwti5/urtCksTl6e80eSdKksYP16a6Kdi2Bz0hLDGh+vsZ15LmxwmWaMhvqdPSNhWo4vMfrmH37WiUOzFP/aXNkJKaw+xEAAAiZptnRMCxB58ER5/VRt26GzpxpWRDqntC4kirWsh65DUA06NC3S3V1tc//1dXVyeVyef5XV1fnd2x1det/UQCRFswti2s2HVTfDJuy+6Upu1+a+qYna/WmwJfAN+0jduWlgwJ63oRLsj27GXX0ubHEYhg+Q5Zbw+E9OvrGQkIWAAAIqabZsT15MKGboaLh/XweLxjaNyazHrkNQDTo0AqyV199NVTz6FQrV67Ua6+9pt27d8s0TeXm5mrq1Km6+eabZbV6399eVlam5557Tps3b1ZNTY2ys7NVXFysm266SQZf0HGj6fJ0w7C0aJhqng0e7nG2pG4+nxvoa1gNQ6OGZSo/O6PVq4352Rkt+kp05LmxwmU6VV++3W/Icms4vEeOslIl54wgcAEAgJD5yt6gwQN66ILcXpKCz4PpTVZ+ubPn+TnnslssZT1yG4Bo0aECWVFRUajm0WmefPJJvfzyy+revbsuvfRSWa1Wbdq0SYsWLdLGjRv1/PPPy2JpXMWzc+dO3XTTTbLb7Ro9erRGjhypjz/+WI8//ri2bt2qp556KsLvBp0lIy1RabYETb4sV5PGDlbf9GTPseM19fr7R5/r3fVlnmXsjpNnvJ4b6Gs05TRdevTOMX57n7mb+7t3SArVc926coNUi2GVvbQkoLH20hLZcgvCOyEAABBXfnrzxeqRci7bBZsHa2obPNnz2rHZ6p2e4hnjMp1yyehw1osW5DYA0SLku1g++OCDys3N1axZs9oc+/jjj2vXrl1aunRpqKfh086dO/X73/9evXr10uuvv67c3MZm6seOHdP06dP1z3/+U++//74mTpwol8ulBx54QHa7XU8++aSmTJkiSaqqqtKtt96qd955R1dffbUmTpzYKXNH5DhNU5MvG6ybJ52vfr1T9OmuCr361/89tzX3JYM0Y/JwXV2UraoTJ3W82qEDx2olNRbPJlwySCVbvmjzddxL4M/tZGmRLSlBT917uT7bfVyrNx1o8prZGjWsr9/Q05HnukxTFsNQffl22UtL5LTXyJqartSC8bLlFnqORzunvSawcXXc5g0AAELDna/2HfpKqz85qK/sDfrpzRcHlwedpgb0sen/Tv2W0nsky7F/qyo+aJnJUpOs7cp60YjcBiAahLxAtmLFCl188cUBFcg+/vhjHThwINRT8Oujjz6Sy+XSv/3bv3mKY5LUr18/3Xjjjfqv//ovffLJJ5o4caLWrVunXbt2qaioyFMck6RevXpp3rx5mj59upYuXUqBLA5YDUP5Ob1kd5xqdWvuubd/Xfk5vfTPj8t1fk6GHCfP6L0Nn+vmScPbvQTeHWpGDu3tddzdS6K10NOe58ZSg1Rranpg41IywjwTAAAQD5ymS46Tp/XCim2qqHZ4WnGsXLtfMyYHngdN09Qt114gs6FOh175eZuZrD05MdqQ2wBEgw4VyD7//HMtW7asxeOHDh3Sk08+6fd5LpdLhw8f1p49e9SnT5+OTCEo7lsnjx071uKYe7OA9PTGL+cPP/xQknTVVVe1GDt69Gj17t1bmzdvlt1uV2pqarimjChhNSytbs19uNKu9aVHdM2YbE0cO1gTxw6WJFV+Va+6+tN69I4xmv9S+5fAW5sVo4IJPK0912maXscDbZCaNXNxwK8fCS7TqdSC8bJvX9vm2NSC8V1mVRwAAIheVsOiM05Ts2+62PPY8Zp6rd50UMeqHJp7+9f95sn87Aw9escYr2wWaCZr3gCjtazX/OdoQG4DEC06VCDLycnRhg0btGPHDs9jFotFx44d0yuvvNLqc12uxisb1113XUemEJRx48Zp8eLF+vvf/64XXnhBN9xwg7p166b3339fr776qnr27Knrr79ekrR3715J0rBhw3yeKzc3V19++aX27dunwsLCTnsP6HxNt+r2ZUCfFC2YNbbx9svdFVr9ycFzS9wvHaSLhmXKaZpRtQTe/Xrb9lZq1dnl//9x82hZj+2KiQapFsMqW26hEgfmtfp+Egfm0ccCAAB0mLvw9PnhE/r9pv/n1Yrj+1cN0/Fqh06dduqpey/XnoM1+mjbYe37okY9U5vmwcZzhKJpffOs557PlZcO0qhhmVF1+yW5DUC06FCBzGKx6LHHHtNrr73meWzFihXq06ePxo0b1+rzbDab8vPzNXXq1I5MISjnnXeeFixYoIULF+rpp5/W008/7Tl20UUX6YknntCAAQMkSRUVFZKkvn197/zifryysrLN112+fLlWrFgR0BybFhsRHZpu1d1cmi1BC2aNVVJit1Zvv3z0zjFKSUpodQl8ZzXFdy//b9rUdfCAHkpLSVLFtpKAztEVGqS6TFP9p83xe/XVfWsCVyGjF9+dABA8vjs7X2O2OuOzYX7Jli900bC+eujWIiWcjXV5g9KVNyjdk/Wcpinp3Kr/jjat95X1ms7HnU1tSQlRUyQjtwGIBh3uQTZixAg98cQTnp9XrFihnJwcr8eiyejRozV27Fht2LBBBQUFMgxDW7du1bZt2/T666/roYceksViUX19vSQpKSnJ53ncjzscjjZf89ChQ9q4cWPo3gQ6nb+tuSdflqt+vVN8Fsfcdh2o1vwXN+ipey+X5B1CGgtjndsU32pYWgQmW1LjV0EsNUi1GIaMxBRlzVwsR1lp42dbVy1rSsbZz7aAkBXl+O4EgODx3dn5fGUrtwF9UnT39wqUlNhNjrKtPrOeryTSkUzW2nyk5tk0OpDbAESDkDfpX7VqlRITA9vGuLN99tlnuu2225SVlaW//OUvysrKktTYk+zuu+/Wq6++qtTUVN17772yWhsv8bj7lvljnr3i05qsrCwVFRUFNMcdO3aotrY2oLHoPL625jYMiyaNHaxPd1W02nBVagwin+0+rpFD+3hdqevspvj+bhd1nDwjKfYapLo/s+ScC72urrrO/t4SsqIb350AEDy+OztXa6040mwJevyuMcpINANqtt80l7Q3k7XVGsTNXzaNJHIbgEgLeYHMXXSKRosWLVJdXZ0WLlzoNc9+/frpF7/4hSZNmqT//u//1qxZs5ScnCxJOnnypM9zuR9PSUlp83WnTp0a8K2kM2bM4KpfiISqKanTNHXlpS235s7ul6a+6cl69a//G9B5Vm860GKnys5uiu/vdtEDx2r1ZU2dUkbGZoPU5reqdpV5xzu+OwEgeHx3dq7WWnFMvixXmb1SfRbH3HxlvY40rW9tPs35yqbRgNyGWPLzn/9cK1as0JtvvqlRo0b5HLN8+XI9+OCDmj17tmbNmtXpr49zQl4gu/LKKwN/8W7dlJiYqL59+2r48OGaOnWqhgwZEuopSWosaJWWlqpHjx4qKGjZO2nQoEHKzc3Vnj17VF5erszMTO3YsUOVlZU677zzWow/fvy4JP89yhA5oW5KajUMjRqW2WJrbvdtif5uv2yu+bhQNGBtD1/zNU2X/vbRAc2YTINUAACAQLgzpa9sZRgWXTs2W3X7twad9TratL692RRAZAwfPlx33323Ro8eHempxL2QF8gOHToU9HN2796t9evXa+nSpZo/f76++93vhnpaqq2tlcvlktFKgcF9W+Xp06eVl5enDz74QHv37tXXv/51r3Eul0v79++X1Wr1WTxD5/G1SuzMGVPzX9moT3cf9xrbkaakTtOlR+8c49XPwX1boq/bL31pPq6jDVjby998311fpmuKBimz+CFVLFtEg1QgTrzz9JRITwEAokogdyE4TZdONpxRSnKCz2yV3S9NvdNTVPFBSUCv2TzrdaRpfXuzKYDIGD58uIYPHx7paUBh6kG2cOFCrV69WiNHjtS0adN0wQUXKCUlRXV1ddq9e7fefvttffLJJxo5cqRuvfVWnThxQmvXrtWaNWs0d+5c5efnh/xfkN69eys9PV01NTUqLS1tsYrs2LFj2rdvnxISEjRkyBCNGzdOL730klatWqWbbrrJa+yWLVtUVVWloqIipaamhnSeCExbq8R+dEOhHnnhIx2prPN6XnubkloNi2xJCXrq3sv12e7jWr3pgL6yN+hEXYMm+Lj90pcJl2S3WL3W2U3x/d0uKkm1jtOa+8IGLZg1hgapAAAg7gR6F4J59v/nv/iR/uMHl2rCJS2zVUc3QGpv0/rWsl5zvrIpAMSzkBfIPv74Y61Zs0bXX3+9Hn/88RZN7ocPH64pU6boiSee0KuvviqLxaLp06dr+vTpeuGFF/SLX/xCS5cu1aJFi0I6L8MwdMMNN+ill17SnDlz9NJLL6lfv36SpKqqKv30pz/V6dOnNW3aNKWkpKioqEh5eXlat26dli1bpuLiYs/Y+fPnS5JmzpwZ0jkiMIFsXT339q/rsVljdf8zH6jWcdprTHubkrrHjhza26tfw0U+br9sLj87w2ePh85uiu/vdlG3I5V1uu+ZtZoxebgmjaFBKhANrpu9UlL4VnrtX3h9yM41ZM6f2hzjfj+B6Cqr20L1GQby+QEIj0DyZeNdCN3kcklbdx3XjvJq/f2jzzVj8vAW2SoUGyC1p2l9W1nPzV82BRB+X3zxhW688UZVVVXp+eefV1VVVYseZDNmzND+/fu1cuVKPf300yopKZHdbldeXp5uu+02fec73/E656lTp/Tiiy9q5cqVOnr0qHJycnTXXXdF4u11aSH/L90//OEPSklJ0dy5c1vdAXL27NlKS0vTK6+84nls5syZ6tGjR9iahd5zzz0qKirS7t27dfXVV+v222/XHXfcoYkTJ2rjxo0aNWqUfvazn0lqLKgtWrRINptNc+fOVXFxse6++25NmjRJu3btUnFxsSZMmBCWeaJ1gWxdveDlj9W/d4omj831OWb1pgPtvlrma4n9o3eOUX627yKWO1A5TZfX4+4GrIFwN2ANhbbmO7BPqr45Kktms68HCmMAACBWBZIv57+4QVbDUDerodWbGhvhv7u+TEe/rNPc27/ula2aboAUiNayXrBN69ubTQGE37Fjx3TrrbeqqqpKS5Ys0fjx4/2ObWho0E033aTNmzfr29/+tq677jrt3btXs2fP1gcffOAZ53K59KMf/UhLlixRUlKSpk2bpgEDz413cAAAIABJREFUBmj27Nn617/+1QnvKnaEfAXZvn37NGzYMCUlJbU6rnv37srJydGePefuqU9ISNDXvvY17du3L9TTkiQlJibq97//vV5//XWtXLlSmzdvlmmaGjx4sO68807deuut6t69u2d8QUGB3nrrLS1ZskQff/yx9uzZo5ycHN1///363ve+F5Y5onXBbF396e4KTRqbo7fX7JHZLACEsimpr9sv3UvyJ1ySrVHD+vpcvt7RBqydPV8AAIBYFEy+dN+F8JW9MUvWOk7rkRc+0mOzxuqpey/Xp7srtGZT4+2ZO8tr9I1Csh6ARlVVVZo5c6aOHj2qZ555ps0FN7W1tSosLNRvfvMbT51i/Pjx+slPfqLXXntNV1xxhSTpz3/+sz788ENNmjRJTz31lBISEiRJb731lh5++OHwvqkYE/ICWc+ePXXo0CGZptlqQ3zTNHXo0CElJno3hzx58qTS0tJCPS2PhIQE3XLLLbrlllsCGj906FAtWbIkbPOJF601Ow2kEapbMFtXr9l0UPffeLGy+6Xp8yMnvI6Fuimpv9sv3Vfm/AWQjjRgjcR8A+UynV5XO5v/DAAA0Fl8ZU2L5PlvlWDy5epNBzRqWF+d97V0z4ZQRyrrdP8zH2jy2FxNGpuj+2+8+NxrOZ0hyXrBZqtwZz0AwamtrdUdd9yh8vJy/fKXv9RVV10V0PNmzpzptYjHXRQrLy/3PPbnP/9ZkvTAAw94imOS9L3vfU9vvvmmtm3bFoq3EBdCXiAbNWqU/vGPf+jXv/617r77br/jfve736mqqsprSeGhQ4dUXl6ukSNHhnpaiBB/zU4nXzZY+Tm9AmqE2lywW1e7m6Q29a1LBoXlylnzwl5b529vA9ZIzbct7rnWl29vfC/2GllT08++l0Ia/AMAgE7jL4dOuGSQLsrP9CoWBZsvx44coLdXnyt41TpOa9mq3Xp7zR5l90uTLambHCfP6P9eX6jhOT3bnfU6mq1CnfUAtM9DDz2kiooKpaen65JLLgn4eYMHD/b6OTExUQkJCTp9+lyf7R07dqh3797Kyspq8fyLL76YAlkQQl4gu+uuu7R69Wr96le/0u7du1VcXKz8/HwlJyd7drFcvny5/v73v8tqtXoax5WUlOjpp5+WaZqaMqVrNOVF6/w1O02zJejmSefL7jilBS9/3EYj1IQWf5EHu3W1u0mqW352hi4altmetxQW7WnAGo1cpimzoc7nFVL79rWeK6RGYkqXeU8AAKBrCnRTp5TkBDlNaUBvm7b6vwvSw50vh2Vn+GyEb5ouz50L+dkZuiC3l+dYsFmPbAXEjsrKSk2YMEGrV6/WwoUL9fTTTwf0vOZ33Elq0ev9xIkTGjhwoM/n9+zZM/jJxrGQf5NeeOGFevLJJ5WYmKj3339fd955py6//HJdeumlGj9+vGbNmqV3331XiYmJeuKJJ3TRRRdJkpYsWaI9e/YoPz9f118fuh21EDn+mp1OvixX/Xqn+CyOuZ1rhOr9y+/eujoQ37pkkI5XO3TgWK3nMXcYOtlwJuoakwbbgDXcXKaz1Z+bsxiG39sHJKnh8B4dfWNhxN8XAACIfYFu6tTNashqWDT1W0MDOu+ES7JVWVPvszF/U74a4Qeb9drKVqerj6hux0eSWm4EBSC6zJkzR88//7wuuOAC/eUvf9HatWtDdu6ePXuqtrbW5zGHwxGy14kHIV9BJknXXnutRo8erZdeekklJSX64osvPMf69eunCRMm6LbbbtOgQecKHfn5+frOd76j6dOne91ji67JX7NTw7Bo0tjB+nRXheeYYVi8lqIfOFYr03R5NUJ1F8qC2br6omGZ+tfWQyoY2kcZaYn61iWDdNGwTFXW1Ktnamh7kMWS9izld5lO1Zdvb7UBrdRYJHOUlSo5ZwSFMgAAEBbBbuo0fHAvZfZK0YWDM1TX4GyRSd3yszM0alhfvbu+TCs+2OezMX/TzNmRdh5tZatuGQM04Ma5SkjvJ8f+rbJvo7UFEM1GjBghq9Wq+fPn6/vf/77mzZund955RykpKSE5d0lJicrKypSbm+t1rLS0tMPnjydhKZBJUv/+/fXwww/r4Ycf1qlTp1RTUyObzabU1FSf45944olwTQUR4K/ZaXa/NPVNT9arf/1fpdkSNPmyXF07Nlu90899MXxZU6e/fXRA764v8zRCbcq9dbW/q4L52Rl65I4xOn3GqW8WZumbhY33Yh+vdujd9WX65qisDgeWWG1A396l/BbDKntpSUCvYS8tCelOTQAAIL60lcWC3dTJ3Xpj0Y++IcN67jxNM+nAPqlnV4SZ+uaoLK365KDfxvxnnKbMDva6bS1bGcmpGnDjXBkJSTr0ys+5/RLoQgoKCjRt2jS9/vrr+uUvfxmSXSavv/56lZSUaNGiRXruueeUlJQkSfrHP/6hjRs3dvj88SRsBbKmunfvrszM6On5hM7hq9mpu2G+YVj0zH2XK7NXqur2b1XFB+eueqWMHK8Zkwt1TdEgvf7+7hbnCHTr6l3l1dq046hOnXaqe4JVBUP7avJlue0ujsVDA/pAb5PMmrm4xTGnvSag13DWtX41FwAAwJdgslhbTffddzB8LTPV87yTB5qd92wmLZ4wVImJCZ4M2TyHPv/WZzrva+kaO3Kg8galy2KxyAhBM3x/2arH6IlKSO/nszjm1lpmAxBZ999/v/7xj3/otdde03XXXdfh811zzTWaMmWKVq5cqe9+97saN26cjh49qn/+85/Kzs722vESrQtbgWzbtm3aunWr7Ha7nE6nXC7//Z5a2+0SXZevZvruhvm3fecC2YxTrV71yix+SLd9Z7jPcweydXV+TrpXY9SObGsdq01Sm15x7ehtktbU9IBe05riu1cHAACAP8FmMX+bOjW/gyHQ87pMq2dHyEByaODvy/9qOJ/ZymKox+hr5Nj/Ga0tgC4qLS1NDz30kO677z49/PDDmjFjRofPuXjxYo0YMUJvvvmm3njjDfXv319z587Vl19+qeeffz4Es44PIS+QnTp1Svfdd59Wr17d5liXyyWLxUKBLAa5m+mXbPnC6/EDx2pVV39aPdOSdOiVea1e9apYtkhZMxfLNF1+r8K1tnV1KLe17sjKqmjU/AqspVui+n77h+2+TdJlOpVaMF727W03m0wtGB8Tq+0AAEDnCSaLmX5y6IA+KXr8rjGeOxjsR+qUOvyydme8jmTNtlfDOZU2+poW2ap730Hq1qOPqta8FtDr0NoCiKzFixdr8eKW3x/XXnutrr32Ws/PxcXFXseXLl3q95zbtm1r8ZhhGPrBD36gH/zgBy2O/eQnPwlmynEt5AWyV155RatWrZIkZWdnKzc31+fWpIhtrTXTt8iUo2xrUFe9pI4vU2+vWGtA7+tKadKgxpV67b1N0mJYZcstVOLAvFY/p8SBeYQ0AAAQlPZkseY5NM2WoMfvGqOMRLPxDoYj+5R9928ishIr0FVrSVn5Ss4tVH3ZVs9xI9EmidYWABAOIS+Q/fnPf5bFYtGcOXN08803h/r06EJ8NdPP7pcmW3KiKiLc0N1pml5X/Zr/3FSsNaD3dQXWbGjc/rcjt0m6TFP9p83xexX23C0KrB4DAADntNV0vz1ZrHkOnXxZrjJ7pXrae3TPzOnwSix3fgwmVza+n8BXw/X73s905A+PesaGIrMBAHwLeYHs4MGDGjBgAMUx+Gxi2iOlu6TIXfVyB5bSvZVa/cm57bgnXOrejtt3oImVq3T+rsCeOn5QZ05UKnXkFUHcJtk8vBoyElOUNXOxHGWljbcL1FXLmpJx9naBAopjAADAI5im+8FmseY5dGhWmhz7z93B0N6VWG+8v0vb93+pjLREXXnpII0alqnTp03993v/q7LDJ7we97UxVPCr4S5szFb7t8q+7QM5HTVyOk4odSStLQAg1EJeIEtJSVFqamqoT4suyl8T00hc9XKaphz1ZzT/pQ0tbvss2fKF8rMz9OgdY2RL7tayp0Q759u8iBRpfq/Aukyd2PK+eo2/sUO3SbrDV3LOhS16lDU9DgAA4luwTffbk8Wa5lCrYahiW4nnWHtXYn26u0L/W1Yl6Vx+nHv71/Xtb+Tq/mc+UK3j9LlceecY2ZISvIpk7VkN59j/mbr3zlLmlHs8x2xDaG0BAKEW8v9aveSSS1RWVqaqqqpQnxpdWNOCk7uheyDcV71CNQdfxTG3XQeqNf+lDS2KYy7TqdSRVwT0GqkF4+V0nNCR1x9TxcpnVV++/ew5QvMeQsHfldITW97T6epj6l/8oBIH5vkckzgwT/2LH9SZWt+/3+73WV++XV+ueU2V77+iL9e8FpWfAwAAiJxAbzO0GEaHs6PVxyq0pqvngznv/dMv0oA+KZ7Hdx2o1oKXP1b/3imaPDbX6/H5L27w2bg/2FVrjr2f6sCvfqQvXrxfh199WIdffVinv6pU/2lzWs9sZ1tbAAACE/IC2Y9//GNJ0pw5c3Tq1KlQnx4xweJp6N6aUF71cpqmPt1d4bc45rbrQLU+231cziZhwmJYZRsyKuD5frXxL6ov2yr79rU6+vpjOvTKz2U21EVNQPF3pdSst+vIHxfIPHVSWTMXq//0R5Q64gol5xYodcQV6j/9kcadoU6d1Fcfv9Pi+e4rwYde+bmOvv6Yvlq/XCc++Yu+Wr88Kj8HAAAQGS7TGdSGTcFmR38r1r0y0NnV88FkvBOf/kO9kkwtmDVGabYEz/FdB6r16e4KTRqb47Xz+rlc6fI/j1a4V61ZErpLLlOnKsp18uAOnao8KFkko3tyq5nN6J4c0OsAABqF/BbLAwcO6IYbbtAf//hHXX755SoqKlK/fv2UkJDgc7zFYtF//Md/hHoaiGIWw9CZuhr1L35QR5c94b+he/GDOlNXo24pgYWI1lgNQ6s/ORjQ2NWbDnjdDuoynXKdOR3QfE9XH9OJze95HWtte/DO5r4C669nxZnqIzr0ygPqMXqi0i+bKtuQwnPHvjquqpLXdWLze8qcOrtFP4tgGs4CAID41Z7bDNuzGVDT3rK+MtCJLe8prfDKgDNedcnrspeuUdbMxZo8NlfLVu32jFuz6aDuv/FiZfdL0+dHTnge95UrW8tiTbl7viYPHqGv1i/3PN5j9EQl9OijI68/psSBQ9Xjoqu9br90Z7aTh/Zo4E2Ptvk6AIBGIS+Q3XPPPbJYGq+c1NTU6P333/f83JzL5aJAFqeqVi1Vxrhi76aj7obuI6+QbUhhYxD51zJlXveTkLxmdW1Du8ZZDKss3a06c7LO93zPNqA/XX2scQXWSXuLc4Z6e/D2shhWzxVYf4Uss96u+rJS9Rp/o7765G+q27FeZoNDp44flFymz5V97dl+nX5kAADEr2BvM2yxGdC2D2TplqBuaX2UNKRAyVnDPMUxd3P8bXsrterspkyTxubom4XeGci9en7A9Lm+NxlqkkndGa/h8B459m/V5LFD9faaPTLPrg5z50dbkvd/XvnKlW1lMcn7Tgqv8RZDPUZfI8f+z1RftlX1ZVtVs36FuvcdJCPR5pXZJJG7ACAIIS+Qffe73/VbEAM8XKZnpZK/q172//cv9Zowo82tvwOVkZbY7nEu0ylLQnd9tfk9pQwd7TVfp+OEZ2WVr+KYm6/twZsKdovw9groCuz3H2osUK590+s9+bo6K7XvSjAAAIhf7Wm6f24zoBFKzrnQZz50mi45Tp7W/Be9+85WVNVpzIX9WmSgM9VHdPyd5zTwB48rsd9g2Xxk0uYZz77tA2VOKfRaLebOj46TZ7zm7y9XBrMarml2c505pW49+qhqzWtNT6hTFeU+Pz9yFwAELuQFssWLuX0KrWu6tLxm3Z98XvXqlt5PA256VAnp/eQo29rm1t9tcZqmJlw6SCVbvmhz7IRLslsUpyyGVa7Tp9Tz4oly7N+qr7a8L2tqhtIvvVYV//OM6su2tj2HOt/9z3xd5Wxri/COaHEFtumV0rOr4VymqVNfHpZt6MU+j/n63IO9EgwAAOJT8LcZnsse7n/2lw8NufSrtz5r0Xd23EVfU7du3XTGcarFHQFJgy6UJFX8zzNy1tX4XInVlDvLNF0t9q1LBul4tUMHjtV6jW3MlY1Zzv3/O8pr/j97dx4QdZ0/fvw5n0G5EVBBIVAUJU3EA1HMPCuPzbW1wk2z0sqyc7s9MrPMjq+761r9Osxss7bNstwsS8v7No9ECzECRQk55Jzhns/8/hhnnIGZYQZBUV6Pv5aZ93zmg2vja17v1/v1Irydz7n7SEZ3xH4sZv6drWO3ij/STPcgcZcQQjS6Rk+QCVEfo1Wj1co/fquz66V4+9Fx8jyU1t5krZjl0ujv+mgVhb7dQ4iJDHLaqD8mMsimTwScPz6Y+9U/LBVv1r25tL5tXPq9rXdAzRztcgJOR4RfqPM7sNfY7CqaG+hrFAWv8G54R1xt9zl7GrITLIRoedb+fcKlvgUhxCXWkGOGcH4gkL3KK3N8GDppLtNu6klyWj6lZdUAKIqGcYmR6NMPk7fmH3ZPMIAppnNl09Mcy5irxWIig+jbPYSV61IsRy7Nj5vjytoxn79PK8YmRjE2sSshE6x/R8O5PyPbeMv8s2cH06RMibuEEKLxNelh9NTUVJYtW8acOXN49FHTP0B6vZ7Vq1fLhMsWTFEUikvLCUmaY3dqUEC/0bQKDOXMZ4tcGv3tKoOqMv/eQcRE2g8UYiKDmH/vIJsJlnD++KBarqNo5+rzY7ZXPk+NrtDt8eDWtIrGbnLMzNmI8MZQ+6hq7WOTjp6r7ULHrwshhBCiZTEfG3Q0QdL6mKGZKwOBcj57mdC2foxNjLI8HhnqT9tAX/RH7MRzHz3H6fefoqYk3/WYLnYY+YV6MnNKiYkMYt49AzlzVs+6XRmWNeZNTvMEy9oxX2lZNas2HueeRRt5ZPFmnn1zO3//5EC9bUQ0ilbiLiGEaCJNUkFWXFzM3Llz2bhxI3C+GT/AqVOnmDt3LkuXLuW9994jJiamKW5BNHMffJPC5Bu712167xdM4LW3uDX629XGo1pFwcfbg8WPDeXn43ls2p9pOc44Mj6SPt3bO+z7ZVPGblXxVrL/O4KHT3Z7BxRMCbsjaflOK9rg/Ijw2Oh2TZYou1AN3QkWQlyZ0l++pVGu02Xu6ka5jhCi+XG15cP5o5VuDASq1UTffBTSUTwHUHJwg21Mp1HsNr73DOuGT5c4Dh7OYsF9ifTp3p6KyhpWb/6N6IhAO3GlxmnMp6pGSx+zXzMKGDUgst6YT+IuIYRoGo2eIKuqqmL69On88ssv+Pj4kJiYyJEjR8jLywNMybKAgABycnKYOnUqa9asISwsrLFvQzRzqmrk8SXbzpWWRxMyIc7m+aZq+G5OfsVGt7U5SmmuGnPUFN9RGbvL48HtNLbXKgobfzrl9H79fVoxdnAU0eH+NoFSQwcVNKWGjF8XQgghRMvlSsuH82vdGAhUq4m++Siks2OJ52O6OehT9+AT3Q+PgHaW52tK8ilLO4hvj0SMqsqQuHBqDCrHTxYQ3MaL6eN7WdbmFZbx3a4MhvQJP9cmo/6Yz2zT/sw67T7skbhLCCEaX6MnyD7++GN++eUXBgwYwL/+9S+Cg4OZPHmyJUHWo0cPNm3axMyZM9m/fz/Lli1j/vz5jX0bohkzqCqjzjXMX7XxOF9s/o3IUH98vDzo2NaXv93er8kbj9ZOhDmbFumskWy948HraWxfe/S3tY7tfFl4/yBCgv0oSz9M7pELG1TQ1NzdCRZCCCGEANfbOrgbH5orxzJzSjlbpMc31vFgALVcR966d+gwaQ4B/W6kLP0wBZs/OR97xQ4noN+N5zYpTfc3560dpJwsRFE0lli2rKKGzJxSVNXIxp9OsfixoYDzmM+aq+sk7hJCNLa9e/dy5513kpiYyIcffnipb+eSaPQE2TfffIOHhweLFy8mODjY7ho/Pz8WL17M9ddfz/bt2xv7FkQzp1UU+lg1zLcuLXdlh8/mWheh8WidoQK11BRmk7XiGYKGTSag7/X17oBaszf6G0yVYwvvH0SQp9pogwouBnd2goUQQggh3OFufGiOK1XVyLrdmUwd6zieU7z9aP+nBzBWlZO1cl49sZcPR9MLSDlZaLm+OZa1Zt0mIzjAfsxXm6PY0B6Ju4QQonE1+qdmRkYG0dHRhIaGOl0XGhpKly5dyMnJaexbEJcBg2pk/n11G+Zb7/C5wlnj0drN9mv/7Kr6hgoAtArqiM/ViZTobYdPOAtMzJV09owdHEVIsB+5qxp3UMHF4k6DfyGEEEKI+rjbmL6opJzMnFLLY9/tyiDnrI6QSfYHA7g3JEpLsc61gWOb9meiVTSMG9zZpfUj4yMtjf1dJXGXEEI0jkavINNoNJSXl7u0VlVVWrdu3di3IC4DWkWDj1cruw3zq2qgbZeGNx41qEa0ioYjafls/OmU5bqjBkTQp3uI5Xl3OBwq4BuEX+wwfLrEkXNWx382pPD47f1c/DOwraQzsx5F3tiDCoQQQgghLkfuNqb3ARbcl2gTY54tqSIkKLDuscQGDImK7doNRdGg1pPMMh+ZvLpz2zoxX20xkUEu9R8TQgjRNBo9QRYVFcWxY8c4ffo0V111lcN1mZmZpKWl0atXL4drxJXNnKSq2zDf6EbjUdtm9QZVxagaeeWjA+w6km3zmi0HT1tGbpsaprqeJHM2VCC/UM/qdSms25XBgJ7OKydrM1fSWY/9No8iz926xaVruDuoQAghhBDicuRuY3q7MSZgqDHgGXlNnfjJnSFRIRN6W4YAOGM+Mmkv5rNmjlEbspErhLDPNElWcfhzc7N161b+/e9/c/z4cYqLiwkNDWXIkCHcf//9dOzY0Wbt//73Pz777DOOHTtGTU0NnTp14qabbuKuu+7Cy8urzrWTk5NZsWIF+/fvp7S0lPDwcMaMGcO0adPw8/Nzel/JycncfffdVFRUsHjxYsaNG2d57vfff+edd95h9+7dFBUVERISwsiRI5k5cyZt27YFTIMcr7vuOoqLi9m4cSPh4eF13uPmm2/m2LFj/PDDD0REmE5ZnTlzhrfffptt27aRl5dHYGAgQ4YM4aGHHrKsaWyNniAbP348v/zyC88++yxvvfUWgYF1ewUUFRXx1FNPATB27NjGvgVxmanbMF8DaFxqPJpyspDvdp2w7AyOHBBB3+4hPHlHf/Tv7+Hwb/k2107NLGTBsj2WhqmucDZUwLoRK5wvi3c1sLFXSRfga6qqbOpBBUIIIYQQlxN3G9PbizENqhEPDy2HUnNJTsunqtrAVSH+jB3cucFDAJyxjg0dnZ4YGR9Jn+7tJTkmRCNpihNFTe2HH37g0UcfxcPDg/j4ePz9/fn111/59NNP+eGHH1izZg3t27dHVVWefvppvvnmGzw9PRkwYABeXl7s37+ff/zjH6xfv54PP/yQgIAAy7XXrFnDc889R3V1NX369CEkJITk5GTefPNNtm/fzsqVK/H0tN//8LfffuO+++6jvLyc119/3SY5tmPHDh5++GHKy8u5+uqr6devH8ePH2flypX8+OOPrFy5koiICFq3bs348eNZuXIla9eu5YEHHrB5j9TUVFJSUkhISLAkvn799VemT59OYWEhUVFRjBgxgtOnT/PVV1+xceNGli9fTu/ejV8k0ugJssmTJ/Ptt99y4MABxo0bR2JiIqdPnwZgxYoVpKens2HDBoqLi+nWrRtTpkxp7FsQVwjHjUcNVFbVsPCDffz8W57NayxVYvcO4vl7B/Hw65vIPltms8a6YaorH4zOhgpYa2hZvKNKuuY0qEAIIYQQojm4kMb0BlVFX17Di++bqrjM0yf15dWMHdzZ7dgrJMiHXzMKHK6rHRs6Oz1h/bwQouEMqpGyimq71ZoXcqKoqb322msoisKaNWvo2rUrAAaDgaeffppvv/2W//73vzzyyCN8/PHHfPPNN3Tu3Jnly5dbTu3pdDqefPJJtmzZwvz58/nnP/8JQHZ2NgsWLABg2bJlDB1qKhSprKzkoYceYvv27fz73/9mxowZde4pMzOTadOmUVxczCuvvML48eMtzxUUFPDEE09QXV3Nm2++yQ033ACA0WjknXfeYcmSJTz99NP897//BeCWW25h5cqVfP3113USZGvWrAFg4sSJgKni7NFHH6WwsJB58+Zxxx132KydNWsWf/vb3/j+++8bvWVXo9cXtm7dmvfff5/hw4dTUFDAt99+S25uLkajkddff53PP/+c4uJiBgwYwPLlyx1mKoUwq9t4VMvct3fVSY6ZpWYWsuD9PbT20DLzlji7a8wNU13laKiAWd/u7Xl55mCMqsHm8do/O2O9y+luI1pHgwqEEEIIIa5EDWlMr1UUXnx/D3/k60i6vjsfzB3FG0+N4G+392tA7GVgxl9iHcaG1kcm7d2H7c/N50u6EJc7raJxeJQZzp8oam7/3eXl5eHh4UH79lZJda2Wxx9/nPnz5zNixAgAPvzwQwBeffVVm5ZWfn5+LF68GH9/f7777jv++OMPwJRQKisrY+rUqZbkGICnpyezZs0iIiKCs2fP1rmfnJwcpk2bRn5+Pi+99BJ/+ctfbJ7/4osvKC4u5o477rAkx8DUk37mzJn06tWLQ4cOcejQIQB69OhBjx49+P333zl69KhlvcFgYO3atfj4+DB69GjAVE136tQpbrjhBpvkGJiOYt54441kZWWxYcMG1/+AXdToFWQAbdq04Z133uHo0aP8+OOPpKeno9Pp8Pb2plOnTgwfPpyEhISmeGtxhTOoKslp+U4bnML5KrFeXdvh4aFQU2ObQDI3THWVs7L4MYlR9OgUiEZRKMs4bCr31xWh9Qs8V+4fZ1Pu7wp3G9EKIYQQQgjHDKrKkbR8SsqqWPL4UEKC/dCnHyZ3qylu8+93A349Brsce6mqER8vRY5MCtGMmP/1TNzOAAAgAElEQVQ7d/W7oqsnii6G+Ph4duzYwa233sqECRMYNmwY11xzDREREUyePBkwVYNlZWXRoUMH+vbtW+ca/v7+DB06lG+//ZaffvqJCRMmsG/fPgBLgs1adHQ0P/74Y53Hi4uLmT59OqdPn+amm27itttuq7Nm7969AAwcONDu7zNkyBCOHj3KTz/9ZLnXW265hYULF/K///3P0ot+x44d5OXlMXHiRHx8fFy69nXXXcf69evZt28fN910k901DdUkCTKzXr16SRP+FqR2w/zaPzcGraKw6adTLq3dtD+TPt3bk9AjtE7DfnPDVPfe235ZvFE1oFbq7TaM1R3dZmkYq3j6upUkc7cRrRBCCCHE5eBixIy1aRWFnYf/YOH9gwjyVMlaMcsmvqrMScezQ1c6TJrDmc8WOYy9QpLmUFxaTht/bwyqCmjkyKQQzYRWUdjo5nfF5uKll17iwQcfJCUlhaVLl7J06VLatm3LiBEjmDRpEr179yY3NxfAbpN7M3NVWX6+qRd3Xp7p1FXtJv/O/Prrr4Cpgu2HH34gIyODqKgomzXZ2abv1zNnznR6LfM6gJtuuonXXnuNb7/9llmzZqHVai3HK60r1MyvWbhwIQsXLnR47TNnzrj8O7nqghJkjz322AXfgEajYcmSJRd8HVfExMS4tO6jjz6yyVZmZGTwxhtvcODAAYqKioiMjCQpKYkpU6agSGLCkqApP3m0Uaqn6uNq9Zd5XaCdZJi7zfTBttnj4d9MTV3je4TSNybEYRILTOPAz/z3ZcKnverye4H7jWiFEEIIIZqzix0z1hbTKZiQYL86yTEAtVxH9qcv0fH2efZjr9hh+HSJI+esjv9sSOHx2/uRnlVMt4ggwDaelMSYEJeOu98Vm4uwsDC+/PJL9u7dy8aNG9m9ezdpaWl88cUXrF69mnnz5nHNNdfUex2DwdTix9ybq6ampkH3Y+4v9sYbb/D888/z0UcfodGc/2wzv8+oUaMslV/2XH311Zb/HRQUxKhRo/j+++/ZuXMn/fr1Y9OmTURERDBgwADLOvVc+6DBgwdbJmHaEx0d3aDfzZkLSpCtX7/+gm/A+g+5qVk3lastMzOTw4cP4+/vbzMy9NixY0yZMgWdTke/fv2IjY1l7969LFy4kMOHD7N48eKLcevNllFVm6R6yhlXq7/M64pqffi50kzf3s5mTY2RBSv2cei4KQuvKBomDu+CPv2w01J8MCXJyjKS8e7Uy82jlg1vRCuEEEII0VxcjJixvsq0gdeEOI3bagqzyVrxDAH9RhM4eKJN7JVfqGf1uhTW7cpgQM9QAJZ+9jOerbTNsuG3EC2Vu98VmxNFUUhMTCQxMREw9QFbuXIly5YtY/HixXzzzTcAliGI9pw6ZaqgMyeW2rdvT0ZGBmfOnLHJc5h9/vnnBAcHM3LkSMtj/fv35/7776eqqoq1a9eyb98+Pv/8c5KSkixrQkJCOHHiBNOnTyc+Pt7l33HixIl8//33bNiwAZ1OR0VFBTfffLNNXsjch+3mm29mwoQJLl+7MVxQguzhhx9urPu4KBwls8rKypg4cSIajYa///3vhIWFAaYJDM888ww6nY7XX3/d8n9OQUEBd999N2vXruWGG26wNJNriTSK0iTVU44YVJWRAyLYctDxh4LZyPhIqmtU9qXkWB6zbphqL4ipb2fzoVt7M++9PWTn64kM9adtoC+5W7e4dO+65C0N7hfWkEa0QgghhBDNRVPGjK5UpqmAv68XuUe2OL2WWq6jaOdqakrOEvLnR1jy6UF+zyomM6cU9dzRyRHxEeQVllkeW7BsD4sfG+r0ukKIpmdQVUa58V2xufQJPHHiBI888ggdOnRg2bJllsdDQ0N56qmn+OKLLygsLMTLy4vw8HCysrI4dOhQnT5kpaWl7Ny5E0VRLBVZ/fr1Y9++fWzbts2mSgsgKyuL5557jujoaEaNGmV53Fx91rp1a55//nmmT5/O//3f/zFixAhL8io+Pt5yXXsJstmzZ3P8+HEefPBBm2sPGTKE0NBQNm3ahE6nQ6PRcPPNN9u8Nj4+nq+++opt27bZTZAtWbKEzZs3M2XKFJukXWNoUQkyRxYtWkRGRgZTp05l2LBhlsd37txJamoqCQkJNv/HBAcH88ILL3D77bezcuXKFpsgM6oGyk8ebbLqKXu0ikLf7iHERAY5bb5orhI7kV1Mry5tXWqY6srOZkjSHF6aMYjHl2zDx8v0n49BV+TSvRv0zptFCiGEEEJciZoyZnSnMg3ciNt0BQBkn9VzIrvE8nhMZBB9u4ewcl2KJWHWHBt+C9ESaRWFPm58V2wuIiIiKCgoIC0tjR9//JHrr7/e8tzOnTspLCwkPDyctm3bctddd7Fo0SJmzZrF8uXLLT3H9Ho9Tz/9NDqdjjFjxlgSWbfeeisffPABK1euZOjQoZYkWUVFBS+++CIAf/7znx3e27XXXsu4ceNYt24dL730EkuXLgVg0qRJrFixgg8++IDY2FibSZZffvklX331Fa1atSIuLs7melqtlptvvpl3332X9evXM2DAAJtpnAB/+tOfWLJkCd988w39+vVjypQplue2b9/O8uXLqa6uJjY21u0/6/o0aZP+y0FycjJffPEFHTt25IknnrB5bvv27QA2f0HN+vXrR9u2bTlw4AA6nQ4/P7+Lcr9NzaCqNqOna/9sTaNo0SVvcem6F1I9VZtBVZl/7yAWvG9/fG9MZBDz7x2EQVXp3LENL90/+NzrnDdMdWVnM3fVIsKnvcrYxCj2/WpqCqj1C3TpvrW+9seACyGEEEJcyS40ZnQWn7pbmeZu3FZWcb5/T0xkEPPuGciZs3rW7cqwWd/cGn4L0VIZVCPz7xvEgmVOvis6OVF0KWi1WhYsWMDDDz/MQw89RK9evQgPDycvL49Dhw6h1WqZN28eAFOnTuXQoUN89913jBs3jgEDBuDt7c3+/fspLCykZ8+evPDCC5ZrR0REMH/+fObNm8edd95J//79adOmDcnJyeTm5pKQkMA999zj9P5mz57Ntm3bWL9+PRs3bmTUqFF06NCBV155haeffpqHH36Y7t2707lzZ06ePElqaiqKovD666/Trl27OtebOHEi7777LqqqMnHixDrPe3t7s2TJEu6//35efPFF/v3vf9OtWzfy8/P5+eefAZg1axY9evS4gD91+1p8gmzRokUYjUaeeuqpOs3l0tLSAOjevbvd10ZFRXH27Fl+//33OpnRy411A/qNP52yjKkeNSCCPt1DHH6AXIrqKa2i4OPtUc9Y7bqJPWcfgG7tbKYfZmxiNF9uTeNskR7f2OHojm6r9779eg+XpvpCCCGEaJEaEjPWF5+6X5l2DX69XY/bSvUVBAd4EhV2FSPiI+jbPYQzZ/U8/95udOXVNuubW8NvIVoqraLBx6tVPd8Vm09yzOz666/n/fff58MPP+TIkSMcO3aMwMBAbrzxRmbMmEGvXr0AU5+yf/7znwwdOpRVq1Zx8OBBADp37syMGTO44447LEckzW699VY6d+7M+++/z6FDh9Dr9YSFhfHQQw8xY8YMPDycp4VCQkJ47LHHePnll3nxxRcZOHAgfn5+jB071nLdvXv3kpGRQfv27Rk9erTNPdfWuXNn2rVrR1lZmcPTePHx8axZs4Z3332XHTt2sHXrVoKCghg6dCjTp0+39GlrbC06QbZt2zYOHTpEdHQ0f/rTn+o8bx6jai5PrM38uHmEqiPmEkNXpKSkuLSuMRlUI2UV1Xaz7FsOnrZk2e01H71U1VPm5FfdsdqqzfOucmtn88hWQibEcVV7P9btzmTq2Dg8w7o5Dc48w7o1WgWdEC1Fc//sFEKI5qi5fna6GzPWF58O73cVT07p73Zlmk+Ue3Hbghmmkwh5hWWsPNekv3ZyDJpnw28hWirzd9a63xWdnyi61IYMGcKQIUPqXafRaJg4caLd6itH4uPj622mP3DgQFJTU+0+d+edd3LnnXfWebxHjx78/e9/d/k+APbv309+fj633Xab0wmYERERLFy40K1rX6gWnSD797//DcCMGTPsTtMsLy8HwMvLy+7rzY+XlZU5fZ+srCz27dt3IbfapLSKxmEJKpj6KthrPmpUDW7twjVF9VTdKrGGX9/dnU0fLw++25XBjQkRhCTNIXfVIrvBlrn3hVSPCeGe5v7ZKYQQzVFz/OxsSMyoVRSn8WluoSn+djd+M6oqHf461+GxTOu4TQXSs4pZ+tnPNk367WlODb+FECbunCgSTauqqgoPDw+Kiop45ZVXAJg8efIlvqu6WmyCLD09nZ07dxIWFsZNN91kd41Wa5ocaC95Zk09V7XkSHh4OAkJCS7dV0pKCqWlpS6tbQwGVeVIWr7TJoZgv/moRtG6vQvXnDWkJ0VpWTXz3tvDSzMGET7tVcoykk3Tk/SFaH2Dzk1P6i3JMSEaoDl/dgohRHPVHD873Y0ZVVXl8PHcOvGpomiIDPXHx8vDUrHlbvymURQUT1+X4jYt0C0iiM4dA/Dx8qCsosZuoqy5NfwWQojmZu/evcycORODwYCqqowbN46ePXte6tuqo8UmyL7//nuMRiPjx4+3JMJq8/b2BkwTHuwxP+7r6+v0vdwpf5w6depF3fXTKgobfzrl0lp7zUfd2YVrigSRUTWgUbR2f3Zn4IBbO5uxw8gv1JOZYwoos/P1vPVFMnOnJeDd6RqbZKDxXPJUkmNCuK85f3YKIURz1Vw/O92JGZVa8am/TyvGDo5iXGIkbQPPx92GmhoCr0ui7PeDqOU6p+9vfZrBHJe5ErcZVJUnp/S3/JxXVM73u0/w3a4MSsuqm2XDbyGEaG46depEQEAAFRUVXH/99TaDBJqTFpsg+/HHHwHs9h4zCwkJISUlhfz8fLp27Vrn+by8PMBxj7LLhatNRe2tc2cXrjGZr1l+8qjpPXVFaP0Cz71nHEZVJfVkId/tOuHSwAG3dja7xHHwcBa9o9vVafaoqXNdSYwJIYQQQrgbMxbrKuncMYCIUD/uHX8NwYE+6NMPk7vVKu6LHY5Plziuuvcf/PHxfGoKs+2+t6PTDNabrOZ7NHM0IGBkfARTx/Zg/JAo/sgvo2dUsCTHhBCiHpGRkezatetS30a9WmSC7OzZs/zyyy907tyZmJgYh+u6devG1q1bSUtLY+DAgTbPGY1G0tPT0Wq1dpNnlxNXm4o6WufKLpyzSi93GVUVtVJvdwdSd3QbnmHdCJ00l7YBnhw4lkNpmamRan0DB1zf2TQwJC6cIXHhQPNv9iiEEEIIcalYx3zmmNC7U696K7eevqMf/r5elrgva8Ush3Ffh7/OJeyOBZx+/4k6lWQNOc3g6gCrmE6m450SAwohxJWhRZa3JCcnA9C3b1+n66677joANm7cWOe5gwcPUlBQQP/+/fHz82v8m7xIDKrKqAERLq01Nx91xN4unDngKT95lNz//YvsTxaQ+79/UX7yKHA+IHKHRlEcJrHANMo757OXCW3rx9jEKJvnzAMH7AUy1jubHSbPx6/XMLyjeuPXaxgdJs8nfNqrKJ6+dX5PCYqEEEIIIWw5iwGtY0SwTYyZH9fmpKJL2eVS3Hfmvy/jEdCWsLtfcxK/uf61x9UBVhcyHEoIIUTz0yIryI4eNSVnevXq5XRdQkIC3bp1Y+fOnaxatYqkpCQACgoKWLBgAQDTpk1r2pttYlpFoU/3EGIig5w26m9I81FXKr06/HWuW0GLUTVQfvKo02OQYAqWyjKS+dPgaL7Y/JtNM1V7AwfM3OlJIYQQQlwu0l++pVGu02Xu6ia5nriyNDQGtHld9u9EPvw2Zek/uxz3eXe6hpAJj9pcD9yL38wDrCqrDfSMCnbYmN9ZPCmEEOLy1CK/7Z8+fRqAdu3aOV2nKAqLFi3Cx8eHefPmkZSUxMMPP8yYMWNITU0lKSmJkSNHXoxbblIG1WgqE48Msvu8dfNRd7i64+dO0KJRtOiSt7i0Vpe8heBAHyJD/es8t2l/ptNgxllPCmcMtSriav9sVA1OfxZCCCGEuNw1NAa0fl3r9hF4BLRDd2SrS++pS97S4PjNmlZR6BoewBtPjeC1h6/jjadG8MHcUSRd3x1/n1Y2a+uLJ4UQQlxeWmQFWUFBAQABAQH1ru3duzeff/45S5cuZe/evfz222906tSJJ554gttuu62pb/Wi0CoafLxasfixofx8PI9N+zOtGpGeb0DvTgDgbqWXd6deriehdEWurdObKuL8agUz4PpgAlc5auRqHgxg7r/hbKiAVKcJIYQQ4nLX0Biw9usUTx/A/bjvQpjjMW1OKrlHzsdrvrHDmTo2jhsTIpj33h6y8/VA48eTQgghLq0WmSBbtmyZW+ujo6NZunRpE93NxWdQVZueCdY/x0a3tTlK2dAG9O5WetmbLOSI1i/QtXW+poq4AJ/WdZ5zdTCBK5w1cj1wLIe3nhpOQGtDox41FUIIIYRojhoSA5o3Eq1fp1aWAe7HfQ3lyrHQkKQ5vDRjEI8v2UZpWbUlnpQplkIIcWWQb+MtiDnZdSQtn79/coDn3tnF3z85wJG0fMvztZuNXsg/9k2x42dUDfjFDnNprV/sMIyqSom+7u5efQMH3OGskevYwVEEtfFp9KOmQgghhBDNlbsxYFVBdp3XVeWdoqYk3/W4r/fwBg1/MnPlWGjuqkU2Q6BGxEdQWFIhyTEhhLhCtMgKspbI1XHVPl6tGu0f+abY8dMoWny69MEzrJvT0n3PsG74dIkDQFdeY/NcQwYOOGJu5GovOaYoGsYlRqJPP9wkR02FEEIIIZojd2PAoq2fEnrL07avM6qUHNxA8PDJrsV9bpxGqM2tY6HphxmbGM2RtDz6dg9h5boUYqPbSbN+IYS4Asg38RbC9XHVjfMPu1E14Nd7uEtra+/41W5sX/u6alUFHZJm4xnWze4az7BudEiajVpVwdkiPZk5pZbnGjpwwBGtorDxp1N2n4sM9adtoC/6I1tcupapuaz8JymEEEKIy5dbMWDsMGqK89Af32+3Wqzk4HqqC3Pqj/v+Otfl6jF7A5XcOhZ6ZCvtgnyZd+8gzpzVs25XhjTrF0KIK4RUkLUAzqqcrDXuuGoNPlFxLu/4VVZW8/KHe2jjd76xvb1+DhpFi6a1lpoKPeHTXqUs/TC6I1sx6AvR+gbhFzsMny5x1JScRevbhpSULHpHt7uggQP1sW7QqigaIkP98fHyoGNbX+DiNpcVQgghhLiUNIrW9RiwSxwFW/4Dao3dajG1XEf2py/R8fZ59uO+3sPP9TCrf9iRo4FKfx7ahW4RQe4fC6028Px7u9GVV0uzfiHEJWE0GtFomk9yvrndT0NIguwKZd1431mVU22b9mfWatKv1ulL5gqNolCjL6JD0mzOrHrFboBkrvSq0Rfh6RtIYWklh47n1Xvk06iqaFq1pvjAenyj+xEy4VHLczXFeRQfWI9fz8EYVQND4sIZEhd+7ndp2MCB+gT5e+Lv04qxg6MYlxhJ20Bfm+cvVnNZIYQQQojmwKiqdPjrXIc9vTzDutFh0hyqC3MoObAeMFWL+ceNqhM71hRmk7XiGQL6jSYgfqxN3GdUDQCWKZgaRWvznPlnZ61GTmSX8MZTI9yO117/aL9lmmVjDn8SQghX7Ny5kw8++IDly5dbHvvyyy+ZPXs2t956Ky+//PJFu5fc3Fxee+01Jk2aREJCguXxkSNHkpWVxdatW+nQocNFu58LIQmyK0zt3bEA39bcd3Osyztb5nXL1hyhRF/ltJqrPgUbVxJ0XZLTSq/qwhwKd6wiZPwj+Hid/+toPvK5+LGhda6rURQUT1/a9B9NWUYyxQc3YKypQuPRGu/OsbTpP9ruTmJTlL4bVJWxgzszdWwMIcF+6NMPk7v13Fhw/yDajb0fv97D0R3dVu+1zEdN5ZilEEIIIS5n5lgtfNqrlGUko0veUqfqq6a0gOxPX0Kt0AH1V4t5RfbCwy+Is0VlbNx/iqTrYziZo6NTqD8aRaH85FHT++iK0PoFnnufOIznNnsdtRrJzCnlbJEe31gX47XYYeQX6jlmdS3z8Cc5ZimEuBhycnKYPn064eHhl/pWAJg1axY7d+4kKSnpUt/KBZME2RXE3u5Y544BgOs7W+Z1yWn5nMguubAG/kb1/I5f3xvqVHoVbPkPJQfW4xPdH4CyCttm+s6OfJqTSN6drrFpymruP3GxkkxaRaFHpyBqKvRkrZhVZ5fUI6DdRWkuK4QQQgjRnNQXqxVuX0VNYbbNa2yqxWrFjkUl5axel8K6XRkM6BkKQIB3K2oq9OR+VrdSTXd0m6U/WY3ixR/5Orv3qapG1u3OZOpY14+Fbtt9gshQfzJzSul2VWCjDX8SQghXGI2N00+7sagOekB++OGHVFdX065du4t8Rw0nCbIriL1G/Jk5peQVlTMyPoItB0/Xe40R8RHkFZbZNLZ3Vs3liLlBq+7oNop2rqZo11e0bh+B4umDWllGVd4pMJr+QzLvxFm/p1ntI5+1WZfSm35unMRY7aOlzo6aahTFbmAGVscFJs3hzGeLHB8zONdcVqrHhBBCCHElsRerGVUDvj0SKT30Q531arnOJnZs96cHKfcLY/rLG6mpMcWOI+Ij0JdXERzoY3eD0qzyj98489+XCZ/2KmMTo1i18bjddd/tyuDGhAhCJ80lx0FMZx2vjUnszJjEzhSWVuDj6SHVY0IIYUdkZOSlvgW3SYLsCuGoEb+qGvl+9wmmju1BTGSQ00b9MZFBlnHVaq0pj+428K/ToNWoUpV7ss46807cajvvCVz0pqeOGrg6Ompa31jwOscFHBwzkOSYEEIIIVoKoyvDnIwqGo/WeIVF8/m6FEtyzByvlpVXok8/7LTiC0xJsrL0ZMYmduWLzb/ZjTdLy6qZ994eXntosNN4raqqmu92neBEdglV1QZGxp+PD4UQzY+z3oTNUVFRER9++CFbtmwhMzOTqqoqgoODGThwIDNnzqRLly688cYbvPnmmwBkZWURExNDQkICK1eudHjd8vJyPvnkEzZs2EBGRgbl5eW0adOGvn37MmPGDHr3Pl/lu3fvXu68806mT5/OxIkT+ec//8n+/fuprKykR48e3HvvvVx//fUAnD59mlGjRllee+eddwKwceNGrrrqKoc9yEpKSlixYgXr168nKyuLwMBA4uLieOihh4iJiWnUP1N3SYLsCuGsEf93uzK4ISGSefcM5KXle+0myWIig5h3z0DLuGp76qvmqs2VBq0hSXPJOatz+J5N1fTUXoUYaBw2cN1y8DR9u7dn7rQE8FAsr3VlLLj5uEC7sffjGzPwkh4JFUIIIYS41BRFobi0nJCkOeSuclxhH5I0xyZONMer+UXltAv0JvfIFpfeT3dkCyETehMZ6s+J7BK7a7Lz9Xy64TgP3tqnzrFQ1WCgvLIab89W3DSkCwB5ReV8v/sEX25O4+mp8e63IhFCNBlz8YGz3oTN7ftXfn4+kyZN4vTp03Tq1InBgwdTXl7O0aNH+frrr9m8eTNr164lJiaGG264gR9++AEfHx9GjRpF165dHV63oqKCKVOm8Msvv9ChQwfi4+NRVZVffvmFH374gS1btvDpp58SGxtr87pjx46RlJSEn58f/fv3Jycnh0OHDvHQQw+xdOlSRo8ejY+PD+PHj2fPnj3k5eUxePBg2rZti4+Pj8P7yc7O5u677+bEiROEhoYybNgwcnJyWL9+PZs3b+ajjz6ib9++jfbn6i5JkF1BHFVblZZV8/x7u3lxRiKLHxvKoeO5bN5/vjpqRHwEfbuHcOas3jKu2p3rO2Jq0OrjvEFrTQ1vrNzr8D0bu+mpowqxyaNj6NjOz2ED147tfHno1jg8W3vw8/FcmwEIrowFV8t1lB76Ab8eg20eb24fzEIIIYQQF8MH36Qw+cbulob8FSd/Qa2pRPHwxKtzL3yielNcWs5/NqQwoGeoTbz60boUnpka71IMBmDQm2I764FQ9gzuHU6xrpJ//ucAUeGB/Pm6KAL8vNBqtRxLO8smq/h5ZHwEU8f24MxZPW99/jOz7kpwem0hxMVhVFXUSr3dIg3r3oSKp2+z+i721ltvcfr0ae6++25mzZqFRmP6/qvT6bjvvvs4ePAga9asYebMmfTu3ZsffviBoKAgFi9e7PS6H3/8Mb/88gujR4/mH//4Bx4eps/BqqoqnnrqKdavX89nn31WJ0G2a9cuJk6cyAsvvICnp6loZcmSJbz99tssX76c0aNHExwczOLFi7n77rvJy8vjgQceYODAgU7vZ8GCBZw4cYLbbruN+fPn06pVKwC++uorZs2axZw5c/juu+8a9GfYGCRBdgVxVm2Vna/niSVbGZsYxZ+HdqHv5BDLc8W6Slaea3rqKFFV3/XBfglrVY2R7T+fpE+3roRMOL8Tl1+oZ+uuDK7tHcbDt/XhiSVbKS2zfe+YyKB6K9bcKZt1NOJbUTTc+aeeHErNtZsc8/dpxUszEvHy9OCpf22rMwDB3bHgQgghhBBXuvpiNFU1Mu/d3Tx4SxyxXa/Bp0vc+ecMBqqqDbTx9+bx2/sBkFdYZolX2wV6A40bg5njzpXrUjiQmkdaVjGTR8egL6/mxfftny4wV7TdfdM1HEnLp2eXtlJFJsQlplEUhyeYwLY3YXMSFBTEddddxyOPPGJJjgH4+flx0003cfDgQbKzs51cwT4vLy+GDRvGk08+aUmOAbRu3ZqJEyeyfv16u9f19PRk7ty5luQYwJQpU3j77bf57TfnR9sdycnJYfPmzbRv357nn3/ekhwD+Mtf/sI333yDXq8nPz//kjX2lwTZFcKgqowa4LwRf2lZNas2Hic2up2ll5hBVcn4o9hh01Jrjqq56ithje3alufe20MrrYKPlwdlFTVk5pSiqkY2/nSKxY8NrdM41Tw501H1WPMzu7QAACAASURBVEPKZu0NMQCIDPWnfaA3H337q93fe+zgKELb+tokx6ABY8F7D2+W5bxCCCGEEI3FlRhNBcYO7szUsTGEBPuhTz+M/sj5tb6xw/HtEoehpobMPD3/+OSgJXYEKKuscS8GizXFYCP6XcWvGQV1nrfXauSvN8TQykPL7Ld2Ouzhm5pZyEvL97L4saGknS6S5JgQl1h9/aHNKv/4jbKMZLw79Wo2380effTROo8VFBSQmprK/v37AaiudlzM4sgdd9zBHXfcYfNYSUkJx48fZ9s20+dnVVVVnddFR0fj5+dn81i7du3QaDSUl5e7fR9g6m8GcN1119G6des6zy9fvrxB121MkiC7QmgVhT7dQ1xqxG9dldXQ15m5UsIakjSHBfcO5PEl2ziRbfsftbn5/5+HdiHtdCFt/DwZGR9Jn+7tnSbH3C2bdTTEAM6X29s7QqooGsYkdrZbXWZ3LLhGsTut0zOsm00vCyGEEEKIK407MVqPTkHUVOjtTqE0rw2dNJfOof4E+Xva9A6zicHCYzBWV9idlA7mgVC9yc7Xc8OgznRo58em/ZlWRyVNcad1qxFF0XBtXBg/H7d/usBaamYhh47n0qtL20b4ExRCXAhX+kOb6ZK3NLvvZ5mZmXz88cccPHiQjIwMdDodgKWizGhs2ECQ3NxcPvnkE/bu3UtGRgZFRUU217XH39+/zmMajQZFUTAYDA26j7y8PACbhv3NjSTIriAG1cj8+wY57KPlqCrLoBpdauBvL2HlSglr7qpFTsdrb9qfyROT+7NgxmDL/QAOd+EaUjbrbIhBWUUNYP8IaX3VZeax4CFJcylP3Y1PdD88As6Xg9aU5FOWdhDfHolSPSaEEEKIK5q7MVruZ87X5nxmWjvn7gSee2eXTZy6/dBp/jKsC2FTX0SjPf+VpqYkn5KDGyg5uJ5WQR0tjf6/2pLGg7f2ITa6rc2mr71WI5Gh/gT5e/HB17+49Htv3n+KvpP7u7RWCNG03O1N2FysXbuWZ599FoPBQOfOnRk6dChdu3YlNjaWM2fO8Pzzzzfounv27OGBBx6gvLycsLAwEhIS6NKlC7169cLDw4MHHnjA7uucJc8aqqGJtYtJEmRXEK2iwcerFYsfG8rPx/Ps7o7VTY6ppJ4sJDjAq94G/ll5emI6BVomOLpVwpp+mLGJ0XbHa9eu3HJWnn4hZbOOhgxk5pSSV1TOyPi6R1SdVZeB6djqG58f5oV7BxLQ70bK0g9TsPmT88cJYocT0O/Gc303JDkmhBBCiCuTuzGa11Xdqcz+3aW1nhE9beJUjUbDPeN74ufjSVnGYdujnLHDCB4+mcDBE1Fae5FzVse89/YQGmyaqqatFY/9/ZMDHDqeZ/NYffFfbeZ1jTlYSgjRMJdjf2i9Xs/8+fNRFIW3336bYcOG2Ty/cuXKBl3XaDTy3HPPUV5ezsKFC7nttttsnt+0aVOD77khzH3Fzpw5Y/f5n376iezsbAYOHEhoaOjFvDULSZBdYcz/KNfeHXNUlaVVFL7bdYIDx3IYmxjFmMROPGG1A2bdEHVAz1B6Rp1/zq0S1iNbCZkQZ3e8dn3N/61dSNmso/dRVSPf7z7B1LE96hw1dVZdBqYG/o8mxWGsLCdr5eU1KUUIIYQQorE0JEZr3T6CqtyTLq1duz2dQb068MTk/pajnFkrXnAae+n08Nw7uzlTUMbVnex/GW7jVzfGqy/+q828TpJjQlxaRtWAX+/Lrz/077//jl6vp0+fPnWSYwA7d+4EQFVNx8ddre4qKCjg1KlTtG/fvk5yzN51G8rV++nbty8Au3fvpqamxmZoAMDSpUvZt28fn3/++SVLkF36vw2iSdTeHXP2D3ZhaaWlgf+9i37kkcWbefbN7TyyeDP3LvqRVRuPoyuvtruL1hjjtc3N/13VkLJZ8xADR77blcGZs3rm3TOQmMjzAZR1dZk9YwdHERLsR+6q+o8TNIcPXyGEEEKIpuJujKZ4+ri8dsfhLO5d9CPf7Eh3+Sinn68XQ/teBdiPNx3Fh/XFf7WZrn1hXzCFEBdOo2jxiTL1h3bG3B+6uXw/M/fkOn78OKdOnW8LZDAYePvtt9m8eTMAlZWm7+PmBvd6vd5pX7LAwEC8vLzIz8/n8OHDlseNRiOrV6/m008/tbluQ5knXZaWljpdFxUVxbXXXkt2djavvfaazZHLNWvWsG/fPqKiooiNjb2g+7kQUkEmbHbHVNVYp8LL3jozd0tYzTtyZo6a/zu9VgPKZusbRlBaVs3z7+1m0cxrLUdUk9PyqKo2cDqnhL4xoXVeqygaxiVGok8/fFlOShFCiJZu7d8nXOpbEOKK4m6MplaWubw20M+Tnp2DGNK7o+uxV/phxg/pTmlZpd1401F86Ox0QW0NiWWFEE3HqKp0+Otch0l0c4Vpc6keAwgJCWHcuHGsW7eO8ePHk5CQgIeHB8nJyeTl5REdHU1aWhr5+fmAKfEVGBhIUVERt99+O7GxscydO7fOdbVaLVOnTmXZsmVMmTKFhIQEfHx8SElJ4fTp03Tt2pX09HTLdRuqU6dOACxYsICvv/6aJ5980vJYbQsXLmTKlCl89NFHbNq0iWuuuYasrCyOHj2Kt7c3S5YsaZL+Z65qHn8jxEVlvcNVX2WVtdq7Y+YSVlf4xQ4jv1BPZs75rLL10ABXufWe58pmzcxDDKwrxKwF+LTGs7UWVTUSFx3MneN6cu+EWPrGhGJUDbw8czB9rQKgyFB/2gb6oj+yxaX70SVvaTYfwkIIIYQQjcndGE2trjBNnHRhraGmhtl3J/DKQ9cRGODteux1ZCuBAd48eGsfALtVXo7iQ0enC6w1JJYVQjQtjaKgePoSPu1VOkyej1+vYXhH9cav1zA6TJ5P+LRXm2Xrm0WLFvHwww/ToUMHdu/ezZ49e+jQoQPPP/88X331FW3atOHnn3+moKAAjUbD66+/TlRUFEePHrVUmNnzt7/9jTlz5hAVFcXBgwfZsWMHvr6+/O1vf+PLL7+ke/fuZGdnc+zYsQbf+/3338/w4cMpLS1l586dnDhxwuHasLAwVq9ezd133w2Y+qCdPn2aMWPG8Pnnn3P11Vc3+D4ag1SQtSDmxqFH0vLZ+JOpEf+YxE4MiQt3eXfMusG+dQmrs10803jtOA4ezqJ3dDunQwPq49Z71hrb68oQA1MzfQ1lGUdtG772Ho5PVBwL7htEyskivt+dQYCvqbT1cp2UIoRwbvyT/2vwa82VSY1xDdH40l++pVGu02Xu6ka5jhBXgobEaP59RlGZddyUKDPWTV6Z11YVZHN2+yoU7wDa3TjN7dhr2ZojlOirGDUggj7dQ2ziT2fxYUFJJTGdfNwagCWEuPTMyS/vTtfYfCc0F080t+QYgLe3N4888giPPPKI3ef37dtn8/OwYcPq9CubOHEiEydOtHnMw8ODu+66i7vuusvudb/++mubnwcOHEhqaqrD+/z111/rPBYcHMy7775b53FHQwCCg4OZPXs2s2fPdvg+l4okyFoIg2qkrKKaBcv22CTC0rOKiL4qkHn3DOSl5XvtJsliIoOYf+8gqmtUWnnYfpi4XsJqYEhcOEPiwi33Aw1rZmpUDU7f0zsqjtDbnj2X7NLavE577md7QwxMDV/L7F7XuuFrj05tbIYVXI6TUoQQQgghGps7caFG0dJ+3AMA1JTkU3JwAyUH16OW62zW1pSc5Y8Vs1ArdLQOMR3ZcTf2Sk7L50R2CVsOnrZUffl4tbJJkoH9+NDdAVhCiObD+rug6efmlxgTzYskyFoIraKpkxyD8723XpyR6HR3rKrGwMffpTBt/DU2r7cuYS3LSDZVXekL0foGnau66m33fPeFBBMaRUtxldb0numH0R3ZanlP/7434HVVDBpFqTv2+1wVmFFVHQwx0LjU8DV82quWxy7XSSlCCCGEEI3N1biwIiuV0oMbzsdoscMJHj6ZgP5jKN67Fu8uffHp0tuUHPt4PmqFKWlWlXeKmpJ8/GKHuRZ72WnxkZpZyIJle1j82NA6650NuXJnAJYQQojLkyTIWgCDqnIkLd/hEcrsfD1PLNnK2MQobru+m83uWHWNyqHUXN764jA9o4Ltvv5ilrCaf5fXV+5nbGIUYxOjCZkQd/75mhoMFXpyPnNeBVb73LlRNVB+8qjbzfYv5MinEEIIIcSVxnFcaECtruTMqlepOJFs8xrrGC145FRUVaWqINtSOWZ1EUoObiB4+GSXW3ysXpdi0yIETEmyn4/nERvdThJdQgghLKSUpQXQKgobf3LeBLW0rJpVG4/z9mrT+NdVP6byyof7SJr7Lc+/t5ucgjK747GtXYwSVvPvYr7fexZt5JHFm3n2ze18syMdrYeH3eSYmbkKrPa9aRQtuuQtLt1D7Wb75uMEjsYJW09KEUIIIYRoCerGhVqyP55fJzlmZh2jaT08KNq+yjY5dk7JwfVUF+bQIWm209grJGkOOWd1rNuVYXfNpv2ZkhwTQghhQyrIWojC0kqX1hWUmNYdOJbLrxkFlseb0whr699FVY2cyC5BUTQ8c0c/18d+W1WBmTW02X5Dj5kKIYQQQrQEblXqpyfj3bkXBn2x3TVquY7sT1+i4+3z7Lbb8Isdjk+X3uSc1THvvT3oyqvtXsfV2FgIIUTLIQmyFiLI39OtdWUVNZbHrEdYN8VOm71m+rV3He3do7XIUH/aBvqSu3WLS++pS95Sd8rlBTTbvxwnpQghhBBCNIb6Yjm3KvWPbMGnS29ad+xKecZhu2tqCrPJWvEMAf1G0ybhJny6nG+3UaqrYOW6FNbtynCYHAPXY2MhhBAthyTIWgCDqjJqQARbDp6ud+3I+EiKdZUEB3gSFXZVk46wNldVlZ886rCZfu3EkqPfxcfL9Fe5oVVgjdVsXyalCCGEEKKlcCeWczdG84kZSPGuLx2uU8t1FO1cjVdkL1pF9KBVq1YYVJXf/yhh1cbj9b6PuXWIHLMUQghhJgmyFkCrKPTpHkJMZJDDRv1ge4xywYzBQNONsDaqKmql3u7USGfN9DVg93cxV7w1tApMmu0LIYQQQrjO3VjO3RjNOyzaxUb8vS1N+B3FibWZY97azfuFEEK0bFLe0kIYVCPz7xtETGTd44Fge4zSWlPtqmkUxW5AZVb5x2/kfvVPNIqCUTVYHlcUBYPBwMIHBtPXqidaZk4pZ4v0+MYOd+n9zVVg1qTZvhBCCCGEa1yJ5cxN982V+q7wix1GQVEZBcVlLsZlBpRz8aqiKBSWVjDvnoFOY9559wykqLTC8johhBACpIKsxdAqGny8WrH4saH8fDyPTfszKSytJMjfs0mPUdrjSqNWj6COtBt3P0Ddsv3Y4fh0iWPBfYNIOVnI97tPUFhaybGTRVwb1/AqMGm2L4QQQghRP3ea7pefOoZXeHfXK/W7xFGcr6djO1+MqqHeuCzlZCHf7TpBgG9r7rs5lg+/+ZXbb4xh8WNDOXQ8l837T1li3hHxEfTtHsKZs3o+3ZDK47f3a+w/GiGEEJcxSZC1IObkV2x0W5uJlE11jNKaQVXRnkss1deoVfH2o+PkeSitvMhaMcth2X7opLl0j2hDz6j+ludqamoInTSXnM/s72haV4HZ7yEmzfaFEEIIIZxxtem+4u1Hq+COqJV6jNVVdEiazZlVr9Qbo4UE+1jeB+zFZQYqq2pY+ME+fv4tD4DOHQMA04TzJ5ZsZWxiFGMSO/HE5PNxYl5hmaWB/4CeoQ3+/YUQQlyZWmSCLCsri7feeosdO3ZQUFBAUFAQw4cP59FHH6V9+/Y2azMyMnjjjTc4cOAARUVFREZGkpSUxJQpU1Au02SJttZ9N21izFSVdiQtn40/nbLs7jlr1BrQbzStAkPtJsfMKv/4jZzPXiZ82qus3Z7OjsNZlFXUUG1QWXDvwAuuApNm+0IIIYQQjrnSdD+g32g8fNuQtWIWhnIdHW+fZ4rR0g+jO7L1fIwWOwyfLueb+teeZW4dl6mqEUXRMvftbTZ9xjJzSskrKmdkvGmY06qNx/li829Ehvrj4+VBWUUNmTmllr5j0qRfCCFEbS0uQXbkyBGmTZtGaWkp3bt3JzY2lqNHj7Jq1Sr27NnDF198QZs2bQA4duwYU6ZMQafT0a9fP2JjY9m7dy8LFy7k8OHDLF68+BL/Ns2bQTVSVlHNgmV7LAGMeXfPYaNWjUJAvxspS//ZpbL9svTDJPaK5v2vj1oCnseXbGPq2B6MGSRVYEIIIYQQTaHepvuWmO6wJabLWvEMAf1GE9D3BkImPGpZWlOcR1XBGVoFhji9pEE1YjQaOZyaV6cJv6oa+X73CaaO7WFp0q+qRk5kl9S5jvVgKiGEEMKsRWUKqqqqeOqppygtLeW5555j7dq1vPXWW2zYsIHRo0eTmZnJG2+8AYDRaOSZZ55Bp9Px+uuv8+mnn/Lmm2+yfv16YmJiWLt2LevXr7/Ev1HzplU0NskxqL+Zfuv2EXgEtEN3ZKtL76E7spV2Qb5EhvpbHgtr58eQPuGotf56S2JMCCGEEOLCudJ0/3xMt8XymFquo2jnajLfepDTy57gj4+e4/SyJ8h860GKtq+qN1bTKho8tAqb9p+y+/x3uzI4c1Zfb5N+e4OphBBCiBZVQbZu3TpOnDjB+PHjmTp1quVxT09PZs+ezYEDB8jIyABg586dpKamkpCQwIQJEyxrg4ODeeGFF7j99ttZuXIlo0ePvui/x+XAoKocScu3u7u3bncmU8fab9SqeJp6TrhStg9g0JuuH9etHVFhARd94IAQQgghREujUbT1Nt13GtMZVapyT9o8ZI7pHDGoKulZxXSLCKKwtNLumtKyap5/bzcvzki026Rf4kQhhBDOtKgE2YYNGwCYNm1anec6duzIzp07LT9v374dgOuvv77O2n79+tG2bVsOHDiATqfDz8+vie644ayb4tv7ubFfV5tWUdj4k+PdvRsTIghJmkPuqkU2gZVaWWZ6fX1l++b38TXtDt47Ifbc/Tb9wAEhhBBCiJbOqKp0+OtczvzX/mAkbYDpCKO7MR2cjz+t41CtorA7OZtuEUEE+Xs6vE52vt7SpP/PQ7vQd/L5Y5uGc+02JE4UQghhT4tKkP3666+0atWKq6++muzsbNauXUtmZiaBgYHceOON9O59vl9VWloaAN27d7d7raioKM6ePcvvv/9OXFzcRbl/V9Ruim/eMRs1III+3UMc7pg19HXOONvdm/feHl6aMehco9ZkdEfONdP3C0atrsSv93B0R7fV+x5+vYdjVA2W5q0S8AghhBBCND2NoqB4+tYzGMngekwXO5zi0nKWr/2VkfGm+LO6WuXD9b+iqkbuuzmWtNNFNo34HSktq2bVxuPERrej61VtWPVDKh4eWuK6tWtwXCuEEOLK12ISZFVVVWRnZ9OhQwe+//575s6dS3l5ueX5ZcuWcc899/DMM88AkJubC1BnqqWZ+fH8/PwmvnPX2WuKb7bl4GlLzwUfr1Y2QUFDX1ef+nb3Hl+yjbGJUdw8rDshXWyb6ddXtg+mceDWTfiFEEIIIcTFY+4Z5t3J0WCk+o9iwrmYrktvVq5LYfOB02w+YIo/590zkD9dG8U/Pz0IQBs/zzqN+B0xN+JfuS6FNdvSAfhi028NjmuFEEJc+VpMgkyn0wFQXFzMs88+y5gxY3jooYdo27YtO3bsYMGCBSxfvpxOnToxadIkS/LMy8vL7vXMj5eVldX73l9++SVfffWVS/eZkpLi0jp77DXFt5aaWciCZXtY/NjQRnmdMwZVZdQA13f3YqM9LUGKRlEwqganZfueYd3o8Ne5NtVjQogry8X67BRCiCvJpfjsrB2LWTfbr+8opmdYN0KS5pBzVse6XRmWx1MzC3lp+V4WPzaU2K7tLJVj//fxfm5IiGTePQN5afleu/FrTGQQ8+8dxJmzeptrmq/rblwrhBCiZWgxCbKqqioAysvLGTJkCIsXL7Y8N27cOHx8fLj//vt56623SEpKQqs1/UOv0TjfWVLP7ZA5k5WVxb59+y7g7uvnqCl+bamZhfx8PI/Y6HZoFU2DX1cfraLQp3uIy7t7tX+XjKwSOnf0d1q2X1NTw+9ZpUSFt5EdQCGuQBfjs1MIIa40ze2z0+lRzNhh+HSJI+esjnnv7UFXXm3z2tTMQg4dz2X0oE6s33OCO8b0IKydn9NG/CPiI+jbPYQSfRXPv7e7zjXN13UnrhVCCNEytJgEmXUl2O23317n+eHDhxMaGkpOTg4nTpzA29sbgIqKCrvXMz/u6+tb73uHh4eTkJDg0n2mpKRQWlrq0lprzpri17Zpf6YlKdXQ17nCoBqZf98gh9Vp1mO2rYMTraLwv23ppJ4sYOYtcfTu2tOmbN9QU8Oh1Fze+uIwPaOCeWJyf5fvSQhx+bgYn51CCHGlaY6fnY6OYuYX6lm9LoV1uzLsJrIANu8/xROT+3MkLZ8zZ/WWyjFzI/4xiZ1sYsEag0ppWRVPLNlKToHjkx7uxrVCCCGufC0mQebv70+rVq2orq7mqquusrsmLCyMnJwcCgsLCQkJISUlhfz8fLp27VpnbV5eHuC4R5m1iRMnMnHiRJfuc+rUqQ3e9XPUFL++dQ19XX20igYfr1YsfmwoPx/PY9P+TJfHbBeWVpJ9tozn39uNh4dCQo9QAv09KSqtZF9KDjU1psq9ju3qT1AKIS5PF+uzUwghriTN+bPT+ijmG6t+5sefMlHPTSB3xDr+tFc59ubnP9P1qkASY8PoFhFIsa6K2f9vh9PkWO3rCiGEENCCEmRarZauXbty7NgxcnJyuPrqq+usMTfcb9u2Ld26dWPr1q2kpaUxcOBAm3VGo5H09HTLNZsLZ03xna1r6OtcYU5+xUa3tdmlM5wLhhyVtVu/V02Nyq4j2Y12T0IIIYQQ4tKqqjbUmxyD87FeWUUN2fl6S+XYn4d2oe/kEMs6c2z53w3HyM7Xu3xdIYQQwkypf8mVY+hQUzPO77//vs5z6enpZGVlERISQkREBNdddx0AGzdurLP24MGDFBQU0L9/f/z8/Jr2pl1kborvipHxkZYgoqGvc5dWUWr97Ljfw8W6JyGEEEIIcfG5E+uNiI8gr7CMzBzTUVDzkKeMP0psYkBzb91r48Jcuq7EkEIIIWprMRVkAH/961/5+OOPWbNmDYMHD2b8+PGAabLlc889h6qqTJkyBUVRSEhIoFu3buzcuZNVq1aRlJQEQEFBAQsWLOD/s3fv4VHV597/P7OGMMlkggmHgEQSg4SYQhJEQOgBIlQUfo/ajS3FA1Wshz7dvexW0arIttZiqT/r9qGlJ9vi3uguaov1sdtaFQhpATkphAhCkEg4hWMimSQEmLWeP+KEHGYmk2QOycz7dV1e7cz6zprvDHBf3+8997qXJM2bNy9qn6WtrjbF704z/XDpiXMCACBS9i26KWTnGr7gzyE7VziF6jP3ls8b7zqz1rtiZLqWv7WrVbWZvzUga0gAQHfEVQVZRkaGFi1aJMMwNH/+fM2aNUvf+c53dO2112rr1q2aOHGivv3tb0uSDMPQ008/LafTqYULF2r27Nn63ve+p+uuu067d+/W7NmzNXXq1Ch/ota8TfFzM9N8Hm/ZFD8UrwunnjgnAAAAhEYwa72F375KVSfr9Nb6ilbPB1oDsoYEAHRVXFWQSdLMmTOVnZ2tX/3qV9q8ebP27t2rYcOG6c4779S8efOUkJDQPLagoECvvfaalixZoo0bN6q8vFxZWVl64IEH9I1vfCOKn8K3rjbF704z/Z72WQAAANDzBbPWO9N4Xn9eU64Rw1KDXgOyhgQAdFXcJcgkKS8vT0uWLAlq7IgRI4Ie2xN0tSl+V18XTj1xTgAAAAiNjtZ6CQmG7rx+dLvnO1oDsoYEAHRFXF1iGU860xQ/FK8Lp544JwAAAISGv7Ved9eArCEBAJ1BggwAAAAAAABxjQQZAAAAAAAA4hoJMgAAAAAAAMQ1EmQAAAAAAACIayTIAAAAAAAAENdIkAEAAAAAACCukSADAAAAAABAXCNBBgAAAAAAgLhGggwAAAAAAABxjQQZAAAAAAAA4hoJMgAAAAAAAMQ1EmQAAAAAAACIayTIAAAAAAAAENdIkMUhj2kGfAwAAACEG2tSAEBP0ifaE0DkeExLdsOmHXtPaNXmA6qubVRaikPTxg/TmJHpzccBAACAcGFNCgDoiUiQxQmPaan+zDk9+cL72l1Z3epY8QcHlZuZpifunihnYgILEgAAAIQFa1IAQE/FJZZxwm7YfC5EvHZXVuvJF95nIQIAAICwYU0KAOipSJDFAY9patueY34XIl67K6u1bc9xeUwrQjMDAABAvGBNCgDoyUiQxaiWTU7thqFVmw8E9brVWyr5xQ4AAADd4qsBP2tSAEBPRg+yGONdfJTuPaHVmw+oX3Jf3f21fFXXNgb1+mDHAQAAAG35a8B/w+ThyhmWxpoUANBjkSCLIR7TVH3DeT35uwt9HS69uJ8kKS3FEdQ5gh0HAAAAtBSoAf+nR07r5/OvZk0KAOixuMQyhtgNo1VyTJIqj9bqeE2Dpo4bFtQ5po7LpN8DAAAAOi1QA/7Ko7Vy15/VtPGsSQEAPRMJshjhMU196KPpqWlaenvDp7oiN125mWkBz5GbmaYxIwfR7wEAAACdEkwDfpvNpjEjg1+TsiIFAEQSCbIYYTcMrfbT9PRv6ytUdbJOC799ld8FSW5mmp64eyK/1AEAAKDTOmrAnzk4RclJCaquPdPhmnTht69STe0ZGfxoCwCIIHqQxRB/zUxr68/p33+7QT+6Z5Ke/f5kfbjnmNZsudA0deq4TI0ZOai5qSoAAADQWYEa6zsTm7YdL/51p26enutzTXr1uGG6YmS6qk7W6Y/v7Nb9N4+N1NQBACBBFksCNTM9cqJODzy/VjMmZeuGycN1re5OgAAAIABJREFUxS3pzce8VWMkxwAAANBVgdai9WfOS2pq/+Fdk143KUsP3HJl85jj1fVa/tYuvbW+QuO/MDjs8wUAoCUSZDHCY5qaOn6Yij846HdMbf05vbpqj/JHDFT+iAGyG01X2JIYAwAAQHd4TFPTAqxFW944qviDg3p11R79aU25MgenyJnYR/VnzqvyaK3Mz3+49TbpZ50KAIgUepDFCLth6IpOND31JscAAACA7rIbRsAG/L5uHGWalj49clo7K07p0yOnm5Nj3DgKABANZEliiMc09cRdEwM34r9rojymGeGZAQAAINZ5TEtP3O1/LVpeWa3zHjPgGG4cBQCIFi6xjCF2w5AzqY+e/f5kbdtzXKu3VPpoxG9SPQYAAICQsxs2ORMTOliLWkGNoXoMABBpJMhijDf5lT9igMaMHNT8vLdqjOQYAAAAwsWb2Gq/Fm1/U6hgxgAAEClkS2JU20QYiTEAAABESvu1aPukVzBjAACIlLisIPvLX/6iH/zgB36Pf+c739H999/f/HjHjh1aunSpduzYofr6eo0YMULf+ta3dP3110diugAAAAAAAAijuEyQ7dq1S5L0pS99Sf379293PC8vr/n/r1u3Tvfee69M09T48eOVlJSkDRs2aP78+dq7d2+rRBoAAAAAAAB6n7hMkO3cuVOS9JOf/ESDBw/2O+7MmTN66KGHJEl/+MMfNHHiRElSZWWl5s6dq1//+te65pprNHr06PBPGgAAAAAAAGERl42pPv74Yw0cODBgckyS3njjDZ08eVLXX399c3JMkjIzMzV//nxJ0vLly8M6VwAAAAAAAIRX3CXIDhw4oNOnT2vUqFEdjv3HP/4hSZo2bVq7Y1dffbXsdrtKSkpCPkcAAAAAAABETtwlyLz9xwYMGKCnnnpK11xzjfLz83Xttddq6dKlamxsbB5bXl4uSRo5cmS787hcLqWnp+vUqVM6ceJEZCYPAAAAAACAkIu7HmTe/mMrV65Uamqqxo4dq8GDB6usrExLlizRP/7xD7344otKTEzU8ePHJUmDBg3yea5BgwbpyJEjOnHihAYOHOj3PVeuXKnXX389qPl5E3gAEO+InQDQecROAAC6Ju4SZN6FwIwZM/T000/L6XRKkg4ePKh//dd/1Ycffqjnn39ejzzyiBoaGiRJiYmJPs/lfb6+vj7gex46dEibNm0K1UcAgLhA7ASAziN2AgDQNXGXIFuyZIkOHDigzMxM9e3bt/n5Sy65RIsXL9a//Mu/6JVXXtGDDz4ou90uy7Jks9kCntM0zYDHMzIyNGHChKDmt2vXLtXW1gY1FgBiGbETADqP2AkAQNfEXYLM4XBoxIgRPo/l5eVpyJAhOnLkiD799FMlJSXp9OnTamxslMPhaDf+zJkzkqTk5OSA7zlr1izNmjUrqPnNnTuXX/0AQMROAOgKYicAAF1jsyzLivYkepKvf/3r2rFjh1577TU9+uij2rt3r1atWqVLLrmk3diioiIdOXJE69atC9iDrDMmT56so0ePKiUlRXl5eSE5JwBI0uWXX64FCxZEexphEcrYuXz58hDNCkC0zJ07N2TnInYCQOfFcuxE7IqrCjK3262f/vSn+uyzz/Tcc8+pT5/2H//gwYOSpCFDhignJ0d79+7VJ5980i5B5na7dezYMfXv3z9kyTHpQj+z2tpaftEDgCCFMnbm5uaGYkoA0OOx7gQA4IK4SpAlJyfr3XffVXV1tTZv3qxJkya1Or527VpVV1dr5MiRSk9P11e+8hX97W9/03vvvacpU6a0Grt69Wp5PJ52z3fXJZdcooMHD8rpdCorKyuk544Eby8Lfon0j+8oML6fjnX1O7r88svDOKvo6u2xsy3+HUQffwbR1ZO+f2Jn9PSkvwexhO819PhO24vl2InYFXeXWD733HP6zW9+o8suu0zLli3T4MGDJUmVlZWaN2+eDh48qP/4j//QzJkz5Xa7NX36dJ0+fVpLly5tToYdOHBAt912m44ePaq//OUv/ONvwdvLYsKECVym5AffUWB8Px3jO4p9/BlHH38G0cX3D4m/B+HC9xp6fKdAbIirCjJJ+u53v6stW7Zo69atuu6663TllVdKkjZu3KizZ8/qzjvv1MyZMyVJLpdLTz31lO677z7de++9Gj9+vJKTk/X++++roaFB999/P8kxAAAAAACAXi7uEmSJiYl68cUX9eKLL+rNN9/Uxo0b1bdvX40ZM0Zz587V9OnTW42fNm2ali9frqVLl2r79u2yLEu5ubm64447NGPGjCh9CgAAAAAAAIRK3CXIJKlv37665557dM899wQ1fuzYsfr9738f5lkBAAAAAAAgGoxoTwAAAAAAAACIJhJkAAAAAAAAiGskyAAAAAAAABDXSJABAAAAAAAgrpEgAwAAAAAAQFwjQQYAAAAAAIC4Zv/hD3/4w2hPArElLy9PEyZMUF5eXrSn0mPxHQXG99MxvqPYx59x9PFnEF18/5D4exAufK+hx3cK9H42y7KsaE8CAAAAAAAAiBYusQQAAAAAAEBcI0EGAAAAAACAuEaCDAAAAAAAAHGNBBkAAAAAAADiGgkyAAAAAAAAxDUSZAAAAAAAAIhrJMgAAAAAAAAQ10iQAQAAAAAAIK6RIAMAAAAAAEBcI0EGAAAAAACAuEaCDAAAAAAAAHGNBBkAAAAAAADiGgkyAAAAAAAAxDUSZAAAAAAAAIhrJMgAAAAAAAAQ10iQAQAAAAAAIK6RIAMAAAAAAEBcI0EGAAAAAACAuEaCDAAAAAAAAHGNBBkAAAAAAADiGgkyAAAAAAAAxDUSZAAAAAAAAIhrJMgAAAAAAAAQ10iQAQAAAAAAIK6RIAMAAAAAAEBcI0EGAAAAAACAuEaCDAAAAAAAAHGNBBkAAAAAAADiGgkyAAAAAAAAxDUSZAAAAAAAAIhrJMgAAAAAAAAQ10iQAQAAAAAAIK6RIAMAAAAAAEBcI0EGAAAAAACAuEaCDAAAAAAAAHGtT7QngNYWLVqkjz/+WJdffrkWLFgQ7ekAQK9A7ASAziN2AgBwAQmyHubjjz/Wpk2boj0NAOhViJ0A0HnETgAALuASSwAAAAAAAMQ1EmQAAAAAAACIayTIAAAAAAAAENdIkAEAAAAAACCukSADAAAAAABAXCNBBgAAAAAAgLhGggwAAAAAAABxjQQZAAAAAAAA4hoJMgAAAAAAAMQ1EmQAAAAAAACIayTIAAAAAAAAENdIkAFAFFimJ+BjAMAFxEwAABBufaI9AQCIJ5ZpymYYathfJndpsTzuGtldqXIVFMmZXdh8HABAzAQAAJFDggwAIsQyTZmNdapasUiNh8tbHXOXlcgxNEdD5iyQ4Uhmwwcg7hEzAQBAJLGaAIAIsRmGz42eV+PhclWtWMRGDwBEzAQAAJHFigIAIsAyPaqv2O53o+fVeLhc9RWlskwzQjMDgJ6HmAkAACKNBBkARIDNsMtdWhzUWHdpMRURAOIaMRMAAEQaqwkAiBCPuya4cXXVYZ4JAPR8xEwAABBJJMgAIELsrtTgxiWnhXkmANDzETMBAEAkkSADgAiwTI9cBUVBjXUVFNFPB0BcI2YCAIBII0EGABFgM+xyZhfKMTQn4DjH0Bw5swvopwMgrhEzAQBApLGaAIAIsUxTQ+Ys8LvhcwzN0ZA5C6iEAAARMwEAQGT1ifYEACBe2AxDhiNZGfMWq76iVO7SYnnqqmVPTpOroEjO7AJZpkklBACImAkAACKLBBkARJB3I5eUNUrO7ILm570VEGz0AOACYiYAAIgUVhUAEAU2w97mMeEYAPwhZgIAgHBjdQEAAAAAAIC4RoIMAAAAAAAAcY0EGQAAAAAAAOIaCTIAAAAAAADENRJkABAGlukJ+BgAYhGxDwAA9FZ9oj0BAIgllmnKZhhq2F8md2mxPO4a2V2pchUUyZld2HwcAGIJsQ8AAPR2JMgAIEQs05TZWKeqFYvUeLi81TF3WYkcQ3M0ZM4CGY5kSZZshr3Faz2tHgNAb9GZ2BfOJFnbOEpcBQAAnUGCDABCxGYYPjeIXp4Gt6zz52RLMlRfsZ0qCwAxoaPY13i4XFUrFilj3uKwvD/VawAAIBRIkAFACFimRw37y/xuEI0kly6+ZaFshl2Hlj0S1SoLAAiVjmKfV+PhctVXlCopa3RI41tPqV4DAAC9HysFAAgBm2GXu7TY7/F+Y69VQupgVb36kw6rLNjEAegtOop9LblLi0Me34KtXiOuAgCAjrBaAIAQ8bhrfB+wGeo3drrq920LusrCMs0wzBAAQs9v7Gs7rq46pO9rmR7VV2wnrgIAgJAgQQYAIWJ3pfp8vu+gYerTb6DcO9YGdZ5wVFkAQLj4i33txiWnhfR9o129BgAAYgsrBQAIAcv0yFVQ5POY4XBKil6VBQCES6DY15aroCjkVVzEVQAAECo06QeAELAZdjmzC+UYmtPuch+zsV5S9KosACBcAsW+lhxDc+TMLgj5+xNXe559i24Ky3mHL/hzRM4PAIhfVJABQIhYpqkhcxbIMTSn1fNnjx/Q+dMn5MqfEtR52lZZWKYnpPMEEF/axpBQxxR/sc/LeyfJUFePRbt6DQAAxBYqyAAgRGyGIcORrIx5i1VfUSp3abE8ddWyJ6fJ9JyXc/iYoKss3LvWq/aDd2V3pcpVUCRndqEs06SHDoCgeWNGw/6ypnjkrglLTAkU+5reqyAs8Sva1WsAACC2kCADgBDybgCTska12pBZptlcZVG1YpHPzZxjaI6GfPMxnas+qhNv/UbmGbckyV1W0lyBYTiSSZIB6JBlmjIb63zGm3DElECxr+XxUAsqrn5evUbsBAAAgZAgA4AwsBn2No+bNmYdVVmcqz6qI398qjk55tV4uFxVKxYpY97iiH0GAL2XzTD8Jo2k8MUUf7EvXKJVvQYAAGIPCTIAiCB/VRbmuTM6VfzfOr317+2SY16Nh8tVX1GqpKzRbPYA+GWZHjXsLwt42aEUOzElWtVrAAAgtrBiAIAoaFtlceJvv1XNuj/7TY55uUuL2ewBCMhm2OUuLQ5qbCzFlEhXrwEAgNjCygEAegBPbXVw4+qCGwcgvnncNcGNI6YAAABIIkEGAD2C3ZUa3LjktDDPBEAsIKYAAAB0DgkyAIgyy/TIVVAU1FhXQVFzXx0A8IWYAgAA0HkkyAAgymyGXc7sQjmG5gQc5xiaI2d2AX11AARETAEAAOg8VkQA0ANYpqkhcxb43dA6huZoyJwFVHoACAoxBQAAoHP6RHsCABCLLNPT6o5qbR+3ZTMMGY5kZcxbrPqKUrlLi+Wpq5Y9OU2ugiI5swtkmSaVHgBa8RdriCkAAACdQ4IMAELIu+Fs2F/WtCF118juSv18Q1oYcEPqfT4pa5Sc2QWtztnyOAB0JtYQUwAAADpGggwAQsQyTZmNdapasUiNh8tbHXOXlTRf0mQ4kgNuTNtWmrGJBdBSZ2MNMQUAAKBjrJAAxD3L9AR8HCybYfjcsHo1Hi5X1YpFbE4BdEssxJpQxV0AAIBQoYIMQNzqzuWQ7c/lUcP+Mr8bVq/Gw+WqryhVUtboHr15BdAz9fZYE8q4CwAAEEokyADEpVBcDtmyObbNsMsxOFupX7pJpz/4u8wGt9/3dpcWt+oHBADBshl2uUuLgxobrljT2ZuQXBgXmsvQAQAAwoEEGYC4FOwlShnzFrc75rcCIn+K+hfdopTCaTryx6d0vvqIz3N76qpD+lkAxBePuya4cSGONd2t/upO3AUAAAg3EmQA4k53LlEKqgJi9qO6+OaFOrTsYZ+VZPbktNB9GABxx+5KDW5cCGNNd6u/evuloQAAIPax8gAQdzp7iVLLTVpQFRCv/kQJaYPVb+y1Pse4CopkmWan5w0AlumRq6AoqLGhjDXdvTFAd+IuAABAJMT96mPlypXKzc3Vli1b2h07cuSIcnNz/f538803R2HGAEKhK5coWaZH9RXbg6uA2Ldd/a64RrK1DrOOoTlyZhew+QPQJTbDLmd2oRxDcwKOC2Ws6VTsqyj1m5SL1qWhAAAAwYjrSyw//PBDPfXUU36P79y5U5KUm5urkSNHtjuenZ0dtrkBCK+uXKLUqQqIHWuVfuN96jtomM4e2y9JzZcgcZc2AN1hmaaGzFngt6Ir1LEmVDcGiMaloQAAAMGK2wTZ3//+dz366KOqr6/3O2bXrl2SpLvuuks33HBDpKYGIMy8lyi5y0o6HOu9RMm7yexsBUTipfnqm37p502sC0iOAeg2m2HIcCQrY95i1VeUNjXMr6uWPTktbLGmu9Vf3Ym7AAAAkRB3CbKqqio999xzeuONN5SUlKSBAwfqxIkTPsd6K8hGjRoVySkCCLOWlygFumTIe4lSS52tgBh4zTxJar7kiA0fgFDwxpKkrFGt4lS4Yk13q7+6E3eBnuj6B9/ocMybP7sxAjMBAIRK3O3Unn/+eb3xxhsaPXq0XnnlFQ0fPtzv2F27dsnpdHIpJRCDvJco+evj0/ISpQuv6XpzbBJjAMLBZtjbPA59rAnVjQG6EncBAAAiJe4qyIYPH66f/vSnuuGGG2QEWETW1NTo8OHDGjVqlJYtW6Y33nhD+/fvV0pKiq6++mp973vf0+DBgyM4cwCh1JVLlKiAABCPQhX7onFpKAAAQLDiLkF2zz33BDXO23/so48+0p49ezR+/HgNGTJEO3bs0Kuvvqo1a9bov/7rvwJWoHmtXLlSr7/+eqfeF0D4deUSpUg3x45nxE6g5whV7Iv0paHxiNgJAEDXxF2CLFje/mMjR47UL3/5Sw0bNkySVF9fr4ULF+qvf/2r5s+fr5UrV3Z4rkOHDmnTpk1hnS+AruvMJUpUQEQOsRPoOUId+yJxaWi8InYCANA1JMj8uOOOOzR9+nQlJyerf//+zc87nU79+Mc/1ubNm/XRRx9p27ZtGjNmTMBzZWRkaMKECUG9765du1RbW9utuQMILyogIoPYCfQsxL7egdgJAEDXkCDzw263N1eNtZWUlKSJEyfqjTfe0EcffdRhgmzWrFmaNWtWUO87d+5cfvUDegkqIMKL2An0TMS+no3YCQBA17Ci6aKBAwdKkhoaGqI8EwAAAAAAAHQHCTI/fvGLX+i+++7T7t27fR4/ePCgJGnIkCGRnBYAAAAAAABCjEss/di9e7feeecdDR8+XLm5ua2OnTx5UuvWrVNCQoKuuuqqKM0QAAAAAAAAoUAFmR/f/OY3JUnLli3T1q1bm5+vq6vTY489Jrfbra9//esaNGhQtKYIAAAAAACAEKCCzI8vf/nLmjdvnpYtW6bbbrtNY8eOVVpamrZs2aLq6mqNGzdOP/jBD6I9TQAAAAAAAHQTCbIAHnnkERUWFuqll17Szp07ZZqmMjMzddddd+n2229XQkJCtKcIAAAAAACAbor7BNny5csDHp8xY4ZmzJgRodkAAAAAAAAg0uhBBgBhYJmegI8BoKcgXgEAAFBBBgAhZZmmbIahhv1lcpcWy+Oukd2VKldBkZzZhc3HASDaiFcAAAAXkCADEBMs0yObYff7OBLntUxTZmOdqlYsUuPh8lbH3GUlcgzN0ZA5C2Q4ktl0Aghb3AruvUMbr6L5WQAAAEKBBBmAXi1cFRBdOa/NMHxuNr0aD5erasUiZcxb3KXPCiA29ITKrVDFq57wWQAAAEKBBBmAXitcFVtdOa9letSwv8zvZtOr8XC56itKlZQ1mk0jEId6QqVpqOJVT/gsAAAAocJqBUCvFWwFRGc3Zl05r82wy11aHNT53aXFbBaBOBWuuNW5OYQmXvWEzwIAABAqrFgA9EqW6VF9xfagKyAs0wz7eT3umqDew1NXHdQ4ALElXHGrK7obr3rSZwEAAAgFEmQAeqVwVWx157x2V2pQr7MnpwU1DkBs6UmVpt2NVz3pswAAAIQCqxUAvVa4Kra6cl7L9MhVUBTU61wFRVRTAHGqJ1Sahipe9YTPAgAAECokyAD0WuGq2OrKeW2GXc7sQjmG5gR8jWNojpzZBVRTAHGqJ1Sahipe9YTPAgAAECrs0AD0SuGq2OrOeS3T1JA5C/xuOr13dKN6DIhPPanStLvxqid9FgAAgFDoE+0JAEBXtKyACNQk2lsBEYnz2gxDhiNZGfMWq76iVO7SYnnqqmVPTpOroEjO7AJZpkn1GBCnwhW3ujaX7sWrnvRZgN5k36KbwnLe4Qv+HJbzAkA8IUEGoNfyVkBUrVjkc4PWsgKiM0mp7pzX+zgpa1SrTaG3eoLkGBDfwhW3uqK78aonfRYAAIDuIkEGoNcKV8VWKM5rM+ztzgkAPbHStKvxqid+FgAAgK4iQQagVwtXxRaVYADCJZbiSyx9FgAAEN9YtQCICeGq2KISDEC4xFJ8iaXPAgAA4hOrFwAAAAAAAMQ1EmQAAAAAAACIayTIAAAAAAAAENdIkAEAAAAAACCukSADAAAAAABAXCNBBiDuWaYn4GMA6C7iDAAAQM/WJ9oTAIBosUxTNsNQw/4yuUuL5XHXyO5KlaugSM7swubjANBVxBkAAIDegQQZgJhnmR7ZDHurx5JNZmOdqlYsUuPh8lbj3WUlcgzN0ZA5C2Q4ktm8AugSyzSjGmd8xb6WjwEAAHABCTIAMctf5Ubq5Nnqm3axz02rV+PhclWtWKSMeYsjPGsAscJmGFGJM1StAQAAdB4JMgAxyW/lhs1Q/6tvVf2+bX43rV6Nh8tVX1GqpKzRbCYBdIpletSwvyzicSbaVWsAAAC9FSsjADHJX+VG30HD1KffQLl3rA3qPO7SYjaRADrNZtjlLi0Oamwo40ywVWvENQAAgNZYHQGIOZbpUX3Fdp8bRMPhlCR53DVBnctTVx3SuQGIH5GOM4FiX0veqjXLNEPyvgAAALGABBmAmBOocsNsrJck2V2pQZ3LnpwWqmkBiDORjjPRqloDAACIBayMAMSkVpUbNkN907OUOCxPshk6f/qEXPlTgjqPq6CIKgsAnWaZHrkKioIaG8o4Q3UsAABA19CkH0BMsrtSZSS51G/steo3drr69BvYfMxzpk7O4WPkGJoT8FIkx9AcObMLIjFdAD2YZXpkM+x+H/tiM+xyZhdGPM5QHQsAANA1JMgAxBzL9Chl7HSlTZmjhNTBqt+3TafWvCyPu0Z2V6pchVOVlDlKQ+Ys8NvM2nunN8s0uQwJiFPef/8N+8vkLi2+EEMKiuTMLuwwPlimGdE4461ac5eVdDjWW7VGfAMAAGjSaxJkbrdblZWV+sIXvhDtqQDo4WyGXYkZuTLPuHVo2SPtNqbushI5L5+owV+7XxnzFqu+orRp81tXLXty2ueb3wI2j0Acs0xTZmOdz+SWu6ykObllOJL9xgmbYchwJEcszkSrag0AACAWRDVBlpeXpyuvvFIvvfRSh2O/9a1v6dixY/rnP/8ZgZkB6O1shqGqV572u0ms//h9Vb3ytC6+5d+VlDWq1WbR2wuI5BgQv2yG4bfyS2q6E2TVikXKmLe4w/NIiliciXTVGgAAQKyIaoLMsixZltXhuNraWh07dkynT5+OwKwA9HaW6VHD/rKAFRSS1FCxXfUVpUrKGt3qeTaNQHwLNoY0Hi5vjiEdxY22PcvCFWciXbUGAAAQKyKWIPvkk090++23y+PxtHp++/btmjRpkt/XWZYlt9stj8ejESNGhHuaAGKAzbDLXVoc1Fh3aTGXGgFopbfHkEhXrQEAAMSCiCXILrvsMn31q1/VihUrmp+z2Ww6f/68qqs7vtV4YmKi5s+fH84pAoghHndNcOPqOo4/AOJPLMSQSFWtAQAAxIKIXmL50EMPaebMmZKaKsNuv/12jRw5Uo8//rjf1xiGIafTqczMTLlcrkhNFUAvZ3elBjcuOS3MMwHQGxFDAAAA4ktEE2TJycmaMGFC8+Px48crNze31XMA0F2W6ZGroEjuspIOx7oKiujHA6AVYggAAED8iWqT/uXLl0fz7QHEKJthlzO7UI6hOQGbbDuG5vS43kEAoo8YAgAAEH+imiDz8ng8Ki8vV3V1tc6ePRtw7JQpUyI0KwC9mWWaGjJngapWLPK5wXUMzdGQOQuo/ADgEzEEAAAgvkQ9Qfbiiy/qF7/4herq6joca7PZtHPnzgjMCkBvZzMMGY5kZcxbrPqKUrlLi+Wpq5Y9OU2ugiI5swvY2ALwixgCAAAQX6KaIHv77be1ePHi5sepqalyOp1RnBGAWOLduCZljWp1GZRlmq2OA4AvxBAAAID4EdUE2X/+539Kkq6//no9+uij6t+/fzSnAyBG2Qx7m8dsagEEjxgCAAAQ+6KaINuzZ48uuugiPf3000pISIjmVAD0AJbpabURbfsYANA9xFkAAADfot6DLCMjg+QYEOe8fXwa9pc19flx18juSv28z08hfX4AoJuIswAAAIFFNUGWl5enPXv2qLGxUQ6HI5pTARAllmnKbKzzeac4d1lJ853iDEcymzcA6ALiLAAAQMeiugq64447dPr0af385z+P5jQARJHNMHxu2rwaD5erasUiNm0A0EXEWQAAgI5FrIJs7dq17Z5LSEjQ2LFj9fvf/147d+7UtGnTlJ6err59+/o9z5QpU8I5TQARZJkeNewv87tp82o8XK76ilIlZY1mAwcAnUCcBQAACE7EEmT33nuvbDabz2OWZWnDhg3asGFDwHPYbDbt3LkzHNMDEAU2wy53aXFQY92lxXJmF4R3QgAQY4izAAAAwYlYgmzo0KGReisAvYjHXRPcuLrqMM8EAGITcRYAAKBjEUuQrV69OlJvBaAXsbtSgxuXnBbmmQBAbCLOAgAAdIwmEwCixjI9chUUBTXWVVAkyzTDOyEAiDHEWQAAgOCQIAMQNTbDLmd2oRxDcwKOcwzNkTO7gMbRANBJxFkAAIDgROwSS1+mTZsW9Ng+ffrI4XBo0KBBysvL06ys+iyuAAAgAElEQVRZszR8+PAwzg5AJFimqSFzFqhqxSKfd1lzDM3RkDkLZJkmGzcA6ALiLAAAQMeimiA7dOhQp1+zZ88erV+/XsuXL9eTTz6pr33ta2GYGYBIsRmGDEeyMuYtVn1FqdylxfLUVcuenCZXQZGc2QVs2gCgG4izAAAAHYtqgmzVqlVatGiRVq9erfz8fM2ZM0df+MIXlJycrLq6Ou3Zs0d/+tOftHnzZuXn5+uOO+7Q6dOnVVJSojVr1mjhwoXKzc1VXl5eND8GgG7ybsqSskbJmV3Q/Ly3Fw6bNgDoHuIsAABAYFFdDW3cuFFr1qzRTTfdpFdffVU33XST8vLylJmZqby8PN14441avny5br/9dpWVlclms+nmm2/Wr371Kz3wwAM6d+6cli9fHs2PACCEbIa9zWM2bAAQSsRZAAAA36K6KnrppZeUnJyshQsXymaz+R334IMPKiUlRcuWLWt+bt68eerXr582bdoUiakCAAAAAAAgRkU1QfbJJ58oOztbiYmJAcf17dtXWVlZKi+/0Fg2ISFBl1xyiY4fPx7uaQIAAAAAACCGRbUH2UUXXaRDhw7JNE0ZAUr8TdPUoUOH5HA4Wj1/5swZpaSkhHuaAHoIy/S0ujyo7WMA6KmIX0DvcP2DbwQ8/ubPbozQTAAAkRbVBNmYMWP07rvv6pe//KW+973v+R33m9/8RqdOnVJRUVHzc4cOHdL+/fuVn58fgZkCiCbv3dUa9pc13X3NXSO7K/Xzu68Vcvc1AD0W8QsAAKB3iGqC7N5779Xq1au1dOlS7dmzR7Nnz1Zubq6SkpKa72K5cuVKvf3227Lb7br33nslScXFxfrZz34m0zR14438igPEMss0ZTbWqWrFIjUeLm91zF1WIsfQHA2Zs0CGI5lNJoAehfgFAADQe0Q1QTZq1Cg988wzeuyxx/TOO+/o3XffbTfGsiwlJibqRz/6ka644gpJ0pIlS1ReXq7LL79cN910U6SnDSCCbIbhc3Pp1Xi4XFUrFilj3uIIzwwAAiN+AQAA9B5R/7ly5syZevvtt3XbbbcpIyNDlmU1/5eenq6bb75Zb775pm644Ybm1+Tm5urhhx/WH//4R/Xt2zeKswcQTpbpUX3Fdr+bS6/Gw+WqryiVZZoRmhkABEb8AgAA6F2iWkHmNWTIED3++ON6/PHHdfbsWdXU1MjpdMrlcvkc/5Of/CTCMwTQGaFqRm0z7HKXFgc11l1aLGd2QaffAwDCIRzxi0b/AAAA4dMjEmQt9e3bV+np6dGeBoAuCEczao+7JrhxddVdmTIAhE2o4heN/gEAAMIvYgmyZ555RjabTXfddZfS0tKan+sMm82mhx56KBzTA+KSxzRlb7Gpavu4M8LVjNruSg1uXHJap+YLAOHWlfjVNg5bpkdmYz2N/gEAAMIsYgmyP/zhD7LZbPr617/enCDzPhcMy7JIkAEh4jEt2Q2bduw9oVWbD6i6tlFpKQ5NGz9MY0amNx/vjHA0o7ZMj1wFRXKXlXQ41lVQRBUFgB6j8/Gr6XLJlnH5uklZ+nJhBo3+AQAAIiBiCbKvfe1rstlsSklJafccgMjxmJbqz5zTky+8r92VrS/rKf7goHIz0/TE3RPlTEwIOklmmR417C8Luhl1UtbooBJZNsMuZ3ahHENzAp7bMTSH/mMAepTOxq/Gs+e14FclzXHZMGy6f06h6vYF3+g/2NgKAACA9iKWIFu8uP0vm76eAxBedsPmMznmtbuyWk++8L6e/f7koM8Zzmb6lmlqyJwFfisovJcXUT0GoKfpTPz68R82tYrLmYNTNCA1WcfWFgf1XtyoBAAAoHt6XJP+SFu5cqUeffRRvfzyyxo3bly74xUVFfr5z3+urVu3qqamRpmZmZo9e7ZuvfVWGWzG0ct4TFM79p7wmxzz2l1ZrW17jit/xMCgq8jC1UzfZhgyHMnKmLdY9RWlTQ2q66plT077vEF1AckxAD1ScPHLo137q7Wt/Hir1zoTm5Zo3KgEAAAgMnpMgmz37t0qKSlRRUWF3G63lixZorq6Or399tu6/vrr1bdv35C/54cffqinnnrK7/GPP/5Yt956q9xut8aOHav8/Hxt3LhRP/7xj7V9+3Y9++yzIZ8TEE52w9CqzQeCGrt6S6XGjBwU/LnD2Ezfm/xKyhrVqkLCMs1WxwGgp+k4ftn1t/Wftntd/ZnzkrhRCQAAQKREPUH22WefacGCBVq1apWkC834JenAgQNasGCBlixZot/+9rfKzc0N2fv+/e9/16OPPqr6+nqfxy3L0sMPPyy3261nnnlGN954oyTp1KlTuuOOO/Tmm2/qmmuu0bXXXhuyOQGR8Jm7Mahx1bXBjZMi10zfZtjbPCYxBqB3CBS/fMXbyqO1OllTp+R8blQCAAAQCVFdRZ09e1Z33nmn3nvvPSUlJWnq1KlKT09vPm5Zlvr166ejR49q7ty5Onz4cLffs6qqSg8//LDuu+8+maapgQMH+hy3bt067d69WxMmTGhOjklS//799cMf/lCStHz58m7PBwg3z+dVCl7zb7tSs786UinOhICvS0txBP0eLZtRB+JtRs0GDgAu8BVvTdPSWxsqlTy8c7G1bcwHAABAcKK6S33ppZf00Ucfafz48Xrvvfe0dOlSXXLJJc3H8/LytHr1ao0fP161tbV64YUXuv2ezz//vN544w2NHj1ar7zyioYPH+5z3D/+8Q9J0le/+tV2x8aOHasBAwZo69atcrvd3Z4TEA4e05Ik7dh7Qj97ease//V6/ezlrfrk0GeaOyNPz/3bFGUMcunSi/vpC9n9denF/WS06Dc2dVxm8zmC4W1G7W8j17IZNQCgicc0NW38MJ/H/ra+QkdPupU++7GAsXXwNxeo+rN6LX1tm3bsPfH5eYOP3wAAAIjyJZZ//etf1adPHz377LPq37+/zzEul0vPPvusvvrVrzYnrbpj+PDh+ulPf6obbrghYJP9vXv3SpJGjhzp83h2drZOnjypTz75RIWFhd2eFxBKHtNS/ZlzPu9WWfzBQV0xcpAeu2OCfj6/SAl9Llz2c7ymQW9v+FTlldWd6j8m0UwfQO/mMU3ZW8Snto/DxW4YGjMyXbmZae3idW39OS387ft66p6JvmNrfpGcwwt09KRbC3+7XkdO1Ont9/crNzNNT9w9Uc7EhKBvtAIAABDvopogq6io0IgRIzR48OCA4wYPHqzhw4dr37593X7Pe+65J6hxx44dkyQNGuQ7SeB9/sSJEx2ea+XKlXr99deDet9du3YFNQ4IxG7YfCbHJOnigcn6168XKtHRR9v2HNOqzQdUXduotBSHpo4bprkz8nTeY8pjWp3eWNFMH6FE7EQkeGPdjr0nWsXDaeOHaczI9C7Fwq7M4Ym7J/qM20dO1Gnpn0q1YN6EdrH1RHWd/vzWLr21vkLuhnPNz++urNaTL7yvZ78/OazzRs9E7AQAoGuimiCz2WxqaGgIaqxpmmG5k6U/3nklJib6PO593l+T/5YOHTqkTZs2hW5yQAAe09SOvSd8JsdSnAl66p5JSnT00fz/U+Kzuqxl5UFX0UwfoUDsRLh1VG0bqUosu2GTMzFBz35/srbtOa7VWypb/HCRqTEjB8ljWrIZNnlMU/sOfaYlr2xT5dFamX4updxdWa1te44rf8RAqsjiDLETAICuiWqCLDs7Wx9//LEOHjzYqvdYW5WVldq7d69Gjx4dsbnZ7U0bfO8dNf0xg+inlJGRoQkTJgT1vrt27VJtbW1QYwFf7IahVZsP+Dw244vZGjwg2WdyzIvKA/QUxE6EW6BqWymy8dCbxMofMaDVJe7eXmLe43bD0P8t2adPj5zu8Jyrt1R2+nJ59H7ETgAAuiaqCbLrr79eH330kX7wgx9o6dKlSk1NbTempqZG8+fPlyTNmDEjYnNLSkqSJJ05c8bnce/zycnJHZ5r1qxZmjVrVlDvO3fuXH71Q7dV1za2e84wbLpu0qX6cPcxv5tBLyoP0BMQOxFOgaptW4p0PGzb98zXe/qK8b4EOw6xhdgJAEDXRPW6p1tuuUX5+fnaunWrZs6cqQcffFAHDx6UJC1btkwLFy7Utddeq9LSUo0YMUK33nprxOaWnp4uyX+PsePHj0vy36MMiKa0FEe75zIHp2hQapJWb/FdXdbW6i2VJMcAxKxA1bZt9bR46CvGd2ccAAAAopwg69u3r373u9+pqKhIp06d0v/8z//o2LFjsixLzzzzjF577TV99tlnGj9+vH7/+9/L4YjcQi8np+l26t67WbZkWZb27dsnu92uyy67LGJzAoLhMU1NGz+s3fPOxKaC0WArCj5zU3kAILb1xkosfzHel6njMpsv0QQAAEBgUb3E8uzZs7rooov061//WmVlZXrvvfe0b98+ud1uJSUlKSsrS0VFRUH3UQilr3zlK/rd736nVatWtatc++CDD3Tq1ClNmDBBLpcr4nMDArEbhsaMTFduZlqrS4fqz5yX1HFFQYozQTO+mK1/mZzd6nnL9LRrvu9P27GdeS0A+BJsXOlM/OlOJZbHNFtdDtn2cbj4i/Ft5Wam0X8MAACgE6KaILvqqqv05S9/WUVFRZoyZYr+7d/+LZrTaWXChAnKycnRunXr9Oqrr2r27NmSpFOnTunJJ5+UJM2bNy+aUwT88piWnrh7Yqvm05VHa3W8pkFTxw1T8QcHfb7u4oHJevo7kzQwLVn1Fdt1rLRYHneN7K5UuQqK5MwulGWafu9K6T3WsL9M7k6+FgB8CTaudDb+eCux/MXDlryVWHbD1vy/O/ae0KrNB5rvNjlt/DCNGZnefDzwZ+rejwi+YnxL3rtvBjMXAAAANIlqgqyxsVHvvvuu3nvvPdlsNuXn56uoqEhXX321Lr/88mhOTYZh6Omnn9btt9+uhQsX6k9/+pPS09O1adMmffbZZ5o9e7amTp0a1TkCgSQ5+ujZ70/Wh3uOac2Wpk3cnv2n9KXCDJ+VBynOBP3kf09SqsPUoWWPqPFweavj7rISOYbmaMicBTIcye0SXZZpymysU9WKRZ1+LQD4EnxcccpsrO9U/OlKJZbHtFR/5pzPxFTxBwebE1POxASfialQ/YhgN2xyJibo2e9P1rY9x7V6S2Vzom7quEyNGTmI5BgAAEAnRTVBtnHjRq1bt04lJSX65z//qe3bt2v79u1asmSJBg8erKuvvlpFRUWaNGmS+vbtG/H5FRQU6LXXXtOSJUu0ceNGlZeXKysrSw888IC+8Y1vRHw+QLDshk3//psNyhmWpusmZemBW65sPnbuvEf/ftdV+tHvNrba4H1tymUakJrsMznm1Xi4XFUrFilj3uJ2x2yG4XNzGsxrAcCXYOJK3a4N6jd2epfiT2crseyGze9YqemOl0++8L6e/f7kdsdC/SOCN/mVP2JAq0spvT3HSI4BAAB0TlQTZCkpKbruuut03XXXSZJ2796tkpISlZSU6MMPP9Qf//hHrVixQomJiZo0aZKuvvrqkCemli9fHvD4iBEjtGTJkpC+JxBOHtPUjr0n9OGe4/pwz3H9aU25MgenyJnYR/Vnzuucx9QP75rYqvLgM3ejbvzKcNVXbPe7wfRqPFyu+opSJWWNbt7EWaZHDfvLuvRaAPAlqLhiM+QcMVb1+7oWuzpTieWNrYGqzaSmJNm2PceVP2JgqyRVuH5EaNv3jMQYAABA10Q1QdZWbm6ucnNzdffdd6uurk4bNmzQq6++qpKSEq1Zs0bFxcVUbgEdsBuGVm0+0PzYNC19euR0qzEPPL9WMyZl64bJw1tVlx0rLQ7qPdylxXJmFzQ/thl2ubv4WgDwJZi40nfQMPXpN1Cn1rwc1Dl9xZ9gK7HaxtZAVm+pbHUufkQAAADo+XpUgkySqqqqtGnTpub/DhxoWoxaFrcpB4JVXdsY8Hht/Tm9umqP9h6s1pP3fLH5eY+7Jqjze+raV1C0eq3NUN9Bw5r7Ap09fkCyTL+vBQBfOopJhsMZ1Ljm8wWIP8FUYnUUW/2N40cEAACAni/qCbKDBw9q8+bN2rRpkzZv3qxDhw5JupAQGzFihCZOnKirrrpKEyZMiOZUgV4jLcUR1LiLXK3H2V2pQb3OnpzW/jlXqowkl/qNvVb9xk5Xn34Dm4+dP31Cpz94R6c/+LvP1wKALx3FJLOxPqhxzefrZvwJNrb6GheKJB4AAADCJ6oJsquvvlpVVVWSLiTELr30Ul111VXN/w0YMCCaUwR6HY9patr4YSr+4GCHY6eOy2zur2OZHrnyi+QuK+nwda78Ka3utmaZHqWMna60KXOUkDpY9fu26dSaly/coS1/ivoX3aKUwmk6764O+k5tAOKXZXrkKggck84eP6Dzp08EH7sKimSZHtkMe4fv3XKMZXpkyabpV2V2OrZ6RSqJBwAAgK6JaoLsyJEjkiSbzaYrr7xSd911lyZPniy7PfDCFYB/dsPQmJHpys1MC9hMOjczrVWPHMkm5/BCOYbmBOyT4xiaI+fwQlmmeeGVhl2JGbkyz7h93gWz+Q5t33xMiRcNIjkGoEM2wy5ndgcxyTJVv/cD9Rs7PbjYlV0g81yjJJvPOORN3jfsL5O7tPhCkr+gSM7sQo0ePkBfKrhY60qP+H2f9rE1uGSfV1MSjx8RAAAAIi2qq69vf/vbGjVqlGw2m7Zu3arvfve7Gj9+vO655x698MILKi0tldliEw7EMk+bv+ttH3fuXJaeuHuicjN9VyLkZqbpibsnNjehlprusGaZHg2Zs0COoTk+X+cYmqMhcxZ8Xl3ROnzYDENVrzwd+A5trzzNpg9A0CzT7DAmJedOlHn+nIZ887HAsWv2ozpXfVRVry72mxwzG+t0aNkjqvrvH8ldVqKGT0vlLitR1X//SIeWPSKzsU4P33alrmiTAPPyFVs9ptkq2ReIN4lHnAQAAIi8qFaQPfTQQ5Kk06dPa+PGjVq/fr02btyokpISlZSUyGazKTk5WePGjWvuQTZq1KhoThkIOe9lODv2ntCqzQdUXduotBSHpo0fpjEj09tdphMMu2GTMzFBz35/srbtOa7VWyqbzzt1XKbGjBzk87w2wy7r3FllzFus+n3b5d6xVp66atmT0+TKnyLn8EKdP31StqSUVq/jDm0AwsFmGDIcyU0xqaK0qaqrTUw6V31Ux9/4P7p49iMBY9e56qM68sendL76iM84ZDMMVa1YFDjJv2KRMuYt1o/u/WKHsbVlbF+3/bBumT5Sg7+5QEdf8f0eF36AoHoMAAAgGqLepF+S+vXrp2uuuUbXXHONJOnYsWN6//33tXnzZm3ZskVr167V2rVrZbPZtHPnzijPFggdj2mp/sw5PfnC++0uhyz+4GBzNYIzsU+rO6x5TLPdHdfa8ia/8kcMaHW5j7eyoW1yzDI9avi0TMf+8lxTo/0rrlH6jfc1Hz//2XGdKv5vnd76d6XPekBJWfnNmzju0AYgXLxxJilrVKvY0TIm9ek3QLY+CXLvWq/EoTl+Y5d5xi2pfRzqSpK/fWxtqvr1Jsfaxvbte0/oqXsmfp7EK5V7R4tkX0GRnNkFJMcAAACiqEckyNoaOHCghg0bpoMHD2rAgAE6cOCAzp8/H+1pASFnN2w+k2Neuyur9eQL7+vZ70/WP7cd0tvv7+90dVnbRJq/8TbDLveOYpkNbtWs+7Nq1r+uvoOGyXA4ZTbW6+zxA5LVtAF0l66VM7uw1eu5QxuAcLIZdlmmR41VFTrxP79sFZOMQcMkSbUfvKtjr/+H39jl1TYOdSXJX/7pSW386KjOnvOob4JdhTkDNWZkuszP43Lb2H7kRJ3uf75EMyZla8aky5R+Y8sEnfn5PEiOAQAAREuPSZDt3btX69ev1/r167VlyxbV1dVJarq7ZVZWlqZMmaKioqLoThIIIY9pasfeE80bKMOwKXNwipyJfVR/5rwqj9bKNC3trqzWh3uOKTcrTf//y1tlmlab6rKETl+C6XdOLZNclqmzx/b7HucjycUd2gCEm82wK3HoCNn69G2V9DIb6yV9HocCxC4vX3Gos0n+ZX/dqZ0Vp5qf/9PqcuVlpenpf/2ySvcc9/nDR239Ob26ao9Wrt2rq74wWLdel6ehg1wdVgQDAAAg/KKaIHv99de1fv16bdiwQSdPnpTUlBBLSEjQpEmTNHnyZBUVFenSSy+N5jSBsLAbhlZtPqAUZ4JmfDFbMydlakBqcvPxkzV1emtDpf62vkJrthzQA7dcqczBKfr0yGlJravLAmlqqG/3+7jVnLqY5OIObQAixdu4v2W/sLPHD+j86RNy5U/pchzqbPyrP9O+sr3hrEd97E2x3RdvvP//vpip/hclfx6PL/zAESg+AwAAILyimiB79NFHm/9/enp6c0Lsi1/8opxOZxRnBkSGYdj0/P2Tld7fpbp923VsbbE87hrZXalKzi/S3BmFmj5hmP77nT2SJGdi63+yuyurtW3PceWPGOijp1jT5q9hf1lTY+vPz9vU66aw3eawO0mulndoC9TDx3uHNgDoqraN+898WibzfKPOnjgk5/AxXYpDnYp/+VN0orpOlUdr2x3zxujq2sZ2xy4emKwf3ztR6f1dMs+ekSQ1fLqj6YYCHcRnAAAAhF9UE2SFhYUqKipSUVGR8vLyojkVICru/F9fkNM4q0PLHmm3oXOXlcgxNEfpsx/Tnf+r6d+Hr4qF1VsqWzWKlpqSY2Zjnc87srnLSpSUXajB3/iBpD7N1Qo2w66krNEaOONenSp+WWaD2+ec/SW5fFV1tH0dd2gDEAr+GvdbpkcX3/akjr72UzVUbG/3On9xqFNJ/uGF+vNbu2R+fsOTlrwxOi3F0er5FGeCfnzvRKU5LJ2vPSWbYdehl3/oN+4PmbNAhiOZWAkAABBBUU2QvfLKK9F8eyCqTNPURSmJOrSs/SbJq/FwuY69+rQy5i1WXcNZnxULvioVbIbhN1HVJ+1iDZx5r4wEh+ortrerLus3drqcI67U4Zee0PnqI61eGyjJ1baqw13KHdoAhEdHFbJD5jyuM4f2qPaDd4KOQ8Ek+dO/uUBHT7r11voKn/OqPFqr4zUNmjpumIo/ONj8/IwvZiu9v0unP3hH/cZO9/mjiFfj4XJVrVikjHmLu/jtAAAAoCt6TJN+IN7YZKm+YnvAagWpabNUX1EqDc71ebxtpYJletSwv8zneY0kly6+ZaGMhMSAVWtD5izQJXc9q5Pv/ZfO1xwJOsnlv6qDO7QBCI2OKmS9MSwxI0dJwy5v9TrJfxwKJsn/WW2DFv52ndwN53yewzQtvb3hU82dkafczDTtrqyWYdg0c1Km6vZtl3PEWNXv2xZ03E/KGk3cBAAAiBASZECU2Ay73KXFQY11lxYr/caCVk36vaaOy5THtJp7kAU6b7+x1yohdXDQ1QuDZt7T/Hxnklxtm0yzwQMQKoEqZCX/FVjBxS7/SX7TNFV51K3jNQ36UsHFusjl0GfuRm3ceVTnz1+4o+bf1lfoG1Nz9MTdE/XkC++r8ZxHA1KTderDMiUPL9SpNS8H9TndpcX0bAQAAIggEmRACHlMU/YWm7AOH7trgjtvXbWk9k36czPT2vUf83tem6F+Y6d3uXqBJBfw/9i794Cozjtv4N85AwwMFxmuIjIIgUE0CCoaIa0akxhJY9ymraYm5q2NMWnS1cb4JjGuMYbctmu6uTTd3aTZdGONrTW35o25dFVMI2pEEbAqaEBB5e4gDMNt5pz3j/EMM8yZYQZBInw/f4U5z5w5cyI/5vnN7/k9dLW4i52eKmQdXWkFllKSXwUgIyUaf3n+B/Dz6z1nj0XEPyqb8LsdJahtNmNcVAgCNX7wFyVsXj0bp2ps8Vjs6ba9Fx/jPhERERFdHUyQEQ0CuYKr7HQTdh2qgbGtC7pQDW6ekYAsQ4x9cicf1wSo8cufZEEdEu7V+dXBOgDOTfrT9DpsfGCWU/WYfbzCeQOiE+AXFsXqBSL6zuovlvpaeetNDJNEq1NCrO/Pvdd2OY5XNmG3w7XNy07A1LQY/PbxeXjnr8ewdEG6U1xOjg8DAAj+AQCU47MSOe4TERER0dXBBBnRFbKKEsydPdj01gGUVzt/43/4ZD1eX3sTAvzU2PT73uOCoMJPb01FcMZcmI591e9rhEyZi7b2TkSEaZA0bjzmZeuRZYhWTI5JohUhU1zPK2i0tutl9QIRfQd5iqUFR85hwaxEPPKTrEGLYf01+nfst2gVRZg7LE5x3PHa0vQ6bFwxCyv+KQOAyikuy5VvgROuh6W1CSEZc7yO+9zYhIiIiOjqYYKMyEd9l/4AEr4+egEXmkwuY/NykxA5JghrX/3KaVIlihJ2FZ3D4lsyoRmX6nG5kGZcqr0KYtPK3MvXIAGAS3IMsC0N0ia5nlfsMtuew+oFIvoOUgsqxeSY7ORZ2+ODEcO8bfQvaIKhEgSoBUExOSYrrzZi0+8PYPPq2YrH5bgs72LpS9wnoqvrk5cXDeo4IiK6dvBrSSIvyUmpstNNeHnrYfzLfxbi5a2HUXq6CXm5E/CbX81BXFSwfbwgqLAgZwKKyxsUJ1USVJBEEWOXPAXNuFTF19SMS8XYJU9dbhAt2R9XSow5nVsUMfbu9U7n7W6ssVcveEOuXiAiGmpWUcTRCuVYKauub0NzSztCMuZ6dU5PMczbRv8qQYAoiiju59oAW5LsaEUjrG5eUxJFBKfnwNLajLGL13mO+3evZ/wlIiIiuspYQUbkhf6W/qTpddhw/w14dmUO1ryyF23mHuhjQxEdHoR3Pz3ucj5BUOGW7Hh0nCuHf2gE4pe/BHNlCUxle2FtN0IdrENIxhxokzPRY6xHd9MFBI43APCcGJOpBAGCJth23qpS2/KhdiM6z59CSHoOqxeI6DtFLQjYdajG4xhRlLBzfzWW5flWedvXQBr97ynyfG2y3UXVihunAP0dSAcAACAASURBVL1xWRUUCrG7UznuT5kLbdIULq0kGkaVz/9oSM6bvP79ITlvX9f69V/reP+Jrm1MkBF5wXHpjyCooI8NhTbQD+ZOC6rr21BebUT+2wexefVs5OUkYfuuCvuOk8a2Lpfz6WNDERkejIa9X8L87RGETbsNYVNvRcyiVfYxlkuNuFjwHloPfwFtynQE6Sf6dM3y5CoocbLTRFESrRh793q31ROO1QucoBHR1aIUK/v6rLAKd9yYeEUxbCCN/v39XJv2K+nvPdh3BfbzBwAETbge2uRM+3G5aoyxl4iIiOjqY4KMqB9WUUTZ6SZcaDJh8S0GLMiZgOjwIPvxxpYOfL7/DD4rrEJxRQN+8L0JOH6mGWOCbTuW6UI1LueUk2dWUwvEDhNa9r2PlsIPERCdAEGjhdhlRndjDSDZJktX0jC/725sKkGtWF3G6gUiGk5KsbKvNnMPPtxbieU/mHRFMczXRv+OMf9K3wPQG5dd4zPjLhEREdFwYYKMqB9qQcDhkw3491/NQWxkMIrLG/Dup8dhbOuCLlSDedkJWJaXjn+acx0AIFQbgBcf/h4AoMciYl52AgqOnHM6p7nTYju3Y7NpSUR3w1nlaxjkhvnuq8tYvUBEV59VFHHzDNdYqWRaWixEqKDGwGOYr43+Mw1R2PpF/+PnZSco7i5MRERERN99TJAReeGHc1OgFlQuu1ECtsbMLz58IyLHBOFoRQN2HaqxJ89+Oj8NU9NikKbXOT1PbjYdnDEXpmNf9fv6crPpwU5csXqBiL4L1IKALINrrOwrTa9z6vE1kBgmiVaETPE+9opWK9InRHp5bTH9npOIiIiIvps4GybyQkRYIPLfPugyOQrV+iN/ZQ781ALWvvoVNvzXfhQcOYeSU40oOHIOa1/7Ck0tHdi4YhbS9L1VYHKz6eDkTLc7mcnkZtNMXhHRSGYVJWx8wDlWOkrT67DxgVn2HYUHSiWooU3yPvZ2WyR0W6zYcP8NHq9tw/03oKWt84qujYiIiIiGDyvIiPphFUWUnm5SrBzIy01CbGSwYmUZYOuX89R/7MMLv7gRm1fPxtGKRuwuqoaxrQtt7V3o6uphw3wiItg2Q9EG+mPz6tk4VdOC/WUX8O25FowJ0WBeth5ZhuhBW74oiWK/sTdm8VOobzbht38pRf5DuehUWV3iuC5Ug5uyEzDVEIO65nZcbO1CaLCGSyyJiIiIrkFMkNGIZRVFqB2SSo4/ezrWl1oQsPtQjcvjgqDCgpwJKC5v8LjsprapHate3oOXV89BRkqk0/IgqyhBABvmExHZSABUSE0IR2pCuD02y1VjcuLJlxiuRAQgaLS22FtZAlPZ3t7YmzEH2uRM1DebsOHNA6htakdxRQMSYkLwx8++xcLvJ2PN0un2czUazdiy8wQqqo3Ifyh3UO4CEREREV19TJDRiCNXGJSdbnLqB5aXOwFpiRGKx26ekYAsQ4zb6gRjW5fLY/rYUESHB+HdT4/3e01t5h5s+/Kk06QKkCd7ttdjw3wiGq3cxW05Nns7rr8KM/n4qeoWTJwQga+PnsfExBTELMq0j2kytuP9nSews7AKpo4eAMCeohqsWTodB/9Rh1M1RmxamYv/eL8Ex6suorq+Danjw+3LP1k9RkRERHRtYoKMRhSrKMHc2YNNbx1wquoK1frj3gUTYTJ3K/YSKzhyzt7fRhvo7zLB0YVqXF5LG2j79VFKninpbxwb5hPRaOQubgN9Y7MfzJ0WL8a5xvC+r6NWq/Cvv/w+Pj9wFv+29TD0saH281fXt0Hs0+dMjt/aQD+MCdHYz5c0Lgz333n9oC7/JCIiIqLhwRk4jShqQaU4eZJ7hSklx2Tl1UbbxKnPBMcqirh5RoLLeHOnBYBy8kyJt+OIiEYTd3FbVl5txNdHL0AtCP2OU4rhgG1jFMfXcYzfoijhTG0rjlddxJnaVpfkmDwOsMX9edl6WEUJv/xJFtYsnY6MlCj7+yAiIiKiaxcTZDRiWEURRytc+4Ep9QoTBBUmxIVhUlIEJsSFQbg8sSmvNuJoRaPTLmkqAFmGGJfdy6rr29DY0oF52a7JMyXypIqIiGzcxW1HgqBC9qRYFFcMLIZbRQmiJDn9DfA1ft+UnYBGoxlBAWpkGaKdkmFMjBERERGNDFxiSSOGWhCwS6GZvmOvsFCtP/Jyk7AgZwKiw4PsYxpbOvD5/jP4rLAKu4uqnRrpC4IAi0XE0ytuwLO/761AE0UJn+8/g2V56UjT6zxO8NL0OqdzEhF9F1xps/srPb+7uO3oSmO43Otxd1Hv6/gav6caYvBZYRU2rGCfMSIiIqKRigkyGlGU+nzJvcIEQYV//9UcxEYGo7i8Ae9+etze4HledgKW5aXj1pl6bPuyHADwpy/Lcayy2dbgP2cC0iZEYPPq2SiuaEDZ6SZ091gR4KdCR5cFGx+Y5Xbpj9wXh5MqIvqukONR5flL2F9ai9PnWjAmxPtm996e35tm+v31ZxxoDLddh4jK85eQmqBzeZ3PCqtw60w9Ntx/g9vl92l6HZ5ecQM6uyzIy01iHCciIiIawZggoxFFqc+X3Gtm+R2ToVIBa1/9ym2D5w3334Dld0wCAOwrvYAzta3247kZcVh773RMuS4KUx12VbNYRKhUwObVs3G0ogG7i2ocJm16Nm8mou8UUZQgSRIAFVITdEhN0NkrsH69pQjjokJcmt37UmnmfdN92/n768840BgO2CrU9pfWIjVB5/I6beYePP3mfjy7Msf+5cceN/G793yM40REREQjFRNkNGJYRRHzshNQcOQcAFu1gT42FCFaf5g7exAeqlGcWMnKq43If/sgNq+ejfaOblTXt9mPxUUF4+cLJ8PfT42jFQ1OFRHzshMwNS0Gre3dSJ8QgSyH5Flnt2Vo3zQRkQ/kZH1JeWOfZH5vBdbTb+7HprcOYPPq2RBFCYKXlWAyb5ruy+eXN0GR47aS6vo2tHf4FsPl6waA0+da7P3G+r5ObVM71ryyF3k5SViQk4g1S6c73Sv5/RARERHRyMcEGY0YakHA1LQYTDVEI1Wvc+pR400jaKC3wXPK+DH2x0K1/shfmYNAjV+/lQt+fmrsKzmP0tNNuGTqwsHj9bhu3BiXagwioqvNm8quDfffgGdX5mDNK3txtKIR118XiSdf+ztOnLWNl3uAxceEAoBLhZlVFFF2uqnfpvtdPVacqmnBdfFjkGWIQXqiDh3dVmgD/WDutKC6vs1pN0mVCjha0YCuHismJUUojgF6Y7i8syQAjAnReOw31mbuwfZdFdix5xRmZ8XjsXumO703IiIiIhodmCCja5rLsh+riI0rZkGtFuw9ajQBavzyJ1n9NoKW2Ro8T4c+NhRnaluRl5uE2Mhgj5ULF5pMKCytxYJZCbgxMx43ZsYDAJpb2rFzfzX+bUsRnn0wd8DvUxKtUAlqtz8TEfXHm8ouuQIrLyfJ3uy+o9sKwFZJm78yR7EHmFxRBqhw+GSD4vndNdgXRREvPXIjBHVvTJNj52eFVbhxyjhoA/1xXXwYXl97k+KYNnOP/XHHJv1yhdqvtxT1228sdXw4Vv4wg0viiYiIiEYpJsjomtRfA+imlg78xwelqG1qx6SkCAD9N4KWyeO0gX4QBBUW5ExAcbn76rO4qGA89+AsxESEwFxZAlNZAaymFqhDwhGcMRfL8jJR32zC8aqLSEvU+TTxkkQRKkFAx9ljMJX2njdkylxokzLtx4mIPPGmsguwJcmKKxqwICcRv/3LUQC2WDgmJAAv/uJGaALUeHnrYXx19LxT9ZZjb7F/mpOCXYeqnZJWSsk1QVDh53dMwpjQQJirSpxj3OXYueTmFPj72RJn6vpyNCjE1/kzE7DhzQOobWoH4Bzr1YKALEMMxkWFOPUbq6gx4kBZLb69vDnBTdkJmDoImxMQERER0bWLCTK65vi6TEhu8NxfI2iZPM7caYE+NhTR4UF499PjimNDtf547sFZ0GlEnH/nSXRdOOV03HTsK2jGpSJm8XqMCQmFABGAd5VgkihC7GpH3Z+ed3vesXevh6AJZpKMiDxSC4LXVbR7imqwZul0XDc+HADw/ax4zJseD22QLTY+ds90/OwHE12qtxx7i+XlJGH7rgoAysvUQ7X+eOXR2dAK3Tj/zjMeYxzUQah97zl0VJUojolZ/BTyV87Co698hTZzj0ust4oSNj4wC18fvQB/tS1WGhJ0MCTo7FXIFqsIkckxIiIiolGNs2q65ni7TGhsZDDycpJQXd9mb9DsjZuyE9BoNKO6vg3aQFsO2bEiQRBUmBAXhklJEVh620TERISgYfsLLhM8mbXDBJXYg0CNPzrOHkPDx6+idusmNHz8KjrOHgNgS4b1pRIExeSYrOvCKdT96Xkmx4jIK75W0X5/ajysFgvu+F4yUHfSKXYFXjyNZXnp+PdfzUZcVLD9uXIPsAU5ifYm+fIydceljXm5Sf3GTnuMU/tBMy7F7ZiG7S8gNjIES+dPxKSkCNyem+Sy86Q20A95uRNQ3dCGl7cexr/8ZyFe3noYpaebANh6nAlMjhERERGNaqwgo2vKQJYJ7dhzymODZkdpeh2mGmKwZecJiKLkVH0m98+5PUePyPDeCaHY04WgpCnoMdZC7DA5nU8ICkHc0g1QCWqPFWZ9K8Ek0YqOs8fcThxlXRdOwVxViqDE65koIyKPfK2inRAbCmtnO85vcV/F2rd6C7D1AFuz1NbHsbq+zWWZuiCocHuOHu2VJd7FuMoShE29FS2FHwKS85cJQlAIgpKmQOzpwh3fT8Yd308GYIuhcrWu9XIs91R1zI1UiIiIiIgzarqm+LpMKFqnhT42FJ8VVqGuuR0b7r8BaXqd4vg0vQ4bV8xCU0sHdhZWAYC9+iwvZwJeeXQ2luWlI/DiaadKis6ak4iYuxTxy38NP12c0znDpt0G//BY1G1/0adKMJWghqm0wKv3aSotYHKMiDySm9V746bsBFgv9zes/7PnKla5eisvJ8n+uFyBNjFRZ1+mvruoN27rY0MRGR6M9rICr67HVLYXfmOiERDtfP1+ujjE//zXiJi7FJ01J91W53pTdbzprQNMjhERERGNcqwgo2vOQJrtn6ntcWrQfLSiAbuLepv79zZoFhEaHIAn7puB3UXVMLZ1ofJcC2ZOioWls91zFdjidYj76Qacf+dxWyWZSkDYtPkwVx4dUCWY1dTi1fu0tnuupiMikpvVe1tFK4lWmKu8r/DKy0nBjj2nIIqSvQLtkZ9k4VSNLY45xm156bqvMU7QaO2PydW5gn9gv9W5FiEQF5qcq3v7kpeGZqREMVFGRERENEoxQUbXnIE02weA2qZ2rHllL/JykvCTW1KRZYixj200mrFl5wmca2jDup/NREZKJLIM0U7na+inkqJu+4uIX/4SdN9fgvYThVAHh8MvLAoX92z16npNpQXQJk2x/6wOCffqeepg5Yo4IiJHVlHChvtvcOoF5kiuorXt5OhDFWvZXsQsyoQ+NhRnalsxL1tv3w0yOT4MABARpsGEuDBoA/3ssdnXGCd2me2PydW5SskxmVydG7/8JadNA9zZXVTtEveJiOjqqnz+R0Ny3uT171+V8w+1a/36ib7rmCCja4pVFDEvOwEFR871O9ax2b6szdyDklONWHZ7Oj75eyW+LjkPc6cF1fVtEC83dZarCGS+9gMLm74AY2bc3nvNA6gEk0QrQqbMhenYV/0+L2TKXEiXl0MRESmxiiLKzxoRERaIzatno7iiAXsUqmjrmtvRfKkTE8aF+Ry7tIF+SNPrnJJMakGAKIr45Y+nICDAv/c5FgtCMryMcRlzYLnUiO7Gy8s0fa3OrSxFXs519go3d7ytTiYiIiKikYkJMrqmqAUBU9O8XyYkN9t3fHzjilloNJrx3hcnYerocXlu3yoCX/uBaZOmoPHT/4BaG4aIm+4ZUCWYSlBDm5QJzbhUjxNAzbhUp6ozIiIlakHAZ4VncPhkPfJykrAgJxFrlk63H5eraHcWViEvdwImjJvkc+yK0Wmx8ocZ9uoxwNYDTBAEWM6XoaW0AFZTC9Qh4Qj//mJok72MccmZuFjwnr1Bf0B0gm/VuWUFiFk0xV7h5o631clERERENDIxQUbXFKsoosciYuOKWdj0e+Wmy/KOZJ3dFrSZu5BliHaqkLBYRHR2W6By02ZGqYrA10qKnubzaCvZjbDptyEkY86AKsEkUcTYu9ej7k/KSzvl/jqsHiMibxjbutBm7sH2XRXYsecU9LGh0Ab6uVTRVp1v8a2KNWMuurt78Ng9012SY2JXu2IMM397BONX/Ma7GGe1oPN873G5F9lAKtw8cVwaSkRERESjDxNkNOysogi1Q4Kn78+O1IIA+KngJwgelwlZLCIkSHj4x1n258oVEhXVRuQ/lOu2J41SFcGAeuVIIlqPfImIuUsHVAmmEgQImmDEL38J5qpSmEoLYG03Qh2sQ8iUudAmTWFyjIi85hjbRFFyqaYK1fojLzcJi2Yn+1bFmjzFnlxzTC6pBMFt8kvsMOHCHzdi3L2bPMY4i8kIi6kF4+7ZCHNlCUxle6HyD7C9lo9xWe5HqaTv0lAiIiIiGn2YIKNhI39TX3a6CbsO9Sa5bp6RgCxDjNtv8tWCCk+/tR+pCTq3y4TkJJi7PmPFFQ1YkJOo2JOmbxWBb5UUzr1yWo98gdDMmzF28TrUbX/R50ow+eegxMlOCTRJFJ2OExF5YhVF3DzDff/GuKhg5K/MQWxkMIorGlBYcgFL5xsQu2Q96t1sUOIYu4Q+scib3o0WYy3O/X4Nxv3sXxGod41xlw5/AWPBe4DK1pQ/bOqtiFm0yn5+X/o0ilYrgjVqxeNy1TGrx4iIiIhGNybI6KpQqhKzWERseucbFFc0Oo0tOHLOPmHRBvo7TVisooiy000ormhEcUWjx2VCxRUNmHX9WPz+r8dckmB7imqwZul0l540ylUEKh8qKZx75YgdJtRuy0fcTzdcUSWYSlD3+ZmJMSLynloQkGVQ7t8YqvVH/socBGr8sPbVr+zHS043IX/lLFvsqiyFqcz72OVt70axw4SWv29HzKJVePEP3+BHN6fiurhQdFX/A82fv2kf17LvfbTs/xj6f/5PWFqb0HXhFMZk3+5Tde7zj3wPDRc78GHBKdQ2m6EL1WBeth5Zhmgmx4iIiIiICTIaWv1ViT3840w889YB+PsJTkmu8mojNr11AJtXz3Y6n1oQsOtQjf1npWVCMndJMKC3z5hjTxp3VQQqQYClvaX/KrDF69BjrEfr4S+cjlmMtTj/zuOIvPn/ICRjDivBiGhYWEUJGx+YhU1vOfdvzMtNQmxksFNyDABqm9rx6CtfIS8nCXk51yFmkW+xy9ceYS2mLhwoq4UhQQdTWYHLuICoePiF6HBx17swf3sE2uume1Wd227uwidfV2HihAhkGWLw4F2Z9hhvVVgaSkRERESjExNkNGSsogRzZ4/LZAywVYlNNUTjqZ/NxOtr58Lfr7dCqrGlA5/vP4PPCqtwtKIRGSlRTpMXxyb6fn4CbpgUizEhGlwydeHg8XpYLKLTOKXGzHIvnoTYUMRGaPutIri4awt03198uZLC1gfHXkmRMQfa5Ez0GOtRuy0fYqfJ5flihwkdZ44hNHOe0+NMjBHR1aIWVNAG+mPz6tk4WtGI3UXVuGTqwqLZySiuaFDc9KRvU/9VS6YiOX6M2z6RTq83gB5h3T1WAMrJNcfm/C7VuW7isiSKCBYE3D1/IhpbOvBZ4Rl8L2ucvTqZiTEiIiIikjFBRkNGLagUk2OArd/NIz/ORKDGD0crGlyqy5blpWP+DYn4dF+ly5JHXagGcZFaPPzjTExOjoK/X+9Ercci4h+VTfjdjhJ7EkypMbPcZ+yXP7E18e+3ikAScf6dx1364ACA2N2JiwXvofXwF4rJMVnfXSqJiBz5smGJ0nFRFCEBHs8hx7iMlEin2LrboTJXiVyt+8nfv3Xq++iOr70bm4ztqK5vw4xJsbbrVEiuiV1mp2Nyda5SXLZcaoTpRCFC0nPx+vaj6O6xYl52AvJyJ6CppQOh2oB+r4uIiIiIRhcmyGhIyL3ClJJj7vrdyOw9yFbMwl1zUwAAf/qyHMermrH23ulYNDsZiXFZ8PdTo7i8AbsddrGcl52AqWkx+O3j81Bd24pGoxnV9W1O51fqM+apikASrQjJsE30Wva9j5bCDxEQnQBBo0Vwei7GzLgdHVWlHpNjSrtUEhEBvm9Y0ne8IKiw/I7JCA/VKH7hoHSOvok3x8pcT7wd59sumJl4f+cJiKKEjJQoWK3KybXuxhpYWpsQkjHHfkzsMLnEZbHLjO7GGoy9+1/QZGzH/x6qhihK9r8tG+6/AZ1dFvj7q1lBRkRERER2TJDRkOjbK8yRu343jsqrjdj0+94eZPtKL+BMbSt2FdXgzu8nw9xhwbo39nlMriXFj8Ffv6p0atA/kN3KVIIa2mSHiZ4korvhLACgu6kG2hTv+uCweoyI+upvKXrfDUv6jg/V+uPffzUHKhU8f+GgsOmJI7nitj/ejgNsfcrG3r0edX9yvwtmzOKnUN9sws7CKqTpdZhqiIHFYlVOrkkiWo98iYi5SxWPyXFZPrdj4k1WXm1E/tsHXfpbEhERERFxtk5DRqnSQBBUWJAzAcXlyv1uHJVXG3G0ohEWq4hzjbbqrJTxtt43m36vvHRTft6m3x+AWhCQnR6LLEM0bpo+HvkP5mLz6tkeJ4nuSKIVY+9eD824VKfH5T44ktWC+OUvYezSjQi5fg6CkqYg5Po5GLt0I+KXvwRBE8zkGBG58LQUHYB9wxI5ZvUdL3/hkP/2Qa/P0ZdVFHHzjASvrldenu4NlSBA0AQrx8afPo345S/hYqeADW8eQHx0CJ5eYfvyQhAESKKImCWuMbf1yBfoMdZj7JKnXI7J+ibe+iqvNqK4osHr90FEREREowMryGjIKFUa6GNDER0ehHc/Pe7VOXYXVSPLEI2E2FDU1LdhYmKkT8m1jJRI5D+YC8C33cok0QqVoHZ6TNBobc2gq0phKi3obQY9ZS78wiIhiSKCEidzl0oi8oqnpeiOHOOZ4/iBfOEgb3ri2JtMLQjISInCwz/KxJbPjqPN3KN4DqXl6e7IMVSOfX1jY1t7J/73m7OoqDbi4R9lXt4kRbRf28mzRkSGaRQb8FvaLiJwTJpyPM6YC23yFNQ3m7DhzQMwdSi/lz1FNZhqiPHqvRARERHR6MAEGQ0JuSKh4Mg5p8flHSV97XeTHBeGcZFa+PsJ2F3kuZm0TE6uybxLjNmWQXacPWabdJlaoA4JR8iUudAmZbpJgtl2XVNKgjExRkTueFqK3lfp6UZkGaKdxg/0CwcAiv3O8nInICcjDq9tL8bhkw0DWp7uTQwVAYQGB+KWmYm4ZWaiw5cXvQm7zwrP4PDJeuTlJCEvJwUxizLtr9FkbMdfd50GIOH2XANiFvXG40ttHdiy8wR2Fla5TY4B3v8NIiIiIqLRgwkyGhJqQUCWIQZpep1TZYO8o6Sv/W6iwoMQEuQPYPCbScskUYTY1a7YL8d07Ct7LzFBE+x0zLHSrG/lmVIlGhGRzNs41WOxuoz39gsHQVBBHxuKsGDbzo2/23EUn+239esK1fojLzcJCTG2uBYeqsHT98+CydyFA8fqUVF9EblT4i9XePWfHBtIDFU6p7GtC23mHmzfVYEde05BHxsKbaAfzJ0WVNe32ZN3x6uasWllrv15b39yHHsOn3M5X1++9FIjIiIiotGBCTIaMlZRwob7b3DqjVNd34bGlg7My3atLlNi63cj4t68dPtjQ9FMGrBVe7lrJg0AXRdOoe5PzyN++Usux+SqCclqcU6QXf6ZDfqJSEl/cUpOYP1w7nUu4/v7wkF+7u05ekSG9yalls5PQ2iwBkfKG7DuvumIiQhBe2UJGvY6V3zdMjMTN2ePh4je/meeXEkM7cvxPYmihDO1rYrjxoT0jrOKIuZlJ3iVIJN7qXEXSyIiIiKSMUFGQ8Iqiig/a0REWCA2r56N4ooG7CmyLeepOHsRN2bGu1SX9SX3u6ltMuFvB6thsVpx3w8m+5xcU3uRmJJEKzrOHnM7sZN1XTgFc1UpghKvtye8JFEEJBGAgM6aE7ZeOfIkM2MOtMlZgCRCErnkkoh6uVuKLouLCkb+gzmIjQhGcUUDrosf4xT/PH3hEBcVjOcenKWY/ArOmItleZn46a2pkLo7cf6dJ72o+PKcSLqSGOruvpypbVWsGnPkmOhyV7ncly+91IiIiIho9GCCjIaE3EOm/OxF/OLHmbg+OcqpIbJVFLFxxSy3u1Gm6XXYuGIW2jt6oPEXcN8PJtmPZaVGDmozacC2TNJUWuDVWFNpgVMPMgAQu8yo+/ML7ieZS56CEBji9fUQ0cjnKaETF6nFy6tmAwDWvvoVyquNWHyLAcvy0u3jRVHC5/vPOD0G2CrHnntwFnQasd/kFyzd6DHWKl6fLxVfVxpDHakFAZkpkXh97U32x5pb2rFzfzU+K6yyx32lOG8VJWx8YJbbnUG97aVGRERERKMPE2Q0ZARBhfwHcxEbGYzi8gaUnm5Cd48VAf5qzJgUi7TECHt1WZnDsSkpUcgyxMBqsUDt5wfUHkdDgfPSn7zcTNwwOQZP/q4QtU3tTq8rJ9e8rR6TWU0t3o1r7510yUsnlZJjsq4Lp1D35xcQv/wlLrUkIidKCZ24qGD8ZvVshGgD7MkxAPissAq3ztQ7LV1XeiwvNwkxESGKyTGZY/IrbNptaNn3vttx/VV82d/LAGJoX+6a/MtVb/NnJmDDmwcQpg1QTHSpBRW0gf7YvHo2jlY0YndRtX0jgnnZeq96qRERERHR6MQEGTnpm1TyNcnkaPkdk6FSwWmCJ9ux+xRyM+Lwf++djqyUSKfqMkm0QrRaIXZ15TSzPwAAIABJREFUoG6L52bPr6+Zg7c/+Qdqm819JkC+X7c6JNy7ccE6h58kmCtLvFtWVFmCoAkZPl0TEY1sfRM6haXncff8iQjU+KG4vMEpdraZe/D0m/vx7Mocp6Xr274sx/I7JtnPkRIf6lNcCpt6K1oKP7y8VNxVfxVf9vcyoBjay5sm/7FLbHFfo/F3SnQ5boiiFlSQRCumpEQ6VZj17pbJ5BgRERERuWKCjADAPtEoO92Emro2W7sZCUgYG2qr5vLxG3dRFBEeqlFMjgG2Con775wEPz81zFUlTpUC4bMXI0AXh9rt3jV7fvjHWQ7vwzbB8zU5JolWhEyZC9Oxr/odGzJlrr3KQSWoYSor8Oo1TGV7oU3O9Om6iGjkk2NrRp+Ezu6iGpextU3tWPPKXuTlJGFBTiLWLJ1uPyaKEjJSIqEWBDT4EJdiFq1CQHQCuhvOKo7xVPElG2gMdeRNk//6P/cu+bQlwpQrzkKmzIU2KdPpdZgYIyIiIiJPmCAjWEUJ5s4e1Da1Y3KybXmjrMcioqLaiLioYGgD/b2eYEgAjlY0KCbHPPbHUQmIuOkemCuPDqjZswDXJs7eUAlqaJMyoRmX6vF1NeNSXSopBmNZERGRWhBgFUVUnr+E1AQdjG1diuPazD3YvqsCO/acgj42FJmpUVixKAMSgK5uK7SBgs9xSdBo3V+XQsWXY8WWTJuUiaCkTHRUlbg9l1IMlc/na5N/AP1WnMmbDHBpOxERERH1h58YCWpBhcAANQx6Hf5R2YSXtx7Gv/xnIV7eehj/qGyCQa9DYIDap2/f1YKAXYdcqx8A2PvjNGx37dsVEJ0Av7AomMr2evU6ptICqAQBjZ/+Bxo+fhUdZ48BuLyzpI8kUcTYu9dDMy5V8bg82ep77itdVkREJFMLAvaX2prm60I1HseKooQzta1obe++/FwVrFar7b99jEtil9ntGLniC+iNrR1nj6Hh41dRu3WTU+wdu+QpaCfOUjyPuxgK+N7k31bB23/FWd2fnmdyjIiIiIi8wgqyUc4qioAEdHZbse6NfS4VXwVHztl3/RJUKkCl8jpRplT9IAgq3J6jR7ub/jhyFYOv1Q89zefRWXPiiqoGVIIAQaNF/PKXYK4qtS3XaTdCHay7vFxnyuWqid5zDsayIiIiR6fPtaCxpQPzshNQcORcv+MX5CTZK7qE+nJYxyYhJGOOd3EpYw4slxrR3aj8hYZjxZc3PcLG3r0esT98DB3VJ2Aq2aUQQ93HQF/jfueF0wOqNCYiIiIiUsJPi6OcWhCgVgtOO6j1VV5txKa3DkCtFnyqIlOqftDHhiIyPBjtbvrjyFUMV1L9MNCqAdvkz4xLh79AQEQcYhatQtzSjbb+PBFxuHT4C4hdZqfqB8elmZ7Ik0xO0IjIHbmH4pgQDT7ffwZT02KQpvdceTrVEI30xHCIXWacf+dJ1G97Fpe++X/QJmd5F5eSM9F++ohig37NuFTELOmt+PKlYkuKTXWKoUGJk+3ncMfXuN9eftCr8XLFGRERERGRJ6wg88JHH32EJ554wu3xhx56CI8++uhVvKLBYxVFlJ1ucpsck5VXG3G0otHeANqb8948w7X6QRto+yfnrlKgu7EGltamK65+GEjVgOPkr1klICA6AYJGC7HLbDu/JMJUusfeIFomL810N3F0XFbESRoR9eW4SUpy/BjMy07Av/2xCLfO1GPD/Tcg/+2DijE6Ta/D+uUzXRJXrUe+QGjmzRi7eB3qtr/oPi4tWQ+LxYIx02+Dv24sTGV7eyu+MuZAm5yJ5hYz2i6ZkBgb7H2PsMoSdOhS8NTvChGoUSNGp8Vj90z3+LyBVON2137b71iA/R+JiIiIyDtMkHnhxIkTAIAbb7wRERERLsfT09Ov9iVdEaso2pNcakFAcvwYLL7FgM8Kq9Bm7nH7vN1F1U47rHmiFgRkGWzVD44TO3OnxXbcXaWAJKL1yJeImLvUu4b5yZm4WPCeYvWDqbRAsRm08sv2aRAtiYo7uikl3mxLM4P7WZrJ5BgRuZI3SZGreBffYsCyvHSMiwrB02/ux7Mrc7B59WwUVzRgT1ENjG1d0IVqcFN2AqYaYiCJVpirnJesix0m1G7LR9xPN9jiUmVJn+TXXGiTp+BSWwc2vf41pqbFIi8nBTGLenfZbTd3ob2jB5HhWkReDtde9wgr24uYRZkQJQnHqy7ieNVF3DxDj4yUKLdVyAPZKEUdPMar62H/RyIiIiLyBhNkXjh+/DgA4MUXX0RsbOwwX83AOVYp7DrUO9Gal52AZXnpuHWmHk+/uR+1Te2Kz3e3o5qn19v4wCyn5ZvV9W1obmlHcIb7SgGvqx8Wr0OPsR6th79Qfn0fqgZ8bRDdN/EmJ7+CEic7HXNcmkRE1JdaUDnFyM8Kq5wqx9a8shd5OUlYkJOINUt7q7AsVhGiKEFwE7ssxlqcf+dxhE27DWFTb0XMolX2Y23tnQCA3+4ow6lzl3Dq3CX7jpgJsaG4f+EkRIZrUVzegN1FNUiIDcHiW9J87hEmVwwD3n3B4ks1LiCx/yMRERERDSomyLxw8uRJREVFXfPJMccqBUdyI/4N99+AZ1fmYM0rexUryfrbUa0vtaCCNtAfm1fPxtGKRuwuqoaxrQsnz7bgxkz3lQJy9cO4ezcpV2VdXvrTY6xH7bZ8iJ0m5df3sWrA18mfEpWg7vMzJ2REpExpiXubuUexcuy3fzmK68aHIydjHFITwqFSqSBcrsZyF7vEDhNa9r2PlsIPERCdgMAJGYi6dTn++5PjWH33NAQG9MYrUZTQfKkD/7J8Jvz81Fj76lcorzYiVOuP5XfYqqR97REmVwwD3n3B4ms1rq8VZ0REREREnjBB1o+amhq0trZizpw5w30pV6RvlUJf5dVG5L99EJtXz0ZeThK276pwGTMvO8FehebL6wJARkqkU/WAJFo9Vgqog0Kg8g+AJIouVVliTycuFryH1sNfuE2OAb5XDfg6+SMiuhJqQcCuQ667R9Y2tbutHLOK0uXn9sbhfmPX5SXjATETAADfXmhV3CUzLzcJsZHB9uSY/FjEGC0sphafekM2GdtRXd9mf8zbL1h8qcZl/0ciIiIiGkxMkPVD7j8WGRmJ/Px8fPXVV6irq8O4ceNw5513YsWKFdBofKusutp8acRfXNGABTmJ2LHnFMTLEzHA1gw6yxDj9Jgv+jb2VwnqAfXtkkQRgn8gOqpKPSbH5KoBxx0nPRlIg2hOuIjoSjlWVgmCCvrYUGgD/WDutGDHnlP2pY+ZqVFYsSjD5QsKn2JXxhwYWzsQHOiHg8dqccf3ku19IgVBhQU5E1Bc3mD/W+HnJ2DhjRPQXlmCrup/+NQb8v2dJ5z+XszL1vv0BYs31bjs/0hEREREg4kJsn7I/cc++OADhIeHY9q0aYiNjcWxY8fw2muv4e9//zv+8Ic/IDAw0O05PvjgA3z44YdevZ6ckLtSA23Ev6eoBmuWToc+NhRnalsBwL780tfqMUeSaHWa8Dj+7FopYAXgfkJkaW/xqj+Zpb0FfsHeVYUNpEE0EQ2t4YidV5suVINQrT/ycpOwIGcCosOD7McaWzrw+f4z+KywCq3t3YrP9yZ2CUEhiJh7D4ImXA+toMaLD38PAGC1WPDcQ7l44Q/fwNjWhejwILz76XH79Sy8cQLCw4LQsKcA5m+PeNcb8u71aG4xY2dhlf1x2xcs3m3w4i35bwj7PxK5Gg2xk4iIaCgwQdYP+YNDXl4eXnjhBWi1WgDAuXPn8Mgjj6C4uBivvPIKnnzySbfnOH/+PL755purcr1yYqz0dBN2X0Ej/szUKCSNC7PvlGaxiLBYrICf4FIN5on87X3H2WO2b/dNLVCHhCN02nwExqfZj3WcOQappxsq/wDbJC4p0+03/xd3bYHu+4vd7M7W25/M+PV2xCz8Z5+ulct1iL47rmbsHA5WUURe7gTcu2AiYiODUVzegHc/Pa4Yty+2drn9ksJT7PLTxWHcsmfhFxoBc1WJUxy27WaZiU0PzMLZeltFriCo8MqjsxETEYKOC6eBsBRYTS1e7Ixpi72SKOLtHYdh6rB9EZOm12HjA7Ou6AuWvu9V6W+KrWKs9+8GYzSNZiM9dhIREQ0VJsj68dprr6GmpgZ6vR4BAQH2x8ePH4+XXnoJP/zhD/HnP/8Zjz32GPz9/RXPER8fj5kzZ3r1eidOnEBbW1v/AxVYRRHmDgs2/f7KG/GvWJQBAOjstjVZbjV3IyLMfZWcEkkUIXa1u0zahKAQ6ObcDbHThLo/v+AyobtU+IE9GSVogl0nOpLodnc2y6VGe38ybcp0+ILLdYi+W65W7HTkWH0LAKIoQoLzMvG+YwZKLQhIS4yAydzt1PdL5hi30xK1bhNMIlRQBWhdEld+4XGIvOU+SNYenH/nSZdYazr2FTTjUhG7ZD0Som1f/vz8jknQCt04/86TkCzdGP/Ab+w9zjztjGm51AjTiUKEpOdCG+iPm6aPx7xsPbIM0YOaHFP6m+L4Xtz+3SAaRYYjdhIREY0ETJD1Q6PRICUlRfFYeno6xo4di9raWpw5cwapqamK4+666y7cddddXr3esmXLBvytn1oQFJNjMu8a8Tv3iWlr78aeohp8LzPe50mhShAUJzJh026Df3is4oRN1nXhFOr+9Dzil7/k9Lhjvx3H3dkEjRZilxndjTWAZFtaM5BeYVyuQ/TdcbViJwB73Cs73YRdh2ogCCosv2MywkM1OFrRgF0OFbk3z0hAliFmUBI/akGF/LcPehW3PZ3jjb+UIWV8OGZONiBmUabT8fPvPOMx1tb/2RZru3usGBMa2DteJcDS2uTUnL/vzpiOsXfsTzdAEkX88idZAJQ3FLgS7v6mOL4Xpb8bRKPN1YydREREIwkTZFcoKioKtbW16OjoGNbrsIoiSgelEX80urot+MPnJ+Dvp8aUlGjk5SZ5lRzr22dM7OlCUNIU9BhrIXZcbqivEhA2bT7MlUc99voCbJMdc1UpghKvd0hMqZz77Vzena0vpV5hfa/PE28aRBPRyGAVJZg7e+w7/YZq/fHvv5oDlQoeK7s2PjAL2kD/ASeAfNlA5WhFIzJSolxeSxRty98fuZyUAoCW1g58c7weN0yOhV9jhXextrIEgYnXw1xV0jteEtF65Evl5vx9Yq9SzFULKo/9J30hiVZ0nD02wL8bRERERET9Y4LMA5PJhH/913/FpUuX8Jvf/AZ+fq6369y5cwCAsWPHXu3Lc6IWBOw+VOPV2P4a8WsC/HD/nbYlltbLlVOekmNue8JkzEXE3KUIzbwZtdvyYTHWIiA6AX5hUbi4Z2u/1ykEhUDsbAfQm8RTCQIkqwVjlzyluDwT6O0VJnZ3ovl//wCLsV6xRw0REWBL5MjJMQDIy01CbGSwYnJMVl5txKa3Dnis7Or/dQXs6iduyw3zU+JDnZJjts1MVBAEAZZzZWgp6429wRlzMX+WLdZdPHjUq2sxle2FNjkTHWeOOT3eeuQLr5vzO8ZWb3uFeUslqGEqLfDuvZQWcDMVIiIiIvIZE2QeBAcH429/+xuMRiMOHTqEnJwcp+N79+6F0WiEwWBATEzMMF1lL7nBvrfj+jbir2tux/lGE9ISI+wTsf6rxrzoCbN4HeJ+ugHn33kcgsbW58ZqavF4Xj9dHOKWboB/eKxLY+nQqbcicPxE5UbRl3uFWVqbcf6ddbAYa12vhz1qiOiyvlVcgqDCgpwJKC5vuKLKLm95ittxUcF47sFZiIkIgbmyBA2Xk2B+urGIvOX/QLL29NuPa8wNC9FWuru3itcNa7vtvUo9zrtl9tucX6E/41D1Cuvv70bf90JERERE5AsmyDxQqVRYvHgx/uu//gv5+fl45513EBsbCwCorq7Gs88+CwD4xS9+MZyXaSc32Pd2nNyIv9FoxpadJ7CzsAozJsViUlKk16/pVU+Y7S8ifvlLCJt2G8ynigDA3vRZiRAUgrilGyD4B7ptLB2UlInYHz+OIP0kaJN7++1IoohLh7+AseA9iJ2uE0L2qCEiR32ruPSxoYgOD8K7nx736vm7i6qRZYge8Ou7i9uhWn889+As6DSiSxwMj0+FEBDYb28xOdaFTbsNLfve93gd6mAdAEDlH+ByzFNzfqX+jEPVK8zT3w2ncZffCxERERGRL5gg68fDDz+MoqIiHD58GAsWLMD06badEQ8ePIju7m78/Oc/x+233z7MV2mrgpiXnYCCI+f6HXtTdgIutnbi37YcgqnDgur6NnsvMm+r0AAfe8JUliBs+gJ01pTDYjI6NX3uy5sm/h1VJajd+gzil7+ES4d2ov3kfsT8cA26G86i+fM3+78e9qghossc45420M/lMW+f6yurKOLmGcpxOy83CTERIa5xcAB9HMOm3oqWwg/tG5goCcmYA6vFgsDE63Gp8AOX4/bm/Ps/RrBhBsLn3I2AiHEuMXSoeoU5btDSn4Fs0EJERERExE+P/QgMDMQf/vAHPPbYYxg/fjwOHjyI4uJiZGVl4fXXX8cTTzwx3JcIwFYFMTUtBml6z9+cp+l1mGqIwadfV+FY5UWcqW11atTvbRUa4F1PGCEoBOE3/giasUnwC43AuGWb4BeiQ9CEDETlPQghKKTvSX2b/FWWINgwA2JXB/xCdDCV7fXq2k2lBZw8EREA57hn7rS4PObtc32lFgRkGVzjtiCocHuOHu2VJS5xUO7j6Eus8xsTjYDoBLdjNONSoU3ORGnlRQQn2zZB6UuO5fpH3kDsj9ZCEzXe1hNStDqN87VXmLdxWCWo7Ru0eCJvFsD4TkRERES+4idILwQEBGDlypX45JNPUFZWhsOHD2PLli2YP3/+cF+anVUUYbGK2LhiltskmdyIv665HTsLqxTHzMvWw+qQMOv3dR17wqgEBMQkIjAhHQExifCLiEf8z3+NiLlL0VVXiYaPX0Xt1k1o+PhVdJw9hrBp8zF+xW/gp4uzn8LnyV/ZXtvkLzbR9Xo8XTd71BARequ4ZNX1bWhs6cC8bPcJJUe+xkzX15ew8QHnuK2PDUVkeDDaywpcxnvbx9F+/suxThNvcInRUAnQjEtFzJL1qG824Xc7SlDfbELM4qecElF+ujh7LO9uOucSy4HepZYDuTZvSaKIsXevd5skc9wsgIiIiIjIV1xiOULIzfQDNWpsXj0bRysasbuoGsa2LuhCNZiXrUeWIRp1ze14+s39MHX0uJwjTa/zuZeOOiQcQlCIrTfNtPnwC4uyH5MsPZBEK2rfexYdVSVOz3Ns1Dx+xWY0/++7sLTUIjBhMgDfJ1j+UQn26/HqutmjhojgXMVVXm2EKEr4fP8ZLMtLtz/mzkBipuvrq6AN9HeK22HBtj5gSnFQ7DLbnudjrIu+/SFE3rocgn9vxZvY0wXBXwNJFNFc34L0CRF478sK/PyOdFtD/qpStJ84AN3sn0AlqN32hOzbdH+o4rBKECBogu3XZiot8LhZABERERGRL5ggG0GsooTObiuqzl/C5OQIp4mb1Sqis9uCN/5Sgtqmdpfnpul12PjALFhFyevd2CTRitBp86Gbc7dtt8nKo7i4Z6t9t0nbhCUTUXkPonZbvtOOkoBzo+bo21c6HfN1gqXL+Sf2qCGiAZGruDa9dQDl1UZ8VliFW2fqseH+G5D/9kHFJNlAYqY78vMzUiKd4rZSHOxurIGltcljH0dHodPmQxKtUAlqdJ476bQjsByjASAtMRyTkqbbnyeKEoISJ0ObNAUAPPaEdIzlkigOaRyWxzpeG6C8WQARERERkS+YIBthgjR+MCRGoLiiATX1bVABkACkjA9HWmIE8h/KdVtd5utETyWoERifBrHT5LmyYPE6xP10A86/8zjEDuedJZUaNQ800eXYo8ZT/zK5Rw0RkSxI44fNq2ejuKIBe4pqsO3Lciy/Y5LHitzBSI45Ujskd9zGQUlE65EvETF3ab+xLigpE4HxBohd7Yq7Svat/nIkCCoA6gE13b8acVglqPv8zMQYEREREV0ZJshGELWgwtP/tR+pCTosyEnEVEOM/Vij0Ywdu04hcowGN2UnOFeXXe6fM5CJnkoQUPfnFzxXFmx/EfHLX0LYtNvQsu99lzGm0gKnidKVJLrkHjVKk0H5OXKPGk6oiAhwjZ1rlvZWUrV3dCNl/BhkGXofu5KY6S1PcbD1yBcIzbwZYxevQ932F93GutifPGGL0W7iIeBc/eXuOnxpui8vc2QcJiIiIqJrDRNkI4RVFFF2ugnFFY0ormjEjj2noI8NhTbQD+ZOC6rr2+y7VUaFa5GREmWf3A10kudTZUFlCcKm3oqWwg8BybmBslKj5oFOsNijhoh84U3sBGyN81ctmYrk+DFDmhhz5C4Oih0m1G7Lx7h7N/UT66wwV7nuhNmXUiWvI197QjIOExEREdG1iAmyEUItCNh1qMb+syhKOFPbqjh2d1H1FTeWBnysLCjbi5hFqxAQnYDuhrNOx/o2apb75Qx0gsUeNUTkLW9j55naVnzy92+dqsuGWn+JJr+wSEii6CHW+V79pWQgTfcZh4mIiIjoWsME2QhibOsa1HHe8LWyQNBoXY6FTJkLq7kVDR+9AnXwGKfG0cDAJ1jsUUNE3hiO2Oktd4kmq7kVbUd3o/NCBYLTc6BNynTox9gb63yN0X1d6eYnjMNERCNL5fM/GpLzJq93bcNCRHS1MUE2guhCNYM6zhu+VhaIXWanx+U+YhcL3kNHVQkA18bRnGAR0VAajtjpOxWsne24uHsLus5XoLuxxr5cva34b31iZm+MHEj1l9OrcvMTIiIiIholmGkYIayiiJtnJHg1dl623t5k+krIlQXeCMmYA8ulRtuk7jJ5h8seYz1aD3/hNF5uHM1kGBENpeGInQOhEgTUbctHW/HfbMvU+/RyVIqZPsXoy9VfSuReaJpxqYrHHXtCEhERERFdq1hBNkKoBQFZhhik6XUor1ZeKgMAaXrdoPQfA3ysLEjOhOlEIYImXO/UR6zHWI/abfkQO00uz+uvcTQR0ZUajtjpK582RHGImYNV/cWm+0REREQ0GvDT7AhiFSVsfGAW0vTKS2XS9DpsfGDWoFZAeF9ZYEVIei7ilm5EzKJV0MROwMWC93D+vx+HxVjr9vym0gJOuohoSA1H7PSFr832navIBqf6y7EXWsyiVfZYHpR4vdNxIiIiIqJrFSvIRhC1oII20B+bV8/G0YpG7C6qhrGtC7pQDeZl65FliIZVlKAWVIP2mgOtLGj46BV7zzFP3DWOJiIaLMMRO3010Gb7g139xZ6QRERERDRSMUE2wsgTuIyUSKflQHLlw1BM8NztsuZpt0l18Bivzu2ucTQR0WAajtjpiytptj+QGE1ERERENNrwU/EIpe4z4bkakztvKwsGq3E0EdFgG47Y2Z/Bipms/iIiIiIico+fjumqc2wc7YncOJqTOCIazRgziYiIiIiGHj9F07AYrMbRRESjAWMmEREREdHQYg8yGhaD3TiaiGgkY8wkIiIiIhpaTJDRsGHjaCIi7zFmEhERERENHX6apmHHxtFERN5jzCQiIiIiGnz8VE1ERERERERERKMaE2RERERERERERDSqMUFGRERERERERESjGhNkREREREREREQ0qjFBRkREREREREREoxoTZERERERERERENKoxQUZERERERERERKMaE2RERERERERERDSqMUFGRERERERERESjGhNkREREREREREQ0qqkkSZKG+yKo1+zZs1FfX4/Q0FCkp6cP9+UQ0QgyceJErF+/frgvY0gwdhLRUGHs9M6WLVsG6aqIaLgsW7Zs0M41kmMnjVx+w30B5MxsNgMA2tra8M033wzz1RARXRsYO4mIfDeYsTMtLW0wLomIiGjYMEH2HTN+/HicO3cOWq0WiYmJw305Pjtx4gTa2tpYxeEB75FnvD/9G+g9mjhx4hBe1fC61mNnX/w9GH78fzC8vkv3n7Fz+HyX/h2MJLyvg4/31NVIjp00cnGJJQ2qZcuW4ZtvvsHMmTNZau8G75FnvD/94z0a+fj/ePjx/8Hw4v0ngP8Ohgrv6+DjPSUaGdikn4iIiIiIiIiIRjUmyIiIiIiIiIiIaFRjgoyIiIiIiIiIiEY1JsiIiIiIiIiIiGhUY4KMiIiIiIiIiIhGNSbIiIiIiIiIiIhoVGOCjIiIiIiIiIiIRjUmyIiIiIiIiIiIaFRjgoyIiIiIiIiIiEY19TPPPPPMcF8EjSzp6emYOXMm0tPTh/tSvrN4jzzj/ekf79HIx//Hw4//D4YX7z8B/HcwVHhfBx/vKdG1TyVJkjTcF0FERERERERERDRcuMSSiIiIiIiIiIhGNSbIiIiIiIiIiIhoVGOCjIiIiIiIiIiIRjUmyIiIiIiIiIiIaFRjgoyIiIiIiIiIiEY1v+G+ALp2WK1WbNu2DR9++CEqKythtVqRkJCA22+/HStWrIBGo3EaX1ZWhjfeeANlZWUwm81ISUnBfffdh4ULFw7TOxh6vtyjoqIi3HPPPW7PtXDhQmzevPlqXPZVZbVasXXrVuzYsQNVVVUICgrC9ddfj/vuuw9z5851GV9VVYXXX38dhw8fRktLC/R6PRYvXox77rkHgjAyc/y+3KPa2lrF+yabNm0atm3bNrQXTANy/vx5vPHGG/j6669x8eJF6HQ6zJ07F6tWrUJ0dLTT2NH4ezDUPv74Y2zduhUVFRUQRRFJSUm46667cO+990KtVjuN5f0fHB988AHWrVuHrVu3Ijs72+W4r/e5vr4eb7zxBvbt24fGxkbExcXhzjvvxAMPPICAgICr8ZZoCHz00Ud44okn3B5/6KGH8Oijj17FK7q2DfbvHdl4uq/8bEZ07WKCjLxitVrx8MMPo6CgAFqtFpmZmfDz80NJSQlee+017N27F//zP/+DoKAgAMC+ffvw4INWibKMAAAgAElEQVQPQhRFzJgxA0FBQdi/fz/Wrl2L06dPj8gPNr7eo+PHjwMApk6divHjx7ucb9q0aVf1+q+WdevW4eOPP0ZISAhycnLQ09ODb775Bvv27cOqVavwyCOP2MeePHkS99xzD0wmE6ZNm4aMjAwcPHgQzz33HEpKSkZkAhHw7R7J/47S0tJgMBhczpWUlHTVrpu8V1ZWhuXLl6OtrQ0GgwEZGRk4duwYtm/fjgMHDmDHjh0YM2YMgNH7ezCUfv3rX+Ptt99GQEAAZsyYAbVajaKiIrzwwgv45ptv8Nvf/hYqlQoA7/9gKS4uRn5+vtvjvt7nuro6LFmyBHV1dZg0aRImT56MI0eO4LXXXsOBAwfw3//93/D39x/qt0VD4MSJEwCAG2+8ERERES7H09PTr/YlXbMG+/eObPq7r/xsRnQNk4i8sG3bNslgMEgLFy6U6urq7I83NzdLS5YskQwGg7R582ZJkiSpo6NDysnJkSZPnizt37/fPvbs2bPS7NmzJYPBIJWVlV319zDUfLlHkiRJTz75pGQwGKSioqLhuNxh8emnn0oGg0G67bbbpMbGRvvjFRUV0vTp06WJEydKVVVVkiRJkiiK0sKFCyWDwSB99NFH9rHNzc32xz///POr/RaGnC/3SJIk6fXXX5cMBoP08ccfD8PV0kB0dXVJ8+fPlwwGg/Tuu+/aH+/s7JT++Z//WTIYDFJ+fr4kSaP392AonThxQkpLS5NmzZolVVZW2h+vq6uTbrrpJqd7yvs/OD7//HNp6tSpksFgkAwGg3To0CGn4wO5zw8++KBkMBikN954w/5Ye3u79LOf/UwyGAzS22+/PbRviobMvffeKxkMBqfPUuS7ofi9o/7vqyTxsxnRtYx1s+SVDz/8EADw1FNPITY21v54REQEnnnmGQDAp59+CsC2bKW5uRkLFy7ErFmz7GP1ej3Wrl0LANiyZctVuvKrx5d7BNi+XRIEYVR9E/rXv/4VALB27VpERUXZH09NTcXChQshiiL27dsHwFaFWF5ejpkzZ2LRokX2sY73cyT+O/LlHgG931JOnjz56l4oDdjOnTtx5swZLFy4EMuWLbM/rtFosG7dOkRFRaGqqgrA6P09GEr79++HJEm48847nb7Fj42NxdKlSwEAhw4dAsD7f6Xq6urw+OOPY9WqVRBF0SmmOfL1PldWVqKgoAB6vR4PPfSQ/XGtVovnn38earUaf/zjH4fmTdGQO3nyJKKiopw+S5H3hur3brTz9r4C/GxGdC1jgoy8otPpkJyc/P/bu8+AKK72beAXHRZUFAUVUVFYLKhIFNRHRY3lwZgnViwJEcRoEiP+Y+xRE7smEoTYQiQYW6LGFqNixRIbGMWCikpzRWMBpK2wlHk/8O6EdZdIb3v9PsGcszNnzs6cnb33zD3o2LGjWlnLli0BAM+ePQMAnDt3DgDw9ttvq9Xt27cv9PT0cPbs2YprbBUpSR8pFArExMSgVatWkEgkldnMKhUYGIiDBw+id+/eamWZmZkAIOb+UR5H/fv3V6vr7OwMCwsL/PXXX8jIyKjAFle+kvQRUHArikQi4XT9GuTYsWMAAG9vb7WyJk2a4Pz58wgODgagvedBRVLeOvn06VO1spSUFACAubk5APZ/Wa1ZswYHDhyAo6Mjdu7ciVatWmmsV9J+/vPPPyEIAvr27auWI6lp06Zo164dEhMT8eDBg3LeI6poMpkMaWlpDCyUQUWdd9quuP0K8NqMqCZjgIyKZePGjThy5IjGYM7NmzcBAI0bNwYA3L9/HwA03nNvZmYGS0tLJCcn48WLFxXY4spX0j7KycmBtbU1/P394e7ujo4dO6Jfv35YtWoV0tLSKrXtlcXQ0BBSqVQteXJYWBhCQ0MhkUjECzXlFxtNxxFQkL8hPz8fMTExFdvoSlaSPnr58iUeP34MW1tbhISE4H//+x86deqEnj17YsGCBRoDAFT1bt++DQMDA7Rp0wZPnjxBUFAQ5s+fj9WrV+PGjRsqdbX1PKhIvXr1go6ODkJDQxEUFITk5GSkpaXht99+w5YtW1CvXj2MGDECAPu/rFq1aoVVq1Zh9+7dcHBwKLJeSftZWd/e3r7I7QLAvXv3St12qhrK/GMWFhZYsmQJBgwYgA4dOmDQoEFYt24dsrOzq7iF1V9FnXfarrj9ymszopqNSfqpTARBQEBAAABg4MCBAIDnz58DgNpT2JQaNWqEJ0+e4MWLF/86Pbm20NRHyqnXZ86cQUREBLp27YrGjRvj5s2b+Omnn3Dq1Cn88ssvGpPT1hZZWVmYNWsWHjx4gJiYGDRt2hTffPONeEwoZ9v923EEoNYFWgt7Ux8pv0hERUXh3r17KsfRrl27EBYWhi1btvzrr5xUuRQKBZ48eYLGjRsjNDQUX375JV69eiWW//jjj/Dx8cGsWbMA8DyoCK1bt8aSJUuwbNky+Pn5wc/PTyzr3LkzVqxYgSZNmgBg/5fVpEmTilWvpP2srG9paVms+lRzKK+P9u7dC3Nzczg7O8PKygq3bt1CYGAgzp07h82bN8PY2LiKW1p9VdR5p+2K26+8NiOq2TiDjMrku+++Q0REBBo2bIiJEycCgPhlr6iLF+VyuVxeOY2sYpr6SPnh6eLigpMnTyIoKAghISE4duwYunfvjvj4eHz11VdV2ewK9/jxYxw9elTll8no6Gjxbx5Hb+4j5RcJqVSKI0eOICQkBEFBQTh58iSGDBmC58+fi3n/qHpQ3qqSmpqK2bNno3///ggNDUVERAT8/f1hbm6O4OBg7Ny5EwDPg4ri7OyM7t27QyKRoFu3bujRowdMTU1x8+ZN7NixA4IgAGD/V5aS9jPfl9pLeX3k7u6OsLAwbNiwAdu2bcMff/yBNm3a4Nq1a1izZk0Vt7J24HlUMXhtRlSzcQYZlVpAQACCgoJgaGiINWvWiLOd9PT0IAiCmOelKPn5+ZXRzCpVVB/NnTsXnp6eaNSoEczMzMT6DRo0wKpVq/Df//4Xx48fx7Nnz4r8hbyma9y4MS5dugRdXV1cuHABy5Ytw5IlSyCXyzFp0iQxz5Y2H0dv6iMvLy8MHDgQpqamKrMNJRIJli5dioiICERFRSEyMhJOTk5VuCekpFAoABR8MenZsydWr14tlg0ePBgSiQSTJ0/GunXr4OHhwfOgAkRGRmLChAmwtrbGH3/8AWtrawAFOck+++wzbNmyBWZmZpg2bRr7v5KUtJ/5vtRegYGBkMlkaN68uUqqgWbNmmHlypUYNmwYdu7ciS+++AIGBgZV2NKaj+dRxeC1GVHNxhlkVGK5ublYuHAh1q9fDyMjI6xduxZdu3YVy01MTCAIQpF5IrKysgAApqamldLeqvCmPjIwMICtra1KcEzJysoK7dq1gyAI4q9QtZFEIkH9+vVRr149uLu7Y+3atdDR0cEPP/yA7OxsmJiYAPjneHmdNhxHb+ojPT092NjYaLwV18TERHyKbFRUVGU3nYpQ+Jf6sWPHqpX36dMHVlZWePr0KeLj43keVIDly5cjMzMTy5YtE4NjQMHY+91330FfXx+bN2/Gq1ev2P+VpKT9XNz62vQQnNrCyMgIdnZ2ank4AaBt27Zo3Lgx5HI54uPjK79xtQzHt4rBazOimo0BMiqRzMxMfPzxx9i5cyfq1q2L4OBguLm5qdRRznhS5iJ73ZtylNV0xemjN1HmmCqcm6i2c3JyQvPmzZGRkQGZTCYeR0Xlvqjtx5Emr/fRm2jjcVTd1alTR5z10KxZM411mjZtCqDgiYo8D8pXVlYWbty4gbp162p84rCNjQ1sbW0hl8uRkJDA/q8kJe3n4tavrTOwtRk/18oPx7eqwWOYqHpjgIyKLTU1FZ6enjh37hyaNGmC7du3q8yKUlI+VUrTU28yMjLw7NkzNGjQoFYm6C9uHy1ZsgRTpkxBUlKSxvU8evQIwD9PvawNBEHAN998g88//xy5ubka6yh/Mc7NzRWPI+VTll5fV2xsLPT09NC6deuKa3QlK2kfrV27Fr6+vip5yQqrjcdRTVf4mC3qSVbKLysWFhZaeR5UpPT0dAiCAF3doi9/lLcd5eTksP8rSUn7+d/qA/9cfxT1dD6qnjIyMrBgwQL4+voW+RnIz7Xyw/GtYvDajKhmY4CMikWhUGDSpEmIioqCnZ0dfv311yIvPHv16gUAOHHihFrZqVOnkJeXV+IZVTVBSfro2rVrOHHiBE6dOqVWdu/ePdy5cwfm5uZo3759RTe70ujo6ODkyZM4fPgwzp8/r1Yuk8kQFxcHiUQCW1tb8Tg6efKkWt2rV68iOTkZb731lsbbVGuqkvZRdHQ0jh49iiNHjqjVTUpKwvnz52FgYABXV9fKaD4VU+/evQEAoaGhamWxsbFITEyEpaUlbGxstPI8qEgWFhYwNzfHy5cvcePGDbXyp0+fIiYmBgYGBmjVqhX7v5KUtJ+V9cPCwtTyIz1+/Bh37tyBtbU17OzsKrjlVJ5MTU1x/PhxHD16FBEREWrlZ86cQUpKCqRSKWcHlgOObxWD12ZENRsDZFQsgYGBiIyMRJMmTbB169Z//dVj0KBBsLCwwL59+3DmzBlxuUwmg5+fH3R0dODl5VUJra5cJemj0aNHAwD8/f1VZtolJydj7ty5yMvLw8SJEzXm4KjJPDw8AABLly7F33//LS5/+vQppk+fjtzcXIwbNw5GRkZwcXGBvb09zp8/j127dol1k5OTsWjRIgCAt7d35e5AJShJHymPo5CQEPz1119i3czMTMybNw8ZGRkYOXIkb4+oZsaMGQOJRIL9+/fj4MGD4vLU1FTMnz8f+fn5eP/996Grq6u150FF0dXVxciRIwEAX375pcosvuTkZMyYMQM5OTkYMWIETE1N2f+VpKT9rAwex8bGIiAgQFwul8sxf/585OXl8X2pgXR0dMTPwCVLlqicnw8fPsTixYsBAJ988kmVtK+24fhWMXhtRlSz6QjKZ5kTFSElJQV9+vRBVlYW2rdvj1atWhVZV/lEtpMnT8LX1xd5eXno2rUrTE1NcenSJbx69Qqff/45Pv7448pqfqUoaR/l5+fj//7v/3D06FEYGBigS5cuMDExweXLl5GZmQl3d3f4+fmJt/rUFjk5OZgyZQrOnDkDiUQCZ2dn5OXl4fr165DL5XBzc8PatWvFwOCNGzcwfvx4yOVydOrUCZaWlggPD0dqaio8PDywZMmSKt6j8lfSPlq5ciVCQkKgq6sLZ2dn1K9fH1euXEFKSgq6dOmCTZs2iYl4qfo4fPgwZs6cidzcXLRv3x6WlpaIjIxESkoKunXrhk2bNom5yrTxPKhI2dnZmDhxIsLDw2FkZISuXbtCR0cH169fR1paGpycnBASEiImeGf/lx9PT0+Eh4dj+/bt6NKli0pZSftZJpNh7NixeP78OaRSKWxtbXH16lU8f/4cvXv3xoYNG6Cvz4e11zRZWVmYMGEC/vrrL0gkErz11lsAgMuXL0OhUGDChAmYPXt2FbeyZinP847+8W/9ymszopqLATJ6o2PHjmHq1KnFqlv4fvurV69i3bp1uH79OgRBgJ2dHby8vODu7l5RTa0ypekjQRCwc+dO7N69Gw8ePICuri7s7Ozg4eGBkSNHvvGx2zVVXl4eduzYgb179yImJga6urqQSqUYPnw4PDw81HIDPXjwAIGBgeLFcYsWLTBmzBiMGjWq1gUQlUraR0eOHMG2bdtw+/Zt5Ofno3nz5njvvfcwfvx4MchC1c+dO3ewYcMGREREIDMzEzY2Nnjvvffg7e2t9r5p43lQkXJycrBjxw4cOHAAsbGxyM/PR8uWLTFkyBB4eXmpzd5l/5ePf/tCCZS8n588eYLAwECcPXsW6enp4jk0fvx4GBkZVcYuUQVQKBTYvHkzDh48iPj4eBgaGqJdu3bw9PTEwIEDq7p5NU55n3dU4E39ymszopqJATIiIiIiIiIiItJqzEFGRERERERERERajQEyIiIiIiIiIiLSagyQERERERERERGRVmOAjIiIiIiIiIiItBoDZEREREREREREpNUYICMiIiIiIiIiIq3GABkREREREREREWk1BsiIiIiIiIiIiEirMUBGRERERERERERajQEyIiIiIiIiIiLSagyQERERERERERGRVmOAjGq8vXv3wsHBAcOHD6/qplSKrKwsLF26FL169YKjoyN69eqFixcvVnWziIhK5Pvvv4eDgwN8fX2ruiklkp+fj7i4OJVlly9fhoODA1xdXauoVUREFWPOnDlwcHDAqlWryryufv36wcHBAWFhYSV+bUxMTJm3T0T0JgyQEdUwixcvxtatW/HixQu0bt0adevWhbW1dVU3i4io1rt58yZGjhyJXbt2VXVTiIi0QkZGBr7++mt4enpWdVOISAvoV3UDiMpqwIAB6NSpE4yNjau6KZXiyJEjAIBFixbBw8OjiltDRKQ9tm/fjqioKM4UIyKtMX36dHz00UeoX79+lWw/KioKv/zyC8zNzatk+0SkXRggoxqvTp06qFOnTlU3o1JkZ2dDLpcDALp06VLFrSEiIiKi2szS0hKWlpZV3QwiokrBWyyJapDc3Fzxb0NDwypsCREREREREVHtwQAZVWvR0dGYN28e+vXrB0dHR3Tv3h2fffYZbty4IdbRlKT/0aNHcHBwwJAhQ/DgwQOMHj0aHTp0QM+ePbFt2zaxXkZGBoKCgjBs2DA4OzvDyckJI0aMwI4dO5Cfn6+2PgcHB2RmZqq18969e2J5YcrEpidOnMDNmzfx8ccfw8XFBZ07d8bYsWPx559/AgDkcjm+/fZbcT/79esHf39/5OTkiOvq168fnJ2dxf/ffvttODg44Pvvv1fZ5okTJ+Dj4wNXV1d06NAB/fv3x9KlS/Hs2TO1diuTZAcHB2PHjh3o1asXOnbsiCFDhiAhIUGsJ5PJsHDhQrF9rq6umDx5cpEPB3BwcEDnzp0hCAJ2796N4cOHw8nJCW+99Ra8vb1x/vx5ja8DgNOnT2Py5Mno2bOn2BdfffWVxvYDQEREBKZMmYIePXrA0dERbm5umDdvnkr7iajmUCgU2Lx5M0aMGIHOnTvDyckJw4YNQ3BwMLKzs9XqK8fZ0NBQ3L17F1OnTkW3bt3QoUMHDB48GBs3boRCodC4rVu3bsHX11cc+4YNG4Y9e/aIY36/fv0A/PMZsG/fPgDATz/9BAcHB8yZM0dtnZmZmQgICMCgQYPEz52ZM2fi4cOH5dhLRKRNRo8eDQcHB+zZs0et7Ntvv4WDgwPc3NzUytLS0tCuXTs4OTmJ42dpx1hNSfqLO4ZqcuLECXzwwQdwdnaGs7MzxowZI6YRUfL09MSHH34IAHj58qXGa20iovLEWyyp2tq/fz8WLFgAhUKBunXrQiqV4vHjxzh+/DjCwsLwww8/oGfPnv+6jvT0dPj4+CAtLQ12dnaIjY1F69atAQCJiYn46KOPEBMTAz09PbRu3Ro5OTm4desWbt26hevXr5fLE3uAgqDP/v37YWBggJYtW0Imk+Hq1auYNGkSNmzYAD8/P9y/fx/NmzdHkyZN8PDhQ2zcuBEvXrzAsmXLAACOjo6wtLTEtWvXxP8NDQ3RpEkTAIAgCFi4cKGYPLpRo0awt7dHXFwctm7dikOHDiEoKAgdOnRQa9+xY8cQGRkJa2trWFtbQy6Xw8bGBgBw7tw5+Pr6Qi6Xw8TEBPb29khOTsbp06dx+vRpTJ06FZ999pnG/V6wYAF2796NevXqoVWrVoiLi8OFCxdw8eJFBAYGYuDAgSr1Fy1ahB07dgAAGjduLLb/119/xalTp7B79240btxYrL9+/XoEBAQAAOrXrw+pVAqZTIY9e/bg8OHDCAgI0HjBSETV08uXL/HRRx/hxo0b0NXVhY2NDYyNjREdHY3bt2/j0KFDCA4O1pgL59KlS5gxYwYAwNbWFiYmJoiJiYG/vz+uX7+ODRs2qNQ/fPgwZs2ahZycHNSvX18cb5Q/yhRmZGQEZ2dnJCQkICkpCVZWVrC2tkbLli1V6ikUCowbNw53794Vy+Pi4vD7778jLCwM+/btE8dWIqLicnNzQ2RkJC5cuIARI0aolCl/rPz7778hk8lUxpjz588jLy8PPXr0gJGRUZnG2NeVZAx9XVBQEK5evYo6deqgRYsWSExMxLVr13Dt2jX8/fff8Pb2BgBIpVK8fPkS9+7dg76+Pjp27FjSriMiKhmBqBqKiYkRHB0dBalUKgQEBAgKhUIQBEFQKBTCihUrBKlUKnTp0kXIzMwU9uzZI0ilUmHYsGHi62UymSCVSgWpVCoMHDhQePHihSAIgpCSkiLk5+cLgiAIH3zwgSCVSgUPDw/h0aNH4msvX74sODk5CVKpVDhw4IDa+jIyMtTaGx0dLZYXNnv2bHH51KlThfT0dEEQBCE9PV0YOnSoIJVKhTZt2gh9+/YVoqKixNcFBwcLUqlUaNu2rZCSkiIuz8jIENcnk8lUtvXTTz8JUqlU6Nmzp3DhwgVxeWZmpvD1118LUqlUcHNzE9sgCIIQGBgorm/ZsmVi3yQlJYn77ezsLEilUmHNmjVCdna2+NoTJ06IZcePH1dpi3Kdbdu2FbZu3Srk5eWJ+63sd3d3d5XXKN9HJycn4ejRo+LypKQkwdPTU5BKpYKXl5e4/OjRo4JUKhWcnZ2FQ4cOicsVCoWwbt06sSwxMVHt/SKiqqccf6ZOnSoumzx5siCVSoXRo0cLCQkJ4vLHjx8L48aNE6RSqfDJJ5+orKfwODtp0iTh+fPnYtnPP/8sll2/fl1lfR07dhTHtpycHEEQCsbLOXPmiK/p27evxm2tXLlSZfmlS5fE17i4uAhnzpwRy2JiYoT//Oc/glQqFRYuXFiGHiMibRUVFSVIpVKhR48eKstfvnwptGnTRhx/fvvtN5XyuXPnClKpVNi1a5cgCGUbYwuPe6UdQ/v27SuWrVy5UpDL5YIgCEJ2drYwffp0QSqVCp07dxav+wXhn/HVxcWltN1HRFRsvMWSqqWQkBAoFAq4u7vD19cXBgYGAAADAwPMnj0bUqkUaWlpCAsLe+O6JkyYAAsLCwCAubk5dHR0cPXqVYSHh0MikWD9+vWwtrYW67u4uIgzog4cOFAu+1OvXj0sX74cZmZmAAAzMzOMHTsWAJCfn4+vv/4a7dq1E+t/+OGHMDQ0RF5eHu7fv//G9WdnZ2Pjxo0ACqbad+/eXSyTSCT46quv0KlTJzx58kTj9HwDAwNMmzYNOjo6AIAGDRoAKLiNKCMjA0OHDsW0adNU8p69/fbb+OKLLwAAa9eu1diuUaNG4YMPPoCurq6439OmTQMAxMTEICMjQ6z7ww8/AABmzpypMrOsQYMGWL16NfT19XHp0iU8ffoUABAYGAgAmDdvHgYPHqyyL59++inc3d2RkZGBzZs3v7H/iKjq3bx5E2FhYahfvz7Wr1+P5s2bi2VNmjRBYGAgJBIJTp48ibt376q93tzcHAEBAWjYsKG47MMPPxTXExkZKS4PDg5GVlYWBgwYgGnTpkFfv2BCvUQiwbJlyzTOtC2uuXPnonfv3uL/rVq1wvjx4wFAnAFMRFQS7dq1g6WlJV68eIF79+6Jyy9fvoz8/HwxBUdERITK686dOwcdHR24ubmVeYwtrKxjaLdu3TB79myYmJgAKMirO2/ePAAFt6kX59qXiKgiMEBG1dLp06cBQG0aOQDo6Ohg/fr1OHPmDN555503rsvJyUlt2ZkzZwAAffv2FYNnhY0ePRqHDh1SuyWntJydncXgmFLTpk0BAPr6+ujWrZtKmb6+vvg4a005z1539epVvHz5Eg0bNlRbl5IyiHT27Fm1MqlUClNTU7Xlp06dAoAi+/mdd96Bjo4O7ty5g+fPn6uVa7q9sVWrVuLfygBZfHw84uPjoa+vj6FDh6q9xtLSEvv27cPFixdhZWWFhw8f4v79+9DV1VUJjhU2ZMgQAJr3l4iqn5MnTwIAunfvLgbpC7OwsBCD/5rOaxcXFxgbG6stt7W1BQCVgLzyxxUPDw+1+rq6uhgzZkwp9qBA//791ZbZ2dkBKLiFlIioNJSB9wsXLojLlLdXTpw4EQAQHh4ult29exfPnj0TU3SUdYwtrKxjqKZx0sLCQrz25VhJRFWFOcio2snOzhYTskulUo11SpLDpVGjRmrLlMmS7e3tNb7GzMxM/EJTHqysrNSWKWfFmZmZaXwipbJcEIQ3rv/BgwcACpL9K2emvS41NRUAEBcXp1amqY8yMjLw5MkTAIC/v3+RwUI9PT3k5uYiLi5ObT2a9tvIyEj8Oy8vD8A/74e1tTUkEonG7RQ+FpT7q6uriwkTJmisn5WVBQBISEiAIAji7Dgiqp5iYmIAAFeuXClyHHv06BEAzeOYpvEGgBg0Uz54RaFQiOspKtlz4Rm9JSGRSNR+DFEuB6AxATYRUXH06dMHv/32Gy5evAgvLy8ABbkXJRIJevfujZYtWyI+Ph6PHz9G06ZNce7cOfF1QNnHWKXyGEMtLS01Ljc1NcXLly85VhJRlWGAjKqdwr8aFRUsKYnCAZnXt1Ee6y+Oit6OcmaEXC7H1atXi1W3ME19VHjm2u3bt9/YhvT0dLVlyiBfUZTBv5K+H8p9yM3NfeP+5ufnIzMzU+OXViKqPpTn9bNnz4p8aq1SWcablJQUcVlRY46mGbXFoenHDiKi8tCjRw8YGBggIiICubm5SEpKQmxsLHr27AkDAwO4uroiPj4e4eHhGDp0qDgLTJkwv6xjrFJ5jKEcK4moumKAjKqdwrfIyOVy1KlTp8K28erVqxK/VtOMLuVspaqizOHQp08fMZdXea0TKJjCr2k6fnlRbqu474fygsze3h5//PFHhbWLiCqPchyYNWsWfHx8Kmw7hb/QZWZmavyMKc6t7URElcnU1BRdu3bFhQsXcDhOQjsAAAhhSURBVP36dXEWl6urK4CCvF47d+5EeHg4+vfvj2vXrsHKykqczVVeYyzHUCKqzZiDjKqdevXqiY+XVk4Hf93OnTsxfvx4/PLLL6XaRsuWLQH8c6ve65KSkjBy5EhMnz4dubm5YvJRoGBq+eve9EtcRVPuT2xsbJF1Hj16hMjISCQlJRVrnXXr1hWDYkWtNy8vDxcuXEBCQoJ4u2RpKNufmJhYZLBx4cKFmDRpEsLDw9GiRQsABfuk6f0AgBcvXuDKlStiUn8iqt6U5/W/jWO3b9/GnTt3NM6ELa46deqIt2NGR0drrFM4CTYRUXWhzO168eJFMSG/MkDm4uICoCAP2aVLl5CTkyPeXgmU3xjLMZSIajMGyKha6tmzJwBg//79amWCIGDfvn24dOlSqXMU9OrVC0DBwwCUubkKO378OG7evImYmBjo6+ujbt26YpmmvAzKZPZVpUuXLpBIJHj48KFK8tbCvvzyS4wePRorV64s9nqVF2K//vqrxvKDBw/C29sbQ4cOhVwuL3nD/z87Ozs0adIEOTk5GmeEpaSk4ODBgzhz5gzq1KkDOzs7WFtb49WrV0U+adTPzw/vv/8+Pv/881K3i4gqj/KL3LFjx5CcnKxWnp6eDi8vLwwdOhRHjhwp07aUtxzt3btXY7mmp/0CEHMZFic3JBFReSscILty5QpMTU3Rvn17AEDDhg1hZ2cHmUyGnTt3AvhnrAPKd4wt7RhaGsonoRMRVQaOOFQtTZw4EQYGBvj999+xadMmcXZSTk4O/Pz8cO3aNZibm2t84mFxdO/eHZ06dUJ6ejqmTp2q8gTG8PBw+Pn5AQC8vb0BFEwnVyYi/e6778TcDLm5udiyZQv27dtX6n0tD2ZmZmLC1hkzZqgEybKysrB8+XJcunQJenp6GD9+fLHXO3HiRBgZGeHgwYPw9/dXCUieO3cOixcvBgCMGjWqTLfC6ujoYNKkSQCAlStX4s8//xTLkpOTMWPGDMjlcri6uqJt27bQ0dHBp59+CgBYvnw5Dh06JNbPzc3Fpk2bxIu2opL4E1H14urqiq5duyItLQ2TJ09GQkKCWPb06VN8+umnSE1NRaNGjfDuu++WaVs+Pj4wNjZGaGgo1q9fL37GKBQKrFixQuVJcIUp8+o8fvy4TNsnIioNW1tbtGjRApGRkYiLi0OXLl1U7nJQPsn87NmzMDY2VnmyeXmOsaUdQ0tDeUtnRkaGxh+1iYjKE3OQUbXUpk0bLF68GPPnz8e3336LTZs2wdraGjKZDKmpqTA2Noafn5/4OOiS0tHRgb+/P7y8vHD58mX07dsX9vb2SE9Ph0wmAwCMHDlSJQDn6+uLqVOn4sqVK3Bzc0PLli3x5MkTJCcnY/z48di7d++/JjWtaFOmTEFsbCxCQ0Ph7e0Na2trmJubIyEhQZwqv2jRIjg6OhZ7nXZ2dli1ahVmzZqFjRs3YuvWrbC1tUVKSgoSExMBFCSNnTFjRpnbP27cONy+fRu7d++Gj48PmjVrBjMzM8TFxSE7OxvW1tYqs99GjhyJ+/fvY/PmzZg+fTpWrFgBKysrPHr0SEz6P2XKFI2PEiei6snPzw8+Pj64ceMGBg0aBDs7O+jq6iI2NhY5OTkwMzPDjz/+qJKrsjRsbGywePFizJkzBwEBAdi6dSusra2RkJCAtLQ0ODo64tatW9DT01N5nfKHkqNHj+Ldd9+Fi4sLFixYUKa2EBGVhJubG7Zs2QLgn9srlVxdXbFt2zYABT8Gvz5WltcYW9oxtDRatGgBY2NjZGVlYfDgwbCyssLmzZtV7u4gIiovnEFG1dbw4cOxe/duvPPOO9DX10d0dDQMDQ3x7rvvYu/eveJtmKVlbW2NvXv3YsqUKWjRogViYmKQlJQEZ2dnrF69GsuWLVOp379/f/z888/o1auXeDHRrFkzfPPNN5g3b16Z2lIe9PX1sWbNGvj7++M///kPMjMzER0dDSMjIwwYMADbt2/HqFGjSrxed3d37N+/HyNHjoS5uTmio6ORkpKCDh06YN68eQgKCiq3pxEtXboUgYGB6N69O9LS0hATEwMrKyv4+Phg3759aNq0qUr9uXPnIjg4GP369UN+fj7u3r0LoOAW3fXr18PX17dc2kVElcPKygq7d+/GzJkz0b59eyQmJiI2NhaWlpYYPXo0Dhw4gLZt25bLtt577z1s27YNbm5uyMvLw71792BjY4PVq1eLs4df/5I4bNgweHl5wcLCAvHx8eKYQ0RUWQrnFVPmHSv8v/JW8L59+6q9tjzH2NKMoaVhZmaGNWvWwN7eHqmpqXjy5AkePnxY5vUSEWmiIzCRBhEREZFox44dWLRoEXr06IGQkJCqbg4RUY3CMZSIairOICMiIiKtMmfOHAwbNqzIB6ycO3cOAMptthoRUW3CMZSIaisGyIiIiEir2Nvb4/bt2/Dz88OjR4/E5QqFAkFBQTh16hQMDQ0xYsSIKmwlEVH1xDGUiGor3mJJREREWkUul2PMmDGIjo6Gnp4eWrRoARMTE8hkMqSlpcHAwACLFi3ilzsiIg04hhJRbcUAGREREWmdrKws7NmzB7///jtkMhnS09PRqFEjuLi4wNPTE+3bt6/qJhIRVVscQ4moNmKAjIiIiIiIiIiItBpzkBERERERERERkVZjgIyIiIiIiIiIiLQaA2RERERERERERKTVGCAjIiIiIiIiIiKtxgAZERERERERERFpNQbIiIiIiIiIiIhIqzFARkREREREREREWo0BMiIiIiIiIiIi0moMkBERERERERERkVZjgIyIiIiIiIiIiLQaA2RERERERERERKTVGCAjIiIiIiIiIiKtxgAZERERERERERFptf8Hid1PdD2gvJYAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 619.85x540 with 12 Axes>"
]
},
"metadata": {
"image/png": {
"height": 526,
"width": 612
}
},
"output_type": "display_data"
}
],
"source": [
"import seaborn as sns\n",
"sns.set(style=\"ticks\")\n",
"\n",
"sns.pairplot(df, hue=\"kind\", diag_kind=\"hist\");"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In contrast to our previous examples, our data set contains a non-numerical text column `kind`.\n",
"\n",
"<code>sklearn.preprocessing.OneHotEncoder</code> is a preprocessor which encodes text values to according flags:\n",
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[0., 1.],\n",
" [0., 1.],\n",
" [1., 0.],\n",
" [1., 0.],\n",
" [1., 0.]])"
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.preprocessing import OneHotEncoder\n",
"features = df.iloc[:, :-1]\n",
"values = df.iloc[:, -1]\n",
"\n",
"# needs 2d data structure, features.iloc[2] has dimension 1\n",
"encoder = OneHotEncoder(sparse=False)\n",
"one_hot = encoder.fit_transform(features.iloc[:, 2: 3]) \n",
"one_hot[:5, :]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So the one-hot encoder computes two columns with exclusive flags 0 and 1."
]
},
{
"cell_type": "code",
"execution_count": 15,
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>circumference</th>\n",
" <th>length</th>\n",
" <th>is_atlantic</th>\n",
" <th>is_sockeye</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>59.5</td>\n",
" <td>sockeye</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <th>1</th>\n",
" <td>18.0</td>\n",
" <td>53.0</td>\n",
" <td>sockeye</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <th>2</th>\n",
" <td>28.0</td>\n",
" <td>75.5</td>\n",
" <td>atlantic</td>\n",
" <th>3</th>\n",
" <td>33.5</td>\n",
" <td>89.0</td>\n",
" <td>atlantic</td>\n",
" <th>4</th>\n",
" <td>23.5</td>\n",
" <td>63.0</td>\n",
" <td>atlantic</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" circumference length kind is_atlantic is_sockeye\n",
"0 19.0 59.5 sockeye 0.0 1.0\n",
"1 18.0 53.0 sockeye 0.0 1.0\n",
"2 28.0 75.5 atlantic 1.0 0.0\n",
"3 33.5 89.0 atlantic 1.0 0.0\n",
"4 23.5 63.0 atlantic 1.0 0.0"
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"features[\"is_atlantic\"] = one_hot[:, 0]\n",
"features[\"is_sockeye\"] = one_hot[:, 1]\n",
"\n",
"features.head()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# we remove the categorical column now:\n",
"del features[\"kind\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we prepare the data for training and testing:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"\n",
"\n",
"(features_train, features_test, \n",
" values_train, \n",
" values_test) = train_test_split(features, values, random_state=42)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Without further explanation we pick a regression algorithm, more about regrssion algorithms will be discussed later:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.kernel_ridge import KernelRidge\n",
"kr = KernelRidge(alpha=.001, kernel=\"rbf\", gamma=.05)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" <i class=\"fa fa-info-circle\"></i> Regression methods in <code>scikit-learn</code> also have <code>fit</code> and <code>predict</code> methods. Thus cross validation, pipelines and hyperparameter-optimization will be available.\n",
" \n",
"</div>"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"kr.fit(features_train, values_train)\n",
"predicted = kr.predict(features_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let us plot how good given and predicted values match on the training data set (sic !)."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABakAAAIbCAYAAADhHxI6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8VPW9//H3hJhASFAChCWYRQKISkooBm0Nyy0im0BzFZWQCiK4UQquxd5qxYpiFwpKZasVMbGIDVBBpCIF8gOboAbDEjCJk4QikhugNAskhMzvD24CmG0mmZkzZ+b1fDz8oznnTD5pZsh33vM5n6/FZrPZBAAAAAAAAACAAfyMLgAAAAAAAAAA4LsIqQEAAAAAAAAAhiGkBgAAAAAAAAAYhpAaAAAAAAAAAGAYQmoAAAAAAAAAgGEIqQEAAAAAAAAAhiGkBgAAAAAAAAAYhpAaAAAAAAAAAGAYQmoAAAAAAAAAgGEIqQEAAAAAAAAAhiGkBgAAAAAAAAAYhpAaAAAAAAAAAGAYQmoAAAAAAAAAgGEIqQEAAAAAAAAAhiGkBgAAAAAAAAAYhpAaAAAAAAAAAGAYQmoAAAAAAAAAgGEIqQEAAAAAAAAAhvE3ugBfMHHiRP3rX/9SUFCQIiMjjS4HAADA6xUWFqqiokI9e/bUhg0bjC4HLsI6GwAAwP1csdYmpHaDf/3rXyotLVVpaalOnDhhdDkAAAA+41//+pfRJcCFWGcDAAAYx5lrbUJqNwgKClJpaalCQkLUr18/o8sBAADwejk5OSotLVVQUJDRpcCFWGcDAAC4nyvW2oTUbhAZGakTJ06oX79+WrNmjdHlAAAAeL3k5GRlZmYyAsLLsc4GAABwP1estdk4EQAAAAAAAABgGEJqAAAAAAAAAIBhCKkBAAAAAAAAAIYhpAYAAAAAAAAAGIaQGgAAAAAAAABgGEJqAAAAAAAAAIBhCKkBAAAAAAAAAIYhpAYAAAAAAAAAGIaQGgAAAAAAAABgGEJqAAAAAAAAAIBhCKkBAAAAAAAAAIYhpAYAAAAAAAAAGIaQGgAAAAAAAABgGEJqAAAAAAAAAIBhCKkBAAAAAAAAAIYhpAYAAAAAAAAAGIaQGgAAAAAAAABgGEJqAAAAAAAAAIBhCKkBAAAAAAAAAIYhpAYAAAAAAAAAGIaQGgAAAAAAAABgGEJqAAAAAAAAAIBhCKkBAAAAAAAAAIbxN7oAI1y4cEEpKSl6//33ZbVa1a5dO9100036yU9+omHDhhldHgAAAAAAAAD4DJ8MqefNm6eNGzcqODhYt956q86fP6/MzEzt3r1bs2fP1mOPPWZ0iQAAAAAAAADgE3wupP7www+1ceNGRUdH65133lHnzp0lSbm5ubrvvvv0+uuva+zYsYqKijK2UAAAAAAAAADwAT43k/pvf/ubJOnJJ5+sC6glqXfv3rrzzjtVU1Oj3bt3G1UeAAAAAAAAAPgUn+ukXrJkiQoKChrslC4vL5cktWnTxs1VAQAAAAAAAIBv8rmQOiAgQH369Kn39X/84x/66KOPFBQUpBEjRhhQGQAAAAAAAAD4Hp8LqS937tw5Pf3008rLy1N+fr569OihV1999YoxII1JS0vT+vXr7fo+OTk5rS0VAAAAAAAAALyST4fU33zzjbZu3XrF144cOaKbb7652WuPHTumzMxMV5UGAAAAAAAAAD7Bp0Pqbt266Z///Kf8/Py0Z88evfTSS3rxxRdVUVGhmTNnNnlteHi44uPj7fo+OTk5Ki0tdUbJAAAAAAAAAOBVfDqkDgoKUlBQkCRp9OjR6t69u+69914tX75c999/vwIDAxu9NjExUYmJiXZ9n+TkZLquAQAAAAAAAKABfkYX4EkGDBigiIgIlZWV6ejRo0aXAwAAALjNnj179JOf/ESDBw/WwIEDlZycrF27drXqMR988EH17dtXGRkZTqoSAAAA3sinQmqbzaZXX31Vc+fOVXV1dYPnBAQESFKjxwEAAABvk5aWpmnTpikrK0uxsbGKi4tTVlaWZsyYobVr17boMVNTU5Wenu7kSgEAAOCNfGrch8Vi0SeffKKCggJNnDhRQ4cOveL40aNHZbVaFRQUpOjoaIOqBAAAANznxIkTev755xUSEqLU1FT16dNHkpSdna1p06bppZde0rBhw9S1a1e7H7OwsFC/+c1vXFUyAAAAvIxPdVJL0qRJkyRJv/71r/Xtt9/Wff3EiRN6/PHHVV1drcmTJzc5jxoAAADwFikpKaqqqtLUqVPrAmpJio2N1YwZM1RZWelQN/WFCxf0zDPP6Kqrrrri8QAAAIDG+FxI/ZOf/ERDhw5VUVGRRo8erenTp2vq1KkaNWqUsrOzNXToUP3sZz8zukwAAADALWpHcowYMaLesdqvOTKbetWqVcrKytIvf/lLderUyTlFAgAAwKv51LgPSbrqqqv0xhtvKDU1VWlpadq7d6/8/PzUp08fJSYmatKkSfLz87nsHgAAAD7IZrMpLy9Pfn5+uu666+odj4qKkp+fn/Ly8mSz2WSxWJp8vMOHD+u1117THXfcoTvvvFN//etfXVU6AAAAvIjPhdSS1KZNGyUnJys5OdnoUgAAAADDnDlzRlVVVQoNDa3bQPxy/v7+6tixo06ePKny8nIFBwc3+lhVVVV66qmn1KFDB/3qV79qcU1paWlav369Xefm5OS0+PsAAADAc/hkSA0AAABAOnv2rCSpXbt2jZ7Ttm1bSWo2pF68eLG++uorLV26VKGhoS2u6dixY8rMzGzx9QAAADAfQmoAAADARzky5s5mszV67PPPP9ebb76p8ePHNzjb2hHh4eGKj4+369ycnByVlpa26vsBAADAeITUAAAAgI8KCgqSJFVWVjZ6zrlz564497sqKir085//XF26dNEvf/nLVteUmJioxMREu85NTk6m6xoAAMALEFIDAAAAPio4OFhBQUE6ffq0qqur5e9/5duD6upqnT59WoGBgerQoUODj/Huu++qqKhIffv21fz58684lpeXJ0latmyZ1q1bp3vvvVeDBg1yzQ8DAAAA0yKkBgAAAHyUxWJRTEyMsrOzVVBQoJiYmCuOW61W1dTUqE+fPo0+RkVFhSTpyJEjOnLkSIPn7NmzR5L0gx/8gJAaAAAA9RBSAwAAAD4sISFB2dnZ2rZtW72Qetu2bZKkoUOHNnr9T3/6U/30pz9t8NjUqVP16aef6u2339bgwYOdVzQAAAC8iv07pQAAAADwOomJiQoMDNTKlSt14MCBuq/v379fq1atUtu2bTV58uS6rxcVFSk/P58NCwEAAOA0hNQAAACAD+vZs6eeeeYZlZWV6d5779X06dM1ffp03XfffSovL9f8+fPVqVOnuvOnTp2qMWPG6OOPPzawagAAAHgTxn0AAAAAPi4pKUk9evTQqlWr9MUXXyggIEADBw7UI488oltvvdXo8gAAAODlCKkBAAAAaPjw4Ro+fHiz523fvt3ux3zrrbdaUREAAAB8BeM+AAAAAAAAAACGIaQGAAAAAAAAABiGkBoAAAAAAAAAYBhCagAAAAAAAACAYQipAQAAAAAAAACGIaQGAAAAAAAAABiGkBoAAAAAAAAAYBhCagAAAAAAAACAYQipAQAAAAAAAACGIaQGAAAAAAAAABiGkBoAAAAAAAAAYBhCagAAAAAAAACAYQipAQAAAAAAAACGIaQGAAAAAAAAABiGkBoAAAAAAAAAYBhCagAAAAAAAACAYQipAQAAAAAAAACGIaQGAAAAAAAAABiGkBoAAAAAAAAAYBhCagAAAAAAAACAYQipAQAAAAAAAACGIaQGAAAAAAAAABiGkBoAAAAAAAAAYBhCagAAAAAAAACAYQipAQAAAAAAAACGIaQGAAAAAAAAABiGkBoAAAAAAAAAYBhCagAAAAAAAACAYQipAQAAAAAAAACGIaQGAAAAAAAAABiGkBoAAAAAAAAAYBhCagAAAAAAAACAYQipAQAAAAAAAACGIaQGAAAAAAAAABjG3+gCjHDhwgW9++67Wr9+vb7++mtduHBB1157rcaMGaMHH3xQgYGBRpcIAAAAAAAAAD7B50LqCxcu6NFHH9WOHTsUFBSk733ve/L399eXX36pJUuWaOfOnVq9erXatWtndKkAAAAAAAAA4PV8LqRet26dduzYob59+2rlypXq2rWrJOnUqVN69NFHlZWVpT/+8Y964oknDK4UAAAAAAAAALyfz82kXr9+vSTp2WefrQuoJSk0NFS/+tWvJEmbN282ojQAAAAAAAAA8Dk+F1J37NhR1113nWJjY+sdi4qKkiQVFxe7uSoAAAAAAAAA8E0+N+5j2bJljR7bv3+/JKlbt27uKgcAAAAAAAAAfJrPdVI3xmazafHixZKkkSNHGlwNAAAAAAAAAPgGn+ukbszvf/977d27V507d9aDDz7Y7PlpaWl1862bk5OT09ryAAAAAAAAAMArEVJLWrx4sVasWKGAgAD94Q9/UGhoaLPXHDt2TJmZmW6oDgAAAAAAAAC8l0+H1NXV1Zo/f77Wrl2rwMBAvfbaa7r55pvtujY8PFzx8fF2nZuTk6PS0tLWlAoAAAAAAAAAXslnQ+ry8nL97Gc/U3p6ujp06KA//vGPdgfUkpSYmKjExES7zk1OTqbrGgAAAAAAAAAa4JMh9ZkzZzRt2jQdPHhQ3bt314oVK9SnTx+jywIAAAAAAAAAn+NzIXVVVZVmzpypgwcPKiYmRn/605/UrVs3o8sCAAAAAAAAAJ/kcyH1kiVLtG/fPnXv3l1r1qyxa5NEAAAAAAAAAIBr+FRIffr0aa1Zs0aSFBoaqgULFjR67m9/+1t3lQUAAAAAAAAAPsunQuq9e/fq3LlzkqSDBw/q4MGDjZ5LSA0AAAAAAAAArudTIfXIkSN15MgRo8sAAAAAAAAAAPwfP6MLAAAAAAAAAAD4LkJqAAAAAAAAAIBhCKkBAAAAAAAAAIYhpAYAAAAAAAAAGIaQGgAAAAAAAABgGEJqAAAAAAAAAIBhCKkBAAAAAAAAAIYhpAYAAAAAAAAAGIaQGgAAAAAAAABgGEJqAAAAAAAAAIBhCKkBAAAAAAAAAIYhpAYAAAAAAAAAGIaQGgAAAAAAAABgGEJqAAAAAAAAAIBhCKkBAAAAAAAAAIYhpAYAAAAAAAAAGIaQGgAAAAAAAABgGEJqAAAAAAAAAIBhCKkBAAAAAAAAAIbxN7oAAAAAAMbbs2ePli1bpiNHjuj8+fO68cYbNWPGDA0ZMsTux9i5c6fefvtt7d+/XxUVFerSpYsSEhL06KOPqlu3bi6sHgAAAGZGJzUAAADg49LS0jRt2jRlZWUpNjZWcXFxysrK0owZM7R27Vq7HmPFihWaOXOm9uzZo+jo6Lpwe+3atfrxj3+s/Px8V/4IAAAAMDE6qQEAAAAfduLECT3//PMKCQlRamqq+vTpI0nKzs7WtGnT9NJLL2nYsGHq2rVro4+Rl5enRYsWKSgoSG+++abi4uIkSefPn9eCBQuUmpqqZ5991u7AGwAAAL6FTmoAAADAh6WkpKiqqkpTp06tC6glKTY2VjNmzFBlZWWz4fLGjRtVU1OjadOm1QXUknTVVVfp2WefVWhoqPbt26djx4657OcAAACAeRFSAwAAAD4sPT1dkjRixIh6x2q/tmvXriYf46qrrlLfvn118803N3isZ8+ekqTi4uLWlgsAAAAvxLgPAAAAwEfZbDbl5eXJz89P1113Xb3jUVFR8vPzU15enmw2mywWS4OPM3v2bM2ePbvBYxUVFcrLy5MkNk8EAABAgwipAQAAAB915swZVVVVKTQ0VAEBAfWO+/v7q2PHjjp58qTKy8sVHBzs8PdYuXKlKioq1L9/f3Xv3r3Z89PS0rR+/Xq7HjsnJ8fhegAAAOB5CKkBAAAAH3X27FlJUrt27Ro9p23btpLUopB6586dWr58ufz8/PTUU0/Zdc2xY8eUmZnp0PcBAACAuRFSAwAAAD7Kz8/+LWpsNptDj71jxw7Nnj1bFy5c0BNPPKHBgwfbdV14eLji4+PtOjcnJ0elpaUO1QUAAADPQ0gNAAAASVJBcan2FZSoorJaQYH+GhDVWVFhIUaXBRcKCgqSJFVWVjZ6zrlz56441x7vv/++nn/+eVVXV2vWrFmaOXOm3dcmJiYqMTHRrnOTk5PpugYAAPAChNQAAAA+LstaopRdudpfdKresf4RoUoa0ltx0Z0NqAyuFhwcrKCgIJ0+fVrV1dXy97/y7UF1dbVOnz6twMBAdejQwa7HXLRokZYtWyaLxaJ58+Zp6tSpLqgcAAAA3oSQGgAAwId9lFWkP2zer8YmOewvOqV5KRmaOy5Wdwy41r3FweUsFotiYmKUnZ2tgoICxcTEXHHcarWqpqZGffr0afaxbDab/ud//kfvv/++AgICtHDhQo0ZM8ZVpcPLcCcHAAC+jZAaAADAR2VZS5oMqGvZbNKiTdkKu7odHdVeKCEhQdnZ2dq2bVu9kHrbtm2SpKFDhzb7OK+88oref/99BQcH64033rB7rjR8G3dyAAAASbJ/pxQAAAAvVVBcqg2ZVqWm52pDplUFxb6xEVvKrtxmA+paNpuUmp7r2oJgiMTERAUGBmrlypU6cOBA3df379+vVatWqW3btpo8eXLd14uKipSfn3/FhoW7du3SW2+9JX9/fy1fvpyAGnb5KKtI81IyGgyopUt3cmzdd9TNlQEAAHejkxoAAPgsX+7gKygubTQYakx24SkVFJdyC76X6dmzp5555hnNnz9f9957rwYPHixJysjIUHV1tRYuXKhOnTrVnT916lQdO3ZML7/8ct0Gh0uWLJEkderUSX/5y1/0l7/8pcHv9cgjj6hXr14u/olgBtzJAQAALkdIDQAAfJKvz2LeV1DS4usIqb1PUlKSevTooVWrVumLL75QQECABg4cqEceeUS33nprk9f++9//1v79+yVJJ06c0AcffNDouXfffTchNSS17E4OQmoAALwXITUAAPA5dPBJFZXVbr0Onm/48OEaPnx4s+dt3779iv99zTXX6MiRI64qC16IOzkAAMB3MZMaAAD4HGYxS0GBLetVaOl1AFCrNXdyAAAA70RIDQAAfEprOvi8yYColnWGt/Q6AKjFnRwAAOC7CKkBAIBPoYPvoqiwEPWPCHXomtjIUG61B9Bq3MkBAAC+i5AaAAD4FDr4Lkka0lsWi33nWizS5ITeri0IgE/gTg4AAPBdhNQAAMCn0MF3SVx0Z80Z27/ZoNpikeaOi/W6zSMBOK6guFQbMq1KTc/Vhkxri0YhcScHAAD4Lu97twUAANAEOviuNCouQl2vCVJqeq6yC+vP6o6NDNXkhN4E1ICPy7KWKGVXboMz/ftHhCppiGP/TiQN6a15KRl2bWLLnRwAAHg/QmoAAOBTajv4HNk80ds7+OKiOysuurMKiku1r6BEFZXVCgr014Cozl79cwOwz0dZRfrD5v2NBsr7i05pXkqG5o6L1R0DrrXrMWvv5GjqcSXu5AAAwFcQUgMAAJ9DB1/DosJCCKUBXCHLWtJskCxJNpu0aFO2wq5uZ3egzJ0cAACgFiE1AADwOXTwAYB9Unbl2vWBnnQxqE5Nz3Xo30zu5AAAABIhtSQpLS1N8+bNU0pKigYNGmR0OfBgLJ4BwHvQwQcATSsoLnVoNJIkZReeUkFxqcNrZO7kAAB4OzKlpvl8SJ2VlaUXX3zR6DLg4Zy9UQwAwDPQwQcAjdtXUNLi6/g3FACAi8iU7OPTIfXWrVs1b948VVRUGF0KPJgrNooBAHgWOvjgKg888IDCwsL07LPPqkOHDkaXAzikorLardcBAOBtyJTs55Mh9bfffqvf//732rhxo9q1a6fOnTurpKRlXQLwbq7cKAYAAHi/L7/8UsHBwQTUMKWgwJa9XWzpdQAAeBMyJcf4GV2AEf7whz9o48aNuummm7R27Vpdd911RpcED9WSjWIAAAAud/XVVxtdAtAiA6Ja9ka5pdcBAOBNyJQc45Mh9XXXXaeFCxdq3bp16tu3r9HlwEO1ZqMYAAAASRo/frxyc3P1ySefGF0K4LCosBD1jwh16JrYyFDGJwEAfB6ZkuN88j6smTNntvox0tLStH79ervOzcnJafX3g/uxUQwAAGit8ePHKycnR7NmzdKAAQM0YMAAhYWFKSAgoNFrkpKS3Fgh0LSkIb01LyXDrk4wi0WanNDb9UUBAODhyJQc55MhtTMcO3ZMmZmZRpcBF2KjGAAA0Fr33XefLBaLbDabsrKytG/fvmavIaSGJ4mL7qw5Y/s3O1PTYpHmjov16VmaAADUIlNyHCF1C4WHhys+Pt6uc3NyclRa6rvt+mbFRjGwR0FxqfYVlKiislpBgf4aENXZZz/1BADUd/PNNxtdAtBqo+Ii1PWaIKWm5yq7sP6ty7GRoZqc0JuAGgCA/0Om5Djf/clbKTExUYmJiXadm5ycTNe1CbFRDJqSZS1Ryq7cBmdM9Y8IVdIQ3qgBAKQ1a9YYXQLgFHHRnRUX3ZkP6AEAsAOZkuMIqYFG1G4U48igezaK8Q0fZRU1ecvr/qJTmpeSobnjYnXHgGvdWxwAAIALRYWFsN4FAKAZZEqOI6QGmsBGMfiuLGtJszMZJclmkxZtylbY1e3oqAYAqKqqSmlpadqxY4esVqvKy8vVvn17RURE6LbbbtPdd9+toKAgo8sEAACAk5ApOcbP6AIAT1a7UYzF0vR5bBTjO1J25dr1B0a6GFSnpue6tiAAgMezWq0aP368XnjhBe3YsUOFhYUqKSlRYWGh0tPT9corr+jHP/6xcnP5mwEAAOAtyJQcQyc10Aw2ikGtguJSh27VkaTswlMqKC716Vt2AMCX/ec//9H06dP1zTffqFu3bkpMTNQNN9yg9u3bq7S0VAcPHtSGDRtUWFioRx55ROvXr1dICH8zAAAAvAGZkv0IqQE7sFEMJGlfQUmLr+N5AgC+6c9//rO++eYb3XrrrXr99dfVvn37K46PHDlSM2fO1KOPPqrMzEylpqbqoYceMqhaAAAAOBuZkn0IqQEHsFGMb6uorHbrdQAA89u2bZv8/f316quv1guoa7Vv316vvvqqfvSjH2nLli2E1AAAAF6ITKlphNSS1qxZY3QJAEwgKLBl/2S29DoAgPkdPXpUffr0UZcuXZo8r2vXrurdu7eKiorcVBkAAADgOdg4EQDsNCCqZTOiWnodAMD8LBaLqqqq7Dq3urpaNnt35wUAAAC8CO198ErM+YErRIWFqH9EqEObJ8ZGhvLcAwAf1qtXLx06dEhWq1XR0dGNnvf1118rLy9PN9xwgxurAwAAADwDITW8Spa1RCm7chsMEftHhCppCDumonWShvTWvJQM2dPoZrFIkxN6u74oAIDHGjt2rA4cOKA5c+Zo+fLl6tatW71zjh8/rp/97Gd15wMAAAC+hpAaXuOjrCL9YfP+RsPD/UWnNC8lQ3PHxeqOAde6tzh4jbjozpoztn+TzzXpYkA9d1wsH4oAgI9LSkrS+vXrdeTIEY0aNUpDhgzRDTfcoPbt26usrEw5OTnauXOnKisr1bdvXyUlJRldMgAAAOB2hNTwClnWkmZDQ0my2aRFm7IVdnU7wkO02Ki4CHW9Jkip6bnKLqzftR8bGarJCXTtAwCkgIAAvfXWW5ozZ44yMzP197//XR9//HHd8doZ1IMHD9bvfvc7BQYGGlUqAAAAYBhCaniFlF25do1fkC4G1anpuQSIaJW46M6Ki+7M/HMAQLNCQ0P19ttv67PPPtPOnTtVUFCg8vJyBQUFKTo6WkOHDtWgQYOMLhMAAAAwDCE1TK+guNShjewkKbvwlAqKSwkT0WpRYSE8jwAAjVq0aJEiIiJ05513atCgQYTRAAAAQAMIqWF6+wpKWnwd4SIAAHCl9957T9XV1WyICAAAfBZ3IMMehNQwvYrKardeBwAAYK+Kigr16tVLbdu2NboUAAAAt8qylihlV26Dd7/3jwhV0hD2csIlfkYXALRWUGDLPmtp6XUAAAD2GjRokPLz83X06FGjSwEAAHCbj7KKNC8lo9HxrPuLTmleSoa27mONhItI6WB6A6Ja9qlbS68DAACw14IFC/TQQw/pnnvu0aRJkzRgwAB16dJFgYGBjV4TExPjxgoBAM7AOAPgkixrif6web9stqbPs9mkRZuyFXZ1OzqqQUgN84sKC1H/iFCHNk+MjQxlwQAAAFxu9OjRqqmpUWVlpZYvX97s+RaLRYcOHXJDZQAAZ2CcAVBfyq7cZgPqWjablJqey+sEjPuAd0ga0lsWi33nWizS5ITeri0IAABAF2dSnzt3Tjabza7/ampqjC4ZAGAnxhkA9RUUlzrURChJ2YWnVFBc6qKKYBZ0UsMrxEV31pyx/Zu9ncRikeaOi+UTOgAA4BaHDx82ugQAwGWcNZaDcQZAw/YVlLT4Ou54922E1PAao+Ii1PWaIKWm5yq7sP6ndrGRoZqcwK1WMAdXzbRjVh4AuNeiRYsUGRmpcePGKSAgwOhyAMBnOXssB+MMgIZVVFa79Tp4D0JqeJW46M6Ki+5MEAfTctVMO2blAYAx3nvvPVVXV2vMmDFGlwIApuLM93QfZRU12fVcO5Zj7rhY3THgWrtqa+k4A96XwtsFBbYsamzpdfAePAPglaLCQvjjD9Nx9uLZ1Y8LAGheRUWFevXqpbZt2xpdCgCYgrObK1wxloNxBkDjBkS1rPmppdfBe7BxIgB4AEcXz1lW+xbGrnpcAIB9Bg0apPz8fB09yqZZANAcV2xE2JKxHM1hnAHQuKiwEPWPCHXomtjIUD7AAZ3UAOAJXDXTjll5AGCsBQsW6KGHHtI999yjSZMmacCAAerSpYsCAwMbvSYmJsaNFQKAZ3BFx7OrxnIwzsAYjPU0j6QhvTUvJcOu96IWizQ5obfri4LH419IADCYqxbPzMoDAOONHj1aNTU1qqys1PLly5s932Kx6NChQ26oDAA8iyuaK1w1loNxBu7F/jrmExfdWXPG9m/2gyeLRZo7LpbfHyQx7gMADNeaxbMRjwsAsF9FRYXOnTsnm81m1381NTVGlwyqz+2zAAAgAElEQVQAbtea5oqmuGosB+MM3McVI2DgHqPiIvRy0mDFRjb8WomNDNXLSYPZFwl16KQGAIO5avHMrDwAMN7hw4eNLgEAPJ6rOp5dOZaDcQau54oRMHCvuOjOiovuzKgW2IWQGgAM5qrFM7PyAAAAYAauaq5w5VgOxhm4HvvreI+osBBCaTSLJAIADOaqxTOz8gDAs1y4cEEHDx7U119/rbKyMk2ZMkXnz5/X8ePHFRERYXR58DJ0rcFMXNVcUTuWw5FRIo6M5RgVF6Gu1wQpNT1X2YX1v0dsZKgmJzAvuSXYXwfwPYTUAGAwVy2eXb0oBwDY7+2339aKFSt08uTJuq9NmTJFR48e1bhx4zRixAgtWLBAwcHBBlYJb8AGYzAjVzZXuHosB+MMXMNVI2AAeC42TgQAD5A0pLcsFvvOdWTx7KrHRcMKiku1IdOq1PRcbci0NruZDwDf8Itf/EIvv/yySkpK1KFDB7Vt27buWElJiWpqavTxxx8rOTlZZ8+eNbBSmB0bjMGsXLkRYe1YjubWxK0dyxEVFqKJ8dGanNBbE+OjCUpbif11AN9DSA0AHsBVi2d3Lcp9XZa1RE+u/lQPLd+lN7Ye0uodX+mNrYf00PJdenL1p8qytqwTBID5bd26VX/961/VpUsXrVy5UhkZGerXr1/d8fj4eK1Zs0ZdunTR4cOHtXr1agOrhZk5usEYf5vgaVzZXDEqLkIvJw1WbGTDQXhsZKheThqsOwZca/djwrXYXwfwPbx6YShuiQIucdVMO2bludZHWUVNhgK1XWtzx8XyxgfwQe+++64sFosWL16suLi4Bs+5+eabtXTpUt19993asmWLHn74YTdXCW/ABmMwO1dvRMhYDnNhfx3A9zg1pP75z3+u8PBwPfDAA2rfvr0zHxpehll5QMNctXhmUe4ajnathV3djn/bAB9z6NAhXXvttY0G1LX69++vyMhIFRYWuqkyeBM2GIO3cEdzRVRYCM97E2B/HcD3ODWk3r59u/z9/fXoo48682HhZeg6BJrnqsUzi3LnomsNQHMqKysVFBRk17nBwcE6ceKEiyuCN2KDMXgTmitQy9WbXgLwLE4Nqc+fP6+ePXuqTZs2znxYeBG6DgF4C7rWANije/fuslqtqqioaDKsLisrU15enrp37+7G6uAt2GAM3ojmCrh6BAwAz+LUjROHDRumr776StnZ2c58WHiRlnQd+oKC4lJtyLQqNT1XGzKtKiguNbokAM1oTdcaAN8xfPhwVVZW6pVXXmnyvAULFqiqqkpDhw51U2XwJmww1jTW2oB5sekl4Ducuip5/PHHdfz4cSUnJ+v2229XXFycunTposDAwEavYSHuO+g6rI/Z3IB50bUGwB4zZszQxo0btW7dOhUVFWn06NE6c+aMpIvzqvPz8/Xee+/ps88+U4cOHfTAAw8YXDHMiA3GGsZaG/AOjIABfINTQ+qRI0dKkmw2mzZv3qzNmzc3eb7FYtGhQ4ecWQI8GLPyrsRsbsDc6FoDYI/Q0FCtXLlSjz32mP75z38qIyOj7th///d/S7q4du7YsaNee+01de3a1ahSYWJsMFYfa23A+zACBvBuTn2nzAw9NIWuw0uYzQ2YH11rAOx14403atOmTVq7dq22b9+uvLw8lZeXq127doqMjNSwYcM0efJkhYY2fCszYA82GLuEtTYAAObj1JB6+/btznw4eBm6Di9pyWxuFs6AZ6FrDYAjgoODNX36dE2fPt3oUuCl2GDsEtbaAACYj1M3TgSaQtfhRa2ZzQ3AsyQN6S2Lxb5zvb1rDQBgPDYYY60NAIBZuaxFNT09XTt27FBBQYHKy8sVFBSkiIgI3XbbbfrRj34ki73v6uE16Dq8iNncgPegaw0A4Gl8fYMx1toAAJiT00PqkydPas6cOfrss88kXdwIptann36qtWvXKi4uTosWLWJjGB/ErDxmcwPeZlRchLpeE6TU9FxlF9b/EC42MlSTE3p7bEDtqyEGAHg7X91gjLU2AADm5NSQurKyUg888ICOHDmidu3aaeTIkbrhhhsUFBSksrIyHThwQNu3b9cXX3yhhx9+WGvXrlVAQIAzS4CHo+uQ2dyANzJj11qWtUQpu3IbvLulf0SokoZ4brAOAEBjWGsD8BRmem8AeAKn/iV+5513dOTIEV1//fVavnx5g53S3377rWbOnKnDhw/rvffe05QpU5xZAkzA7F2HrcVsbsB7maVr7aOsoiY/LNxfdErzUjI0d1ysV88tBQB4H9baAIxGMwjQMk4NqTdv3iw/Pz8tXry40VEe3bp10+LFizVmzBh98MEHhNQ+yoxdh87CbG4ARsqyljR7N4sk2WzSok3ZCru6HYtoAIBpeMNa2xffIwHegmYQoOWcGlJbrVbFxMQoMjKyyfOio6MVExMjq9XqzG8PEzJL16GzmX02NwtnwLxSduXa9W+PdDGoTk3PJaQGAJiKWdfadF8C5kYzCNA6Tg2pbTab2rRpY9e5bdq00fnz55357QHTMOtsbhbOgLkVFJc61FkmSdmFp1RQXMoHUYATXLhwQQcPHtTXX3+tsrIyTZkyRefPn9fx48cVERFhdHmA1zDjWpvuS8D8aAYBWsepIXVERIRyc3NVXFyssLCwRs87ceKE8vLyFB0d7cxv75A9e/Zo2bJlOnLkiM6fP68bb7xRM2bM0JAhQwyrCb7FbLO5WTgD5revoKTF1xFSA63z9ttva8WKFTp58mTd16ZMmaKjR49q3LhxGjFihBYsWKDg4GDDanTG+thqteq1117T559/rn//+9+KiIjQpEmTlJSUJD8/PxdWD1zJTGttui8B86MZBGg9p4bUt99+u5YuXaqnnnpKS5cubXCRXVZWpqeeekoXLlzQ7bff7sxvb7e0tDTNmzdPAQEBuuWWW1RTU6OMjAzNmDFD8+fP1z333GNIXfA9ZpnN7Q0LZ0///xhwh4rKardeB+CiX/ziF0pLS5PNZtPVV1+tqqoqnTt3TpJUUlKimpoaffzxxzp69KhSU1PVrl07t9fojPXx4cOHlZSUpLKyMg0cOFD9+/dXRkaGfv3rX+vLL7/Ub3/7Wzf8JMAlZllr030JmB/NIEDrOTWknjp1qtLS0pSZmalRo0bpzjvv1A033KD27durrKxMOTk5+uCDD1RSUqIePXpo2rRpzvz2djlx4oSef/55hYSEKDU1VX369JEkZWdna9q0aXrppZc0bNiwRjd+BFzB02dzm3nhzIgS4JKgwJb92W/pdQCkrVu36q9//avCwsL00ksvKSEhQZMnT1ZWVpYkKT4+XmvWrNETTzyhw4cPa/Xq1Xr44YfdWqMz1sc2m01PP/20ysrK9Oqrr2rChAmSpFOnTmnq1Kn64IMPdPvtt+uOO+5wy88EXM6T19re0H3p6R8CAO5AMwjQek695y4kJER//vOfFRkZqZKSEr311lt6+umn9dhjj+mZZ57RW2+9pZKSEkVHR2vVqlUKCXH/H66UlBRVVVVp6tSpdQtwSYqNjdWMGTNUWVmptWvXur0uwFO1ZuFstI+yijQvJaPR+mtHlGzdd9TNlQHGGBDVsg9kWnodAOndd9+VxWLR4sWLlZCQ0OA5N998s5YuXSqbzaYtW7a4uULnrI93796tI0eOKD4+vi6glqTQ0FD96le/kiStWbPGJfUDZtaa7kujZVlL9OTqT/XQ8l16Y+shrd7xld7YekgPLd+lJ1d/qiyr8TUC7kIzCNB6Th8MFxUVpU2bNmnhwoUaPXq0+vXrp4iICF1//fUaPXq0Fi5cqL/97W+67rrrnP2t7ZKeni5JGjFiRL1jtV/btWuXW2sCPJlZF86OjihhEQ1fEBUWov4RoQ5dExsZSjcU0AqHDh3Stddeq7i4uCbP69+/vyIjI1VYWOimyi5xxvq4qccYOHCgOnXqpM8//1xlZWWtLRfwKmbtvqQZBLgSzSBA6zn1I5uUlBT16tVLt9xyiyZMmHBFF4UnsNlsysvLk5+fX4MheVRUlPz8/JSXlyebzSaLxWJAlYBnMevC2cwjSgBXShrSW/NSMux6fVgs0uSE3q4vCvBilZWVCgoKsuvc4OBgnThxwsUVXclZ6+O8vDxJuqIT+3LR0dE6efKk8vPz9b3vfc95PwBgcmbsvvSG/WoAZ6ttBnHkLmSaQYArObWTetmyZXrkkUf0n//8x5kP6zRnzpxRVVWVrrnmGgUEBNQ77u/vr44dO+rs2bMqLy9v8rHS0tKUnJxs1385OTmu+pEa9Lvf/U7h4eEKDw/X7373u3rHX3jhhbrjy5Ytq3f86aefrjv+zjvv1Dv+2GOP1R1fv359veP3339/3fG///3v9Y7fdddddcf37NlT7/ioUaPqjmdnZ9c7ftttt9Udz8/Pr3d84MCBdce//fbbesf79OlTd7yhbp7aY+Hh4fWOlZWV1R1r6E3Yt99+W3d84MCB9Y7n5+fXHb/tttvqHc/Ozq47PmrUqHrH9+zZU3f8rrvuqnf873//e93x+++/v97x9evX1x1/7LHH6h1/55136o4//fTTkq5cAJd8+XcdWDZTB5bN1PE96+pdf2Lv3+qO/2P96nrH3fnc273rH/WOf73xt3X1lR07csWx7MJT+q8Rt/Pc86Dn3uWWLVtWd/yFF16od5x/9+x/7vXu0lZzxvbX5TlT7eviwLKZdV+zWKS542LVu0tbnns891z2754v6N69u6xWqyoqKpo8r6ysTHl5eerWrZubKrvIWevj4uJiSVKXLl0aPF779ZKS5u9c8uR1tsTrnvWOc//mXN5F6cha+/OP3q133F3PvXG3fU9nrF/WO97QWru2GUTiuedpz73L+fp655Zbf1B3fPn6nfVGV9r73Hv32btUc/5cveONrbUnJ/Ru0XOvoLhUGzKtSk3P1fL1O3numfi5x1r7Sk79+PXMmTOKiYlRhw4dnPmwTnP27FlJanLH9LZt20qSysvLFRwc3Oh5x44dU2ZmpnMLBDxQS28/6naNfV1jnsTo7m/AXUbFRajrNUFKTc9VdmH9bo/YyFBNTri4qWhLFzu1mygVWt0/ugDwJMOHD9ef//xnvfLKK5o/f36j5y1YsEBVVVUaOnSoG6tz3vq49nFqz23sMZoL6yXW2fAtLem+lKRr2ge6qCLn85T9aoDvyrKWKGVXrk6cOVv3tXf/X77SDpSpf0Sokob0dvgugEfvuEHL//F1k3ca1DaDOLrWPl9doydXf3rFvxeV/750B1bl+QsO1Qp4GqeG1P369VNeXp5Onz6tjh07OvOhncLPz/7GcVsz9y6Fh4crPj7ersfKyclRaSl/lGFOvrBwrlVj53gQwBvERXdWXHRnFRSX6oeXNR0sf2hIq247rF3s1/6bcfnCueQ/55RlLeGWX/iUGTNmaOPGjVq3bp2Kioo0evRonTlzRtLFedX5+fl677339Nlnn6lDhw564IEH3Fqfs9bHbdq0kaRmx+XV1NQ0+31YZ8PX1I7i8mZG71cDfNdHWUVNjq2pnas+d1ysQ497+/euVVSPLnY1gzjqP2ermnxfXlJ6Tlv3HdUdA651+LEBT2CxNZfGOiA/P1/Tp09X27ZtNX36dA0YMEBdunRRYGDjYVVTXRvOVlpaqkGDBqlz587avXt3g+f84Ac/0MmTJ7V3716ndYQnJycrMzNT8fHx7GoOU8qyljg0w/blpMGGhlAbMq16Y+shh6975I4bNDE+2gUVAb6hucW+dKlzhMUzXM2T1l8HDx7UY489pm+//bbBENdms6ljx4567bXXNGjQILfW5qz18cSJE5WTk6MPP/xQvXr1qnd8zpw52rJli5YuXdrg5oot5Um/Z6A1zPI3NDU9V6t3fOXwdfcP68M+F/AY7np/W3tnYUVltYIC/TUgqnOLmkHM9n4cvsEVazCndlLPmTNHFotFhYWFeu6555o932Kx6NAhx4OklgoODlZQUJBOnz6t6upq+ftf+eNXV1fr9OnTCgwM9NiRJYAR4qI7a87Y/nYvnI3+g8jOyoD7sYkS0Lgbb7xRmzZt0tq1a7V9+3bl5eWpvLxc7dq1U2RkpIYNG6bJkycrNDTU7bU5a30cFhamnJwclZSUNBhS/+///q+kxmdWA77OkVFcRjLjRo/Ad6XsyrUr8JUuzVVvyWsvKizEKRsjuqtewGhO/UuRm5vr0PlObOK2i8ViUUxMjLKzs1VQUKCYmJgrjlutVtXU1DS6Kzngy8yycJbYWRkwAotnoGnBwcGaPn26pk+fbnQpV3DW+rh3797auXOn8vLyNHjw4CuO2Ww2ff3112rTpk2DATaAiy4fxeWM7ktXoBkEZldQXOrwKMvauepGvA7NVi/QGk4NqT/55BNnPpxLJCQkKDs7W9u2bau3CN+2bZskuX3DGsAszLBwrlU728/eW6K4/RCezpNfdyyegcY9/vjjmjBhghISEhya/+xOzlgfJyQkaNWqVfrkk0+UlJR0xbEvvvhCp06dUnx8fJMbkwO4yFndl65AMwjMrqXz0fcVlBjyPDZbvUBrODWk3rFjh2JiYup1T3iSxMRErVq1SitXrtRtt92mm266SZK0f/9+rVq1Sm3bttXkyZMNrhLwbJ68cK5lthElQGO+uxHh5Vq667izsXgGGvfhhx9qy5Yt6tixo8aOHavx48erf//+Rpd1BUfXx0VFRTp//rzCwsIUEnLxNRwfH6/evXtr9+7deu+99zRp0iRJ0qlTp/TCCy9IkqZNm+bmnwyAK9AMAjOrqKx263WtZbZ6gdZwaki9bNkylZWVaefOnR4707lnz5565plnNH/+fN177711gXpGRoaqq6u1cOFCderUyeAqATiDmUaUAA1xZNdxIzdRYvEMNO7RRx/V5s2bVVhYqDVr1uidd95RVFSUJkyYoDvvvFPh4eFGl+jw+njq1Kk6duyYXn75ZSUmJkqS/Pz8tGDBAt1///365S9/qffff19hYWHKzMzUmTNnNGnSJP3Xf/2XIT8fAOeiGQRmZra56marF2gNpz5rz5w5o5iYGI8NqGslJSWpR48eWrVqlb744gsFBARo4MCBeuSRR3TrrbcaXR4AJzLTiBLgcmbaiJDFM9C42bNna/bs2Tpw4IA2bdqkLVu2yGq1avHixVq8eLG+//3va8KECRo1alRdV7IRnLE+jo2N1bp167RkyRJlZGQoNzdXkZGRevzxx3X33Xe7+CcA4E40g7gX72Wcx2xz1c1WL9AaTn132K9fP+Xl5en06dPq2LGjMx/a6YYPH67hw4cbXQYANzHDiBLgcmbaiJDFM9C8m266STfddJOeeeYZ7d27V5s2bdLWrVv12Wef6fPPP9eLL76oYcOGafz48RoxYoQhNdq7Pt6+fXujx2JiYrRkyRJnlgXAQ9EM4npmGPtmNmabq262eoHWcOruLQsWLFBISIjuu+8+rVu3Trm5ufr3v/+ts2fPNvofAADuVlBcqg2ZVqWm52pDplUFxaVGl3SF1mxEaITaxbMjWDzDV1ksFsXHx2v+/PnavXu3VqxYobvuukv+/v76+OOPNXv2bKNLBACHRIWFaGJ8tCYn9NbE+Gj+vjvJR1lFmpeS0eiasHbs29Z9R91cmfklDekti8W+cz1hrrrZ6gVayqmd1HPmzJHFYlFhYaGee+65Zs+3WCw6dOiQM0sAAKBRZulGMeNGhGyiBDjuwIEDysjI0GeffaaKigpJUtu2bQ2uCgBgNDONfTMjs81VN1u9QEs5NaTOzc116HybvfcxAwDQSmbZhFAy50aELJ4B+xw6dEibN2/Wli1bdPz4cdlsNvn5+emWW27RhAkTNHLkSKNLBAAYzExj38zKbHPVzVYv0BJODak/+eQTZz4cAABOYbZuFLNuRMjiGWhYfn6+Nm/erA8//FCFhYWSLjZrxMTEaPz48ZowYYK6du1qcJUAAE/QmrFvjFpxjNnmqputXsBRTn03Gx4efsX/PnnypKxWq0pLSzV8+HDZbDaVl5crODjYmd8WAIAmma0bxcwbEbp68cyiHGYzfvz4ursNbTabOnfurLFjx2rChAm64YYbDK4OAOBpzDj2zeyiwkJM9f+d2eoF7OWSlqtPPvlES5cuVU5OjqRLs6ePHj2qiRMn6p577tETTzwhf39jO74AAM7hycGhGbtRvGEXb2cvns0yTxz4rq+++kpt27bVj370I40fP1633Xab2rRpY3RZAAAPZcaxbwDgDE5PiV9//XUtXbpUNptNFotFbdq00YULFyRJx44dU0VFhd566y199dVXWrFiBYt0ADAxMwSHZu1GYSPCS8w0Txz4rgULFmjkyJHcSQgAsItZx75dzpMbWNA4M/7ezFgzGufUf8U+/fRTvf766woODtaTTz6pMWPG6OGHH1ZWVpYkafDgwXrllVf04osvas+ePXr33Xc1ZcoUZ5YAF+GFD+C7zBIcmrUbhY0ILzLbPHHguxITE40uAQBgImYe+2aGBhbUZ8bfmxlrRvOcGlKvXr1aFotFv/nNbzR8+PB6x/38/DRx4kR16tRJM2bM0N/+9jdCag/HCx9AQ8wUHJq5G4WNCM03Txy+7dVXX5XFYtGDDz6ojh071n3NERaLRU899ZQrygMAmIBZx76ZpYEFVzLj782MNcM+Tn0Hvm/fPnXr1q3BgPpyCQkJ6tGjh/Ly8pz57eFkvPABNMZMwaGZu1Ek397F24zzxOHb3nzzTVksFt111111IXXt1+xROy6PkBoAfJvZxr6ZqYEFl5jx92bGmmE/p4bU5eXl6tGjh13nhoaGqqSkZXNC4Xq88AE0xmzBoVm7Ub7LF3fxNus8cfiuiRMnymKxKCQkpN7XAACwl9nGvpmpgQWXmPH3ZsaaYT+nhtRhYWGyWq2qrq6Wv3/jD11VVSWr1aouXbo489vDiXjhA2iMGYNDs3Wj4CKzzhOH73rllVfs+hoAAM0xy9g3szWw4CIz/t7MWDMc49SQ+oc//KHWrVunZcuWadasWY2et3TpUpWXl2vMmDHO/PZwEl74AJpixuDQbN0ouMjM88SBWnv37lVISIiuv/76Zs/ds2ePCgoKNHnyZDdUBgDwdGYY+2bGBhaY8/dmxprhGKe+i5s5c6Y++OADLV26VMeOHdPYsWN17tw5SdKZM2eUn5+vv/zlL/rggw8UGBioBx54wJnfHk7CCx9AU8waHJqlGwWXmH2euCSPflMJ90hOTtagQYP0zjvvNHvu73//exUWFhJSAwCu4Mlj38zYwAJz/t7MWDMc49TEoGfPnlqyZInmzp2r9evXa8OGDXXHbrnlFkkXN4QJDAzUwoULFR0d7cxvDyfhhQ+gKWYODs3QjYJLzDxPPMtaopRduQ3W3j8iVElD+EDEG5WWlurEiRP1vl5RUdHkhuE2m03ffPON8vPzXVkeAABOZ9YGFl9nxt+bGWuGY5z+m0pISNDGjRv1pz/9Sf/4xz90/PjxumOhoaEaOnSoHnzwQfXq1cvZ3xpOwgsfQFPMHBzW8uRuFFzJjPPEP8oqanK0zP6iU5qXkqG542J1x4Br3VscXKqqqkr33nuvysvL675msViUk5OjO++8067HGDx4sKvKAwDA6czcwOLLzPh7M2PNcIxLUsXw8HA999xzeu6551ReXq6ysjIFBQVdsdM5nM9ZnYG88L0H3aJwFTMGhzAns80Tz7KWNFurdHHT4UWbshV2dTvDa4bzdOrUSbNmzbpis0SLxSJbM08Ii8WioKAg9e3bVy+88IKrywQAwGm8oYHFF5nx92bGmuEYl7e+tm/fXu3bt3f1t/Fpzr6lmBe++XGbOVzNbMEhzM1M88RTduXa9eGNdDGoTk3P9Yi64TxTp07V1KlT6/739ddfr+9///tKSUkxrig4BR/+w+x4DsNVaGAxJzP+3sxYM+zHfAaTc9UtxbzwzYvbzOEuZgoOYX5mmCdeUFzq0Ae8kpRdeEoFxaUe8zPA+WbNmqXu3bsbXQZagQ//YXY8h+FqNLCYkxl/b2asGfYjpDYxV95SzAvfnLjNHO5mhuAQ3sWT54nvKyhp8XWe+jOh9WbNmmV0CWgFPvyH2fEchrvQwGJOZvy9mbFm2IeQ2sRcfUsxL3zz4TZzGMWTg0PAXSoqq916Hcxl//79ys/P19mzZ1VTU3PFsQsXLqiyslLFxcXatWuXtm7dalCVuBwf/sPseA7D3WhgMScz/t7MWDOaR0htUu66pZgXvnlwmzkAGCsosGXLqpZeB3OoqqrSrFmzlJ6e3uy5NptNFovFDVXBHnz4D7PjOQyj0MBiTmb8vZmxZjSOd0Um5e5binnhez5uMwcAYw2Iatkb+5ZeB3NISUnRrl27JEkRERHq0KGDDhw4oJ49e6pz5846ceKEjh8/LovFogEDBjAexEO488N/mkHgCjSwAADMhpDapLilGN/FcwIAjBUVFqL+EaEOhQKxkaGEAV5uy5YtslgsevbZZ5WcnKyqqioNHjxY/fr102uvvSZJ2r17t5544gkdOXJEERERBlcMyT0f/rOZHVyJBhYAgNn4GV0AWoZbivFdPCcAwHhJQ3rL3mkNFos0OaG3awuC4axWq66++mpNmTJFkhQQEKDrr79ee/furTvnhz/8oV588UWdPXtWb775plGl4jKu/vD/o6wizUvJaPRDrdrN7LbuO9qiOgAaWAAAZkNIbVLcUozv4jkBAMaLi+6sOWP7NxtUWyzS3HGxdEn6gLNnzyo8PPyKWdO9evXSmTNndOLEibqvjRgxQqGhofr000+NKBPf4coP/x3dzC7L2rKOWPg2GlgAAGZDSG1StbcUO4Jbir0bzwkA8Ayj4iL0ctJgxUY2/G/y/2/v3uOqKvM9jn83IMTNCyKaKIICjmkmpmDTaGYXs3RSpsuYWXYdzbHJsc6kTY1ljXrGyrykzVjeQrIp0dK01BSdMjCDJEVUBAQcQ/ASFwWBfcPb0B4AACAASURBVP7wwORwR/Ze+/J5v17n9Tqznmet/aPllp/fvfbz9O3mp9njojS8X1crVwYjtG7dWufPn7/sWJcuXSRJR48erT5mMpnUuXPny4JrGMeSH/43ZzM7oKl4gAUAYG/4mNSOjRsSpukxCY1qcvlKsXPgzwQA2IaIEH9FhPizIRoUFhamffv26eTJk+rUqZMkKSQkRGazWSkpKbrxxhur5+bn58vNjfbcFlhqjXk2s4O1sE8CAMDe8CS1HeMrxfhv9v5nIjOvUOsTM7Rm9xGtT8xQZl6h0SUBwBUJDvDV6MgQPTA4TKMjQ/jHvxO6/fbbVV5erieeeEJff/21JOn666+Xm5ubVq9erezsS2sOx8bG6uTJk2ycaEMsscb8lWxmBzQV+yQAAOwJj2rYuTsigtSxrZfW7D6i/Vk1PyXv281PDwxmZ3BnYo9/JtjdHgDgqO699159/PHHOnjwoJ544gklJyfL399fo0aNUlxcnEaMGCEfHx+dO3dOJpNJo0ePNrpk/L+qD/8bWj+6KR/+s5kdrMkSf4YBALAUQmoHwFeK8d/s6c/ElqTj9TbOVbvbTx3Zl/VbAQB2x93dXatWrdKiRYuUmJioVq1aSZKmT5+uzMxMJSUl6ezZs5KkW265RePGjTOyXPyXlv7wn83sYG32+AALAMA50e04kOAAX5sLIGEsW/8z0dTd7QPaeNJAAwDsjo+Pj55//vnLjrVu3VqxsbFKSkpSbm6ugoOD1adPH4MqRH1a8sN/NrODEezpARYAgPMipAZgmObsbk9IDQBwJBEREYqIiDC6DDRCS3z4z2Z2MJKtP8ACAHBuhNQADMHu9gAAR3P+/PkWuY6np2eLXAe2adyQME2PSWjUB/VsZmfbeDIZAICWQ0gNwBBXsrs9zT8AwBb179//iq9hMpl08ODBFqgGtorN7Owfm34DANDyCKkBGILd7QEAjsbc2DWsLHwN2D42s7NfbPoNAIBlEFIDMAS72wMAHM327duNLgF2hM3s7A+bfgMAYDmkPQAMwe72AABHExgYaHQJsENsZmc/2PQbAADLcTG6AADOqWp3+6Zgd3sAgL0rKCjQt99+qx07dkiSKisrVVRUZHBVABpyJZt+AwCAhhFSAzDMuCFhMpkaN5fd7QEA9mz79u2Kjo7Wr371K40fP16TJ0+WJOXk5GjIkCGaO3euysvZdwGwVVey6TcAAGgYITUAw1Ttbt9QUM3u9gAAe7Zo0SL9/ve/18GDByVJrq6u1Rsk5ubmqqSkRCtWrNDvfvc7VVRUGFkqgDqw6TcAAJZFSA3AUHdEBGn2uCj17Vb70h99u/lp9rgodkcHANilPXv2aNGiRfL29tbMmTOVkJCgvn37Vo9HRUVpzpw58vLy0tdff63Y2FgDqwVQFzb9BgDAsviNCcBw7G4PAHBUK1eulMlk0t/+9jfdfPPNNcZdXFw0evRotW/fXk888YQ++eQTPfjggwZUCqA+bPoNAIBlEVIDsBnsbg8AcDTJycnq1KlTrQH1zw0ePFidO3fW0aNHrVQZgKao2vS7KZsnsuk3AACN5/TLfSxcuFA9e/bUyZMnjS4FAAAADqa4uFjt2rVr1Fw/Pz82TwRsGJt+AwBgOU4dUm/btk1Lly41ugwAAAA4qICAAGVkZDQYPpeVlSkjI0MdOnSwUmUAmopNvwEAsBynDaljYmL0zDPP8LQKAAAALObGG2/UhQsXGnwwYvHixSouLtYvf/lLK1UGoDnY9BsAAMtwujWp09PTNXfuXMXHx6tdu3YqKytTcXGx0WUBAADAAT355JP69NNPtXjxYuXm5uquu+7ShQsXJEnnzp1Tenq6PvjgA3366afy8PDQo48+anDFABrCpt8AALQ8pwupZ86cqcTERN1444169dVX9eCDDxJSAwAAwCK6dOmiBQsWaOrUqYqLi9P69eurxwYNGiRJMpvN8vDw0Ny5cxUSEmJUqQCaiE2/AQBoOU4XUvfp00ePPPKIhg0bZnQpAAAAcAKDBw/Whg0b9O6772rHjh3697//XT3m5+enm266SY8//rh69OhhYJUAAACAcZwupP7Tn/7UItdZt26d4uLiGjU3NTW1RV4TAAAA9iU7O1tdu3ZVYGCgXnrpJb300ksqLi5WUVGRvLy85OvLU5gAAACAXYfU06ZN04EDBxqcd9ttt2natGkt+tq5ublKTExs0WsCAADAsTz11FM6f/68PvroI7Vt21aS5O3tLW9vb4MrAwAAAGyHXYfUJ06cUEZGRoPzTp061eKvHRgYqMjIyEbNTU1NVWFhYYvXAAAAANt2/PhxdenSpTqgBgAAAFCTXYfUsbGxhr12dHS0oqOjGzV3/PjxPHUNAADghFq3bq0LFy4YXQYAAABg01yMLgAAAABwVJMmTVJubq7mzp2r8+fPG10OAAAAYJPs+klqAAAAwJaVlpaqX79+WrFihWJiYhQWFqYOHTrIw8Oj1vkmk0nz58+3cpUAAACAsQipAQAAAAuZO3euTCaTzGazysrKGtz022QyWakyAAAAwHYQUgMAAAAWMnnyZIJnAAAAoAGE1AAAAICFTJkyxegSAAAAAJvHxokAAAAAAAAAAMM4/ZPUX375pdElAAAAAAAAAIDT4klqAAAAAAAAAIBhCKkBAAAAAAAAAIYhpAYAAAAAAAAAGIaQGgAAAAAAAABgGEJqAAAAAAAAAIBhCKkBAAAAAAAAAIYhpAYAAAAAAAAAGIaQGgAAAAAAAABgGDejCwAAAAAAAAAAW5CZV6jkzHyVlJbLy8NN/YL9FRzga3RZDo+QGgAAAHByn332mVauXKmjR4/K1dVVERERmjx5svr27duk63zyySdau3atDh06pNLSUnXu3Fm33HKLJk6cqDZt2lioegAAgCuXlJGvmF1HlHL8dI2xa4P8NG5ImCJC/A2ozDmw3AcAAADgxBYuXKipU6fqyJEjioqKUnh4uOLj4zV27FjFx8c3+jovvfSSnnvuOe3fv1+/+MUv9Ktf/UrFxcV67733dM899yg/P9+CPwUAAEDzbUk6rukxCbUG1JKUcvy0psck6PPkbCtX5jx4khoAAABwUj/88IMWLVqkwMBAxcbGqmPHjpKknTt3avLkyZoxY4a2bdsmT0/Peq+ze/durV27Vh07dtTy5cvVo0cPSVJJSYmee+45bdu2TX/961/1xhtvWPxnAgAAaIqkjHzN35Qis7n+eWaz9ObG/Qpo48kT1RbAk9QAAACAk1q+fLkkacqUKdUBtSQNHTpU0dHRys/P12effdbgdeLi4iRJf/jDH6oDakny8vLSa6+9JhcXF23dulVlZWUt/BMAAABcmZhdRxoMqKuYzdKa3UcsW5CTIqQGAAAAnNTu3btlMpk0bNiwGmO33nqrJGnXrl0NXsfb21thYWGKiIioMda2bVu1a9dOZWVlOnv27JUXDQAA0EIy8wrrXOKjLvuzTiszr9BCFTkvlvsAAAAAnFBeXp7OnTunTp061bqpYffu3SVJhw8fbvBas2bNqnPsxIkTKigokIeHh9q1a9f8ggEAAFpYcmbz9sxIzsxXcIBvC1fj3AipAQAAACd06tQpSVKHDh1qHa86XlBQcEWvM3/+fEnSzTffrFatWjU4f926ddXLhzQkNTX1imoDAADOraS03KrnoW6E1AAAAICDmDZtmg4cONDgvNtuu0033XSTJNW5KaKHh4ekS5sfNtcHH3ygDRs2yNPTU08//XSjzsnNzVViYmKzXxMAAKCxvDyaF4029zzUjf+iAAAAgIM4ceKEMjIyGpx36tQpubg0bnuaysrKZtXy4Ycf6uWXX5bJZNJrr7122YaK9QkMDFRkZGSj5qampqqwkDUhAQBA8/QL9rfqeagbITUAAADgIGJjYxs999ChQ5Kk0tLSWserjnt5eTW5jkWLFmnhwoVycXHRrFmzdNdddzX63OjoaEVHRzdq7vjx43nqGgAANFtwgK+uDfJr0uaJfbv5sR61BTTu8QkAAAAADiUgIECSlJ9f+4ZBDa1ZXZvy8nJNnz5dCxculLu7u9544w3de++9V14sAACAhYwbEiaTqXFzTSbpgcFhli3ISRFSAwAAAE7Iz89P7du318mTJ1VUVFRjPD09XZIUHh7eqOuVlZVp0qRJWrdunVq3bq13331XI0aMaNGaAQAAWlpEiL+euevaBoNqk0maOrKvIkJY6sMSCKkBAAAAJzV48GBVVFRox44dNca2bdsmSdUbLDZk2rRp2rVrlwICAhQTE9PodaUBAACMdkdEkGaPi1Lfbn61jvft5qfZ46I0vF9XK1fmPFiTGgAAAHBSY8eO1YYNGzRv3jz169dPXbte+ofXzp07FRcXpw4dOmjkyJGXnVP1hHXnzp3l6ekp6dJa2F988YV8fHy0atUqhYSEWPcHAQAAuEIRIf6KCPFXZl6hkjPzVVJaLi8PN/UL9mcNaisgpAYAAACcVL9+/fTYY49p2bJlGjVqlAYNGqTi4mLt3btXbm5umjdvntzd3S87584775QkrVq1SlFRUSovL9fbb78t6dL61YsXL67z9WbMmCE/v9qfUAIAALAFwQG+hNIGIKQGAAAAnNhzzz2n0NBQrV69Wnv27JG3t7eGDh2qKVOmqHfv3g2en5aWpry8PElSRkaGMjIy6pz7zDPPEFIDAACgBkJqAAAAwMmNGTNGY8aMadTctLS0y/537969axwDAAAAmoKNEwEAAAAAAAAAhiGkBgAAAAAAAAAYhpAaAAAAAAAAAGAYQmoAAAAAAAAAgGEIqQEAAAAAAAAAhiGkBgAAAAAAAAAYhpAaAAAAAAAAAGAYQmoAAAAAAAAAgGEIqQEAAAAAAAAAhiGkBgAAAAAAAAAYhpAaAAAAAAAAAGAYQmoAAAAAAAAAgGEIqQEAAAAAAAAAhiGkBgAAAAAAAAAYhpAaAAAAAAAAAGAYQmoAAAAAAAAAgGEIqQEAAAAAAAAAhiGkBgAAAAAAAAAYxs3oAqztwoULeu+997R582YdP35cJpNJ3bt315gxYzRu3Di5uJDbAwAAAAAAAIC1OFVIXVxcrIceekg//PCD2rZtq4EDB+rixYv6/vvv9eqrr2rPnj1auHChXF1djS4VAAAAAAAAAJyCU4XUS5cu1Q8//KAbbrhBCxYsUOvWrSVJOTk5euyxx7R9+3b985//1G9/+1uDKwUAAAAAAAAA5+BUa1vExcVJkmbNmlUdUEtSly5d9Nxzz0mSNm3aZEhtAAAAAAAA1pKZV6j1iRlas/uI1idmKDOv0OiSADgxp3mSuri4WMHBwbr66qvVtWvXGuMhISGSpLy8PGuXBgAAAAAAYBVJGfmK2XVEKcdP1xi7NshP44aEKSLE34DKADgzpwmpvb299f7779c5npKSIknq1KmTtUoCAAAAAACwmi1JxzV/U4rM5trHU46f1vSYBE0d2VfD+9V8wA8ALMWplvuoS1lZmZYsWSJJuv322w2uBgAAAAAAoGUlZeTXG1BXMZulNzfuV1JGvnUKAwDZ+ZPU06ZN04EDBxqcd9ttt2natGm1jpnNZk2fPl2ZmZnq0aOH7r333ka99rp166rXuG5Iampqo+YBAAAAAABYQsyuIw0G1FXMZmnN7iMs+wHAauw6pD5x4oQyMjIanHfq1Klaj1dUVOjPf/6zNm7cqDZt2mjhwoVyd3dv1Gvn5uYqMTGxSfUCAAAAAABYW2ZeYa1rUNdnf9ZpZeYVKjjA10JVAcB/2HVIHRsb2+xzS0pK9Mc//lE7duxQ27Zt9e6776pHjx6NPj8wMFCRkZGNmpuamqrCQnbJBQAAAAAA1pec2bylO5Iz8wmpAViFXYfUzZWfn68nn3xSBw4cUKdOnbRs2TKFhYU16RrR0dGKjo5u1Nzx48fz1DUAAAAAADBESWm5Vc8DgKZyupA6NzdXDz30kHJychQeHq5//OMf6tSpk9FlAQAAAAAAWISXR/Pin+aeBwBN5WJ0AdZ09uxZPfLII8rJydHAgQO1Zs0aAmoAAAAAAODQ+gU3bwPE5p4HAE3lVCH1yy+/rKysLF1zzTX6xz/+IV9f1lUCAAAAAACOLTjAV9cG+TXpnL7d/FiPGoDVOM33No4cOaLNmzdLkry9vfXiiy/WOs/Pz08zZsywZmkAAAAAAAAWNW5ImKbHJMhsbniuySQ9MLhpe3cBwJVwmpD6X//6l8z//zfx3r1765wXGBhISA0AAAAAABxKRIi/nrnrWs3flFJvUG0ySVNH9lVECEt9ALAepwmpH3nkET3yyCNGlwEAAAAAAGCIOyKC1LGtl9bsPqL9WadrjPft5qcHBocRUAOwOqcJqQEAAAAAAJxdRIi/IkL8lZlXqOTMfJWUlsvLw039gv1ZgxqAYQipAQAAAAAAnExwgC+hNACb4WJ0AQAAAAAAAAAA50VIDQAAAAAAAAAwDCE1AAAAAAAAAMAwhNQAAAAAAAAAAMMQUgMAAAAAAAAADENIDQAAAAAAAAAwDCE1AAAAAAAAAMAwhNQAAAAAAAAAAMMQUgMAAAAAAAAADENIDQAAAAAAAAAwDCE1AAAAAAAAAMAwhNQAAAAAAAAAAMMQUgMAAAAAAAAADENIDQAAAAAAAAAwDCE1AAAAAAAAAMAwhNQAAAAAAAAAAMMQUgMAAAAAAAAADENIDQAAAAAAAAAwDCE1AAAAAAAAAMAwhNQAAAAAAAAAAMMQUgMAAAAAAAAADENIDQAAAAAAAAAwDCE1AAAAAAAAAMAwhNQAAAAAAAAAAMMQUgMAAAAAAAAADENIDQAAAAAAAAAwDCE1AAAAAAAAAMAwhNQAAAAAAAAAAMMQUgMAAAAAAAAADENIDQAAAAAAAAAwDCE1AAAAAAAAAMAwhNQAAAAAAAAAAMMQUgMAAAAAAAAADENIDQAAADi5zz77TPfff7+uv/56RUZG6ne/+532799/RdcsKyvTr3/9a/Xs2VM5OTktVCkAAAAcESE1AAAA4MQWLlyoqVOn6siRI4qKilJ4eLji4+M1duxYxcfHN/u6b731ltLS0lqwUgAAADgqN6MLAAAAAGCMH374QYsWLVJgYKBiY2PVsWNHSdLOnTs1efJkzZgxQ9u2bZOnp2eTrrtv3z699957ligZAAAADognqQEAAAAntXz5cknSlClTqgNqSRo6dKiio6OVn5+vzz77rEnXLCkp0fPPP68uXbooICCgResFAACAYyKkBgAAAJzU7t27ZTKZNGzYsBpjt956qyRp165dTbrmnDlzlJOTo9mzZ+uqq65qkToBAADg2AipAQAAACeUl5enc+fOqWPHjmrTpk2N8e7du0uSDh8+3OhrxsfHa+3atZowYYIGDBjQYrUCAADAsbEmNQAAAOCETp06JUnq0KFDreNVxwsKChp1vbNnz+qFF15QaGionnnmmWbXtW7dOsXFxTVqbmpqarNfBwAAALaDkBoAAABwENOmTdOBAwcanHfbbbfppptukqQ6N0X08PCQdGmN6cZ4+eWXdebMGS1ZsqT63ObIzc1VYmJis88HAACA/SGkBgAAABzEiRMnlJGR0eC8U6dOycWlcSv/VVZWNjhn48aN+uyzzzRp0iRde+21jbpuXQIDAxUZGdmouampqSosLLyi1wMAAIDxCKkBAAAABxEbG9vouYcOHZIklZaW1jpeddzLy6ve6/z444965ZVX1KtXL02ePLnRr1+X6OhoRUdHN2ru+PHjeeoaAADAAThdSH3hwgUtW7ZMn376qXJzc+Xj46P+/fvr8ccfV//+/Y0uDwAAALCKgIAASVJ+fn6t4w2tWV3lnXfe0blz59S9e3dNnz79srGqa8+ePVuenp6aNGmSevTocaWlAwAAwME4VUhdXl6uJ598UgkJCfLz89OvfvUrFRYW6ssvv9SOHTv017/+VWPGjDG6TAAAAMDi/Pz81L59e508eVJFRUXy8fG5bDw9PV2SFB4eXu91qtasTkpKUlJSUq1ztm3bJkm69957CakBAABQQ+MWonMQy5cvV0JCggYOHKitW7dq6dKliomJ0YoVK+Tq6qpXXnlFP/30k9FlAgAAAFYxePBgVVRUaMeOHTXGqoLlqg0W6zJnzhylpaXV+n9BQUGSpO3btystLU1RUVEt/0MAAADA7jlVSP3JJ59Ikl544YXLnhQZNGiQfvnLX6qkpETfffedUeUBAAAAVjV27FiZTCbNmzdP2dnZ1cd37typuLg4dejQQSNHjrzsnPT0dKWnp+v8+fPWLhcAAAAOyqmW+/jwww+VmZmpXr161RgrLi6WJLm6ulq7LAAAAMAQ/fr102OPPaZly5Zp1KhRGjRokIqLi7V37165ublp3rx5cnd3v+ycO++8U5K0atUqnowGAABAi3CqkNrT07NGQG02m/XRRx/pu+++U6dOnWi0AQAA4FSee+45hYaGavXq1dqzZ4+8vb01dOhQTZkyRb179za6PAAAADgBpwqpf+7EiRN67bXXdOjQIeXk5CgsLExvvvlmjSdF6rJu3TrFxcU1am5qauqVlAoAAABY1JgxYxq9gXhaWlqjr7t169bmlgQAAAAnYtch9bRp03TgwIEG5912222aNm3aZcfS09OrN4ORpMrKSh05ckRhYWGNeu3c3FwlJiY2rWAAAAAAAAAAwGXsOqQ+ceKEMjIyGpx36tSpGseuu+467du3T6Wlpdq+fbvmzp2rqVOnymw266677mrwmoGBgYqMjGxUnampqSosLGzUXAAAAAAAAABwJnYdUsfGxjb73NatW0uSfHx8dN9998nHx0dTp07VggULGhVSR0dHKzo6ulGvNX78eJ66BgAAAAAAAIBauBhdgK0YPny4PDw8lJmZqZKSEqPLAQAAAAAAAACn4DQh9U8//aS//vWveumll2odd3FxkZvbpQfLKyoqrFkaAAAAAAAAADgtpwmpr7rqKv3zn//U2rVrdfTo0Rrj+/btU3Fxsbp27SpfX18DKgQAAAAAAAAA5+M0IbW7u7vGjBkjSXrhhRd09uzZ6rH09HTNmDFDkvToo48aUh8AAAAAAAAAOCO73jixqf74xz8qOTlZycnJuv3229W/f38VFhZq//79Kisr03333acHHnjA6DIBAAAAAAAAwGk4VUjt4+OjNWvW6N1339WmTZv0r3/9Sx4eHurXr58eeOABjRgxwugSAQAAAAAAAMCpOFVILV1am3ry5MmaPHmy0aUAAAAAAAAAgNNzmjWpAQAAAAAAAAC2x+mepAYAALB3mXmFSs7MV0lpubw83NQv2F/BAb5GlwUAAAAAzUJIDQAAYCeSMvIVs+uIUo6frjF2bZCfxg0JU0SIvwGVAQAAAEDzsdwHAACAHdiSdFzTYxJqDaglKeX4aU2PSdDnydlWrgwAAAAArgwhNQAAgI1LysjX/E0pMpvrn2c2S29u3K+kjHzrFAYAAAAALYCQGgAAwMbF7DrSYEBdxWyW1uw+YtmCAAAAAKAFEVIDAADYsMy8wjqX+KjL/qzTyswrtFBFAAAAANCyCKkBAABsWHJm85buaO55AAAAAGBthNQAAAA2rKS03KrnAQAAAIC1EVIDAADYMC8PN6ueBwAAAADWRkgNAABgw/oF+1v1PAAAAACwNkJqAAAAGxYc4Ktrg/yadE7fbn4KDvC1UEUAAAAA0LIIqQEAAGzcuCFhMpkaN9dkkh4YHGbZggAAAACgBRFSAwAA2LiIEH89c9e1DQbVJpM0dWRfRYSw1AcAAAAA+8GOOgAAAHbgjoggdWzrpTW7j2h/1uka4327+emBwWEE1AAAAADsDiE1AACAnYgI8VdEiL8y8wqVnJmvktJyeXm4qV+wP2tQAwAAALBbhNQAAAB2JjjAl1AaAAAAgMMgpAYA2CyeFgUAAAAAwPERUgMAbE5SRr5idh1RyvGa6+5eG+SncUNYdxcAAAAAAEfhYnQBAAD83Jak45oek1BrQC1JKcdPa3pMgj5PzrZyZQAAAAAAwBIIqQEANiMpI1/zN6XIbK5/ntksvblxv5Iy8q1TGAAAAAAAsBhCagCAzYjZdaTBgLqK2Syt2X3EsgUBAAAAAACLI6QGANiEzLzCOpf4qMv+rNPKzCu0UEUAAAAAAMAa2DjRCrKysiRJqampGj9+vMHVAIBtyv/pvP59uqTJ5036drn8W3taoCIA9iw1NVXSf/owOCb6bAAAAOuzRK9NSG0FJSWXQpfCwkIlJiYaXA0AOJZjedIxo4sAYLOq+jA4JvpsAAAA47Rkr01IbQVdunRRTk6OvLy81K1bN4u+VmpqqgoLC+Xr66tevXpZ9LXQsrh39ot7Z5+4b/aLe2e/rHnvsrKyVFJSoi5dulj0dWAsa/bZEn//2DPunX3ivtkv7p194r7ZL2vfO0v02iazubFbVMEejB8/XomJiYqMjNTq1auNLgdNwL2zX9w7+8R9s1/cO/vFvYO948+w/eLe2Sfum/3i3tkn7pv9coR7x8aJAAAAAAAAAADDEFIDAAAAAAAAAAxDSA0AAAAAAAAAMAwhNQAAAAAAAADAMITUAAAAAAAAAADDEFIDAAAAAAAAAAxDSA0AAAAAAAAAMAwhNQAAAAAAAADAMITUAAAAAAAAAADDuM6cOXOm0UWgZfXq1UuRkZHq1auX0aWgibh39ot7Z5+4b/aLe2e/uHewd/wZtl/cO/vEfbNf3Dv7xH2zX/Z+70xms9lsdBEAAAAAAAAAAOfEch8AAAAAAAAAAMMQUgMAAAAAAAAADENIDQAAAAAAAAAwDCE1AAAAAAAAAMAwhNQAAAAAAAAAAMO4GV0AWs7XX3+tpUuXKi0tTRcvXlTv3r31xBNPaMiQIUaXhnqsX79ef/rTn+ocnzhxoqZOnWrFilCfdevWafr06YqJidGAAQNqjGdkZGjhwoXat2+fzp49q6CgIN13330aN26cXFz4XNBI9d27f//7zDw5eQAAGSZJREFU3xo6dGid5/bv31+xsbEWrhCSVFFRodjYWMXFxenYsWOqqKhQ165ddeedd+rxxx+Xh4fHZfNTUlK0ePFipaSkqKSkRKGhoXrooYc0atQog34C59WUe/ftt99q3LhxdV5r1KhRmjdvnjXKBhqNXtv+0GfbF/ps+0WfbT/ote2XM/TahNQOouqXgru7uwYNGqTKykolJCToiSee0CuvvKL777/f6BJRh9TUVEnSjTfeKD8/vxrjvXr1snZJqENSUpJmzZpV5/ihQ4c0btw4FRUVqX///rr22muVkJCgV199Vd9//71N/hJwFg3du4MHD0qSevbsqfDw8BrjISEhFqsN/1FRUaGnnnpKO3fulJeXl6677jq5ubnp+++/14IFCxQfH6+VK1fK09NTkvTVV1/pd7/7nSorKzVw4EB5enpqz549evbZZ3X06FGCBytq6r2res9FRESoS5cuNa7Xv39/q9YPNIRe2z7RZ9sP+mz7RZ9tP+i17ZfT9Npm2L2TJ0+a+/TpY77++uvNaWlp1ce///57c//+/c3XXnut+eTJkwZWiPo8+OCD5vDwcO6RjduyZYs5IiLCHB4ebg4PDzfv3bv3svHKykrzqFGjzOHh4eb169dXHy8oKKg+vmXLFmuXDXPD985sNpsXLlxoDg8PN2/YsMGAClElNjbWHB4ebh41atRlfycWFBSY77//fnN4eLh53rx5ZrPZbD5//rz5hhtuMPfu3du8Z8+e6rlZWVnmIUOGmMPDw80pKSlW/xmcVVPundlsNj///PPm8PBw87fffmtEuUCT0GvbL/ps+0Cfbb/os+0Lvbb9cpZem+/EOICYmBiVlZVpwoQJl30y2bdvXz3xxBMqLS3V2rVrDawQ9Tl06JD8/f3VsWNHo0tBLU6ePKn/+Z//0dNPP63Kykr5+/vXOu+rr75SWlqaIiMjdffdd1cf9/Pz08yZMyVJq1evtkbJ+H+NvXfSfz5p7t27t7XKQy3i4uIkSTNmzLjs78Sfv482bdokSdqwYYMKCgo0atQoDRo0qHpuUFCQnn32WUm856ypKfdOuvSec3Fx4SlG2AV6bftFn23b6LPtF322faLXtl/O0msTUjuA3bt3S5JuvfXWGmNVx3bt2mXVmtA42dnZ+umnn/iFbcPmz5+vDRs2qE+fPlq7dq26d+9e67z63of9+/dX+/bttW/fPhUVFVm0XvxHY++ddOnrwF5eXnzd0GDt2rVT9+7d1bdv3xpjwcHBkqS8vDxJ/3nP3XLLLTXm3nzzzXJ1deV3nxU15d6VlZUpPT1d3bt3l5eXlzXLBJqFXts+0WfbPvps+0WfbZ/ote2Xs/TarElt58xms44ePSoXF5dafzEEBwfLxcVFR48eldlslslkMqBK1KVqnbz27dtr1qxZ2rVrl06ePKnOnTvr17/+da0bF8C6unfvrrlz5+rXv/51vRuyHD16VJJqXWdNurTWWkFBgdLT03XddddZpFZcrrH37uzZszpx4oR69+6t5cuXa8OGDcrKypKvr69uvvlm/f73v+cJLCtZunRpnWMpKSmSpE6dOkmSjhw5Iqn295yPj48CAgL073//W/n5+fU+3YOW0dR7d/HiRQUGBurNN9/UF198odzcXPn7+2v48OGaNGmSWrdubZW6gYbQa9sv+mzbR59tv+iz7RO9tv1yll6bJ6nt3Llz51RWVqa2bdvK3d29xribm5vatWun8+fPq7i42IAKUZ+qrz6tW7dOGzduVGhoqK677jr9+OOPWrBggR5++GFduHDB4Cqd25NPPqnRo0c3uGN41aeWHTp0qHW86nh+fn7LFog6NfbeVf0j9sCBA3rzzTfVvn17RUVFqaKiQh9++KF+85vf6NixY9YoGXUwm8166623JEm33367JOnUqVOSeM/ZutruXdXvvvj4eK1atUpdu3bV9ddfr59++knvvfee7r33Xp0+fdqwmoGfo9e2X/TZto8+237RZzsWem375Wi9NiG1nTt//rwkVe/gWZurrrpKkmicbVDVL+0RI0Zox44dWrJkid5//31t3LhRv/jFL5SUlKT58+cbXCUao+q9WPV++29Vx0tKSqxWExqn6pd4eHi4Nm/erOXLl+vvf/+7tm/frpEjR+rUqVPV667BGG+88Yb27t0rf39/Pf7445J4z9mL2u5d1e++yMhIbd++XX//+9+1fPlyffHFF7rhhhuUmZmpv/zlL0aWDVSj17Zf9NmOg9/59os+2z7Qa9svR+u1CantXEOfXP6c2Wy2YCVojgULFmjTpk363//938vWCurSpYvmzJkjk8mktWvX6uLFiwZWicZwdXWVpAa/5ltZWWmNctAEEyZM0LZt27Ry5Up17dq1+riXl5deffVVdezYUQcOHFBycrKBVTqvt956S3//+9/l7u6u+fPny8/PT9Kl95zJZOI9Z8PqunfTp0/Xli1btGTJkupj0qWNX+bOnSsvLy9t3bq1+sk5wEj02vaLPttx0GfbL/ps20evbb8csdcmpLZzVQ1XaWlpnXOqvsZmbwumOwMPDw+FhobW+vXRXr16qVOnTiopKVFmZqb1i0OTVD1hVdfXRquOe3t7W60mNI6rq6u6du162S/wKp6entW7WR84cMDapTm18vJyvfTSS3r77bfl4eGhRYsWaeDAgdXjnp6eMpvNdf7+4z1nnIbuXatWrRQSEiIfH58a53bs2FHXXHONzGZz9dNXgJHote0XfbbjoM+2X/TZtote2345cq9NSG3nfHx85OXlpTNnzqi8vLzGeHl5uc6cOSMPDw+bXRgddavagKDqqzawXQEBAZLqXpOroTW9YLt4H1pfcXGxJk6cqLVr16p169Z69913ddNNN102p+o9V/Xe+m+854zRmHvXEN5zsCX02o6Lv2vsB3224+J9aAx6bfvl6L02IbWdM5lMCg0NVUVFRa1PAWRkZKiysrLOnZBhnKKiIr344ot6+umna/1HjyTl5ORI+s8urbBdYWFhkv6z+/jPmc1mHTt2TK6ururRo4e1S0MDFi1apKefflppaWm1jvM+tK5z585p/Pjx2r17t66++mrFxMRc9mRAlar3XHp6eo2xoqIi5eXlyc/Pj93Graix927WrFmaPHmyCgoKar0O7znYEnpt+0Sf7Vjos+0Xfbbtode2X87QaxNSO4DBgwdLkrZt21ZjrOpYUz9ZgeV5e3tr69at+vzzz7V3794a4/Hx8Tpz5ozCw8OrP8WE7ap6H27fvr3G2HfffafTp0/r+uuvr/UrNzBWWlqaPv/8c23evLnGWEFBgb766iu1atVKUVFRBlTnXMrKyvTkk0/qwIEDCg0N1QcffFBn8FPf774vv/xSFRUV/O6zoqbcu6SkJG3btk1ffvlljbHDhw8rNTVVbdu2Ve/evS1dNtAo9Nr2hz7bsdBn2y/6bNtCr22/nKXXJqR2ANHR0fLw8NA//vEP/fDDD9XHU1JStGzZMl111VV64IEHDKwQtTGZTLrvvvskXfqk68cff6weO378uF555RVJ0qRJkwypD00TGRmpsLAwffXVV/rwww+rj58+fVovv/yyJOmRRx4xqjzU4/7775ckLV++XPv27as+XlxcrBkzZqioqEj33HMPX2WzggULFig5OVlXX321Vq9eXe+n+8OHD1f79u0VFxen+Pj46uPZ2dl6/fXXZTKZNGHCBCtUDalp967qPffmm29e9nTO6dOnNX36dFVUVOjxxx+vdR1ZwAj02vaHPtux0GfbL/ps20Kvbb+cpdc2mdmG2iHExMTolVdeuexTyISEBJWXl2vu3Lm6++67Da4Qtblw4YIeffRR7du3T15eXrr++uslXbp3ZWVlevTRR/WnP/3J4Crxc+PHj1diYqJiYmI0YMCAy8b279+vhx9+WCUlJbruuusUEBCgxMREnTt3Tvfdd59mzZplUNWQ6r93c+bM0fLly+Xi4qL+/furXbt2+vbbb3XmzBkNGDBAy5Ytq960B5Zx5swZDR06VBcuXFDv3r3VvXv3OufOmzdP0qUnqp5++mlVVFRo4MCB8vb21jfffKPz589r6tSpmjhxorXKd2pNvXeVlZV65pln9Pnnn6tVq1YaMGCAPD09lZCQoOLiYo0YMUKvv/66XF1drfhTAPWj17Y/9Nn2hz7bftFn2z56bfvlTL02IbUD2bFjh5YtW6aDBw/K3d1dPXv21KRJk3TDDTcYXRrqUVZWphUrVujTTz9VZmam3N3ddc0112j8+PG6/fbbjS4P/6W+Bky6tFbeggULqv8B1K1bN/32t7/Vvffea5O/BJxJQ/du8+bNev/993Xw4EFVVlYqKChId999tx5++GG1atXKgIqdyxdffKEpU6Y0au7P1zX87rvvtHjxYn3//fcym80KDQ3VhAkTNGLECEuViv/SnHtnNpu1du1a/fOf/9TRo0fl4uKi0NBQ3XfffbrnnntkMpksWTLQLPTa9oc+277QZ9sv+mzbR69tv5yp1yakBgAAAAAAAAAYhjWpAQAAAAAAAACGIaQGAAAAAAAAABiGkBoAAAAAAAAAYBhCagAAAAAAAACAYQipAQAAAAAAAACGIaQGAAAAAAAAABiGkBoAAAAAAAAAYBhCagAAAAAAAACAYQipAQAAAAAAAACGIaQGAAAAAAAAABiGkBoAAAAAAAAAYBhCagDAFXn++efVs2dPzZ0712KvkZOTo549e6pnz54qLi5u9HlRUVHq2bOnEhISLFYbAAAAYCn02gCcBSE1AAAAAAAAAMAwbkYXAABAQzp27KjPPvtMkuTl5WVwNQAAAIDjoNcGYAsIqQEANq9Vq1bq0aOH0WUAAAAADodeG4AtYLkPAAAAAAAAAIBheJIaACwkOztb77zzjr7++mvl5eXpqquuUkhIiIYPH65x48bJ09Ozxjk7duzQunXrtH//fp0+fVpubm7q1KmThgwZoscff1wdOnS4bH7Pnj3l6+urvXv3KjY2Vh988IGysrLk4+OjwYMH67nnnlP79u118OBBLViwQPv27VNpaal69eqlp556SjfddNNl1xs2bJhyc3P1r3/9S7t379by5cuVlZUlPz8/RUVFaeLEiQoJCWn0f4OioiKtWLFCn3/+uY4fPy5XV1eFh4crOjpav/nNb+Tq6tqo6+Tk5OiWW26RJH333Xfy9vauHisrK9OaNWv08ccfKzs7W76+vrrjjjv0hz/8odF1AgAAwL7Qa9NrA3AshNQAYAHp6ekaO3aszp07pzZt2ig8PFwlJSVKSUnR/v37tXXrVr3//vtq1apV9TkvvPCCPvroI0lS586dFR4ervz8fB07dkzHjh3T5s2btWHDBrVr1+6y1zKbzXr22We1ceNGXX311QoKClJ6erri4uJ04MABTZs2Tb///e/l5uam4OBg5ebmKjk5WRMnTtSqVas0cODAGvUvWbJEMTEx8vX1VVhYmDIzM7V+/Xpt27ZN77zzjgYMGNDgf4OcnBw9+uijysrKqn7tyspKJSUlKSkpSV988YXefvttubu7N/u/c0lJiSZOnKiEhAS5uLgoLCxMpaWlWrVqlRITE3Xx4sVmXxsAAAC2iV6bXhuA42G5DwCwgLfeekvnzp3TQw89pK+++krr1q3Tli1btG7dOrVr107JycnatGlT9fwvv/xSH330kby8vLRy5Urt2LFDH3/8seLj47V69Wp5eXnpxx9/rG6sf66oqEhbtmzR3LlztXPnTn366adauXKlTCaTDh8+rEmTJumOO+7Q119/rfXr12vnzp2KiIhQZWWlVq5cWWv9MTExGj16tHbv3q2PP/5Yu3bt0l133aWioiJNmzZN58+fr/fnr6io0JQpU5SVlaVhw4YpPj5emzZt0ubNm7Vp0yb16NFDu3fv1t/+9rcr+u/89ttvKyEhQYGBgfrkk0/0ySef6PPPP9eKFSuUm5ur4uLiK7o+AAAAbA+9Nr02AMdDSA0AFnD48GFJUnR09GVPcFxzzTWaMmWKhg8fLg8Pj+rjX3/9tVq1aqUHH3xQgwYNuuxakZGRuvPOOyVdemqkNmPGjNHo0aOr//fAgQPVr18/SVJAQIDmzJlTvVO3t7e3xo4dK0lKTU2t9Xp9+vTR7Nmzq78m6e3trTlz5ig4OFgnT57UJ598Uu/Pv3XrVh08eFAhISGaP3++/P39q8dCQ0M1f/58ubi4KDY2VgUFBfVeqy6lpaVavXq1JGn27NkKCwurHrvhhhs0ffr0Zl0XAAAAto1em14bgOMhpAYACwgKCpIkzZw5U4mJiSovL68eGzdunBYsWKARI0ZUH/vzn/+s77//XlOmTKn1elUNbF1PVQwZMqTGscDAQElSVFSU3NwuX92pqpGt6+mHcePGycXl8l8R7u7uuvvuuyVdWs+vPtu3b5ck3XrrrZf9A6FKeHi4wsPDdfHiRX3zzTf1Xqsue/fu1YULF9SpUydFRUXVGB85cqSuuuqqZl0bAAAAtotem14bgONhTWoAsIDJkyfrm2++UXJyssaPHy9fX18NGjRIQ4YM0bBhwy572qGKq6urSktL9c033yg9PV3Z2dnKysrSgQMHdObMGUmX1sSrTceOHWscq3qqxM/Pr8ZYVSNd1/X69OlT6/Hw8HBJ0vHjx2sdr1L1FMqWLVu0b9++WuecPHlSkpSRkVHvteqSlZUlSerRo0et4x4eHgoODtahQ4eadX0AAADYJnptem0AjoeQGgAs4LrrrlNcXJyWLFmiL7/8UoWFhdq6dau2bt2qmTNn6s4779Rf/vIX+fr6SpIqKyv1zjvvaMWKFTp79mz1dTw8PNS3b19VVlbW2YBKqnX38iomk6nJ9bdp06bW41U7fRcWFtZ7flFRkaRLu65nZ2fXO7ehazV0Xn0/e+vWrZt1bQAAANguem16bQCOh5AaACykR48emjdvnsrKypScnKw9e/YoPj5eBw4c0Keffqrz589r8eLFki5t/rJ06VK5ubnpwQcfVGRkpMLCwhQUFCQ3Nze98cYb9TbOLa2urzpWNcT/vev5f6tqZt966y3dcccdLVvc/6tqiktKSuqcc+HCBYu8NgAAAIxFr02vDcCxsCY1ALSwyspKZWdnKzExUdKl9eUiIyP1hz/8QevWrdNrr70mSdq2bZuKi4t18eJFrVq1SpL06quv6sUXX9Tw4cPVvXv36q8KVn1dz1qOHj1a6/Gqr/OFhobWe363bt0kSceOHatzTlJSkg4fPtzs5jYkJESSlJaWVutXKSsrK5WZmdmsawMAAMA20WvTawNwTITUANDCTp06pdtuu00PP/ywfvzxxxrjv/zlL6v//8rKSp0+fbr6CYVevXrVmF9QUKCdO3dK0mWbwljS+vXraxwrKyvThg0bJF3apKU+Q4cOrb5OaWlpjfHs7Gw9+OCDGjVqlJKSkppV44ABA9SmTRsVFBRUbx7zc9u2bdNPP/3UrGsDAADANtFr02sDcEyE1ADQwjp27KjIyEhVVlbq2Wefvax5Lioq0uuvvy5JioiIkK+vr9q3b1/9dbr33ntPZWVl1fNTU1P12GOP6dy5c5JUaxNqCVu3btXbb7+tioqK6rqfffZZZWdn6xe/+IWGDx9e7/kjR45UcHCwsrKyNGXKFJ06dap6LDMzU0899ZTKy8vVq1cv3XDDDc2qsVWrVpo0aZKkSzu2f/fdd9VjycnJmjlzZrOuCwAAANtFr02vDcAxsSY1AFjAa6+9pnvuuUeJiYm65ZZbFBQUpFatWun48eMqKSlR27ZtNWvWLEmXdv+ePHmyZs+erQ0bNmjnzp3q0qWLzp07p5ycHElSVFSUEhISlJeXZ5X6w8LC9NZbb+n9999X586dlZ6erpKSEl199dV644035OrqWu/57u7uWrx4sR577DHFx8dr6NChCg0N1cWLF5WZmamKigp16tRJb7/99hXV+dBDDyklJUWbNm3S2LFjq78aefToUXXr1k1t27at3v0cAAAAjoFem14bgOPhSWoAsICuXbvq448/1m9/+1t17txZ2dnZyszMVMeOHTVhwgRt3LhRYWFh1fMnTJigpUuXauDAgXJ1ddXhw4dVVlamW2+9VStXrtSSJUvUqlUrHTlypMEdvFvCH//4R7344otq06aN0tLS5O/vr8cee0wff/yxevTo0ahrhIaGasOGDZo0aZK6d++uzMxMHT9+XEFBQXr00UcVFxenzp07X1Gdrq6uev311/Xaa6+pT58+OnHihAoKCjR69GitWbNGPj4+V3R9AAAA2B56bXptAI7HZK5tBXwAgFMaNmyYcnNztXTpUt18881GlwMAAAA4DHptAKgbT1IDAAAAAAAAAAxDSA0AAAAAAAAAMAwhNQAAAAAAAADAMITUAAAAAAAAAADDsHEiAAAAAAAAAMAwPEkNAAAAAAAAADAMITUAAAAAAAAAwDCE1AAAAAAAAAAAwxBSAwAAAAAAAAAMQ0gNAAAAAAAAADAMITUAAAAAAAAAwDCE1AAAAAAAAAAAwxBSAwAAAAAAAAAMQ0gNAAAAAAAAADAMITUAAAAAAAAAwDCE1AAAAAAAAAAAwxBSAwAAAAAAAAAMQ0gNAAAAAAAAADDM/wGLfT5LDOCQ5gAAAABJRU5ErkJggg==\n",
]
},
"metadata": {
"image/png": {
"height": 269,
}
},
"output_type": "display_data"
}
],
"source": [
"def plot_fit_quality(values_test, predicted):\n",
" \n",
" \n",
" plt.figure(figsize=(12, 4))\n",
" plt.subplot(1, 2, 1)\n",
" plt.scatter(x, predicted - values_test, color='steelblue', marker='o') \n",
" plt.plot([0, len(predicted)], [0, 0], \"k:\")\n",
" max_diff = np.max(np.abs(predicted - values_test))\n",
" plt.ylim([-max_diff, max_diff])\n",
" plt.ylabel(\"error\")\n",
" plt.xlabel(\"sample id\")\n",
"\n",
" plt.subplot(1, 2, 2)\n",
"\n",
" plt.scatter(x, (predicted - values_test) / values_test, color='steelblue', marker='o') \n",
" plt.plot([0, len(predicted)], [0, 0], \"k:\")\n",
" plt.ylim([-.5, .5])\n",
" \n",
" plt.ylabel(\"relative error\")\n",
" plt.xlabel(\"sample id\")\n",
"\n",
" \n",
"plot_fit_quality(values_test, predicted)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For assessing the quality of the predictions of a regression method, we can use multiple methods which we will discuss later in this script.\n",
"\n",
"For our current example we compute the average absolute difference between given values $y_i$ and predicted values $\\hat{y}_i$:\n",
"\\frac{1}{n} \\left(\\, |y_1 - \\hat{y}_1| \\, + \\, |y_2 - \\hat{y}_2| \\, + \\, \\ldots \\,+ \\,|y_n - \\hat{y}_n| \\,\\right)\n",
]
},
{
"cell_type": "code",
"execution_count": 21,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"source": [
"import numpy as np\n",
"\n",
"error = np.sum(np.abs(predicted - values_test)) / len(values_test)\n",
"print(error)"
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Metrics / error measures"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When we used classification metrics (like accuracy, precision, recall, F1) high values indicated good classification performance. \n",
"\n",
"Most regression metrics turn this upside down. E.g. smaller values indicate a better regression model.\n",
"\n",
"The hyperparameter optimization functions from `scikit-learn` select configurations which yield a large score. To make regression functions work in this framework, we have to flip the sign of the error value to achieva a usable score.\n",
"\n",
"E.g.\n",
"\n",
"- an average absolute error of 0.1 is scored as -0.1\n",
"- an average absolute error of 0.2 is scored as -0.2\n",
"\n",
"In this situation the first case would be prefered: higher score indicates lower error.\n",
" \n",
"\n",
"`scikit-learn` offers the following metrics for measuring regression quality:\n",
"\n",
"### 1. Mean absolute error\n",
"\n",
"This is the metric we used before. Taking absolute values before adding up the deviatons assures that deviations with different signs can not cancel out.\n",
"\n",
"<div class=\"alert alert-block alert-warning\">\n",
" <i class=\"fa fa-info-circle\"></i> <strong>mean absolute error</strong> is defined as \n",
"\\frac{1}{n} \\left(\\, |y_1 - \\hat{y}_1| \\, + \\, |y_2 - \\hat{y}_2| \\, + \\, \\ldots \\,+ \\,|y_n - \\hat{y}_n| \\,\\right)\n",
"The name of the corresponding score in `scikit-learn` is `neg_mean_absolute_error`.\n",
"\n",
"\n",
"### 2. Mean squared error\n",
"\n",
"Here we replace the absolute difference by its squared difference. Squaring also insures positive differeces.\n",
"<div class=\"alert alert-block alert-warning\">\n",
" <i class=\"fa fa-info-circle\"></i> <strong>mean squared error</strong> is defined as \n",
"\n",
"\n",
"\\frac{1}{n} \\left(\\, (y_1 - \\hat{y}_1)^2 \\, + \\, (y_2 - \\hat{y}_2)^2 \\, \\, \\ldots \\,+ \\,(y_n - \\hat{y}_n)^2 \\,\\right)\n",
"This measure is more sensitive to outliers: A few larger differences contribute more significantly to a larger mean squared error. The name of the corresponding score in `scikit-learn` is `neg_mean_squared_error`.\n",
"\n",
"\n",
"### 3. Median absolute error\n",
"\n",
"<div class=\"alert alert-block alert-warning\">\n",
" <i class=\"fa fa-info-circle\"></i> <strong>median absolute error</strong> is defined as \n",
"\n",
"\n",
"\n",
"\\text{median}\\left(\\,|y_1 - \\hat{y}_1|, \\,|y_2 - \\hat{y}_2|, \\,\\ldots, \\,|y_n - \\hat{y}_n| \\, \\right)\n",
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
"This measure is less sensitive to outliers than the metrics we discussed before: A few larger differences will not contribute significantly to a larger error value. The name of the corresponding score in `scikit-learn` is `neg_median_absolute_error`.\n",
"\n",
"### 4. Mean squared log error\n",
"\n",
"The formula for this metric can be found [here](https://scikit-learn.org/stable/modules/model_evaluation.html#mean-squared-log-error). \n",
"\n",
"This metric is recommended when your target values are distributed over a huge range of values, like popoluation numbers. \n",
"The previous error metrics would put a larger weight on large target values. One could consider relative deviations to compensate such effects but relative deviations come with other problems like division by zero.\n",
"\n",
"\n",
"The name is `neg_mean_squared_log_error`\n",
"\n",
"\n",
"### 5. Explained variance and $r^2$-score\n",
"\n",
"Two other scores to mention are *explained variance* and $r^2$-score. For both larger values indicate better regression results.\n",
"\n",
"The formula for [r2 can be found here](https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score), the score takes values in the range $0 .. 1$. The name within `scikit-learn` is `r2`.\n",
"\n",
"The formula for [explained variance](https://scikit-learn.org/stable/modules/model_evaluation.html#explained-variance-score), the score takes values up to $1$. The name within `scikit-learn` is `explained_variance`.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Some algorithms from sklearn\n",
"\n",
"- `sklearn.linear_model.LinearRegression` is a linear regression method, which only works well for target values which can be described as a linear combination of feature values.\n",
"\n",
"\n",
"- `sklearn.kernel_ridge.KernelRidge` is [documented here](https://scikit-learn.org/stable/modules/kernel_ridge.html#kernel-ridge). It combines the kernel trick from SVMs with classical least squares regression.\n",
"\n",
"\n",
"- `sklearn.svm.SVR` is an extension of support vector classification concept to regression, [you find examples here](https://scikit-learn.org/stable/modules/svm.html#svm-regression)\n",
"\n",
"\n",
"- `sklearn.neighbors.KNeighborsRegressor` extends the idea of nearest neighbour classification to regression: Search for similar data points in the learning data set and compute the predicted value from the values from the neighbourhood, e.g. by averaging or by linear interpolation. [Documentation is available here](https://scikit-learn.org/stable/modules/neighbors.html#regression)\n",
"\n",
"\n",
"- `sklearn.tree.DecisionTreeRegressor` expands the concept of decision trees to regression [is documented here](https://scikit-learn.org/stable/modules/tree.html#regression).\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## A full pipeline\n",
"\n",
"Let us now try to find a good regressor using `scikit-learn`s hyper-parameter tuning:"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"cross val score: -0.7568859642342642\n"
"image/png": "iVBORw0KGgoAAAANSUhEUgAABbsAAAIbCAYAAADCREPvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xt4lOWd//HPhEjImIAMIahIDppAPWSaYRG0F4mwokBB8Je1HhJZQYqKWAu1SmNrbWmB2l4uotKisIsKiQIWZIUCglSTSjcUnWwiBEgwkyAK6RCkCcGEkPn9wSYFc5qZzHner+viD3M/zzPfwSHzzGfu+3sbHA6HQwAAAAAAAAAABLEIfxcAAAAAAAAAAEBPEXYDAAAAAAAAAIIeYTcAAAAAAAAAIOgRdgMAAAAAAAAAgh5hNwAAAAAAAAAg6BF2AwAAAAAAAACCHmE3AAAAAAAAACDoEXYDAAAAAAAAAIIeYTcAAAAAAAAAIOgRdgMAAAAAAAAAgh5hNwAAAAAAAAAg6BF2AwAAAAAAAACCHmE3AAAAAAAAACDoEXYDAAAAAAAAAIIeYTcAAAAAAAAAIOgRdgMAAAAAAAAAgh5hNwAAAAAAAAAg6BF2AwAAAAAAAACCXqS/C4Dz7rzzTn3++ecyGo1KTEz0dzkAAABhoaqqSg0NDbrqqqv0zjvv+LsceAH32QAAAL7njftswu4g8vnnn6uurk51dXU6fvy4v8sBAAAIK59//rm/S4CXcJ8NAADgP568zybsDiJGo1F1dXWKjY3Vtdde6+9yQo79H2d0tLbB5fMGm4yK6xvthYoAAAheXzc1q/7rszrX4lCvCINi+lyiPr2D89azrKxMdXV1MhqN/i4FXsJ9NgAAgO954z47OD9xhKnExEQdP35c1157rVavXu3vckKOraZOD79S4PJ5f3g4U0nxsV6oCACA4GOttCuvoFyl1bWSJIOkFkn/kJSYYFJOZqosyXH+LNFl06ZN0549e2hvEcK4zwYAAPA9b9xns0El8H+S4mOVlmBy6RxzoomgGwCA/7PNWq3cvKK2oPubSqtrlZtXpO3FR3xcGQAAAIBwQNgNXCAnM1UGg3PHGgxSdkaqW49jq6nTO3sqlV9Yrnf2VMpWU+fWdQAACBTWSrte2FIqh6Pr4xwOacnmElkr7b4pDAAAAEDYoI0JcAFLcpzmTkrr9sO6wSDNm2x2eRn2N5d2XygtSJd2AwAgSXkF5d0G3a0cDim/sJz3PAAAAAAexcxu4BsmWBK0OGeUzIkdtzQxJ5q0OGeUxqcPcem6LO0GAIQqW01dp+9vnSmpqmVlEwAAAACPYmY30AFLcpwsyXGy1dSp2GZXQ2OzjFGRSk+Kc6tHt6tLu+P7RTPbDQAQNIpt7rUkKbbZ2fsCAAAAgMcQdgNdSIqP9ciHcJZ2+56nvqgAAHSvobHZp+cBAAAAQEcIuwEv68nSbsJZ19EXHQB8zxjl3i2lu+cBAAAAQEfo2Q14WU+WdsM19EUHAP9IT3LvS0R3zwMAAACAjhB2A17G0m7fcLUvurWSLxMAwFOS4mOVltDxxs6dMSeaWMEEAAAAwKMIuwEvY2m3b7jTFx0A4Dk5makyGJw71mCQsjNSvVsQAAAAgLBD2A14GUu7va8nfdEBAJ5hSY7T3Elp3QbeBoM0b7KZ/RMAAAAAeBxhN+BlLO32PvqiA0BgmGBJ0OKcUTIndvy+Z040aXHOKI1PH+LjygAAAACEA/okAD6Qk5mq3Lwip9pssLTbdfRFB4DAYUmOkyU5TraaOhXb7GpobJYxKlLpSXF8kQsAAADAqwi7AR9oXdrd3QaKLO12D33RASDwJMXHEm4DAAAA8CmSHsBHJlgSNOgyo/ILy1VS1b6/tDnRpOyMVIJuN9AXHQAAAAAAAITdgA+xtNs7Wvuiu7JJJX3RAQAAAAAAQgthN+AHLO32PPqiAwAAAAAAhLcIfxcAAJ7Q2hfdYOj6OPqiAwAAAAAAhCZmdgMIGfRFBwAAAAAACF+E3QBCCn3RAQAAAAAAwhNhN4CQRF90AAAAAACA8ELPbgAAAAAAAABA0CPsBgAAAAAAAAAEPcJuAAAAAAAAAEDQI+wGAAAAAAAAAAQ9wm4AAAAAAAAAQNAj7AYAAAAAAAAABD3CbgAAAAAAAABA0CPsBgAAAAAAAAAEPcJuAAAAAAAAAEDQI+wGAAAAAAAAAAQ9wm4AAAAAAAAAQNAj7AYAAAAAAAAABD3CbgAAAAAetXv3bv37v/+7Ro0apeHDh2vatGkqKCjo0TW///3va9iwYSoqKvJQlQAAAAg1hN0AAAAAPGbDhg2aMWOGrFarzGazLBaLrFarZs2apbVr17p1zfz8fBUWFnq4UgAAAISaSH8XAABAMLPV1KnYZldDY7OMUZFKT4pTUnysv8sCAL84fvy4nn32WcXGxio/P19Dhw6VJJWUlGjGjBlauHChxowZo0GDBjl9zaqqKv3ud7/zVskAAAAIIYTdAAC4wVppV15BuUqra9uNpSWYlJOZKktynB8qAwD/ycvLU1NTkx5++OG2oFuSzGazZs2apSVLlmjt2rV6/PHHnbreuXPnNH/+fF1yySUaOnSoDh065K3SAQAAEAJoYwIAgIu2WauVm1fUYdAtSaXVtcrNK9L24iM+rgwA/Ku11ci4cePajbX+zJXe3StXrpTVatUzzzyjAQMGeKZIAAAAhCzCbgAAXGCttOuFLaVyOLo+zuGQlmwukbXS7pvCAMDPHA6HKioqFBERoauvvrrdeFJSkiIiIlRRUSFHd79EJR04cEAvvfSSxo8frzvuuMMbJQMAACDE0MYEAAAX5BWUdxt0t3I4pPzCctqZAAgLp06dUlNTk0wmk3r37t1uPDIyUv3799eJEyd0+vRpxcTEdHqtpqYmPfnkk+rbt69+8YtfuFXPhg0btHHjRqeOLSsrc+sxAAAAEFgIuwEAcJKtpq7T1iWdKamqla2mjk0rAYS8M2fOSJKio6M7PaZPnz6S1G3YvXTpUh06dEjLli2TyWRyq56jR49qz549bp0LAACA4ETYDQCAk4pt7rUkKbbZCbsBhLyICOc7JHbVxuTjjz/Wf/3Xf2nKlCkd9v521uDBgzVy5Einji0rK1NdXZ3bjwUAAIDAQNgNAICTGhqbfXoeAAQTo9EoSWpsbOz0mK+//vqiY7+poaFBP/nJTzRw4EA988wzPaonKytLWVlZTh07bdo0ZoEDAACEAMJuAACcZIxy723T3fMAIJjExMTIaDTq5MmTam5uVmTkxb/7mpubdfLkSUVFRalv374dXuPNN99UdXW1hg0bpgULFlw0VlFRIUlavny51q9fr3vvvVcjRozwzpMBAABAUOLTNwAATkpPcm+jSXfPA4BgYjAYlJKSopKSEtlsNqWkpFw0XllZqZaWFg0dOrTTazQ0NEiSDh48qIMHD3Z4zO7duyVJ3/nOdwi7AQAAcBHCbgAAnJQUH6u0BJNLm1SaE01u9eu21dSp2GZXQ2OzjFGRSk+Ko+83gICXkZGhkpIS7dy5s13YvXPnTknSLbfc0un5P/jBD/SDH/ygw7Hp06frr3/9q9544w2NGjXKc0UDAAAgZDi/i0wI27Bhg4YNG6a9e/e6dN7x48f185//XLfeeqvMZrPGjx+vZcuWqampyUuVAgD8LSczVQaDc8caDFJ2RqpL17dW2vXj1/+qh18p0B+279frHxzSH7bv18OvFOjHr/9V1kr3NskEAF/IyspSVFSUVqxYoU8//bTt56WlpVq5cqX69Omj7Ozstp9XV1fr8OHDbA4JAAAAjwj7sNtqtepXv/qVy+cdO3ZMd999t9auXau+fftqzJgxOn36tF588UXNnDlTZ8+e9UK1AAB/syTHae6ktG4Db4NBmjfZLEuy8y1MtlmrlZtX1OnM8dLqWuXmFWl78RFXSgYAn7nqqqs0f/581dfX695779XMmTM1c+ZM3XfffTp9+rQWLFigAQMGtB0/ffp0ffe739WOHTv8WDUAAABCRVi3Mdm+fbtyc3PbegO64he/+IWOHTumH/7wh3r00Uclne8xOGfOHO3evVurV6/Wgw8+6OmSAQABYIIlQYMuMyq/sFwlVe2DaXOiSdkZqS4F3dZKu17YUiqHo+vjHA5pyeYSxfeLdun6AOArOTk5uvLKK7Vy5Up98skn6t27t4YPH67Zs2fr5ptv9nd5AAAACGFhGXYfO3ZM//Ef/6FNmzYpOjpacXFxstudXxb+2Wef6YMPPlBCQoIeeeSRtp8bjUYtXLhQ48aN05o1awi7ASCEWZLjZEmO81hv7byC8m6D7lYOh5RfWE7YDSBgjR07VmPHju32uF27djl9zddee60HFQEAACAchGUbkxdeeEGbNm3SDTfcoLVr1+rqq6926fy//OUvcjgcGjt2rCIiLv4rvPLKK3Xdddfp6NGjqqio8GTZAIAAlBQfqztHJis7I1V3jkx2ezNKVza9lKSSqlrZauhxCwAAAABAq7AMu6+++mo999xzWr9+vYYNG+by+a0hdmpqx5uOtYbnhw4dcr9IAEDYKLa5t+mku+cBAAAAABCKwrKNyUMPPdSj82tqaiRJ8fHxHY4PHDhQkpxqjbJhwwZt3LjRqcctKytzskIAQDBpaGz26XkAAAAAAISisAy7e+rMmTOSpD59+nQ43vpzZza+PHr0qPbs2eO54gAAQccY5d7bsbvnAQAAAAAQiviU7IZevXpJkgwGQ5fHtbS0dHutwYMHa+TIkU49bllZmerq6M8KAKEmPcm9jSbdPQ8AAAAAgFBE2O2G6OhoSdLXX3/d4Xjrz41GY7fXysrKUlZWllOPO23aNGaBA0AISoqPVVqCyaVNKs2JJrc2wwQAAAAAIFSF5QaVPdXaq7uzntx///vfLzoOAIDu5GSmqpsFQ20MBik7o+NNkgEAAAAACFeE3W5ITT0fMFRUVHQ4fvjwYUnS0KFDfVYTACC4WZLjNHdSWreBt8EgzZtsliWZFiYAAAAAAFyIsNsNGRkZkqQ///nP7fpyf/HFFyorK9PgwYOVkpLij/IAAEFqgiVBi3NGyZxo6nDcnGjS4pxRGp8+xMeVAQAAAAAQ+OjZ3Y0vvvhCZ86cUf/+/WUynQ8fhgwZooyMDBUWFmrp0qWaN2+eJKmhoUE/+9nPdO7cOc2YMcOfZQMAgpQlOU6W5DjZaupUbLOrobFZxqhIpSfF0aPbg/j7BQAAAIDQQ9jdjfnz52vPnj167LHH9IMf/KDt588++6zuu+8+LV++XLt27VJycrI++eQT/f3vf1dmZqbuu+8+P1YNAAh2SfGxhK9eYK20K6+gvMPNQNMSTMrJTKVFDAAAAAAEKdqYuGnIkCFav369srKyVFtbqw8++ED9+vXTE088oZdfflmRkXyPAABAINlmrVZuXlGHQbcklVbXKjevSNuLj/i4MgAAAACAJ5DISlq9erVbY1dccYUWL17sjZIAAIAHWSvtemFLqRyOro9zOKQlm0sU3y+aGd4AAAAAEGSY2Q0AAEJeXkF5t0F3K4dDyi8s925BAAAAAACPI+wGAAAhzVZT12nrks6UVNXKVlPnpYoAAAAAAN5A2A0AAEJasc3u0/MAAAAAAP5B2A0AAEJaQ2OzT88DAAAAAPgHYTcAAAhpxij39uN29zwAAAAAgH8QdgMAgJCWnhTn0/MAAAAAAP5B2A0AAEJaUnys0hJMLp1jTjQpKT7WSxUBAAAAALyB9bnwKVtNnYptdjU0NssYFan0pDjCBACA1+Vkpio3r0gOR/fHGgxSdkaq94sCAAAAAHgUYTd8wlppV15BuUqra9uNpSWYlJOZKksyy8UBAN5hSY7T3ElpemFLaZeBt8EgzZts5j0JAAAAAIIQYTe8bpu1ustwobS6Vrl5RZo32azx6UN8WxwAIGxMsCRo0GVG5ReWq6Sq/Zev5kSTsjP48hUAAAAAghVhN7zKWmnvdhadJDkc0pLNJYrvF03IAADwGktynCzJcbTVAgAAAIAQRNgNr8orKHeqP6p0PvDOLywn7AYAeF1SfCzhNgAAAACEmAh/F4DQZaup67BHd1dKqmplq6nzUkUAAAAAAAAAQhVhN7ym2Gb36XkAAAAAAAAAwhdhN7ymobHZp+cBAAAAAAAACF+E3fAaY5R7LeHdPQ8AAAAAAABA+CLshtekJ7m30aS75wEAAAAAAAAIX4Td8Jqk+FilJZhcOsecaFJSfKyXKgIAAAAAAAAQqgi74VU5makyGJw71mCQsjNSvVsQAAAAAAAAgJBEc2R4lSU5TnMnpemFLaVyODo/zmCQ5k02y5JMCxMAAAAgHNhq6lRss6uhsVnGqEilJ8WxyhMAAPQIYTe8boIlQYMuMyq/sFwlVbXtxs2JJmVnpBJ0AwAAAGHAWmlXXkG5SqvbfzZISzApJ5PPBgAAwD2E3fAJS3KcLMlxzN4AAAAAwtg2a3WXqz5Lq2uVm1ekeZPNGp8+xLfFAQCAoEfYDZ9Kio8l3AYAAADCkLXS3m17Q0lyOKQlm0sU3y+aGd4AAMAlbFAJAAAAAPC6vILyboPuVg6HlF9Y7t2CAABAyCHsBgAAAAB4la2mrsMe3V0pqaqVrabOSxUBAIBQRNgNAAAAAPCqYpvdp+cBAIDwRNgNAAAAAPCqhsZmn54HAADCE2E3AAAAAMCrjFGRPj0PAACEJ8JuAAAAAIBXpSfF+fQ8AAAQngi7AQAAAABelRQfq7QEk0vnmBNNSoqP9VJFAAAgFBF2AwAAAAC8LiczVQaDc8caDFJ2Rqp3CwIAACGHsBsAAAAA4HWW5DjNnZTWbeBtMEjzJptlSaaFCQAAcA27fQAAAAAAfGKCJUGDLjMqv7BcJVW17cbNiSZlZ6QSdAMAALcQdgMAAAAAfMaSHCdLcpxsNXUqttnV0NgsY1Sk0pPi6NENAAB6hLAbAAAAAOBzSfGxhNsAAMCj6NkNAAAAAAAAAAh6hN0AAAAAAAAAgKBH2A0AAAAAAAAACHqE3QAAAAAAAACAoEfYDQAAAAAAAAAIeoTdAAAAAAAAAICgR9gNAAAAAAAAAAh6hN0AAAAAAAAAgKAX6e8CAAAA0DVbTZ2KbXY1NDbLGBWp9KQ4JcXH+rssAAAAAAgohN0AAAABylppV15BuUqra9uNpSWYlJOZKktynB8qAwAAAIDAQxsTAACAALTNWq3cvKIOg25JKq2uVW5ekbYXH/FxZQAAAAAQmAi7AQAAAoy10q4XtpTK4ej6OIdDWrK5RNZKu28KAwAAAIAARhsTAACAAJNXUN5t0N3K4ZDyC8tpZwIA/4d9DgAACF+E3QAAAB7iiYDFVlPXaeuSzpRU1cpWU0eYAyCssc8BAAAg7AYAAOghTwYsxTb3WpIU2+yE3QDC1jZrdZftn1r3OZg32azx6UN8WxwAAPAZenYDAAD0gKc3kmxobHarDnfPA4Bgxz4HAACgFWE3AACAm7wRsBij3Ft45+55ABDs3NnnAAAAhCbCbgAAADd5I2BJT3Kvn6y75wFAMOvJPgcAACD0MAUIQLfY0R4A2vPWRpJJ8bFKSzC5dG1zoonfywDCEvscAACACxF2A+gUO9oDQOe8GbDkZKYqN6/IqVnjBoOUnZHqVi0AEOzY5wAAAFyINiYAOuTpDdcAINR4M2CxJMdp7qQ0GQxdH2cwSPMmm/niEUDYYp8DIHTZaur0zp5K5ReW6509lbQfAuAU3uEBtOPqhmvx/aIJWgCEHW8HLBMsCRp0mVH5heUqqWr/xaM50aTsDFbYAAhv7HMAhB5WGAPoCcJuAO24s+EaNxsAwo0vAhZLcpwsyXHsnYCgs3v3bi1fvlwHDx7U2bNndf3112vWrFnKzMx0+hoffvih3njjDZWWlqqhoUEDBw5URkaGHn30UV1++eVerB7BhH0OgNCyzVrd5cSr1hXG8yabNT59iFuPwX0VENoIuwFcxFsbrgFAqPFlwJIUH8vvWASNDRs2KDc3V71799ZNN92klpYWFRUVadasWVqwYIHuueeebq/x6quv6vnnn1dERITMZrMGDBigsrIyrV27Vjt27NCaNWt0zTXX+ODZIBiwzwEQGry9wpgZ40B4oGc3gIv0ZMM1AAg3OZmp3fbVbkXAgnBw/PhxPfvss4qNjdUf//hHrVixQv/5n/+p/Px8xcTEaOHChTp+/HiX16ioqNCSJUtkNBqVn5+vtWvX6ve//73ee+89ZWdnq7a2Vk8//bSPnhGCAfscAKHBnRXGzmJPKiB8EHYDuAg72gOA8whYgIvl5eWpqalJ06dP19ChQ9t+bjabNWvWLDU2Nmrt2rVdXmPTpk1qaWnRjBkzZLFY2n5+ySWX6Omnn5bJZFJxcbGOHj3qtecRjMJ9I7cJlgQtzhklc6Kpw3FzokmLc0a53fYAgHf1ZIVxd1ydMW6tZCIXEMxoYwLgIuxoDwCuYSNJ4J8KCwslSePGjWs3Nm7cOC1ZskQFBQV6/PHHO73GJZdcomHDhunGG2/scOyqq65SbW2tampqNHjwYM8VH6RYlv9P7HMABK+erDDu7t83e1IB4YV0CsBF2NEeAFxHwAJIDodDFRUVioiI0NVXX91uPCkpSREREaqoqJDD4ZChkyURjz/+eKdheENDgyoqKiSJTSrlm43cghH7HADBx1srjNmTCgg/YRt293SH+C+//FJjxozpdHz48OF68803PVQt4DvsaA8A7iNgQTg7deqUmpqaZDKZ1Lt373bjkZGR6t+/v06cOKHTp08rJibG5cdYsWKFGhoalJaWpiuuuKLLYzds2KCNGzc6dd2ysjKXa/E3b2/kBgC+5K0Vxt6cMQ4gMIVl2O2JHeL3798vSRo2bNhF/QhbJScne7xuwFfY0R4AALjqzJkzkqTo6OhOj+nTp48kuRV2f/jhh3rllVcUERGhJ598stvjjx49qj179rj0GMGEZfkAQom3VhizJxUQfsIu7L5wh/j8/Py2oLqkpEQzZszQwoULNWbMGA0aNKjL67TO/vj+97+vKVOmeL1uwJdaN1zrbrYQG64BAIBWERERTh/rcDal/T8ffPCBHn/8cZ07d05PPPGERo0a1e05gwcP1siRI526fllZmerqgmdDR5blAwg13lphzJ5UQPgJu3+9rTvEP/zwwx3uEL9kyRKtXbu2y01zpH/O7L7++uu9Wi/gL2y4BgAAXGE0GiVJjY2NnR7z9ddfX3SsM95++209++yzam5u1mOPPaaHHnrIqfOysrKUlZXl1LHTpk0LqlngLMsHEIq8scKYPamA8BN2YbcndoiXzs/+MBqNtCtBSGPDNQAA4KyYmBgZjUadPHlSzc3Nioy8+KNGc3OzTp48qaioKPXt29epay5ZskTLly+XwWBQbm6upk+f7oXKgw/L8gGEIm+sMGZPKiD8hFXY7akd4r/66it98cUXuv7667Vq1Spt2rRJVVVVio2N1dixY/XYY4912wYFCCZsuAYAALpjMBiUkpKikpIS2Ww2paSkXDReWVmplpaWDve7+SaHw6Gf/exnevvtt9W7d28999xz+u53v+ut0oMOy/IBhCpvrDBmTyogvITV3Y6ndohv7de9b98+HTp0SDfeeKMuv/xylZaWat26dfrzn/+sN954o8NAHQAAAAhVGRkZKikp0c6dO9uF3Tt37pQk3XLLLd1e5ze/+Y3efvttxcTE6A9/+IPTvbfDBcvyAYQyT68wZk8qILyEVdjtqR3iW/t1Dx06VL///e81ZMgQSVJDQ4OeeeYZbd68WT/+8Y+1YcOGbmvasGGDNm7c6FT9rSE7AAAAEIiysrK0cuVKrVixQqNHj9YNN9wgSSotLdXKlSvVp08fZWdntx1fXV2ts2fPKj4+XrGx5wOMgoICvfbaa4qMjNQrr7yiESNG+OW5BDKW5QMIB55cYcyeVED4CKuw21M7xE+fPl233367Lr30UplMprafG41G/frXv9bf/vY37du3T8XFxUpPT+/ycY4ePRpUm+EAAAAAnbnqqqs0f/58LViwQPfee69GjRolSSoqKlJzc7Oee+45DRgwoO346dOn6+jRo1q8eHHbZpIvvviiJGnAgAF666239NZbb3X4WLNnz9Y111zj5WcUuFiWDwCuYU8qIDyEVdjtqR3ie/Xq1Tab+5uio6N10003adOmTdq3b1+3YffgwYOdXpZZVlamuro6p44FAAAA/CEnJ0dXXnmlVq5cqU8++US9e/fW8OHDNXv2bN18881dnvvVV1+ptLRUknT8+HG9++67nR77ve99L6zDbpblA4B72JMKCG1hFXZ7Y4f4jsTFnb+RbG2b0pWsrKy2WSzdmTZtGrPAAQAAEPDGjh2rsWPHdnvcrl27Lvrvyy67TAcPHvRWWSGHZfkAAAAXC6uw21M7xL/88ss6dOiQ5syZo2HDhrUb//zzzyVJl19+ueeKBwAAAIBvYFk+AADAP4VV2C15Zof4gwcP6r333tPVV1/dLuw+ceKEPvroI11yySVtPQoBAAAAwJtYlg8AACA5v2NjiMjKylJUVJRWrFihTz/9tO3nXe0Qf/jw4Yt6Zd9zzz2SpFWrVunjjz9u+/np06f19NNPq76+XnfddZcGDhzog2cEAAAAAAAAAAi7md2e2CF+9OjRmjFjhlatWqX7779fw4cPV//+/bV3716dPHlSI0aM0Pz58/3y/AAAAAAAAAAgHIVd2C31bIf4Vj/5yU/07W9/W2vWrNH+/fvV0tKihIQEff/739cDDzygSy65xMvPAkAooc8mAAAAAABAz4Rl2C25v0P8hSZOnKiJEyd6siwAYcZaaVdeQblKq2vbjaUlmJSTmSpLcpwfKgMAAAAAAAguYdezGwACxTZrtXLzijoMuiWptLpWuXlF2l58xMeVAQAAAAAABB/CbgDwA2ulXS9sKZXD0fVxDoe0ZHOJrJV23xQGAAAAAAAQpMK2jQkA+FNeQXm3QXcrh0PKLyynnQkCGn3nAQAAAMD7+OzVNcJuAPAxW01dp61LOlNSVStbTR1vYAg49J0HAAAAcCHCWO/gs5dzCLsBwMeKbe61JCm22blBQEDZZq3ush1Pa9/5eZPNGp8+xLfFAQAAAPD4JSp1AAAgAElEQVQpwljv4bOX8wi7AcDHGhqbfXoe4A2u9p2P7xfNjS3QAw8++KDi4+P19NNPq2/fvv4uB0AYY8YmgI4QxnoPn71cQ9gNAD5mjHLvV6+75wHeQN95wLf+93//VzExMQTdAPyGGZsAOkMY61189nJNhL8LAIBwk57k3puOu+cBntaTvvMA3NevXz9/lwAgTG2zVis3r6jT9//WGZvbi4/4uDIAgcCdMBbO4bOX6wi7AcDHkuJjlZZgcukcc6KJ5aEIGD3pOw/APVOmTFF5ebnef/99f5cCIMy4OmPTWsn7PRBOCGO9i89ermNNPAD4QU5mqnLzipz69ttgkLIzUr1fFOAk+s4DvjdlyhSVlZXpscceU3p6utLT0xUfH6/evXt3ek5OTo4PKwQQqlg+D6ArPQljmdDVPT57uY6wGwD8wJIcp7mT0rqdJWMwSPMmm/nAgIBC33nA9+677z4ZDAY5HA5ZrVYVFxd3ew5hN4Ce6smMTUIsIDwQxnoXn71cF77PHAD8bIIlQYMuMyq/sFwlVe0/RJgTTcrOYKMfBB76zgO+d+ONN/q7BABhiBmbALpDGOtdfPZyHa8sAPAjS3KcLMlxstXUqdhmV0Njs4xRkUpPiuMDAgJWa995V2Z60Xce6JnVq1f7uwQAXhLI94HM2ATQHcJY7+Kzl+sIuwEgACTFx4b1mxGCD33nAQDoGWulXXkF5R0GGGkJJuVk+n+FHzM2AXSHMNb7+Ozlmgh/FwAAAIJPa995g6Hr4+g7D3hWU1OT3nrrLT3yyCMaP368Ro8erfHjx2vWrFl6/fXX1dDQ4O8SAThhm7VauXlFnYZDpdW1ys0r0vbiIz6u7GLM2ATgjJzM1G4/F7QijHUdn71cw9etAADALfSdB3yrsrJSs2fPVlVVlRwXTO2x2+2qqqrSX/7yF+Xn5+vll19WaiofIoFAZa20d7tJuSQ5HNKSzSWK7xftt/dSZmwCcEZrGNvd7zbCWPfx2ct5hN0AAMBt9J0HfOMf//iHZs6cqS+++EKXX365srKydN111+nSSy9VXV2d9u3bp3feeUdVVVWaPXu2Nm7cqNhY/g0CgSivoNyppejS+cA7v7Dcr+EFy+cBOIMw1vv47OUcwm4AANBj9J0HvGvVqlX64osvdPPNN+vll1/WpZdeetH47bffroceekiPPvqo9uzZo/z8fD388MN+qhZAZ2w1dS7Nkpakkqpa2Wrq/PY+y4xNAM4ijPUNPnt1jbAbAAAACHA7d+5UZGSkfvvb37YLultdeuml+u1vf6tbb71VW7duJewGAlCxze72ef4MNpixCcAVhLHwJ8JuAAAAIMAdOXJEQ4cO1cCBA7s8btCgQUpNTVV1dbWPKgPgiobGZp+e50nM2AQABAPCbgAAACDAGQwGNTU1OXVsc3PzRRtYAggcxij3PoK7e543MGMTABDIIvxdAAAAAICuXXPNNfrss89UWVnZ5XGfffaZKioqlJyc7KPKALgiPcm9Nh/ungcAQLgh7AYAAAAC3KRJk9TS0qK5c+fq2LFjHR7z5Zdf6oc//GHb8QACT1J8rNISTC6dY040MZMaAAAnBc5aKAAAAAAdysnJ0caNG3Xw4EFNmDBBmZmZuu6663TppZeqvr5eZWVl+vDDD9XY2Khhw4YpJyfH3yUD6EROZqpy84rkTLchg0HKzkj1flEAAIQIwm4AAAAgwPXu3Vuvvfaa5s6dqz179ui9997Tjh072sZbe3SPGjVKzz//vKKiovxVKoBuWJLjNHdSml7YUtpl4G0wSPMmm2VJpoUJAADOIuwGAAAAgoDJZNIbb7yhvXv36sMPP5TNZtPp06dlNBqVnJysW265RSNGjPB3mQCcMMGSoEGXGZVfWK6Sqtp24+ZEk7IzUgm6AQBwEWE3AAAAEOCWLFmihIQE3XHHHRoxYgShNhACLMlxsiTHyVZTp2KbXQ2NzTJGRSo9KY4e3QAAuImwGwAAAAhw69atU3NzMxtPAiEoKT6WcBsAAA+J8HcBAAAAALrW0NCgIUOGqE+fPv4uBQAAAAhYhN0AAABAgBsxYoQOHz6sI0eO+LsUAAAAIGDRxgQAAAAIcIsWLdLDDz+se+65R3fffbfS09M1cOBARUVFdXpOSkqKDysEAAAA/I+wGwAAAAhwEydOVEtLixobG/XKK690e7zBYND+/ft9UBkAAAAQOAi7AQAAgADX0NDg0vEOh8NLlQAAAACBi7AbAAAACHAHDhzwdwkAAABAwGODSgAAACDALVmyRBs2bFBTU5O/SwEAAAACFjO7AQAAgAC3bt06NTc367vf/a6/SwEAAAgptpo6FdvsamhsljEqUulJcUqKj/V3WXATYTcAAAAQ4BoaGnTNNdeoT58+/i4FAAAgJFgr7corKFdpdW27sbQEk3IyU2VJjvNDZegJ2pgAAAAAAW7EiBE6fPiwjhw54u9SAAAAgt42a7Vy84o6DLolqbS6Vrl5RdpezL1XsGFmNwAAABDgFi1apIcfflj33HOP7r77bqWnp2vgwIGKiorq9JyUlBQfVggAABAcrJV2vbClVA5H18c5HNKSzSWK7xfNDO8gQtgNAAAABLiJEyeqpaVFjY2NeuWVV7o93mAwaP/+/T6oDAAAILjkFZR3G3S3cjik/MJywu4gQhsTAAAAIMA1NDTo66+/lsPhcOpPS0uLv0sGAAAIOLaauk5bl3SmpKpWtpo6L1UET2NmNwAAABDgDhw44O8SAAAAgl6xze72eUnxsR6uBt7AzG4AAAAAAAAAIa+hsdmn58H3mNkNAAAABJFz585p3759+uyzz1RfX6/7779fZ8+e1ZdffqmEhAR/lwcAABCwjFHuRaHungff4/8UAAAAECTeeOMNvfrqqzpx4kTbz+6//34dOXJEkydP1rhx47Ro0SLFxMT4sUoAAIDAlJ7k3kaT7p4H3yPsBgAAAILAT3/6U23YsEEOh0P9+vVTU1OTvv76a0mS3W5XS0uLduzYoSNHjig/P1/R0dF+rhgAAPSUraZOxTa7GhqbZYyKVHpSHL2jeyApPlZpCSaXNqk0J5r4Ow8ihN0AAABAgNu+fbv++Mc/Kj4+XgsXLlRGRoays7NltVolSSNHjtTq1av1xBNP6MCBA3r99df1yCOP+LlqAADgLmulXXkF5R2GsmkJJuVkpsqSHF6zjT0V/Odkpio3r0gOR/fHGgxSdkaqG9XCXwi7AQAAgAD35ptvymAwaOnSpbJYLB0ec+ONN2rZsmX63ve+p61btxJ2AwAQpLZZq/XCltJOw9jS6lrl5hVp3mSzxqcP8W1xfuDp4N+SHKe5k9K6/DuWzgfd8yabw+5LhWAX4cmL/eQnP9FLL72k06dPe/KyAAAAQFjbv3+/hgwZ0mnQ3SotLU2JiYmqqqryUWUAAMCTrJX2bkNYSXI4pCWbS2SttPumMD/ZZq1Wbl5Rp21HWoP/7cVHXLruBEuCFueMkjnR1OG4OdGkxTmjwuLLhFDj0Zndu3btUmRkpB599FFPXhYAAAAIa42NjTIajU4dGxMTo+PHj3u5IgAA4A15BeVOtdeQzgfe+YXlITvz2NXgP75ftMszvC3JcfRFDzEeDbvPnj2rq666Sr169fLkZQEAAICwdsUVV6iyslINDQ1dht719fWqqKjQFVdc4cPqACBwEWIhmNhq6lzaOFGSSqpqZaupC8nXta+C/6T42JD8+wtXHg27x4wZox07dqikpERms9mTlwYAAADC1tixY7Vq1Sr95je/0YIFCzo9btGiRWpqatItt9ziw+oAIPCwuR+CUbHNvZYkxTZ7yIW1BP9wl0fD7h/96Ef68ssvNW3aNN12222yWCwaOHCgoqKiOj2HG3EAAACga7NmzdKmTZu0fv16VVdXa+LEiTp16pSk8/28Dx8+rHXr1mnv3r3q27evHnzwQT9XDAD+w+Z+CFYNjc0+PS+QEfzDXR4Nu2+//XZJksPh0JYtW7Rly5YujzcYDNq/f78nSwAAAABCjslk0ooVKzRnzhz9z//8j4qKitrG/u3f/k3S+Xvw/v3766WXXtKgQYP8VSoA+JW3e/wC3mSMci+mc/e8QEbwD3d59F8DvQEBAAAA77j++uu1efNmrV27Vrt27VJFRYVOnz6t6OhoJSYmasyYMcrOzpbJZPJ3qQDgN2zuh2CWnuTea9Hd8wIZwT/c5dFXwK5duzx5OQAAAAAXiImJ0cyZMzVz5kx/lwIAAYcevwh2SfGxSkswufQ6NieaQvL1S/APd0X4uwAAAAAAAICe6kmPXyBQ5GSmymBw7liDQcrOSPVuQX7SGvy7IlSDf7jGa3P7CwsL9cEHH8hms+n06dMyGo1KSEjQ6NGjdeutt8rg7L9cAAAAAACAbtDjF6HAkhynuZPSuu09bzBI8yabQ7oNT05mqnLzipxqTRTKwT9c4/Gw+8SJE5o7d6727t0r6fxGOa3++te/au3atbJYLFqyZAkb5wAALmKrqVOxza6GxmYZoyKVnhTHN/NhjtcEAABwFj1+ESomWBI06DKj8gvLVVLVvqWJOdGk7IzUkA66JYJ/uMejv9EbGxv14IMP6uDBg4qOjtbtt9+u6667TkajUfX19fr000+1a9cuffLJJ3rkkUe0du1a9e7d25MlAACCkLXSrryC8g5706UlmJSTGfo3crgYrwkAAOAqevwilFiS42RJjgv7yR8E/3CVR8PuNWvW6ODBg/rWt76lV155pcOZ28eOHdNDDz2kAwcOaN26dbr//vs9WQIAIMhss1Z3+U19aXWtcvOKNG+yWePTh/i2OPgFrwkAAOAONvdDKEqKjw371yjBP1zh0Q0qt2zZooiICC1durTTFiWXX365li5dKkl69913PfnwAAAfsdXU6Z09lcovLNc7eyplq6lz6zrWSnu3S9IkyeGQlmwukbWSzYNCHa8JAADQE2zuB4SupPhY3TkyWdkZqbpzZDJBNzrk0ZndlZWVSklJUWJiYpfHJScnKyUlRZWVlZ58eACAl3m6tUReQblTm41I58PN/MJylqeFOF4TAACgJ+jxCziPmdIIRR4Nux0Oh3r16uXUsb169dLZs2c9+fAAAC/ydGsJW02dS0tMJamkqla2mjpuwEIUrwnAOefOndO+ffv02Wefqb6+Xvfff7/Onj2rL7/8UgkJCf4uDwD8Lth7/HorgCTYRCv2x0Eo82jYnZCQoPLyctXU1Cg+Pr7T444fP66KigolJyd78uFdsnv3bi1fvlwHDx7U2bNndf3112vWrFnKzMx0+hqVlZV66aWX9PHHH+urr75SQkKC7r77buXk5CgiwqMdYgDAr1xtLRHfL7rbm6Nim3vtJ4ptdm7KQxSvCaB7b7zxhl599VWdOHGi7Wf333+/jhw5osmTJ2vcuHFatGiRYmJi/Fgl99oA/C8Ye/x6K4Ak2MSF2B8Hoc6jd4m33Xabmpub9eSTT6q+vr7DY+rr6/Xkk0/q3Llzuu222zz58E7bsGGDZsyYIavVKrPZLIvFIqvVqlmzZmnt2rVOXePAgQO66667tGXLFl155ZXKyMjQsWPH9Otf/1pPPfWUl58BAPiWO60lutPQ2OxWLe6eh8DHawLo2k9/+lMtXrxYdrtdffv2VZ8+fdrG7Ha7WlpatGPHDk2bNk1nzpzxW53cawMIJMHS43ebtVq5eUWdrnJrDSC3Fx8JiOsiOLE/DsKBR2d2T58+XRs2bNCePXs0YcIE3XHHHbruuut06aWXqr6+XmVlZXr33Xdlt9t15ZVXasaMGZ58eKccP35czz77rGJjY5Wfn6+hQ4dKkkpKSjRjxgwtXLhQY8aM6XSDTel8u5annnpK9fX1+u1vf6upU6dKkmprazV9+nS9++67uu222zR+/HifPCcA8CZvtZYwRrn3FuTueQh8vCaAzm3fvl1//OMfFR8fr4ULFyojI0PZ2dmyWq2SpJEjR2r16tV64okndODAAb3++ut65JFHfF4n99oA4DpvrKL05nURvNgfB+HAozO7Y2NjtWrVKiUmJsput+u1117TU089pTlz5mj+/Pl67bXXZLfblZycrJUrVyo21vffqObl5ampqUnTp09vu/mWJLPZrFmzZqmxsbHbGScfffSRDh48qJEjR7bdfEuSyWTSL37xC0nS6tWrvVI/APhaT1pLdCU9yb2bJnfPQ+DjNQF07s0335TBYNDSpUuVkZHR4TE33nijli1bJofDoa1bt/q4wvO41wYA13ljFaU3r4vg1JNJTEAw8Xizu6SkJG3evFnPPfecJk6cqGuvvVYJCQn61re+pYkTJ+q5557Tf//3f+vqq6/29EM7pbCwUJI0bty4dmOtPysoKHD7GsOHD9eAAQP08ccfd9rKBQCCibdaSyTFxyotweTSNc2JpoBdeoqe4zUBdG7//v0aMmSILBZLl8elpaUpMTFRVVVVPqrsYtxrA4BrvBVAEmzim7w1iQkINB5d95uXl6drrrlGN910k6ZOnXrRTIxA4HA4VFFRoYiIiA7D9qSkJEVERKiiokIOh0MGg6HD61RUVEjSRbNVLpScnKwTJ07o8OHD+va3v+25JwAAfuDN1hI5manKzStyasaJwSBlZ6S6VQuCB68JoGONjY0yGo1OHRsTE6Pjx497uaL2uNcGANd5a4NuNv7GN7E/DsKFR2d2L1++XLNnz9Y//vEPT17WY06dOqWmpiZddtll6t27d7vxyMhI9e/fX2fOnNHp06c7vU5NTY0kaeDAgR2Ot/7cbu/+zWXDhg2aNm2aU3/KysqceZoe9fzzz2vw4MEaPHiwnn/++Xbjv/zlL9vGly9f3m78qaeeahtfs2ZNu/E5c+a0jW/cuLHd+AMPPNA2/t5777Ubv+uuu9rGd+/e3W58woQJbeMlJSXtxkePHt02fvjw4Xbjw4cPbxs/duxYu/GhQ4e2jXc0u6h1bPDgwe3G6uvr28Y6+jB37NixtvHhw4e3Gz98+HDb+OjRo9uNl5SUtI1PmDCh3fju3bvbxu+666524++9917b+AMPPNBufOPGjW3jc+bMaTe+Zs2atvGONpJavnx52/gvf/nLduO89gLntffNFhGNXx3Xp8sf0qfLH9KhN3/W7vwzf6/Sp8sf0pz/N7rb197CJx/R3ElpujDv+Iftf9uuX7X1ZUnnQ815k82yJMfx2gvx197k0d9W6R8e0oE3nmw3/s3XXutrohW/98L7tRfqrrjiClVWVqqhoaHL4+rr61VRUaHLL7/cR5X9U6Dda3OfHdr/5j15r/NN3Gfz2vPla+/CINHZ++xPlz+kRT96sN34ha+9559u/9rp6D77Ql+VF2nO/xvNay9EX3tP3jtGny537j77QsaoSH7vhflrL9h4dGb3qVOnlJKSor59+3rysh7Tuit9dHR0p8e07mp/+vRpxcTEdHmd1mM7u0Z3H0Yk6ejRo9qzZ0+3xwGAv7S2lnB1GaSzJlgSNOgyo/ILy1VS1f4xzIkmZWeksjFKmOkb3VvmRFOHrwlJiovto/HpQ3xcFeA/Y8eO1apVq/Sb3/xGCxYs6PS4RYsWqampSbfccosPqzsv0O61uc8GEAzcXUUZ0fHimDa9ujsAcFJ6Upz+cYz2NggeHg27r732WlVUVOjkyZPq37+/Jy/tERERzk9kd3SxfrpXr16S1OnSy1YtLS3dPs7gwYM1cuRIp2oqKytTXR2/YAD4nqutJVxlSY6TJTlOtpo6rV5fq+Xbzv/cnGjS7/79ZtcviKB3SWSEfvfvN8tWU6dim10Njc2qs8dowVvnx6Mu6eXfAgEfmzVrljZt2qT169erurpaEydO1KlTpySd7+d9+PBhrVu3Tnv37lXfvn314IPtZ/x5W6Dda3OfDcDbLrxPMUZFKnVgx1/SdcXdjba7C8lj+lyis25dGfin1v1xStpPBgYClsHR1Z2miw4fPqyZM2eqT58+mjlzptLT0zVw4EBFRUV1ek5XMz88ra6uTiNGjFBcXJw++uijDo/5zne+oxMnTuhvf/tbpzPU77zzTpWVlelPf/qTrrnmmnbjc+fO1datW7Vs2bION9Zx17Rp07Rnzx6NHDmSHegB+Nw2a7Ve2FLaZeDd2m6EGbcAQkmg3IPt27dPc+bM0bFjxzoMgh0Oh/r376+XXnpJI0aM8Hl9wXyvHSj/jwEEB2ulXXkF5R2ufExLMCkn07VViT9+/a8uraJ0dkKIt66L4GWttLs0iWlxzihW2MKrvHEP5tGZ3XPnzpXBYFBVVZV+/vOfd3u8wWDQ/v37PVlCl2JiYmQ0GnXy5Ek1NzcrMvLip9/c3KyTJ08qKiqqy1Ys8fHxKisrk91u7/AG/O9//7ukzvsMAkAwot0IAPjX9ddfr82bN2vt2rXatWuXKioqdPr0aUVHRysxMVFjxoxRdna2TCaTX+rjXhtAOOhuAkhpda1y84pcmgDirQ26fbXx9zdnuKcnxbHJZYCyJMdp7qQ0pycx8dkOwcijYXd5eblLx3twUrlTDAaDUlJSVFJSIpvNppSUlIvGKysr1dLS0unO761SU1P14YcfqqKiQqNGjbpozOFw6LPPPlOvXr06vDkHgGB2YbsRbmgBwPdiYmI0c+ZMzZw509+ltMO9NoBQZ620dxsSSpLDIS3ZXKL4ftFOhYXeCiC9HWx6eoY7fINJTL7D52b/8GjY/f7773vycl6RkZGhkpIS7dy5s90N+M6dOyWp2w19MjIytHLlSr3//vvKycm5aOyTTz5RbW2tRo4c2emmOwAQ7JLiY3mTBgAf+tGPfqSpU6cqIyPDpd7Yvsa9NoBQlldQ7tQsael84J1fWO50YOitANJb1/XGDHf4DpOYvIsvgvzLo2H3Bx98oJSUlHYzMAJJVlaWVq5cqRUrVmj06NG64YYbJEmlpaVauXKl+vTpo+zs7Lbjq6urdfbsWcXHxys29vw/+JEjRyo1NVUfffSR1q1bp7vvvluSVFtbq1/+8peSpBkzZvj4mQEAACBU/elPf9LWrVvVv39/TZo0SVOmTFFaWpq/y2qHe20AocpWU+dS/2tJKqmqla2mzunw0FsBpKev660Z7vA9JjF5Hl8E+Z9Hw+7ly5ervr5eH374YZd9+Pzpqquu0vz587VgwQLde++9bcF8UVGRmpub9dxzz2nAgAFtx0+fPl1Hjx7V4sWLlZWVJen8TvOLFi3SAw88oGeeeUZvv/224uPjtWfPHp06dUp33323/vVf/9Uvzw8AAACh59FHH9WWLVtUVVWl1atXa82aNUpKStLUqVN1xx13aPDgwf4uURL32gBCV7HN7vZ5roaJ3gogPXVdb85wB4IZXwQFBo+G3adOnVJKSkrABt2tcnJydOWVV2rlypX65JNP1Lt3bw0fPlyzZ8/WzTc7t/Ow2WzW+vXr9eKLL6qoqEjl5eVKTEzUj370I33ve9/z8jMAAABAOHn88cf1+OOP69NPP9XmzZu1detWVVZWaunSpVq6dKn+5V/+RVOnTtWECRPaZkj7C/faAEJRQ2OzT88LVL6Y4Q4EK74ICgweDbuvvfZaVVRU6OTJk+rfv78nL+1xY8eO1dixY7s9bteuXZ2OpaSk6MUXX/RkWQAAAECnbrjhBt1www2aP3++/va3v2nz5s3avn279u7dq48//li/+tWvNGbMGE2ZMkXjxo3zW53cawMINcYo9+ITd88LVL6c4Q4EE74IChwe3d1m0aJFio2N1X333af169ervLxcX331lc6cOdPpHwAAAACuMRgMGjlypBYsWKCPPvpIr776qu666y5FRkZqx44devzxx/1dIgCElPQk92ZfunteoGKGO9CxnnwRBM/y6FeMc+fOlcFgUFVVlX7+8593e7zBYND+/fs9WQIAAAAQVj799FMVFRVp7969amhokCT16dPHz1UBQGhJio9VWoLJpZmb5kRTyM3YZIY70DG+CAocHv1tU15e7tLxDmcb2QAA3OLpndwBAIFh//792rJli7Zu3aovv/xSDodDERERuummmzR16lTdfvvt/i4RAEJOTmaqcvOKnOrJazBI2Rmp3i/Kx5jhDnSML4ICh0f/Rt9//31PXg4A4CZrpV15BeUdzjxJSzApJzOVjTAAIMgcPnxYW7Zs0Z/+9CdVVVVJOj95JCUlRVOmTNHUqVM1aNAgP1cJAKHLkhynuZPS9MKW0i4Db4NBmjfZHJL328xwBzrGF0GBw6Nh9+DBgy/67xMnTqiyslJ1dXUaO3asHA6HTp8+rZiYGE8+LADgAtus1V3egJdW1yo3r0jzJps1Pn2Ib4sDALhlypQpbasoHQ6H4uLiNGnSJE2dOlXXXXedn6sDgPAxwZKgQZcZlV9YrpKq9oGvOdGk7IzQnljCDHegPb4IChxemSv//vvva9myZSorK5P0z97cR44c0Z133ql77rlHTzzxhCIjmaoPAJ5krbR3O9NEkhwOacnmEsX3iw7pG3EACBWHDh1Snz59dOutt2rKlCkaPXq0evXq5e+yACAsWZLjZEmOC9uWgcxwBzrGF0GBweNp88svv6xly5bJ4XDIYDCoV69eOnfunCTp6NGjamho0GuvvaZDhw7p1Vdf5SYdADwor6DcqTdW6XzgnV9Y/v/Zu/ewqsq8/+OfDSgBYrpFcDwgqOCYSaCmznShdlbTqSitJGccRxsdtckxm2iu8alsJm2c0TxU01NZOkjWjOZkpompkPmgGQQpEhIHDxkiZZyEgP37wx9MDIe9Qdh7r73fr+vqj9a91tpfWm3WzWfd677pfAKAAfz5z3/WbbfdxhuSAOBEQgL93SLcbgoj3IHGeBDkHNo17D506JDWrVunLl266NFHH9WkSZM0d+5cpaamSpJGjx6t5cuXa9myZfr444+VkJCgBx98sD1LAAC3lVdY0qpXpiQpPb9YeYUlbttJBwCjiImJcXQJAAA04O4j3P8b/x0g8ayPQDEAACAASURBVCDIGbRr2P3GG2/IZDLpL3/5i2688cZG7R4eHrrrrrvUo0cPzZkzR//+978JuwGgnaTlFbX5ODphAOA8nnvuOZlMJs2ePVvdu3ev39YaJpNJS5Ys6YjyAABowJ1HuEuXp5KMT8pucuDRsGCzYscSbLobHgQ5VruG3WlpaerVq1eTQfcPRUdHq3fv3jp58mR7fjwAuLXyymq7HgcA6BivvfaaTCaT7r333vqwu26bLeqmEyTsBgCgY+1KLWhxyoqMgmLFxado0eQI3R7Zz77FweHc/UGQo7Rr2F1WVqbevXvbtK/ZbFZRUdtGIQIAGvP1btuv9LYeBwDoGHfddZdMJpP8/f0bbQMAAM4hNbfI6tzM0uW1klbtSFfg1T6M8AbsoF0TjsDAQOXm5qq6ulpeXs2fuqqqSrm5uerZs2d7fjwAuLXIkLZ1nNp6HACgYyxfvtymbQAAwHHik7KtBt11LBZpc3I2YTdgBx7tebIbbrhBly5d0ksvvdTifuvXr1dZWZl++tOftufHA4BbCwn017Bgc6uOiehv5rUqADCAI0eO6MSJEzbt+/HHH2vz5s0dXBEAAO4rr7CkyTm6W5KeX6y8wpIOqghAnXYNux966CFdddVVWr9+veLi4vTRRx/p0qVLkqSLFy/q008/1WOPPaaXX35Z3t7emjVrVnt+PAC4vdixYbL1LXeTSZoeHdaxBQEA2sWMGTP0zDPP2LTv3/72N61ataqDKwIAwH2l5bVtWt62HgfAdu06jUnfvn21Zs0aLVq0SNu2bdM777xT3zZmzBhJlxfM8fb21ooVKxQaGtqeHw8Abi8qNECP3DHM6txxJpO0aHIEr9EBgBMqKSnR119/3Wh7eXl5iwu8WywWnT17Vjk5OR1ZHgAAbq+8stquxwGwXbuvShYdHa3t27fr1Vdf1b59+/TVV1/Vt5nNZo0bN06zZ8/WwIED2/ujAQCSJkQFK6ibrzYnZys9v/GrdRH9zZoeHUbQDQBOqqqqSvfff7/Kysrqt5lMJmVmZmrKlCk2nWP06NEdVR7cTF5hidLyilReWS1fby9FhgQwBRoAt+fr3bY4ra3HAbBdh3zL+vTpo6VLl2rp0qUqKytTaWmpfH19G6woDwDoOFGhAYoKDeAPVAAwoB49emjBggUNFqU0mUyyWFkFy2QyydfXV4MHD9ZTTz3V0WXCxaXmFik+KbvJOWmHBZsVO5YH5wDcV2RI237/tfU4ALbr8EdKfn5+8vPz6+iPAQA0ISTQn3AbAAxo5syZmjlzZv2///jHP9aIESMUHx/vuKLgNnalFrQ4JVpGQbHi4lO0aHKEbo/sZ9/iAMAJhAT6a1iwuVWLVEb0N/O3GWAH7bpAJQAAAID2t2DBAsXExDi6DLiB1Nwiq2t/SJLFIq3aka7UXBZbA+CeYseGyWSybV+TSZoeHdaxBQGQRNgNAAAAOL0FCxbonnvucXQZcAPxSdlWg+46Fou0OTm7YwsCACcVFRqgR+4YZjXwNpmkRZMjmPoJsBNmxgcAAAAMIiMjQzk5OaqoqFBtbW2DtpqaGlVWVqqwsFBJSUnavXu3g6qEUeUVlrTqlXxJSs8vVl5hCa/mA3BLE6KCFdTNV5uTs5We3/j3Z0R/s6ZHs8YBYE+E3QAAAICTq6qq0oIFC5ScnGx1X4vFIpOt71UDP5CW17YpSdLyigi7AbitqNAARYUGKK+wRGl5RSqvrJavt5ciQwL43Qg4AGE3AAAA4OTi4+OVlJQkSQoODlbXrl31+eefq2/fvgoICNDXX3+tr776SiaTSZGRkVqwYIGDK4YRlVdW2/U4AHAlIYH+hNuAE2DObgAAAMDJvf/++zKZTPrDH/6gDz74QJs3b5aPj4+GDBmiN998U/v27dOrr76qq6++WllZWQoODnZ0yTAgX++2jYVq63EAAADtjbAbAAAAcHK5ubm6+uqr9eCDD0qSOnfurB//+Mc6cuRI/T433HCDli1bpoqKCr322muOKhUGFhnStjll23ocAABAeyPsBgAAAJxcRUWF+vTp02Au7oEDB+rixYv6+uuv67fdcsstMpvNOnTokCPKhMGFBPprWLC5VcdE9Dfz2r6Tyiss0TuHc7U5OVvvHM5VXmGJo0sCAKDD8b4ZAAAA4OS6du2qioqKBtv69u0rSTp58qSCgoIkSSaTSb1799bJkyftXiNcQ+zYMMXFp8hisb6vySRNjw7r+KLQKqm5RYpPylZGQXGjtmHBZsWODVNUKKPxAQCuiZHdAACXx8gmAEYXFhamgoICnTt3rn5baGioLBaLMjIyGuxbVFQkLy/GtDgrZ78nRYUG6JE7hukHLxE0yWSSFk2OIDR1MrtSCxQXn9Jk0C1JGQXFiotP0e60U3auDAAA+6AXDABwWYxsAuAqbrvtNqWkpGjOnDmKi4vTT3/6U40YMUJeXl7atGmT7rjjDvXr108JCQk6d+6crrnmGkeXjP9ipHvShKhgBXXz1ebkbKXnN643or9Z06Odp15clppbpNXvZVgdlW+xSKt2pCvwah+uIQDA5RB2AwBc0q7Ughb/4Ksb2bRocoRuj+xn3+IAoJWmTp2qf/3rXzp+/LjmzJmjtLQ0BQQEaMqUKdq2bZsmTpyoLl266OLFizKZTLrrrrscXTJ+wIj3pKjQAEWFBiivsERpeUUqr6yWr7eXIkMCmKPbScUnZds0/Yx0OfDenJxN2A0AcDmE3QAAl8PIJgCupnPnztq4caPWrVunw4cPq1OnTpKkuLg45eXlKTU1Vd9++60k6eabb1ZsbKwjy8UPGP2eFBLoT7htAHmFJc1OXdKc9Pxi5RWWcH0BAC6FsBsA4HIY2QTAFXXp0kWPP/54g21du3ZVQkKCUlNTdebMGYWEhOjaa691UIVoCvck2ENaXlGbjyPsBgC4EsJuAIBLYWQTAHcUFRWlqKgoR5eB/8I9ybU485Qu5ZXVdj0OAABnRdgNAHApjGwCYHQVFRXtch4fH592OQ/ajnuSazDC4qK+3m37076txwEA4Ky4swEAXAojmwAY3fDhw6/4HCaTScePH2+HanAluCcZn1EWF40MaVvY3tbjAABwVh6OLgAAgPbEyCYARmexWK74n9raWkf/GBD3JKNr7eKiqbltG8nfHkIC/TUs2NyqYyL6m3mDAADgcuhFAQBcCiObABjd3r17HV0C2gn3JGMz2uKisWPDFBefYlPNJpM0PTqs44sCAMDOCLsBAC6lbmRTaxYEY2QTAGfSp08fR5eAdsI9ybiMuLhoVGiAHrljmNXR6CaTtGhyhMPnGQcAoCMwjQkAwOXEjg2TyWTbvoxsAmBEFy5c0CeffKJ9+/ZJkmpra1VaWurgqtAU7knGdCWLizrShKhgPRs7WhH9m57SJKK/Wc/Gjnbo/OIAAHQkRnYDAFwOI5sAuKq9e/dq/fr1yszMlPSfhShPnz6tu+66S/fdd58WL14sLy+6+c6Ce5IxGXlx0ajQAEWFBiivsERpeUUqr6yWr7eXIkMCeGsAAODy6AUDAFzShKhgBXXz1ebkbKXnN34NOaK/WdOjwwgVABjGunXrtH79elksFplMJnl6eqqmpkaSdObMGZWXl+v111/XF198oZdfflmenp4Orhh1uCcZjyssLhoS6E+4DQBwO85zJwYAoJ0xsgmAqzh06JDWrVunLl266NFHH9WkSZM0d+5cpaamSpJGjx6t5cuXa9myZfr444+VkJCgBx980MFV44e4JxkLi4sCAGBMhN0AAJfHyCYARvfGG2/IZDLpL3/5i2688cZG7R4eHrrrrrvUo0cPzZkzR//+978Ju50U9yRjYHFRAACMiQUqAQAAACeXlpamXr16NRl0/1B0dLR69+6tkydP2qkywHWxuCgAAMZD2A0AAAA4ubKyMnXv3t2mfc1ms6qrHb9IHmB0dYuLWgu8WVwUAADnwTQmAAAAgJMLDAxUbm6uqqur5eXVfBe+qqpKubm56tmzpx2rA1wXi4sCAGAshN0AAACAk7vhhhv09ttv66WXXtKCBQua3W/9+vUqKyvTpEmT7Fgd4NpYXBQAAOMg7AYAAACc3EMPPaR3331X69ev15kzZ3THHXfo0qVLkqSLFy8qJydHb775pt599115e3tr1qxZDq4YcD0sLgoAgPMj7AYAAACcXN++fbVmzRotWrRI27Zt0zvvvFPfNmbMGEmSxWKRt7e3VqxYodDQUEeVCgAAADgMYTdcAq8UAgAAVxcdHa3t27fr1Vdf1b59+/TVV1/Vt5nNZo0bN06zZ8/WwIEDHVglAAAA4DiE3TC01NwixSdlK6Og8WIxw4LNih3LYjEAALSEB8bGcOrUKfXr1099+vTR0qVLtXTpUpWVlam0tFS+vr7y9+eaAQAAAITdMKxdqQVa/V6GLJam2zMKihUXn6JFkyN0e2Q/+xYHAICT44GxsfzmN79RRUWF/vnPf6pbt26SJD8/P/n5+Tm4MgAAAMB5eDi6AKAtUnOLWgy661gs0qod6UrNLbJPYQAAGMCu1ALFxac0GXRL/3lgvDvtlJ0rQ3MKCgrk7e1dH3QDAAAAaIywG4YUn5RtNeiuY7FIm5OzO7YgAAAMggfGxtS1a1ddunTJ0WUAAAAATo2wG4aTV1jS7Ei05qTnFyuvsKSDKgIAwDh4YGxM8+bN05kzZ7RixQpVVFQ4uhwAAADAKTFnNwwnLa9tI8zS8opYcAsA4Nau5IEx91DHqqysVGRkpF5//XXFx8crLCxMPXv2lLe3d5P7m0wmrV692s5VAgAAAI5F2A3DKa+stutxAAC4Ch4YG9eKFStkMplksVhUVVWlY8eOtbi/yWSyU2UAAACA8yDshuH4erftf9u2HgcAgKvggbFxzZ8/nwAbAAAAsIL0D4YTGRJg1+MAAHAVPDA2roULFzq6BAAAAMDpsUAlDCck0F/Dgs2tOiaiv5nXrwEAbo8HxgAAAABcGWE3DCl2bJhsfZPXZJKmR4d1bEEAABgAD4wBAAAAuDLCbhhSVGiAHrljmNXA22SSFk2OUFQoI9IAAJB4YAwAAADAdRF2w7AmRAXr2djRiujf9Ai1iP5mPRs7WrdH9rNzZQAAOC8eGAMAAABwVW652tDOnTv1xhtv6OTJk/L09FRUVJTmz5+viIgIm8/xySefKDY2ttn2KVOmaOXKle1RLloQFRqgqNAA5RWWKC2vSOWV1fL19lJkSACvXBsE1w4A7G9CVLCCuvlqc3K20vOLG7VH9DdrenQYQTcAAAAAQ3G7sHvt2rVat26d/Pz8NGbMGH333Xc6cOCAPvroI73wwgsaN26cTec5fvy4JCkqKkp9+/Zt1D58+PB2rRstCwn0JyA1mNTcIsUnZSujoHHIMizYrNixhCwA0JF4YAwAAADA1bhV2P35559r3bp16tOnjxISEhQUFCRJ2r9/v+bPn68nnnhCiYmJ8vHxsXquzMxMSdKSJUs0YsSIDq0bcDW7Ugu0+r0MWSxNt2cUFCsuPkWLJkcwDQ0AdDAeGAMAAABwFW41Z/eGDRskSQsXLqwPuiVp/PjxiomJUVFRkXbu3GnTuY4fPy4PDw8NGTKkQ2oFXFVqblGLQXcdi0VatSNdqblF9ikMAAAAAAAAhuZWYXdycrJMJpNuuummRm233HKLJCkpKcnqeaqqqpSTk6MBAwbI19e33esEXFl8UrbVoLuOxSJtTs7u2IIAAAAAAADgEtwm7C4sLNTFixcVFBSkq6++ulH7gAEDJElffPGF1XNlZ2fr+++/V58+fbRq1SpNnDhRERERuummm7RixQp999137V4/4AryCkuanKO7Jen5xcorLOmgigAAAAAAAOAq3CbsPn/+vCSpZ8+eTbbXbb9w4YLVc9UtTnngwAFt3LhR/fr104gRI/Tdd9/ptdde09SpU1Vc3LpAD3AHaXltm5KkrccBAAAAAADAfRh6gcrFixfr2LFjVve79dZbNW7cOElqdvFJb29vSVJ5ebnV89UtTjlq1Cg9//zzMpvNkqTi4mL97ne/06FDh/Q///M/Wrt2rdVzbd26Vdu2bbO63w8/FzCq8spqux4HAADsa+fOnXrjjTd08uRJeXp6KioqSvPnz1dERESrzvPvf/9bW7Zs0YkTJ1RZWanevXvr5ptv1ty5c5t8SxMAAACQDB52nz17Vrm5uVb3O3/+vDw8bBvEXltba3WfuLg4zZgxQz179lSXLl3qt5vNZq1YsUITJkzQnj17VFhYqMDAwBbPdebMGR0+fNim2gCj8/Vu26+cth4HAADsZ+3atVq3bp38/Pw0ZswYfffddzpw4IA++ugjvfDCC/WDT6xZunSptmzZos6dOysiIkL+/v7KyMjQa6+9psTERCUkJCggIKCDfxoA9pZXWKK0vCKVV1bL19tLkSEBCgn0d3RZAACDMXSClJCQYPO+J06ckCRVVlY22V633ZYFJzt16qTQ0NAm24KCgnTNNdfok08+0fHjx62G3X369NGoUaOsfqZ0eWR3SQlzF8O4IkPa9odpW48DAAD28fnnn2vdunXq06ePEhISFBQUJEnav3+/5s+fryeeeEKJiYnNvmVZJzk5WVu2bFFQUJA2bNiggQMHSrr89uWSJUuUmJioP//5z/rb3/7W4T8TAPtIzS1SfFJ2k2v7DAs2K3ZsmKJC+XsAAGAbQ4fdrVEXOhcVNT33r7U5vVujbqRJRUWF1X1jYmIUExNj03lnzJjBKHAYWkigv4YFm1u1SGVEfzMjOgAAcHIbNmyQJC1cuLA+6Jak8ePHKyYmRm+99ZZ27type+65p8Xz1E3v99vf/rY+6JYuD0j505/+pA8//FB79uxRVVWVOnfu3AE/CQB72pVaoNXvZchiabo9o6BYcfEpWjQ5QrdH9rNvcQAAQ3KbBSrNZrN69Oihc+fOqbS0tFF7Tk6OJCk8PNzquZYtW6b58+c3u5jl6dOnJUm9evW6gooB1xQ7Nkwmk237mkzS9Oiwji0IAABcseTkZJlMJt10002N2m655RZJUlJSktXz+Pn5KSwsTFFRUY3aunXrpu7du6uqqkrffvvtlRcNwKFSc4taDLrrWCzSqh3pSs1l0XoAgHVuE3ZLUnR0tGpqarRv375GbYmJiZJk01yCqampSkxM1Icfftio7YsvvlBmZqa6deumoUOHXnnRgIuJCg3QI3cMsxp4m0zSoskRvLIIAICTKyws1MWLFxUUFNTk4pEDBgyQdLmfbM2yZcu0Y8eO+mN+6OzZs7pw4YK8vb3VvXv3Ky8cgEPFJ2VbDbrrWCzS5uTsji0IAOAS3GYaE0l64IEHtH37dq1cuVKRkZHq1+/ya1D79+/Xtm3b1LNnT02ePLnBMXUjvnv37l0/x+B9992npUuXatWqVRo+fHj9K5bFxcWKi4tTTU2NZs+ezauVQDMmRAUrqJuvNidnKz2/8ZQmEf3Nmh7N3HwAABiBtekA67Y391akrVavXi1JuvHGG9WpUyer+2/durV+WhRrMjMzr6g2AK2TV1jSqqkNJSk9v1h5hSVMcQgAaJFbhd2RkZH61a9+pVdeeUVTpkzRmDFjVFZWpiNHjsjLy0srV65sFFBPmjRJkrRx40aNHj1akjR16lQdPHhQu3fv1p133qmRI0fKx8dHKSkpKisr08SJEzVr1iy7/3yAkUSFBigqNIBV1wEAcEKLFy/WsWPHrO5366231r8Z2dzik97e3pIuLzLZVm+++aa2b98uHx8fPfzwwzYdc+bMGda7AZxUWl7bpiRJyyvibwUAQIvcKuyWpCVLlmjQoEHatGmTDh06JD8/P40fP14LFy60edoRDw8PPf/889qyZYvefvttpaamysPDQ4MGDdK0adN07733ymTrpMSAmwsJ9KfDCgCAkzl79qxyc3Ot7nf+/Hl5eNg2M2JtbW2bannrrbf01FNPyWQy6U9/+lODhStb0qdPH40aNcqmfTMzM1VSUtKm+gC0XnlltV2PAwC4D7cLuyXp7rvv1t13323TvllZWU1uN5lMuv/++3X//fe3Z2kAAACAwyUkJNi874kTJyRJlZWVTbbXbff19W11HevWrdPatWvl4eGhZcuW6Y477rD52JiYGMXExNi074wZMxgFDtiRr3fbooi2HgcAcB/cKQAAAAC0WWBgoCSpqKjpaQmszendlOrqav3xj3/U1q1b1blzZz333HOaOHHilRcLwClEhrRtbZ62HgcAcB+2vXMIAAAAAE0wm83q0aOHzp07p9LS0kbtdQu+h4eH23S+qqoqzZs3T1u3blXXrl316quvEnQDLiYk0F/Dgs2tOiaiv5npDwEAVhF2AwAAALgi0dHRqqmp0b59+xq1JSYmSlL9QpbWLF68WElJSQoMDFR8fLzN824DMJbYsWGydakrk0maHh3WsQUBAFwCYTcAAACAK/LAAw/IZDJp5cqVOnXqVP32/fv3a9u2berZs6cmT57c4JicnBzl5OSooqKifltCQoI++OADdenSRRs3brR5NDgA44kKDdAjdwyzGnibTNKiyRGKCmUKEwCAdczZDQAAAOCKREZG6le/+pVeeeUVTZkyRWPGjFFZWZmOHDkiLy8vrVy5Up07d25wzKRJkyRJGzdu1OjRo1VdXa0XXnhB0uX5vdevX9/s5z3xxBMym1s3BQIA5zMhKlhB3Xy1OTlb6fnFjdoj+ps1PTqMoBsAYDPCbgAAAABXbMmSJRo0aJA2bdqkQ4cOyc/PT+PHj9fChQs1dOhQq8dnZWWpsLBQkpSbm6vc3Nxm933kkUcIuwEXERUaoKjQAOUVligtr0jlldXy9fZSZEgAc3QDAFqNsBsAAABAu7j77rt1991327RvVlZWg38fOnRoo20A3EdIoD/hNgDgijFnNwAAAAAAAADA8Ai7AQAAAAAAAACGR9gNAAAAAAAAADA8wm4AAAAAAAAAgOERdgMAAAAAAAAADI+wGwAAAAAAAABgeITdAAAAAAAAAADDI+wGAAAAAAAAABiel6MLgHPKKyxRWl6Ryiur5evtpciQAIUE+ju6LAAAAAAAAABoEmE3GkjNLVJ8UrYyCoobtQ0LNit2bJiiQgMcUBkAAAAAAAAANI9pTFBvV2qB4uJTmgy6JSmjoFhx8SnanXbKzpUBAAAAAAAAQMsIuyHp8oju1e9lyGJpeT+LRVq1I12puUX2KQwAAAAAAAAAbEDYDUlSfFK21aC7jsUibU7O7tiCAAAAAAAAAKAVCLuhvMKSZqcuaU56frHyCks6qCIAAAAAAAAAaB3Cbigtr21TkrT1OAAAAAAAAABob4TdUHlltV2PAwAAAAAAAID2RtgN+Xp72fU4AAAAAAAAAGhvhN1QZEiAXY8DAAAAAAAAgPZG2A2FBPprWLC5VcdE9DcrJNC/gyoCAAAAAAAAgNZhHgpIkmLHhikuPkUWi/V9TSZpenRYxxcFAGh3eYUlSssrUnlltXy9vRQZEsDDSwAAAACASyDshiQpKjRAj9wxTKvfy2gx8DaZpEWTIxQVyhQmAGAkqblFik/KVkZBcaO2YcFmxY4N43c7AAAAAMDQCLtRb0JUsIK6+WpzcrbS8xuHIRH9zZoeTRgCAEazK7WgxYeZGQXFiotP0aLJEbo9sp99iwMAAAAAoJ0QdqOBqNAARYUG8Jo7ALiI1Nwiq2/tSJLFIq3aka7Aq314qAkAAAAAMCTCbjQpJNCfcBsAXEB8UrZN6zFIlwPvzcnZhN0AAAAAAEMi7AZcCCPyAfxQXmFJk3N0tyQ9v1h5hSX87gAAAAAAGA5hN+ACWHgOQFPS8orafBxhNwAAAADAaDwcXQCAK7MrtUBx8SnNjt6sW3hud9opO1cGwNHKK6vtehwAAAAAAI5E2A0YWGsXnkvNbdsoTwDG5Ovdthe42nocAAAAAACORNgNGFhbFp4D4D4iQ9o2fVFbjwMAAAAAwJEIuwGDupKF5wC4h5BAfw0LNrfqmIj+ZubrBgAAAAAYEmE3YFBXsvAcAPcROzZMJpNt+5pM0vTosI4tCAAAAACADkLYDRgUC88BsEVUaIAeuWOY1cDbZJIWTY5QVChTmAAAAAAAjIkVqACDYuE5ALaaEBWsoG6+2pycrfT8xtMfRfQ3a3p0GEE3AAAAAMDQSL0Ag2LhOQCtERUaoKjQAOUVligtr0jlldXy9fZSZEgAc3QDAAAAAFwCYTdgUHULz7VmkUoWngMQEujP7wEAAAAAgEtizm7AwFh4DgAAAAAAALiMsBswMBaeAwAAAAAAAC5jGhPA4Fh4DgAAAAAAACDsBlwCC88BAAAAAADA3RF2Ay6EhecAAAAAAADgrpizGwAAAAAAAABgeITdAAAAAAAAAADDI+wGAAAAAAAAABgeYTcAAAAAAAAAwPAIuwEAAAAAAAAAhkfYDQAAAAAAAAAwPMJuAAAAAAAAAIDhEXYDAAAAAAAAAAyPsBsAAAAAAAAAYHiE3QAAAAAAAAAAwyPsBgAAAAAAAAAYHmE3AAAAAAAAAMDwCLsBAAAAAAAAAIZH2A0AAAAAAAAAMDzCbgAAAAAAAACA4RF2AwAAAAAAAAAMj7AbAAAAAAAAAGB4bh92r127VoMHD9a5c+dafWxubq5+97vfady4cbruuus0ZcoUbdq0SbW1tR1QKQAAAAAAAACgOW4ddicmJuqll15q07EnTpzQvffeq/fee0+9e/dWdHS0zp07p2eeeUaPPfZYO1cKAAAAAAAAAGiJl6MLcJT4+Hg9++yzqq6ubvWxFotFjz32mEpLS/Xcc8/pzjvvlCQVFxdr5syZevfdd3Xrrbfq9ttvb++yAQAAAAAAAABNcLuR3Tk5OXrooYf09NNPq0uXLvLz82v1OQ4ePKisrCyNGjWqPuiWJLPZrCeffFKStGnTpvYqGQAAAAAAAABghduF3U8++aQOHDigG264QVu3blW3bt1afY7k5GRJ0i23aHXwIAAAIABJREFU3NKobfjw4erRo4eOHj2q0tLSK64XAAAAAAAAAGCd201jcu211+qXv/ylbrrppjaf4+TJk5Kk8PDwJttDQ0N14cIF5eTk6Lrrrmvz5wBwPnmFJUrLK1J5ZbV8vb0UGRKgkEB/R5cFAAAAAADg9twu7P79739/xecoLCyUJPXs2bPJ9rrtRUVFVs+1detWbdu2zabPzczMtLFCAO0tNbdI8UnZyigobtQ2LNis2LFhigoNcEBlAAAAAAAAkAwedi9evFjHjh2zut+tt96qxYsXt9vnVlRUSJKuuuqqJtvrtpeXl1s915kzZ3T48OF2qw1A+9uVWqDV72XIYmm6PaOgWHHxKVo0OUK3R/azb3EAAAAAAACQZPCw++zZs8rNzbW63/nz59v1cz09PSVJJpOpxf1qa2utnqtPnz4aNWqUTZ+bmZmpkpISm/YF0D5Sc4taDLrrWCzSqh3pCrzahxHeAAAAAAAADmDosDshIcEhn+vj4yNJunTpUpPtddv9/PysnismJkYxMTE2fe6MGTMYBQ7YWXxSttWgu47FIm1OzibsBgAAAAAAcAAPRxdgRIGBgZKan5O7biR5c3N6AzCGvMKSJufobkl6frHyCnkDAwAAAAAAwN4Iu9sgLCxMknTy5MlGbRaLRV9++aU8PT01cOBAe5cGoB2l5VlfZLY9jwMAAAAAAEDbEXa3QXR0tCRp7969jdo+/fRTFRcXa8SIEerSpYu9SwPQjsorq+16HAAAAAAAANqOsNuKgoIC5eTkNFgYctSoUQoLC9PBgwf11ltv1W8vLi7WU089JUn65S9/afdaAbQvX++2LWvQ1uMAADC6nTt36r777tOIESM0atQo/frXv1Z6evoVnbOqqko/+9nPNHjwYJ0+fbqdKgUAAIArIuy2YubMmZo0aZL27NlTv83Dw0N//vOf5evrqz/+8Y+aNm2aFixYoAkTJigrK0vTpk3TTTfd5MCqAbSHyJC2LTTZ1uMAADCytWvXatGiRcrOztbo0aMVHh6uAwcO6IEHHtCBAwfafN7nn39eWVlZ7VgpAAAAXBXDD9soIiJCb7/9ttasWaOUlBRlZ2erf//++t3vfqepU6c6ujwA7SAk0F/Dgs2tWqQyor9ZIYH+HVgVAADO5/PPP9e6devUp08fJSQkKCgoSJK0f/9+zZ8/X0888YQSExPl4+PTqvMePXpUr732WkeUDAAAABfk9mH3hx9+2Ob2QYMGac2aNe1dEgAnEjs2THHxKbJYrO9rMknTo8M6vigAAJzMhg0bJEkLFy6sD7olafz48YqJidFbb72lnTt36p577rH5nOXl5Xr88cfVt29fXbp0SYWFhe1eNwAAAFwL05gAQAuiQgP0yB3DZDK1vJ/JJC2aHKGoUKYwAQC4n+TkZJlMpian8rvlllskSUlJSa065/Lly3X69Gk9++yzuuqqq9qlTgAAALg2tx/ZDQDWTIgKVlA3X21OzlZ6fuMpTSL6mzU9OoygGwDglgoLC3Xx4kX16tVLV199daP2AQMGSJK++OILm8954MABbdmyRbNmzdLIkSPbrVYAAAC4NsJuALBBVGiAokIDlFdYorS8IpVXVsvX20uRIQHM0Q0AcGvnz5+XJPXs2bPJ9rrtFy5csOl83377rf7whz9o0KBBeuSRR9pc19atW7Vt2zab9s3MzGzz5wAAAMB5EHYDQCuEBPoTbgMAXN7ixYt17Ngxq/vdeuutGjdunCQ1u/ikt7e3pMtzcNviqaee0jfffKMXX3yx/ti2OHPmjA4fPtzm4wEAAGA8hN0AAAAAGjh79qxyc3Ot7nf+/Hl5eNi2DFBtba3VfXbs2KGdO3dq3rx5GjZsmE3nbU6fPn00atQom/bNzMxUSUnJFX0eAAAAHI+wGwAAAEADCQkJNu974sQJSVJlZWWT7XXbfX19WzzP119/raefflpDhgzR/Pnzbf785sTExCgmJsamfWfMmMEocAAAABdA2A0AAACgzQIDAyVJRUVFTbZbm9O7zt///nddvHhRAwYMUFxcXIO2unM/++yz8vHx0bx58zRw4MArLR0AAAAuhrAbAAAAQJuZzWb16NFD586dU2lpqbp06dKgPScnR5IUHh7e4nnq5vROTU1Vampqk/skJiZKkqZOnUrYDQAAgEZsm2APAAAAAJoRHR2tmpoa7du3r1FbXUBdt5Blc5YvX66srKwm/wkODpYk7d27V1lZWRo9enT7/xAAAAAwPMJuAAAAAFfkgQcekMlk0sqVK3Xq1Kn67fv379e2bdvUs2dPTZ48ucExOTk5ysnJUUVFhb3LBQAAgItiGhMAAAAAVyQyMlK/+tWv9Morr2jKlCkaM2aMysrKdOTIEXl5eWnlypXq3Llzg2MmTZokSdq4cSMjtQEAANAuCLsBAAAAXLElS5Zo0KBB2rRpkw4dOiQ/Pz+NHz9eCxcu1NChQx1dHgAAANwAYTcAAACAdnH33Xfr7rvvtmnfrKwsm8+7Z8+etpYEAAAAN8Kc3QAAAAAAAAAAwyPsBgAAAAAAAAAYHmE3AAAAAAAAAMDwCLsBAAAAAAAAAIZH2A0AAAAAAAAAMDzCbgAAAAAAAACA4RF2AwAAAAAAAAAMj7AbAAAAAAAAAGB4hN0AAAAAAAAAAMMj7AYAAAAAAAAAGB5hNwAAAAAAAADA8Ai7AQAAAAAAAACGR9gNAAAAAAAAADA8wm4AAAAAAAAAgOERdgMAAAAAAAAADI+wGwAAAAAAAABgeITdAAAAAAAAAADDI+wGAAAAAAAAABgeYTcAAAAAAAAAwPAIuwEAAAAAAAAAhkfYDQAAAAAAAAAwPMJuAAAAAAAAAIDhEXYDAAAAAAAAAAyPsBsAAAAAAAAAYHiE3QAAAAAAAAAAwyPsBgAAAAAAAAAYHmE3AAAAAAAAAMDwCLsBAAAAAAAAAIZH2A0AAAAAAAAAMDzCbgAAAAAAAACA4RF2AwAAAAAAAAAMj7AbAAAAAAAAAGB4hN0AAAAAAAAAAMPzcnQBsF1+fr4kKTMzUzNmzHBwNQAAAO4hMzNT0n/6YnA99LMBAADsryP62YTdBlJeXi5JKikp0eHDhx1cDQAAgHup64vB9dDPBgAAcJz27GcTdhtI3759dfr0afn6+qp///4d/nmZmZkqKSmRv7+/hgwZ0uGfh/bBdTMurp1xce2MietmXPa+dvn5+SovL1ffvn07/LPgGPSzYSuunTFx3YyLa2dcXDtjcoV+tslisVja7WxwKTNmzNDhw4c1atQobdq0ydHlwEZcN+Pi2hkX186YuG7GxbWD0fH/sHFx7YyJ62ZcXDvj4toZkytcNxaoBAAAAAAAAAAYHmE3AAAAAAAAAMDwCLsBAAAAAAAAAIZH2A0AAAAAAAAAMDzCbgAAAAAAAACA4RF2AwAAAAAAAAAMj7AbAAAAAAAAAGB4hN0AAAAAAAAAAMMj7AYAAAAAAAAAGJ7nk08++aSji4DzGjJkiEaNGqUhQ4Y4uhS0AtfNuLh2xsW1Myaum3Fx7WB0/D9sXFw7Y+K6GRfXzri4dsZk9OtmslgsFkcXAQAAAAAAAADAlWAaEwAAAAAAAACA4RF2AwAAAAAAAAAMj7AbAAAAAAAAAGB4hN0AAAAAAAAAAMMj7AYAAAAAAAAAGJ6XowuA8/n444/10ksvKSsrS99//72GDh2qOXPmaOzYsY4uDS1455139Pvf/77Z9rlz52rRokV2rAgt2bp1q+Li4hQfH6+RI0c2as/NzdXatWt19OhRffvttwoODta0adMUGxsrDw+eUzpSS9fuq6++0vjx45s9dvjw4UpISOjgClGnpqZGCQkJ2rZtm7788kvV1NSoX79+mjRpkmbPni1vb+8G+2dkZGj9+vXKyMhQeXm5Bg0apJ///OeaMmWKg34C99Sa6/bJJ58oNja22XNNmTJFK1eutEfZgM3oaxsTfW1joa9tTPSzjYN+tnG5Q1+bsBsN1N1cOnfurDFjxqi2tlYpKSmaM2eOnn76ad13332OLhHNyMzMlCTdcMMNMpvNjdqHDBli75LQjNTUVC1btqzZ9hMnTig2NlalpaUaPny4hg0bppSUFD3zzDP67LPPnPJm4i6sXbvjx49LkgYPHqzw8PBG7aGhoR1WGxqqqanRb37zG+3fv1++vr667rrr5OXlpc8++0xr1qzRgQMH9MYbb8jHx0eSdPDgQf36179WbW2trr/+evn4+OjQoUN69NFHdfLkSQIMO2ntdav7zkVFRalv376Nzjd8+HC71g9YQ1/buOhrGwd9bWOin20c9LONy2362hbg/zt37pzl2muvtYwYMcKSlZVVv/2zzz6zDB8+3DJs2DDLuXPnHFghWvLggw9awsPDuUZObteuXZaoqChLeHi4JTw83HLkyJEG7bW1tZYpU6ZYwsPDLe+880799gsXLtRv37Vrl73LhsX6tbNYLJa1a9dawsPDLdu3b3dAhfihhIQES3h4uGXKlCkNfi9euHDBct9991nCw8MtK1eutFgsFktFRYXlJz/5iWXo0KGWQ4cO1e+bn59vGTt2rCU8PNySkZFh95/BHbXmulksFsvjjz9uCQ8Pt3zyySeOKBdoFfraxkZf2xjoaxsT/WxjoZ9tXO7S1+b9HNSLj49XVVWVZs6c2eBJaUREhObMmaPKykpt2bLFgRWiJSdOnFBAQICCgoIcXQqacO7cOT322GN6+OGHVVtbq4CAgCb3O3jwoLKysjRq1Cjdeeed9dvNZrOefPJJSdKmTZvsUTL+P1uvnfSfJ99Dhw61V3loxrZt2yRJTzzxRIPfiz/8Lr333nuSpO3bt+vChQuaMmWKxowZU79vcHCwHn30UUl87+ylNddNuvyd8/DwYEQlDIG+trHR13Zu9LWNiX62MdHPNi536WsTdqNecnKyJOmWW25p1Fa3LSkpya41wTanTp3Sd999x43fia1evVrbt2/Xtddeqy1btmjAgAFN7tfS93D48OHq0aOHjh49qtLS0g6tF/9h67WTLr/i7Ovry2uUTqB79+4aMGCAIiIiGrWFhIRIkgoLCyX953t38803N9r3xhtvlKenJ/c/O2nNdauqqlJOTo4GDBggX19fe5YJtAl9beOir+386GsbE/1sY6KfbVzu0tdmzm5IkiwWi06ePCkPD48mbzAhISHy8PDQyZMnZbFYZDKZHFAlmlM3h2CPHj20bNkyJSUl6dy5c+rdu7d+9rOfNblABOxrwIABWrFihX72s5+1uOjNyZMnJanJeeiky3PRXbhwQTk5Obruuus6pFY0ZOu1+/bbb3X27FkNHTpUGzZs0Pbt25Wfny9/f3/deOONWrBgAaPB7Oill15qti0jI0OS1KtXL0lSdna2pKa/d126dFFgYKC++uorFRUVtTjiCFeutdft+++/V58+fbRq1Sp98MEHOnPmjAICAnT77bdr3rx56tq1q13qBqyhr21s9LWdH31tY6KfbUz0s43LXfrajOyGJOnixYuqqqpSt27d1Llz50btXl5e6t69uyoqKlRWVuaACtGSule6tm7dqh07dmjQoEG67rrr9PXXX2vNmjX6xS9+oUuXLjm4Svf20EMP6a677rK6unvdU9SePXs22V63vaioqH0LRLNsvXZ1fwgfO3ZMq1atUo8ePTR69GjV1NTorbfe0j333KMvv/zSHiWjBRaLRc8//7wk6bbbbpMknT9/XhLfO2fW1HWru/cdOHBAGzduVL9+/TRixAh99913eu211zR16lQVFxc7rGbgh+hrGxt9bedHX9uY6Ge7FvrZxuVqfW3CbkiSKioqJKl+xdWmXHXVVZJEB9wJ1d38J06cqH379unFF1/UP/7xD+3YsUM//vGPlZqaqtWrVzu4Stii7rtY9337b3Xby8vL7VYTbFPXGQgPD9f777+vDRs26OWXX9bevXs1efJknT9/vn5eOjjO3/72Nx05ckQBAQGaPXu2JL53RtDUdau7940aNUp79+7Vyy+/rA0bNuiDDz7QT37yE+Xl5el//ud/HFk2UI++trHR13Yd3PONiX62MdDPNi5X62sTdkOSrD5J/SGLxdKBlaAt1qxZo/fee0/PPfdcg7mU+vbtq+XLl8tkMmnLli36/vvvHVglbOHp6SlJVl9frq2ttUc5aIWZM2cqMTFRb7zxhvr161e/3dfXV88884yCgoJ07NgxpaWlObBK9/b888/r5ZdfVufOnbV69WqZzWZJl793JpOJ752Tau66xcXFadeuXXrxxRfrt0mXF9hZsWKFfH19tWfPnvpRfIAj0dc2NvraroO+tjHRz3Z+9LONyxX72oTdkKT6TltlZWWz+9S9mme0iendgbe3twYNGtTka7FDhgxRr169VF5erry8PPsXh1apG/HV3Kuwddv9/PzsVhNs4+npqX79+jXoCNTx8fGpX3382LFj9i7N7VVXV2vp0qV64YUX5O3trXXr1un666+vb/fx8ZHFYmn2Hsj3zjGsXbdOnTopNDRUXbp0aXRsUFCQrrnmGlkslvrRYIAj0dc2NvraroO+tjHRz3Ze9LONy5X72oTdkHR5YQBfX1998803qq6ubtReXV2tb775Rt7e3k47AT2aV7fQQ90rRHBegYGBkpqfs8zanGdwXnwPHaOsrExz587Vli1b1LVrV7366qsaN25cg33qvnd136//xvfO/my5btbwnYMzoa/t2vh9Yxz0tV0T30HHoJ9tXK7e1ybshqTLr3ENGjRINTU1TY5IyM3NVW1tbbOrVsNxSktL9cc//lEPP/xwk388SdLp06cl/WdVXTivsLAwSf9ZKf6HLBaLvvzyS3l6emrgwIH2Lg1WrFu3Tg8//LCysrKabOd7aH8XL17UjBkzlJycrB/96EeKj49vMFqhTt33Licnp1FbaWmpCgsLZTabWSHeTmy9bsuWLdP8+fN14cKFJs/Ddw7OhL62cdHXdi30tY2JfrbzoZ9tXO7Q1ybsRr3o6GhJUmJiYqO2um2tfdKDjufn56c9e/Zo9+7dOnLkSKP2AwcO6JtvvlF4eHj9U1U4r7rv4d69exu1ffrppyouLtaIESOafJUIjpWVlaXdu3fr/fffb9R24cIFHTx4UJ06ddLo0aMdUJ37qaqq0kMPPaRjx45p0KBBevPNN5sNkVq6/3344Yeqqanh/mcnrbluqampSkxM1Icfftio7YsvvlBmZqa6deumoUOHdnTZgE3oaxsTfW3XQl/bmOhnOxf62cblLn1twm7Ui4mJkbe3t/73f/9Xn3/+ef32jIwMvfLKK7rqqqs0ffp0B1aIpphMJk2bNk3S5SdvX3/9dX1bQUGBnn76aUnSvHnzHFIfWmfUqFEKCwvTwYMH9dZbb9VvLy4u1lNPPSVJ+uUvf+mo8tCC++67T5K0YcMGHT16tH57WVmZnnjiCZWWluree+/lFT07WbNmjdLS0vSjH/1ImzZtanHEwe23364ePXpo27ZtOnDgQP32U6dO6a9//atMJpNmzpxph6rRmutW951btWpVg9FCxcXFiouLU01NjWbPnt3kHLuAI9DXNib62q6FvrYx0c92LvSzjctd+tomC8t94wfi4+P19NNPN3gqmpKSourqaq1YsUJ33nmngytEUy5duqRZs2bp6NGj8vX11YgRIyRdvnZVVVWaNWuWfv/73zu4SvzQjBkzdPjwYcXHx2vkyJEN2tLT0/WLX/xC5eXluu666xQYGKjDhw/r4sWLmjZtmpYtW+agqiG1fO2WL1+uDRs2yMPDQ8OHD1f37t31ySef6JtvvtHIkSP1yiuv1C+MhI7zzTffaPz48bp06ZKGDh2qAQMGNLvvypUrJV0e4fXwww+rpqZG119/vfz8/PR///d/qqio0KJFizR37lx7le+2Wnvdamtr9cgjj2j37t3q1KmTRo4cKR8fH6WkpKisrEwTJ07UX//6V3l6etrxpwBaRl/bmOhrGw99bWOin+386Gcblzv1tQm70ci+ffv0yiuv6Pjx4+rcubMGDx6sefPm6Sc/+YmjS0MLqqqq9Prrr+vdd99VXl6eOnfurGuuuUYzZszQbbfd5ujy8F9a6shJl+cRXLNmTf0fUf3799f999+vqVOnOuXNxJ1Yu3bvv/++/vGPf+j48eOqra1VcHCw7rzzTv3iF79Qp06dHFCx+/nggw+0cOFCm/b94dyPn376qdavX6/PPvtMFotFgwYN0syZMzVx4sSOKhU/0JbrZrFYtGXLFr399ts6efKkPDw8NGjQIE2bNk333nuvTCZTR5YMtAl9bWOir20s9LWNiX6286OfbVzu1Ncm7AYAAAAAAAAAGB5zdgMAAAAAAAAADI+wGwAAAAAAAABgeITdAAAAAAAAAADDI+wGAAAAAAAAABgeYTcAAAAAAAAAwPAIuwEAAAAAAAAAhkfYDQAAAAAAAAAwPMJuAAAAAAAAAIDhEXYDAAAAAAAAAAyPsBsAAAAAAAAAYHiE3QAAAAAAAAAAwyPsBgA4jccff1yDBw/WihUrOuwzTp8+rcGDB2vw4MEqKyuz+bjRo0dr8ODBSklJ6bDaAAAAgI5APxuAuyDsBgAAAAAAAAAYnpejCwAAwJ6CgoK0c+dOSZKvr6+DqwEAAABcA/1sAM6AsBsA4FY6deqkgQMHOroMAAAAwKXQzwbgDJjGBAAAAAAAAABgeIzsBgADOHXqlP7+97/r448/VmFhoa666iqFhobq9ttvV2xsrHx8fBods2/fPm3dulXp6ekqLi6Wl5eXevXqpbFjx2r27Nnq2bNng/0HDx4sf39/HTlyRAkJCXrzzTeVn5+vLl26KDo6WkuWLFGPHj10/PhxrVmzRkePHlVlZaWGDBmi3/zmNxo3blyD89100006c+aMPvroIyUnJ2vDhg3Kz8+X2WzW6NGjNXfuXIWGhtr836C0tFSvv/66du/erYKCAnl6eio8PFwxMTG655575OnpadN5Tp8+rZtvvlmS9Omnn8rPz6++raqqSps3b9a//vUvnTp1Sv7+/powYYJ++9vf2lwnAAAAjIN+Nv1sAK6FsBsAnFxOTo4eeOABXbx4UVdffbXCw8NVXl6ujIwMpaena8+ePfrHP/6hTp061R/zhz/8Qf/85z8lSb1791Z4eLiKior05Zdf6ssvv9T777+v7du3q3v37g0+y2Kx6NFHH9WOHTv0ox/9SMHBwcrJydG2bdt07NgxLV68WAsWLJCXl5dCQkJ05swZpaWlae7cudq4caOuv/76RvW/+OKLio+Pl7+/v8LCwpSXl6d33nlHiYmJ+vvf/66RI0da/W9w+vRpzZo1S/n5+fWfXVtbq9TUVKWmpuqDDz7QCy+8oM6dO7f5v3N5ebnmzp2rlJQUeXh4KCwsTJWVldq4caMOHz6s77//vs3nBgAAgPOhn00/G4DrYRoTAHByzz//vC5evKif//znOnjwoLZu3apdu3Zp69at6v7/2ru/mKrrP47jTwSkaYSVC8NClD/Lxiq3BO3CGdkws0Wti5xULq7Isbbypk0XWzFspdM2kW6aZH9uIgVj2TCD3AxpJa2ZSVoHTjbNUZmIAnJ+vwt/5yzicPr9sPqdw56PK/h+vt83n8MNL977fL6fa6+lq6uLlpaWyP379+/n3XffZdq0aTQ0NPDxxx/T2NhIe3s7O3fuZNq0aZw+fToS0n+vv7+fvXv38tJLL9HW1saePXtoaGggKSmJ7u5uKisrWb58OQcPHmT37t20tbWxYMECQqEQDQ0NUef/1ltvUVZWxoEDB2hsbOSTTz7h/vvvp7+/n2effZYLFy7E/PwjIyNUVVXR09NDSUkJ7e3ttLS08MEHH9DS0kJubi4HDhzg5ZdfvqLfc11dHYcOHWL27Nk0NzfT3NzMhx9+yI4dOzh58iTnz5+/ovqSJEmKL+Zsc7akycdmtyTFue7ubgAefvjhUatKbr31VqqqqigtLSUtLS1y/eDBg6SmplJeXs6iRYtG1SoqKmLFihXA5ZUs0Tz00EOUlZVFvl+4cCF33HEHADfccAMbN26MnK4+ffp0Vq1aBcDRo0ej1issLKS2tjayBXT69Ols3LiRnJwcTp06RXNzc8zP39raytdff83cuXPZsmULM2fOjIzl5eWxZcsWpkyZwjvvvENfX1/MWuMZHBxk586dANTW1pKfnx8ZW7x4Mc8999yE6kqSJCl+mbPN2ZImH5vdkhTnsrOzAaiurqazs5NLly5FxlavXs2rr77KfffdF7m2fv16vvzyS6qqqqLWC4fh8VZ6LFmyZMy12bNnA1BcXExKyug3YIVD8XgrMlavXs2UKaP/3EydOpUHH3wQuPzOw1g++ugjAJYtWzbqn42wgoICCgoKGB4epqOjI2at8Xz22WdcvHiRWbNmUVxcPGZ85cqVXHXVVROqLUmSpPhkzjZnS5p8fGe3JMW5tWvX0tHRQVdXF4899hjp6eksWrSIJUuWUFJSMmoFRlhycjKDg4N0dHRw4sQJgsEgPT09HDlyhF9++QW4/N7AaDIzM8dcC690ue6668aMhUP5ePUKCwujXi8oKACgt7c36nhYeGXM3r17+fzzz6Pec+rUKQC+//77mLXG09PTA0Bubm7U8bS0NHJycvjmm28mVF+SJEnxx5xtzpY0+djslqQ4d/vtt7Nr1y62b9/O/v37OXfuHK2trbS2tlJdXc2KFSt4/vnnSU9PByAUCvHaa6+xY8cOfv3110idtLQ0brvtNkKh0LhhFoh64nxYUlLS/zz/jIyMqNfDp7OfO3cu5vP9/f0ABINBgsFgzHv/rNafPRfrs19zzTUTqi1JkqT4ZM42Z0uafGx2S1ICyM3N5ZVXXmFoaIiuri4+/fRT2tvbOXLkCHv27OHChQts27YNuHzQTn19PSkpKZSXl1NUVER+fj7Z2dmkpKSwefPmmCH8rzbeNs5wuP7jSfV/FA4Bzgh6AAAEcElEQVTGW7duZfny5X/t5P4jHLAHBgbGvefixYt/y8+WJEnS/48525wtaXLxnd2SFMdCoRDBYJDOzk7g8jv4ioqKePrpp3nvvfeoqakBYN++fZw/f57h4WHeeOMNAF588UU2bNhAaWkp8+bNi2yDDG9F/KccP3486vXwVsW8vLyYz8+ZMweA7777btx7Dh8+THd394SD8ty5cwE4duxY1G2ioVCIQCAwodqSJEmKP+Zsc7akyclmtyTFsTNnznDvvffyxBNPcPr06THjd911V+TrUCjEzz//HFk1MX/+/DH39/X10dbWBjDqAJ6/0+7du8dcGxoaoqmpCbh8IE4sS5cujdQZHBwcMx4MBikvL+eBBx7g8OHDE5rjnXfeSUZGBn19fZGDen5v3759/PbbbxOqLUmSpPhjzjZnS5qcbHZLUhzLzMykqKiIUCjEunXrRgXx/v5+Nm3aBMCCBQtIT0/n+uuvj2wVfP311xkaGorcf/ToUSoqKjh79ixA1ED7d2htbaWuro6RkZHIvNetW0cwGOSWW26htLQ05vMrV64kJyeHnp4eqqqqOHPmTGQsEAjw1FNPcenSJebPn8/ixYsnNMfU1FQqKysBWL9+PV988UVkrKuri+rq6gnVlSRJUnwyZ5uzJU1OvrNbkuJcTU0NjzzyCJ2dndxzzz1kZ2eTmppKb28vAwMDzJgxgxdeeAG4fGL72rVrqa2tpampiba2Nm666SbOnj3LDz/8AEBxcTGHDh3ip59++kfmn5+fz9atW3nzzTfJysrixIkTDAwMcOONN7J582aSk5NjPj916lS2bdtGRUUF7e3tLF26lLy8PIaHhwkEAoyMjDBr1izq6uquaJ6PP/44X331FS0tLaxatSqy7fP48ePMmTOHGTNmRE6slyRJUuIzZ5uzJU0+ruyWpDh3880309jYyKOPPkpWVhbBYJBAIEBmZiZr1qzh/fffJz8/P3L/mjVrqK+vZ+HChSQnJ9Pd3c3Q0BDLli2joaGB7du3k5qayrfffvunp67/FZ555hk2bNhARkYGx44dY+bMmVRUVNDY2Ehubu5/VSMvL4+mpiYqKyuZN28egUCA3t5esrOzefLJJ9m1axdZWVlXNM/k5GQ2bdpETU0NhYWF/Pjjj/T19VFWVsbbb7/N1VdffUX1JUmSFF/M2eZsSZNP0r+inRAgSdIVKikp4eTJk9TX13P33Xf/v6cjSZIkTQrmbEkanyu7JUmSJEmSJEkJz2a3JEmSJEmSJCnh2eyWJEmSJEmSJCU8m92SJEmSJEmSpITnAZWSJEmSJEmSpITnym5JkiRJkiRJUsKz2S1JkiRJkiRJSng2uyVJkiRJkiRJCc9mtyRJkiRJkiQp4dnsliRJkiRJkiQlPJvdkiRJkiRJkqSEZ7NbkiRJkiRJkpTwbHZLkiRJkiRJkhKezW5JkiRJkiRJUsKz2S1JkiRJkiRJSng2uyVJkiRJkiRJCc9mtyRJkiRJkiQp4dnsliRJkiRJkiQlvH8DxqM3cQAFG8gAAAAASUVORK5CYII=\n",
]
},
"metadata": {
"image/png": {
},
"output_type": "display_data"
}
],
"source": [
"from sklearn.pipeline import make_pipeline\n",
"from sklearn.preprocessing import StandardScaler, PolynomialFeatures\n",
"from sklearn.kernel_ridge import KernelRidge\n",
"from sklearn.linear_model import LinearRegression\n",
"from sklearn.model_selection import cross_val_score\n",
"from sklearn.decomposition import PCA\n",
"\n",
"\n",
"def eval_regression(p, features, values):\n",
" score = cross_val_score(p, features, values, scoring=\"neg_median_absolute_error\", cv=4).mean()\n",
" print(\"cross val score:\", score)\n",
" \n",
" predicted = p.fit(features_train, values_train).predict(features_test)\n",
" plot_fit_quality(values_test, predicted)\n",
"\n",
" \n",
"p = make_pipeline(PolynomialFeatures(2), PCA(2), LinearRegression())\n",
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"p = make_pipeline(PolynomialFeatures(), PCA(), LinearRegression())\n",
"\n",
"param_grid = {'polynomialfeatures__degree': range(3, 6),\n",
" 'pca__n_components': range(3, 11),\n",
" }"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'pca__n_components': 10, 'polynomialfeatures__degree': 3}\n",
"cross val score: -0.22752607270361858\n"
"image/png": "iVBORw0KGgoAAAANSUhEUgAABbsAAAIbCAYAAADCREPvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xt0VPW9///XhEiSIUEJISCBXDCBeiEmLAzaQwI5RQRE4KQWNYFTECNSLcVapdh6owUvXV2Iyikov6JiYgEb9AhVBDkKFb+JaGhQAiYwSRCFNIRiLpAQMr8/aKIht0kye2b2zPOxVteq+ey9551hZ2bv935/3h+L3W63CwAAAAAAAAAAE/NzdwAAAAAAAAAAAPQUyW4AAAAAAAAAgOmR7AYAAAAAAAAAmB7JbgAAAAAAAACA6ZHsBgAAAAAAAACYHsluAAAAAAAAAIDpkewGAAAAAAAAAJgeyW4AAAAAAAAAgOmR7AYAAAAAAAAAmB7JbgAAAAAAAACA6ZHsBgAAAAAAAACYHsluAAAAAAAAAIDpkewGAAAAAAAAAJgeyW4AAAAAAAAAgOmR7AYAAAAAAAAAmB7JbgAAAAAAAACA6ZHsBgAAAAAAAACYHsluAAAAAAAAAIDp+bs7ADhuxowZ+uqrr2S1WhUVFeXucAAAAHxCaWmpamtrNWTIEL355pvuDgcG4DobAADA9Yy4zibZbSJfffWVqqqqVFVVpRMnTrg7HAAAAJ/y1VdfuTsEGITrbAAAAPdx5nU2yW4TsVqtqqqqUkhIiK688kp3hwMAgE+r+PaMjlXWdnm/iFCrwvoGGRARjFJYWKiqqipZrVZ3hwKDcJ0NAADgekZcZ5PsNpGoqCidOHFCV155pdavX+/ucAAA8Gkl5VWav2ZXl/f70/wURYeHGBARjDJ79mzl5eXR3sKLcZ0NAADgekZcZ7NAJQAAQDdEh4doZGRol/aJjwol0Q0AAAAABiHZDQAA0E0ZKXGyWBzb1mKR0pPjjA0IAAAAAHwYyW4AAIBuSowJ06KbR3aa8LZYpPunxisxJsw1gQEAAACAD6JnNwAAQA9MSozUwMusyt5dpILSylbj8VGhSk+OI9ENAAAAAAYj2Q0AANBDiTFhSowJU0l5lfaVVKi2rkHWAH8lRIfRoxsAAAAAXIRkNwAAgJNEh4eQ3AYAAAAAN6FnNwAAAAAAAADA9Eh2AwAAAAAAAABMj2Q3AAAAAAAAAMD0SHYDAAAAAAAAAEyPZDcAAAAAAAAAwPRIdgMAAAAAAAAATI9kNwAAAAAAAADA9Eh2AwAAAAAAAABMj2Q3AAAAAAAAAMD0SHYDAAAAAAAAAEyPZDcAAAAAAAAAwPRIdgMAAAAAAAAATM/f3QEAAADAfUrKq7SvpEK1dQ2yBvgrITpM0eEh7g4LAAAAALqMZDcAAIAPyrdVKGtXkfaXVbYaGxkZqoyUOCXGhLkhMgAAAADoHtqYAAAA+Jh388u0JCu3zUS3JO0vq9SSrFxt23fUxZEBAAAAQPeR7AYAAPAh+bYKPbt1v+z2jrez26UVWwqUb6twTWAAAAAA0EMkuwEAAHxI1q6iThPdTex2KXt3kbEBAQAAAICTkOwGAADwESXlVe22LmlPQWmlSsqrDIoIAAAAAJyHZDcAAICP2FfSvZYk3d0PAAAAAFyJZDcAAICPqK1rcOl+AAAAAOBKJLsBAAB8hDXA36X7AQAAAIArkewGAADwEQnRYS7dDwAAAABciWQ3AACAj4gOD9HIyNAu7RMfFaro8BCDIgIAAAAA5yHZDQAA4EMyUuJksTi2rcUipSfHGRsQAAAAADgJyW4AAAAfkhgTpkU3j+w04W2xSPdPjVdiDC1MAAAAAJgDqw0BAAD4mEmJkRp4mVXZu4tUUFrZajw+KlTpyXEkugEAAACYCsluAAAAH5QYE6bEmDCVlFdpX0mFausaZA3wV0J0GD26AQAAAJgSyW4AAAAfFh0eQnIbTrdnzx6tXr1ahw4d0rlz53T11VcrMzNTKSkp3T7mXXfdpd27d+vVV1/VmDFjnBgtAAAAvAU9uwEAAAA4TU5OjubOnav8/HzFx8crMTFR+fn5yszM1IYNG7p1zOzsbO3evdvJkQIAAMDbUNkNAAAAwClOnDihxx57TCEhIcrOztbw4cMlSQUFBZo7d66WLVum8ePHa+DAgQ4fs7S0VH/4wx+MChkAAABehMpuAAAAAE6RlZWl+vp6zZkzpznRLUnx8fHKzMxUXV1dl6q7z58/r8WLF+uSSy5pcTwAAACgLSS7AQAAADhFU6uRCRMmtBpr+tmuXbscPt7atWuVn5+vRx55RP3793dOkAAAAPBaJLsBAAAA9JjdbldxcbH8/Pw0bNiwVuPR0dHy8/NTcXGx7HZ7p8c7ePCgnn/+ed1000265ZZbjAgZAAAAXoae3QAAAAB67PTp06qvr1doaKh69+7datzf31/9+vXTyZMnVVNTo+Dg4HaPVV9frwcffFB9+/bV448/3q14cnJytHnzZoe2LSws7NZrAAAAwLOQ7AYAAADQY2fOnJEkBQUFtbtNYGCgJHWa7F65cqW+/PJLrVq1SqGhod2K59ixY8rLy+vWvgAAADAnkt0AAAAAeszPz/EOiR21Mfn000/15z//WdOmTWuz97ejIiIilJSU5NC2hYWFqqqq6vZrAQAAwDOQ7AYAAADQY1arVZJUV1fX7jZnz55tse3Famtr9etf/1oDBgzQI4880qN40tLSlJaW5tC2s2fPpgocAADAC5DsBgAAANBjwcHBslqtOnXqlBoaGuTv3/JWo6GhQadOnVJAQID69u3b5jFef/11lZWVacSIEVq6dGmLseLiYknS6tWrtWnTJt1+++0aPXq0Mb8MAAAATIlkNwAAAIAes1gsio2NVUFBgUpKShQbG9ti3GazqbGxUcOHD2/3GLW1tZKkQ4cO6dChQ21us2fPHknSD3/4Q5LdAAAAaIFkNwAAAACnSE5OVkFBgXbs2NEq2b1jxw5J0rhx49rd/+c//7l+/vOftzk2Z84cffzxx3r11Vc1ZswY5wUNAAAAr+H4KjIAAAAA0IG0tDQFBATopZde0ueff9788/3792vt2rUKDAxUenp688/Lysp0+PBhFocEAACAU5DsBgAAAOAUQ4YM0eLFi1VdXa3bb79d8+bN07x583THHXeopqZGS5cuVf/+/Zu3nzNnjqZMmaLt27e7MWoAAAB4C9qYAAAAAHCajIwMDR48WGvXrtVnn32m3r17a9SoUVqwYIFuuOEGd4cHAAAAL0ayGwAAAIBTpaamKjU1tdPtdu7c6fAxX3755R5EBAAAAF9AGxMAAAAAAAAAgOmR7AYAAAAAAAAAmB7JbgAAAAAAAACA6ZHsBgAAAAAAAACYHsluAAAAAAAAAIDpkewGAAAAAAAAAJgeyW4AAAAAAAAAgOmR7AYAAAAAAAAAmB7Jbkk5OTkaMWKE9u7d26X9Tpw4oUcffVQ/+tGPFB8fr5tuukmrVq1SfX29QZECAAAAAAAAANri88nu/Px8/e53v+vyfsePH9fMmTO1YcMG9e3bV+PHj1dNTY2ee+45zZs3T+fOnTMgWgAAAAAAAABAW3w62b1t2zbNmzdPtbW1Xd738ccf1/Hjx/WLX/xCmzdv1nPPPaf33ntPP/zhD5WXl6f169cbEDEAAAAAAAAAoC0+mew+fvy4HnroIS1cuFCNjY0KCwvr0v5HjhzRBx98oMjISN1zzz3NP7darVq2bJl69eql1157zdlhAwAAAAAAAADa4ZPJ7meffVZvvfWWrrnmGm3YsEHDhg3r0v5///vfZbfblZqaKj+/lm/h4MGDddVVV+nYsWMqLi52ZtgAAAAAAAAAgHb4ZLJ72LBhevrpp7Vp0yaNGDGiy/s3JbHj4uLaPb4kffnll90PEgAAAAAAAADgMH93B+AOd999d4/2Ly8vlySFh4e3OT5gwABJUkVFRafHysnJ0ebNmx163cLCQgcjBAAAAAAAAADf4pPJ7p46c+aMJCkwMLDN8aafO7Lw5bFjx5SXl+e84AAAAAAAAADAB5Hs7oZevXpJkiwWS4fbNTY2dnqsiIgIJSUlOfS6hYWFqqqqcmhbAAAAAAAAAPAlJLu7ISgoSJJ09uzZNsebfm61Wjs9VlpamtLS0hx63dmzZ1MFDgAAAAAAAABt8MkFKnuqqVd3ez25//nPf7bYDgAAAAAAAABgLJLd3RAXFydJKi4ubnP88OHDkqThw4e7LCYAAAAAAAAA8GUku7shOTlZkvR///d/rfpyf/311yosLFRERIRiY2PdER4AAAAAAAAA+ByS3Z34+uuvdfjwYVVWVjb/bOjQoUpOTtaRI0e0cuXK5p/X1tbqt7/9rc6fP6+5c+e6I1wAAAAAAAAA8EkkuzuxePFiTZkyRVlZWS1+/thjj2nAgAFavXq1brnlFi1cuFATJ07URx99pJSUFN1xxx1uihgAAAAAAAAAfA/J7m4aOnSoNm3apLS0NFVWVuqDDz7QpZdeqgceeEAvvPCC/P393R0iAAAAAAAAAPgMMrKS1q9f362xyy+/XE8++aQRIQEAAAAAAAAAuoDKbgAAAAAAAACA6ZHsBgAAAAAAAACYHsluAAAAAAAAAIDpkewGAAAAAAAAAJgeyW4AAAAAAAAAgOmR7AYAAAAAAAAAmB7JbgAAAAAAAACA6ZHsBgAAAAAAAACYHsluAAAAAAAAAIDpkewGAAAAAAAAAJgeyW4AAAAAAAAAgOmR7AYAAAAAAAAAmB7JbgAAAAAAAACA6ZHsBgAAAAAAAACYHsluAAAAAAAAAIDpkewGAAAAAAAAAJgeyW4AAAAAAAAAgOmR7AYAAAAAAAAAmB7JbgAAAAAAAACA6ZHsBgAAAAAAAACYHsluAAAAAAAAAIDpkewGAAAAAAAAAJgeyW4AAAAAAAAAgOmR7AYAAAAAAAAAmB7JbgAAAAAAAACA6ZHsBgAAAAAAAACYHsluAAAAAAAAAIDpkewGAAAAAAAAAJgeyW4AAAAAAAAAgOmR7AYAAAAAAAAAmB7JbgAAAAAAAACA6ZHsBgAAAAAAAACYHsluAAAAAAAAAIDpkewGAAAAAAAAAJiev7sDAAAAgPcpKa/SvpIK1dY1yBrgr4ToMEWHh7g7LAAAAABejGQ3AAAAnCbfVqGsXUXaX1bZamxkZKgyUuKUGBPmhsgAAAAAeDvamAAAAMAp3s0v05Ks3DYT3ZK0v6xSS7JytW3fURdHBgAAAMAXkOwGAABAj+XbKvTs1v2y2zvezm6XVmwpUL6twjWBAQAAAPAZJLsBAADQY1m7ijpNdDex26Xs3UXGBgQAAADA55DsBgAAQI+UlFe127qkPQWllSoprzIoIgAAAAC+iGQ3AAAAemRfSfdaknR3PwAAAABoC8luAAAA9EhtXYNL9wMAAACAtpDsBgAAQI9YA/xduh8AAAAAtIU7DKADJeVV2ldSodq6BlkD/JUQHabo8BB3hwUAgEdJiA5z6X4AAAAA0BaS3UAb8m0VytpV1OZiWyMjQ5WREqfEGG7QAQCQpOjwEI2MDO3SIpXxUaE8QAYAAADgVLQxAS7ybn6ZlmTltnvDvr+sUkuycrVt31EXRwYAgOfKSImTxeLYthaLlJ4cZ2xAcKs9e/bov//7vzVmzBiNGjVKs2fP1q5du7p0jA8//FDz5s1TUlKSrrnmGqWmpurRRx/V8ePHDYoaAAAAZkeyG/iefFuFnt26X3Z7x9vZ7dKKLQXKt1W4JjAAADxcYkyYFt08stOEt8Ui3T81nhlSXiwnJ0dz585Vfn6+4uPjlZiYqPz8fGVmZmrDhg0OHePFF1/U3XffrT179igmJkYpKSmSpA0bNui//uu/dPjwYSN/BQAAAJgUbUyA78naVdRporuJ3S5l7y7iZh0AgH+blBipgZdZlb27SAWlrWdIxUeFKj2ZVmDe7MSJE3rssccUEhKi7OxsDR8+XJJUUFCguXPnatmyZRo/frwGDhzY7jGKi4u1YsUKWa1W/fnPf1ZiYqIk6dy5c1q+fLmys7P18MMPO5w4BwAAgO8g2Q38W0l5VZd6jUpSQWmlSsqr6DkKAMC/JcaEKTEmjEWefVRWVpbq6+s1f/785kS3JMXHxyszM1MrVqzQhg0btHDhwnaP8dZbb6mxsVFz585tTnRL0iWXXKKHH35Y7777rvbt26djx44pIiLC0N8HAAAA5kIbE+Df9pV0ryVJd/cDAMCbRYeHaEZSjNKT4zQjKYZEt4/YvXu3JGnChAmtxpp+1lnv7ksuuUQjRozQdddd1+bYkCFDJEnl5eU9DRcAAABehspu4N9q6xpcuh8AAIA3sdvtKi4ulp+fn4YNG9ZqPDo6Wn5+fiouLpbdbpelnQbvCxcubLfyu7a2VsXFxZKkQYMGOS94AAAAeAWS3cC/WQO69+fQ3f0AAAC8yenTp1VfX6/Q0FD17t271bi/v7/69eunkydPqqamRsHBwV1+jZdeekm1tbUaOXKkLr/88g63zcnJ0ebNmx06bmFhYZdjAQAAgOchSwf8W0J09xbL6u5+AAAA3uTMmTOSpKCgoHa3CQwMlKRuJbs//PBDrVmzRn5+fnrwwQc73f7YsWPKy8vr0msAAADA3Eh2A/8WHR6ikZGhXVqkMj4qlB6kAAAAkvz8HF8OyG63d+nYH3zwgRYuXKjz58/rgQce0JgxYzrdJyIiQklJSQ4dv7CwUFVVVV2KCQAAAJ6HZDfwPRkpcVqSlStH7r8sFik9Oc74oAAAAEzAarVKkurq6trd5uzZsy22dcQbb7yhxx57TA0NDbrvvvt09913O7RfWlqa0tLSHNp29uzZVIEDAAB4AZLdwPckxoRp0c0j9ezW/R0mvC0W6f6p8UqMoYWJpyopr9K+kgrV1jXIGuCvhOgwqvABADBQcHCwrFarTp06pYaGBvn7t7zVaGho0KlTpxQQEKC+ffs6dMwVK1Zo9erVslgsWrJkiebMmWNA5AAAAPAWJLuBi0xKjNTAy6zK3l2kgtLWLU3io0KVnhxHottD5dsqlLWrqM12NCMjQ5WRwr8dAABGsFgsio2NVUFBgUpKShQbG9ti3GazqbGxUcOHD+/0WHa7Xb/97W/1xhtvqHfv3nr66ac1ZcoUo0IHAACAl/DZZPeePXu0evVqHTp0SOfOndPVV1+tzMxMpaSkOLT/N998o/Hjx7c7PmrUKL3++utOihaulhgTpsSYMKqDTebd/LIOq/L3l1VqSVau7p8ar5sShro2uE5wrgEAvEFycrIKCgq0Y8eOVsnuHTt2SJLGjRvX6XGeeuopvfHGGwoODtaf/vQnh3tvAwAAwLf5ZLI7JydHS5YsUe/evXX99dersbFRubm5yszM1NKlS3Xbbbd1eowDBw5IkkaMGNFmdUpMTIzT44brRYeHkHA0iXxbRaftZyTJbpdWbClQ+KVBHlHhTSU6AMCbpKWlae3atXrppZc0duxYXXPNNZKk/fv3a+3atQoMDFR6enrz9mVlZTp37pzCw8MVEnLhmmvXrl16+eWX5e/vrzVr1mj06NFu+V0AAABgPj6X7D5x4oQee+wxhYSEKDs7uzlRXVBQoLlz52rZsmUaP368Bg4c2OFxCgsLJUl33XWXpk2bZnjcADqWtavIoYVFpQsJ7+zdRW5PIpu5Eh0AgLYMGTJEixcv1tKlS3X77bdrzJgxkqTc3Fw1NDTo6aefVv/+/Zu3nzNnjo4dO6Ynn3yyeTHJ5557TpLUv39//eUvf9Ff/vKXNl9rwYIFuuKKKwz+jQAAAGAmPpfszsrKUn19vebPn9+iIjs+Pl6ZmZlasWKFNmzYoIULF3Z4nKbK7quvvtrQeAF0rqS8qs3K6I4UlFaqpLzKbZX7Zq1EBwCgMxkZGRo8eLDWrl2rzz77TL1799aoUaO0YMEC3XDDDR3u+69//Uv79++XdKFI5e23325325/85CckuwEAANCCzyW7d+/eLUmaMGFCq7EJEyZoxYoV2rVrV6fJ7sLCQlmtVtqVAB5gX0lFt/dzV7LbjJXoAAA4KjU1VampqZ1ut3Pnzhb/fdlll+nQoUNGhQUAAAAv5+fuAFzJbreruLhYfn5+GjZsWKvx6Oho+fn5qbi4WPYOslD/+te/9PXXXysmJkbr1q3TtGnTdO2112rs2LF65JFHdOLECSN/DQAXqa1rcOl+PdWTSnQAAAAAAAC0zaeS3adPn1Z9fb0uu+wy9e7du9W4v7+/+vXrpzNnzqimpqbd4zT16/7iiy+0YsUK9e/fX2PGjNH58+e1ceNG/fjHP9aRI0cM+z0AtGQN6N4kle7u11M9qUQHAAAAAABA23yqjcmZM2ckSUFBQe1uExgYKEmqqalRcHBwm9s09esePny4/ud//kdDh15YOK62tlaPPPKItmzZol/96lfKycnpNKacnBxt3rzZofibkuwAWkqI7l57j+7u11Nmq0QHAAAAAAAwA59Kdvv5OV7I3lEbkzlz5mjixInq06ePQkNDm39utVr1+9//Xp988om++OIL7du3TwkJCR2+zrFjx5SXl+dwXABaiw4P0cjI0C61BomPCnVbv26zVaIDAAAAAACYgU9lTqxWqySprq6u3W3Onj3bYtu29OrVq7ma+2JBQUG6/vrr9dZbb+mLL77oNNkdERGhpKSkzkKXdKGyu6qKnr1AWzJS4rQkK9ehRR8tFik9Oc74oNphtkp0AAAAAAAAM/CpZHdwcLCsVqtOnTqlhoYG+fu3/PUbGhp06tQpBQQEqG/fvt1+nbCwCwmpprYpHUlLS1NaWppDx509ezZV4EA7EmPCtOjmkXp26/4OE94Wi3T/1HglxrgvcWy2SnQAAAAAAAAz8KkFKi0Wi2JjY3X+/HmVlJS0GrfZbGpsbNTw4cM7PM4LL7yghQsX6tChQ22Of/XVV5KkQYMG9ThmAI6blBipJzPGKD4qtM3x+KhQPZkxRjcltD0zw5UyUuJksTi2rbsr0QEAAAAAAMzApyq7JSk5OVkFBQXasWOHYmNjW4zt2LFDkjRu3LgOj3Ho0CG99957GjZsmEaMGNFi7OTJk/roo490ySWXaMyYMc4NHkCnEmPClBgTppLyKu0rqVBtXYOsAf5KiA7zqMpoM1WiAwAAAAAAmIFPVXZLF9qGBAQE6KWXXtLnn3/e/PP9+/dr7dq1CgwMVHp6evPPy8rKdPjw4Ra9sm+77TZJ0rp16/Tpp582/7ympkYPP/ywqqurdeutt2rAgAEu+I0AtCU6PEQzkmKUnhynGUkxHpXobmKmSnQAAAAAAABP53OV3UOGDNHixYu1dOlS3X777c3V17m5uWpoaNDTTz+t/v37N28/Z84cHTt2TE8++WRzb+2xY8dq7ty5WrdunWbNmqVRo0apX79+2rt3r06dOqXRo0dr8eLFbvn9AJiLWSrRAQAAAAAAPJ3PJbslKSMjQ4MHD9batWv12WefqXfv3ho1apQWLFigG264waFj/PrXv9a1116r1157TQcOHFBjY6MiIyN111136ac//akuueQSg38LAN4kOjyE5DYAAAAAAEAP+GSyW5JSU1OVmpra6XY7d+5sd2zy5MmaPHmyM8MCAAAAWrnzzjsVHh6uhx9+WH379nV3OAAAAIBH8tlkNwAAAGAW//jHPxQcHEyiGwAAAOiAzy1QCQAAAJjRpZde6u4QAAAAAI9GshsAAADwcNOmTVNRUZHef/99d4cCAAAAeCzamAAAAAAebtq0aSosLNR9992nhIQEJSQkKDw8XL179253n4yMDBdGCHRdSXmV9pVUqLauQdYAfyVEh7FgNwAA6BGS3QAAAICHu+OOO2SxWGS325Wfn699+/Z1ug/JbniqfFuFsnYVaX9ZZauxkZGhykiJU2JMmBsiAwAAZkeyGwAAAPBw1113nbtDAJzi3fwyPbt1v+z2tsf3l1VqSVau7p8ar5sShro2OAAAYHokuwEAAAAPt379eneHAPRYvq2iw0R3E7tdWrGlQOGXBlHhDQAAuoQFKgEAAAAAhsvaVdRporuJ3S5l7y4yNiAAAOB1qOwGAAAATKK+vl45OTn64IMPZLPZVFNToz59+igyMlJjx47VT37yE1mtVneHCbRSUl7VZo/ujhSUVqqkvIpFKwEAgMNIdgMAAAAmYLPZtGDBApWWlsr+vfLYiooKlZaW6u9//7uys7P1wgsvKC4uzo2RAq3tK6no9n4kuwEAgKNIdgMAAAAe7ttvv9W8efP09ddfa9CgQUpLS9NVV12lPn36qKqqSl988YXefPNNlZaWasGCBdq8ebNCQkgQwnPU1jW4dD8AAOCbSHYDAAAAHm7dunX6+uuvdcMNN+iFF15Qnz59WoxPnDhRd999t372s58pLy9P2dnZmj9/vpuiBVqzBnTv1rO7+wEAAN/EApUAAACAh9uxY4f8/f31zDPPtEp0N+nTp4+eeeYZ9erVS++8846LIwQ6lhAd5tL9AACAb+IxOQAAAODhjh49quHDh2vAgAEdbjdw4EDFxcWprKzMRZEBjokOD9HIyNAuLVIZHxVKv24AQLOS8irtK6lQbV2DrAH+SogO43sCrZDsBgAAADycxWJRfX29Q9s2NDS0WMAS8BQZKXFakpUrR05Pi0VKT2ahVQCAlG+rUNauojYfmI6MDFVGSpwSY5gJhAtoYwIAAAB4uCuuuEJHjhyRzWbrcLsjR46ouLhYMTExLooMcFxiTJgW3TxSFkvH21ks0v1T40lcAAD0bn6ZlmTltjszaH9ZpZZk5WrbvqMujgyeispuAECXMX0MF+OcAIx188036/PPP9eiRYu0Zs0aDRo0qNU233zzjX7xi180bw94okmJkRp4mVXZu4tUUNo6cREfFar0ZCr0AAAXKrqf3bq/0xlBdru0YkuBwi8N4vsDJLsBAI5j+hguxjkBuEZGRoY2b96sQ4cOadKkSUpJSdFVV12lPn36qLq6WoWFhfrwww9VV1enESNGKCMjw90hA+1KjAlTYkwYD0oBAB3K2lXkUOsr6ULCO3t3EfceINkNAHDMu/llHT5Vb5o+dv/UeN2UMNS1wcEtOCcA1+ndu7defvkm6KP2AAAgAElEQVRlLVq0SHl5eXrvvfe0ffv25vGmHt1jxozRH//4RwUEBLgrVMBh0eEhJLcBAG0qKa/q0qLGklRQWqmS8iq+W3wcyW4AQKeYPoaLcU4ArhcaGqpXX31Ve/fu1YcffqiSkhLV1NTIarUqJiZG48aN0+jRo90dJgAAQI/tK6no9n4ku30byW4AQKeYPoaLcU4ArrVixQpFRkbqlltu0ejRo0lqAwAAr1Zb1+DS/eA9/NwdAADAs/Vk+hi8E+cE4HobN27UU089pcbGRneHAgAAYDhrQPfqc7u7H7wHZwC8AovbAMZh+hguxjkBuF5tba2uuOIKBQYGujsUAAAAwyVEd29WaHf3g/cg2Q1Ty7dVKGtXUZsVhiMjQ5WREse0eaCHmD6Gi3FOAK43evRo7d27V0ePHtXQoSz4CgAAvFt0eIhGRoZ2aUZpfFQoxTUg2Q3zeje/rMPF0faXVWpJVq7unxqvmxK4KQS6i+ljuBjnBOB6y5cv1/z583Xbbbdp5syZSkhI0IABAxQQENDuPrGxsS6MEAAAwLkyUuK0JCvXobWCLBYpPTnO+KDg8bjrhCnl2yo6THQ3sdulFVsKFH5pEBXeQDcxfQwX45wAXG/y5MlqbGxUXV2d1qxZ0+n2FotFBw4ccEFkAAAAxkiMCdOim0d2mv+xWKT7p8Z7XN6HlrvuQbIbppS1q8ihJ3vShYR39u4ij/vQA8yC6WO4GOcE4Hq1tbVd2t7u6IUSAACAB5uUGKmBl1mVvbtIBaWt7z/io0KVnuxZLWyNbrlLEr1jJLthOiXlVV1KsEhSQWmlSsqr+OMHuonpY7gY5wTgWgcPHnR3CAAAAG6RGBOmxJgwUyR5jWy5y7p1jvFzdwBAV+0rqXDpfgC+mz5msXS8nadOH4PzcU4ArrVixQrl5OSovr7e3aEAAAC4RXR4iGYkxSg9OU4zkmI8LtHd1Za7+TbH81Tv5pdpSVZuu8WfTUn0bfuOdiVkr0RlN0yntq7BpfsBuMCM08dgLM4JwHU2btyohoYGTZkyxd2hAAAAoA1Gtdxl3bquIdkN07EGdO+07e5+RjDD1BugLWaaPgbX4JwAXKO2tlZXXHGFAgMD3R0KAAAALmJky13Wresaz8n+AQ5KiO7eH2x393Mm+ivBW0SHh5DIRAucE4CxRo8erb179+ro0aMaOrRr/R0BAABgrJ603O3oPop167qOZDdMJzo8RCMjQ7v0xx4fFer2P3IjFykwM6pBAQDo3PLlyzV//nzddtttmjlzphISEjRgwAAFBAS0u09sbKwLIwQAAPBdRrXcNSqJ7s1IdsOUMlLitCQr16FpHBaLlJ4cZ3xQHaC/UmtUuQMA4LjJkyersbFRdXV1WrNmTafbWywWHThwwAWRAQAAwKiWu6xb13V+7g4A6I7EmDAtunmkLJaOt7NYpPunxrs9adqd/krejFWEAQDomtraWp09e1Z2u92h/zU2Nro7ZABeqqS8Sm/m2ZS9u0hv5tlUUl7l7pAAwO2MarnrDevWuZrv/uYwvUmJkRp4mVXZu4tUUNo6aRofFar0ZPdXB9NfqSWq3AEA6LqDBw+6OwQAPo6ZmQDQPqNa7pp53Tp3IdkNU0uMCVNiTJhH932mv1JLrCIMAAAAmAvrDwFA54xouWvWdevciTYm8ArR4SGakRSj9OQ4zUiK8ag/avorfacnVe4AAOCC8+fPq6CgQG+++aZee+01SdK5c+dUVlbm5sgAeKOuzszMt3Wv2AcAzM6olrsZKXGdHvP7x3b3unXuRmU3YDD6K32HKncAAHrm1Vdf1YsvvqiTJ082/2zWrFk6evSopk6dqgkTJmj58uUKDg52Y5QAvAkzM13Pk2cuA+iYES13m5LonT149JR169zN+7JpgIehv9J3qHIHAKD7fvOb3ygnJ0d2u12XXnqp6uvrdfbsWUlSRUWFGhsbtX37dh09elTZ2dkKCgpyc8TwBiTdfBvrD7kWfdEB72BEy12zrFvnCUh2Awajv9J3qHIHAKB7tm3bpr/+9a8KDw/XsmXLlJycrPT0dOXn50uSkpKStH79ej3wwAM6ePCgXnnlFd1zzz1ujhpmRtINEjMzXYm+6ID3iQ4PcepnoRnWrfME9OwGXID+ShdQ5Q4AQPe8/vrrslgsWrlypZKTk9vc5rrrrtOqVatkt9v1zjvvuDhCeJN388u0JCu33WKNpqTbtn1HXRwZXM0bZmaWlFfpzTybsncX6c08m0euB0RfdABd4cnr1nkCp5ZL/vrXv1ZERITuvPNO9enTx5mHBkyN/koXUOUOAN1D9QYOHDigoUOHKjExscPtRo4cqaioKJWWlrooMnibribdwi8N8tprV5h7ZqaZZifQFx0AnMep30A7d+6Uv7+/fvaznznzsIBXoL/SBRkpcVqSlevQxZw3V7kDgCPMdKMOY9XV1clqtTq0bXBwsE6cOGFwRPBWJN28hzMelJp1ZqaZWoLQFx0AnMupye5z585pyJAh6tWrlzMPC3gN+itR5Q4AjjLTjTqMd/nll8tms6m2trbDpHd1dbWKi4t1+eWXuzA6eAtvSbr58rW25NwHpWacmWm22Qn0RUdnfP0zDegqpya7x48fr+3bt6ugoEDx8fHOPDTgVZy9SIHZUOUOAB0z2406jJeamqp169bpqaee0tKlS9vdbvny5aqvr9e4ceNcGB28hdmTbsyGMeZBqdlmZpptdoI39EWHMfhMA7rHqcnuX/7yl/rmm280e/Zs3XjjjUpMTNSAAQMUEBDQ7j5ciAO+iSp3AGif2W7UYbzMzEy99dZb2rRpk8rKyjR58mSdPn1a0oV+3ocPH9bGjRu1d+9e9e3bV3feeaebI4YZmTnpxmwY4x6UmmlmphlnJ5i5LzqMw2ca0H1O/XScOHGiJMlut2vr1q3aunVrh9tbLBYdOHDAmSEAMBlfr3IHgIuZ8UYdxgsNDdVLL72ke++9V//v//0/5ebmNo/9+Mc/lnThGrxfv356/vnnNXDgQHeFChMza9KN2TAXGPmg1CwzM804O8GsfdFhHD7TgJ5x6lUJvQEBAAB6xow36nCNq6++Wlu2bNGGDRu0c+dOFRcXq6amRkFBQYqKitL48eOVnp6u0NBQd4cKkzJr0o3ZMK55UGqGmZlmnJ1gxr7oMBafaUDPODXZvXPnTmceDgAAwOeY8UYdrhMcHKx58+Zp3rx57g4FXsiMSTdmw1zgygelnjwz06yzE8zWFx3G4TMN6Dk/dwcAAACA75j1Rh2Ad8hIiZPF4ti2npB060mS15vwoPQCs85OaOqL3tnfnif0RYex+EwDes6wu6Ldu3frgw8+UElJiWpqamS1WhUZGamxY8fqRz/6kSyOXkEBAAD4ELPeqAPwDmZajFAiyduEB6UXmHF2QhOz9EWHsfhMA3rO6d9sJ0+e1KJFi7R3715JFxbKafLxxx9rw4YNSkxM1IoVK1g4BwAA4CJmvlEH4B3MlHQjyXsBD0q/Y+aWIGboiw5j8ZkG9JxT/xrq6up055136tChQwoKCtLEiRN11VVXyWq1qrq6Wp9//rl27typzz77TPfcc482bNig3r17OzMEAAAA0zPzjToA72CWpBtJ3gt4UPods81OaIsn90WHsfhMcw9P/65D1zg12f3aa6/p0KFD+sEPfqA1a9a0Wbl9/Phx3X333Tp48KA2btyoWbNmOTMEAMD38KUNmJM33KgD8A6ennQjyfsdHpR+x0yzE4Dv4zPNtfJtFcraVdTm+z0yMlQZKXxOmJFTk91bt26Vn5+fVq5c2W6LkkGDBmnlypWaMmWK3n77bZLdAGAAvrRdhwcKMAo36gDgGJK8F/CgtCWzzE4ALsZnmmu8m1/W4efl/rJKLcnK1f1T43VTwlDXBocecWqy22azKTY2VlFRUR1uFxMTo9jYWNlsNme+PABAfGm7Cg8U4ArcqANA50jyfocHpa0ZOTuB72dj+er7y2ea8fJtFZ2+v5Jkt0srthQo/NIg3mcTcWqy2263q1evXg5t26tXL507d86ZLw8APo8vbdfggQJczdPbCMC1zp8/ry+++EJHjhxRdXW1Zs2apXPnzumbb75RZGSku8MD3IIk73d4UGo8ih6MxfvLZ5rRsnYVOVQ5L124d87eXcR7bSJOTXZHRkaqqKhI5eXlCg8Pb3e7EydOqLi4WDExMc58+S7Zs2ePVq9erUOHDuncuXO6+uqrlZmZqZSUFIePYbPZ9Pzzz+vTTz/Vv/71L0VGRmrmzJnKyMiQn5+fgdEDQNv40jYeDxQAuNOrr76qF198USdPnmz+2axZs3T06FFNnTpVEyZM0PLlyxUcHOzGKLnWhnuQ5G2JB6XGoOjBWLy/3+EzzRgl5VVd6okuSQWllSopr+J9NwmnXiXeeOONamho0IMPPqjq6uo2t6murtaDDz6o8+fP68Ybb3TmyzssJydHc+fOVX5+vuLj45WYmKj8/HxlZmZqw4YNDh3j4MGDuvXWW7V161YNHjxYycnJOn78uH7/+9/roYceMvg3AIDWevKlDcd154ECADjDb37zGz355JOqqKhQ3759FRgY2DxWUVGhxsZGbd++XbNnz9aZM2fcFifX2nC36PAQzUiKUXpynGYkxZCcgNN0tegh31bhmsC8BO9v2/hMc659Jd07b7q7H1zPqZXdc+bMUU5OjvLy8jRp0iTdcsstuuqqq9SnTx9VV1ersLBQb7/9tioqKjR48GDNnTvXmS/vkBMnTuixxx5TSEiIsrOzNXz4cElSQUGB5s6dq2XLlmn8+PHtLrApXWjX8tBDD6m6ulrPPPOMpk+fLkmqrKzUnDlz9Pbbb+vGG2/UTTfd5JLfCQCknn1pc8HkGKoAALjLtm3b9Ne//lXh4eFatmyZkpOTlZ6ervz8fElSUlKS1q9frwceeEAHDx7UK6+8onvuucflcXKtDcCbMYvSWLy/rueLVeO1dQ0u3Q+u59TK7pCQEK1bt05RUVGqqKjQyy+/rIceekj33nuvFi9erJdfflkVFRWKiYnR2rVrFRLi+j+grKws1dfXa86cOc0X35IUHx+vzMxM1dXVdVpx8tFHH+nQoUNKSkpqvviWpNDQUD3++OOSpPXr1xsSPwC0hy9t41EFAMBdXn/9dVksFq1cuVLJycltbnPddddp1apVstvteuedd1wc4QVcawPwVt4wi7KkvEpv5tmUvbtIb+bZPC42s7+/ZpJvq9CvXvlY89fs0p+2HdArH3ypP207oPlrdulXr3zs1VXz1oDu1f12dz+4ntP/paKjo7VlyxZt3bpVH374oUpKSlRTUyOr1aqYmBiNGzdOU6ZM0SWXXOLsl3bI7t27JUkTJkxoNTZhwgStWLFCu3bt0sKFC7t1jFGjRql///769NNPVV1d7fZ+iQB8B1/axuOBAgB3OXDggIYOHarExMQOtxs5cqSioqJUWlrqosha4lobgLcy8yxKoxd8dEZ1sJnfX7Px9b7oCdHdO9e7ux9cz6kZjqysLF1xxRW6/vrrNX369BaVGJ7AbreruLhYfn5+GjZsWKvx6Oho+fn5qbi4WHa7XRaLpc3jFBcXS1KLapXvi4mJ0cmTJ3X48GFde+21zvsFAKADfGkbjwcKrueLUyuBttTV1clqtTq0bXBwsE6cOGFwRK1xrQ3Am5m16MHIxKYzk+hmfX/Npqt90cMvDfK6VjHR4SEaGRnapZkE8VGh3IOYiFPbmKxevVoLFizQt99+68zDOs3p06dVX1+vyy67TL1792417u/vr379+unMmTOqqalp9zjl5eWSpAEDBrQ53vTziorOn0zm5ORo9uzZDv2vsLDQkV/Tqf74xz8qIiJCERER+uMf/9hq/IknnmgeX716davxhx56qHn8tddeazV+7733No9v3ry51fhPf/rT5vH33nuv1fitt97aPL5nz55W45MmTWoeLygoaDU+duzY5vHDhw+3Gh81alTz+PHjx1uNDx8+vHm8rUVZm8YiIiJajVVXVzePtXUzd/z48ebxUaNGtRo/fPhw8/jYsWNbjRcUFDSPT5o0qdX4nj17msdvvfXWVuPvvfde8/hPf/rTVuObN29uHr/33ntbjb/22mvN420tJLV69erm8SeeeKLVOOde18+9pi9tSfp89d3N/7vY+fqzzWMH/7yw1Zc25177515CdJi+2bOp+f2r+Efrc+PYh+ubxysP7Grer4k3nnvf56zPvZHxCa2mVj674f/0H4k/UEREhK4bc0Or/b353JP43Ovs3PN2l19+uWw2m2prazvcrrq6WsXFxRo0aJCLIvuOp11rc53t3X/zzvq+4VqHc+9i7Z17TcULjl5nH/j/ft5iP8n1597Fic1vS/7RHF/pOy8079eU2Fyx5lWHz7077vyZlmTltkgYVvzjvebjv/eXNVqSlatt+442j3d07lkD/Lt1nf3999dbz70mzvjcmzr2WhW+8mCr8bp/nWh+b798/beSvuuLLnnf515GSpy+/8y9o3PPYpFO7nndJz/3zMqppWanT59WbGys+vbt68zDOk3TqvRBQUHtbtO0qn1NTU270yKbjtO0bXvH6OxmRJKOHTumvLy8TrcDAEdkpMRpSVauw9tf0supzzy9XnR4iML6BupkF/ahCqB7vj1T32G1RUXVWW3bd9Qrp1YCbUlNTdW6dev01FNPaenSpe1ut3z5ctXX12vcuHEujO4CT7vW5jobgDOZcRZlVxd83HOodRKsPfvLKhUR0/kxHa0OdvX7m1t0QhVBRcwc7IS39kVPjAnToptHdlrlbrFI90+N1/vZH7ouOPSYU5PdV155pYqLi3Xq1Cn169fPmYd2Cj8/x5M69g7O9l69eklSu1MvmzQ2Nnb6OhEREUpKSnIopsLCQlVVed+HDADnafrSnvcnx7b38+v4cwytXRlxmQ45uK3FIqUnxxkajy/z1qmVQFsyMzP11ltvadOmTSorK9PkyZN1+vRpSRf6eR8+fFgbN27U3r171bdvX915550uj9HTrrW5zgbgTE2zKD/vwj7uLHo4W9/Q5QUfyyqcX9HZVB3c2fWaK4pKTtfWN///v312VH0rQ5v/e2RkqKrOnOvCq/uOfSUVGtb282dTm5QYqYGXWZW9u0jftC6mVnxUqNKTL7TieT/b9fGh+yz2jq40u+jw4cOaN2+eAgMDNW/ePCUkJGjAgAEKCAhod5+OKj+craqqSqNHj1ZYWJg++uijNrf54Q9/qJMnT+qTTz5pt0J9xowZKiws1N/+9jddccUVrcYXLVqkd955R6tWrWpzYZ3umj17tvLy8pSUlMQK9AA6lG+rUPbuIhWUtr7A/f6XNrqns96H0ndVAFQed82vXvm4y/3z/vDfrVuaAM7kKddgX3zxhe69914dP368zUSw3W5Xv3799Pzzz2v06NEuj8/M19qe8m8M+DIzrNORb6vQkqxch6qlLRbpyYwxbrvmfjPPpj9tO9Dl/RbcdJVmJLVfsl1SXqX5a3Z1+bhr5qd0+u9p5PvL9fuFhw6vfPBll/f76fjhXl/AY4bPH29lxDWYUyu7Fy1aJIvFotLSUj366KOdbm+xWHTgQNc/fLsrODhYVqtVp06dUkNDg/z9W/76DQ0NOnXqlAICAjpsxRIeHq7CwkJVVFS0eQH+z3/+U1L7fQYBwGiJMWFKjAnjS9sg368C4IGC85SUV3W5AqlpaiXnNXzB1VdfrS1btmjDhg3auXOniouLVVNTo6CgIEVFRWn8+PFKT09XaGho5wczANfaALrDmYscGq2rrQ/cGbdRCz7uK+l8bbL29uvses2o99dVizJ6+r3X9/ubu2I/M4kOD/Gofyv0jFPP2KKioi5t78SicodYLBbFxsaqoKBAJSUlio2NbTFus9nU2NjY7srvTeLi4vThhx+quLhYY8aMaTFmt9t15MgR9erVq82LcwBwJbN9aXv6BeL38UDB+Yy8eQK8RXBwsObNm6d58+a5O5RWuNYG0FWdVdvuL6vUkqxcj6q2NUvRg1GJTaOS6E2MeH+72rvckbYr32eWBzZm7DsPdIdTk93vv/++Mw9niOTkZBUUFGjHjh2tLsB37NghSZ0u6JOcnKy1a9fq/fffV0ZGRouxzz77TJWVlUpKSmp30R0AQEtmuUBsi1EPFHwxiW70zRNgZr/85S81ffp0JScnd6k3tqtxrQ3AUa6qtjWCGYoejEpsuqI62Jnvr9EzB830wKap73xXWwZ6yjkNOMqpye4PPvhAsbGxrSowPElaWprWrl2rl156SWPHjtU111wjSdq/f7/Wrl2rwMBApaenN29fVlamc+fOKTw8XCEhF/7Ak5KSFBcXp48++kgbN27UzJkzJUmVlZV64oknJElz58518W8GAOZkpgtEVzBz4r+nmFoJtO9vf/ub3nnnHfXr108333yzpk2bppEjR7o7rFa41gbgKKOrbV3Bk2dRGpXYdGV1sDPeXyNnDprxgU1GSlyX+qJ7e69ueCenloWsXr1a99xzj7799ltnHtaphgwZosWLF6u6ulq333578zTQO+64QzU1NVq6dKn69+/fvP2cOXM0ZcoUbd++vflnfn5+Wr58uaxWqx555BHNnDlT9913nyZNmqRDhw5p5syZ+s///E93/HoAYCpdvUDMt3XvYtUs3s0v05Ks3HZvSpoS/9v2HXVxZK7B1EqgfT/72c8UGRmpyspKrV+/XjNnztTkyZO1evVqHTt2zN3hNeNaG4AjelJtC8dlpMSpjfWM2+RoYrMpid4V7qwONnLmYHce2LhbU1/0zs4LT+g7D3SXU5Pdp0+fVkxMTIcLzniCjIwMrV69Wtdee60+++wzff755xo1apTWrVun6dOnO3SM+Ph4bdq0STfddJNKS0v10UcfafDgwXriiSf0+OOPG/sLAICXMOMFolFI/Jvv5glwpYULF2rbtm164403NGfOHIWHh8tms2nlypWaMGGCZs2apU2bNqmqyv2JIK613aOkvEpv5tmUvbtIb+bZSArCo/Wk2haOMyqxaUQS3ShGzRw08wObSYmRejJjjOKj2r7ujo8K1ZMZY3xiVi28k1Pn/V555ZUqLi7WqVOn1K9fP2ce2ulSU1OVmpra6XY7d+5sdyw2NlbPPfecM8MC4OE8uS+f2RjdP89svGEqrzMwtRLo2DXXXKNrrrlGixcv1ieffKItW7Zo27Zt2rt3rz799FP97ne/0/jx4zVt2jRNmDDBbXFyre06vtz+CubFOh2uY8SCj01J9M4KNTyhOtiomYNmX1jdDH3nge5yarJ7+fLlzdMU582bp4SEBA0YMEABAQHt7hMUFOTMEADAENxIOp/ZLxCdicT/d8x08wS4k8ViUVJSkpKSkvToo49qz5492r59u7Zu3art27drx44dOnDggLvDhMFY9wJmxTodrmVEYtOIJLoRjOpd7i0PbDy57zzQXU79pli0aJEsFotKS0v16KOPdrq9xWLhIhyAx+NG0hiuvED09IoFEv8tmeXmCfAUn3/+uXJzc7V3717V1tZKkgIDA90cFYxmxoXRgCas0+Eezk5smqU62IiZgzyw6ZinnxPwbk79Kysq6lovVbuj87UBwE24kTSOKy4QzVKR7y2VIc5klpsnwF0OHDigrVu36p133tE333wju90uPz8/XX/99Zo+fbomTpzo7hBhMNpfwcyMqraFe3h6dbARMwd5YNM2s9x/wbs5Ndn9/vvvO/NwAOB23Egax+gLRDNV5FMZ0j5Pv3kCXOnw4cPaunWr/va3v6m0tFTSheKR2NhYTZs2TdOnT9fAgQPdHCVcgfZX8Aas0wFXcvbMQR7YtGam+y94N6feJUdERLT475MnT8pms6mqqkqpqamy2+2qqalRcHCwM18WAAzBjaSxjLxANFtFPpUhADozbdq05lmUdrtdYWFhuvnmmzV9+nRdddVVbo4Orkb7K3gD1umAqzl75iAPbL5jtvsveDdDSsLef/99rVq1SoWFhZK+68199OhRzZgxQ7fddpseeOAB+ft7f0UaAPPiRtJ4Rl0gmq0in8oQAJ358ssvFRgYqB/96EeaNm2axo4dq169erk7LLgJ7a/gLVinA+7grJmDPLD5jtnuv+DdnJ5tfuGFF7Rq1SrZ7XZZLBb16tVL58+flyQdO3ZMtbW1evnll/Xll1/qxRdf5CLdx9B7FWbCjaTxjLhANGtFPpUhADqyfPlyTZw4kRmSkET7K3gX1umAmfHAxrz3X/BeTr3a+fjjj/XCCy8oODhYv/rVrzRlyhTdc889ys/PlySNGTNGTz31lH73u99pz549ev311zVr1ixnhgAPxSIFMCNuJF3D2ReIZq3IpzIEQEfS0tLcHQI8CO2v4I1YpwNm5esPbMx6/wXv5dSMzCuvvCKLxaI//OEPSk1NbTXu5+enGTNmqH///srMzNT//u//kuz2ASxSALPiRtJ1nHmBaOaKfCpDAEjSM888I4vForvuukv9+vVr/llXWCwWPfjgg0aEBw9A+ysA8Dy++sDGzPdf8E5OTXbv27dPgwYNajPR/X3JyckaPHiwiouLnfny8EAsUgAz40bS9ZxxgWj2inxfrwwBIP35z3+WxWLRrbfe2pzsbvqZI5raCZLs9m60vwIAeAKz33/B+zj1zKqpqdHgwYMd2jY0NFQVFd2b6gDzYJECmB03kubjLRX5vloZAkCaMWOGLBaLQkJCWv0M5uesh5m0vwIAeAJvuf+C93Bqsjs8PFw2m00NDQ3y92//0PX19bLZbBowYIAzXx4ehkUK4A24kTQfKvIBmN1TTz3l0M9gLkasYUP7KwCAu3H/BU/j1GT3f/zHf2jTpk1avXq17rvvvna3W7VqlWpqajRlyhRnvjw8DIsUwFtwI2k+VOQD8DaffPKJQkJC9IMf/KDTbffs2aOSkhL9/+zdfVzV5f3H8fdBhABvUcGFoiIUMD4AACAASURBVChgpqKoga2HN5llmiyl1IpcruzG1JaztnSrWdbUzZX31dYyNUa2JZppmpiiMwMzTFNERUDEFAEl7gSB8/vDcRY/7hE453t4PR+PPR7ze13f63yOV8fzOZ9znet65JFHmiAy1EZjnmHD9lcAAGvj8xdsSYMWu5966ilt2bJFq1atUlpamu677z5dvXpVkpSdna3ExER99NFH2rJli5ydnfX444835MPDxnBIAewJHySNhRX5AOzNlClTNHjwYH344Yc19n3zzTeVkpJCsdtGNNUZNmx/1fjIAwGgcnz+gi1p0GJ3ly5dtHz5cs2ePVuRkZHatGmTpW3IkCGSrh+Y4+zsrMWLF8vHx6chHx42hkMKYI/4IGkcrMgHYFQ5OTm6ePFihev5+fnVHvBuNpt1/vx5JSYmNmZ4qCPOsDG+xtiCBgDsDZ+/YCsavKo4dOhQbd68Wf/4xz+0e/du/fDDD5Y2d3d3DR8+XNOmTVPPnj0b+qFhYzikAIC1sSIfgBEVFRXpoYceUl5enuWayWRSfHy8QkJCajVGcHBwY4WHOuAMG+NrzC1oypCnALAXfP6CLWiUJbReXl565ZVX9MorrygvL0+5ublydXUtd6I87B+HFACwFazIB2AkHTp00MyZM8sdSmkymWSuYXmwyWSSq6urevXqpVdffbWxw0QtcIaNsTX2FjSsGAdgr/j8BWtq9P0i3Nzc5Obm1tgPAxvFIQUAAAB1N3XqVE2dOtXy51tuuUWDBg1SeHi49YJCnXGGjbE15hY0TbFiHACA5sjB2gHAvpUdUmAyVd+PQwoAAACqNnPmTIWGhlo7DNQRZ9gY141sQVOTuq4Yj0uq3y8EAABojsii0Og4pAAAAODGzJw509ohoB44w8a4GnMLGg4tBQCg8VDsRpPgkAIAAIAbd/ToUSUmJqqgoEClpaXl2kpKSlRYWKj09HTt3btXO3bssFKUKMMZNsbVWFvQcGgpAACNi2I3mhSHFAAAANRdUVGRZs6cqX379tXY12w2y1TTHnJoMpxhY0yNtQUNh5YCANC42LMbAAA0O8npOdoUm6R/7julTbFJtdpjFbCm8PBw7d27V2azWV27dlWfPn1kNpvl5eWl/v37q3PnzjL/t5o6YMAA/f3vf7dyxCjDGTbG1Fhb0HBoKQAAjYuV3QAAoNmIS8pQ+N5Tlf6EvJ+3u8KGcYYEbNPnn38uk8mkefPmacqUKSoqKlJwcLB69+6tFStWSJL279+vOXPmKCEhQd7e3laOGD/FGTbG01hb0HBoKQAAjYt3TAAA0CxsjzurpVuPVrmVwNGzWZobHqPZ4wI0ekDXpg0OqEFSUpLatm2rRx99VJLk5OSkW265RQcPHrT0ueOOO7RgwQLNmjVL77//vubPn2+laFEZzrAxnsbYgoZDSwEAaFxsYwIAAOxeXFJGtYXuMmaz9NZnRxSXVL89VYHGUlBQIC8vr3J7cffs2VPZ2dm6ePGi5dqoUaPk7u6uAwcOWCNM1EJ3j9YaH+SjR4b6aXyQD4VuG9YYW9CUrRivCw4tBQCg9ih2AwAAuxe+91StVuZJ1wve/9x3qnEDAuqoTZs2KigoKHetS5cukqTTp09brplMJt18883lCuAA6u/eQG8tDAtWQLfKC9QB3dy1MCy4Tr8IChvmV2MBvQyHlgIAUDdsYwIAAOxacnpOnfZclaQjKVlKTs9hJR1shp+fnw4dOqQLFy6oc+fOkiQfHx+ZzWYdPXpUd9xxh6VvRkaGHB1J84GG0tBb0JStGK/pF0ccWgoAQN2xshsAANi1w8n125KkvvcBjeGee+5RcXGxnnzySX311VeSpEGDBsnR0VHr169XamqqJCkiIkIXLlzggEqgETTkFjSNsWIcAACwshsAANi5/MLiJr0PaAwTJ07UJ598ouPHj+vJJ5/U4cOH1bFjR4WEhCgyMlJjxoxRq1atlJ2dLZPJpPHjx1s7ZAA14NBSAAAaHsVuAACakeb4gdrVuX7pTn3vAxqDk5OT1q1bp5UrVyo2NlYtW7aUJM2dO1fJycmKi4vTlStXJEl33XWXwsLCrBkugDro7tHa7t+LAQBoKnyKAwCgGYhLylD43lOV7l3dz9tdYcP87HZP0AHd6/e86nsf0FhatWqll156qdy1Nm3aKCIiQnFxcUpLS1P37t3Vt29fK0UIAAAAWBfFbgAA7Nz2uLPVHoJ19GyW5obHaPa4ALvcG7S7R2v183av0yGVAd3cWWUHQwkMDFRgYKC1wwAAAACsimI3AAB2LC4po9pCdxmzWXrrsyPyaOtilyu8w4b5aW54TI1/D5JkMkmPDPVr/KCAKhQUFDTIOC4uLg0yDgAAAGAUFLsB1Kg57vEL2IvwvadqVeCVrhe8/7nvlF0WuwN9Our5+/rVWPg3maTZ4wLs8u8AxjFw4MAbHsNkMun48eMNEA0AAABgHBS7AVSpOe/xC9iD5PScOm3dIUlHUrKUnJ5jl19o3RvoLc92rvrnvlM6klLx7yWgm7seGcq/a7A+c22/oWrkMQAAAACjodgNoFLNfY9fwB4cTs6o9332WOyWrq/wDvTpyC9WYNN27dpl7RAAAAAAQ6LYDaAC9vgF7EN+YXGT3mck3T1aU9yGzfLy8rJ2CAAAAIAhOVg7AAC2pz57/AKwPa7O9ftOu773AWg6mZmZ+uabb7R7925JUmlpqXJzc60cFQAAAGBdfJoFUA57/AL2Y0D3+v3ior73AWh8u3bt0qpVqxQfHy/pfwdRnjt3TuPHj9fkyZM1Z84cOTqS5gMAAKD5YWU3gHJuZI9fALalu0dr9fN2r9M9Ad3c+eIKsFErV67UzJkzdfz4cUlSixYtLAdRpqWlKT8/Xx988IGefvpplZSUWDNUAAAAwCoodgMohz1+AfsSNsxPJlPt+ppM0iND/Ro3IAD1cuDAAa1cuVJubm6aP3++YmJiFBAQYGkPDg7WokWL5Orqqq+++koRERFWjBYAAACwDordAMphj1/AvgT6dNTz9/WrseBtMkmzxwVw2Cxgo9auXSuTyaS//OUveuihh9SmTZty7Q4ODho/fryWLl0qs9msTz/91EqRAgAAANZDdQpAOezxC9ifewO95dnOVf/cd0pHUiruyR/QzV2PDPWj0A3YsMOHD6tz58668847q+03dOhQ3XzzzTp9+nQTRQYAAADYDordAMop2+O3LodUsscvYPsCfToq0KejktNzdDg5Q/mFxXJ1dtSA7h15/QIGkJeXp5tvvrlWfd3d3ZWRwVkaAAAAaH4odgOoIGyYn+aGx+i/Z15Viz1+AWPp7tGa4jZgQB4eHkpKSlJxcbEcHatO4YuKipSUlKROnTo1YXQAAACAbWDPbgAVsMcvAAC25Y477tDVq1f1zjvvVNtv1apVysvL089//vMmigwAAACwHazsRqX4mTvY4xcAANvx1FNPacuWLVq1apXS0tJ033336erVq5Kk7OxsJSYm6qOPPtKWLVvk7Oysxx9/3MoRAwAAAE2PYjfKiUvKUPjeU5Xu19zP211hwyhuNifs8QsAgG3o0qWLli9frtmzZysyMlKbNm2ytA0ZMkSSZDab5ezsrMWLF8vHx8daoQIAAABWQ7EbFtvjzmrp1qNV7tN89GyW5obHaPa4AI0e0LVpg4NVsccvAADWN3ToUG3evFn/+Mc/tHv3bv3www+WNnd3dw0fPlzTpk1Tz549rRglAAAAYD0UuyHp+oru6grdZcxm6a3PjsijrQsrvAEAAJpIamqqunbtKi8vL73yyit65ZVXlJeXp9zcXLm6uqp1a76UBgAAADigEpKk8L2naix0lzGbpX/uO9W4AQEAAMDi2Wef1ahRo3TlyhXLNTc3N3l6elLoBgAAAP6LYjeUnJ5T6R7d1TmSkqXk9JxGiggAAAA/dfbsWTk7O6tdu3bWDgUAAACwWRS7ocPJGU16HwAAAOqmTZs2unr1qrXDAAAAAGwaxW4ov7C4Se8DAABA3UyfPl1paWlavHixCgoKrB0OAAAAYJM4oBJyda7ffwb1vQ+NJzk9R4eTM5RfWCxXZ0cN6N5R3T3YxxMAAKMrLCzUgAED9MEHHyg8PFx+fn7q1KmTnJ2dK+1vMpm0dOnSJo4SAAAAsC6qldCA7h2b9D40vLikDIXvPVXp3uv9vN0VNsxPgT7MFwAARrV48WKZTCaZzWYVFRXp2LFj1fY3mUxNFBkAAABgO5plsXvbtm1au3atTp8+rRYtWigwMFAzZsxQQEBArcf45ptvFBYWVmV7SEiIlixZ0hDhNrruHq3Vz9u9TodUBnRzZ8Wwjdged1ZLtx6V2Vx5+9GzWZobHqPZ4wI0ekDXpg0OAAA0iBkzZlDABgAAAGrQ7IrdK1as0MqVK+Xm5qYhQ4boxx9/VHR0tP7zn/9o9erVGj58eK3GOX78uCQpMDBQXbp0qdA+cODABo27sYUN89Pc8JgqC6Y/ZTJJjwz1a/ygUKO4pIxqC91lzGbprc+OyKOtCyu8AQAwoFmzZlk7BAAAAMDmNati9/fff6+VK1fKy8tLERER8vT0lCTt2bNHM2bM0Lx58xQVFSUXF5cax4qPj5ckvfjiixo0aFCjxt0UAn066vn7+tVYODWZpNnjAiiY2ojwvadq9QWFdL3g/c99p5g7AAAAAAAA2CUHawfQlNasWSPp+sqYskK3JI0YMUKhoaHKyMjQtm3bajXW8ePH5eDgoN69ezdKrNZwb6C3FoYFK6Cbe6XtAd3ctTAsmK0wbERyek6dtp6RpCMpWUpOz2mkiAAAAAAAAADraVYru/ft2yeTyaSRI0dWaBs1apQ+/vhj7d27Vw888EC14xQVFSkxMVE9evSQq6trY4VrFYE+HRXo01HJ6Tk6nJyh/MJiuTo7akD3juzRbWMOJ2fU+z7mEgAAAAAAAPam2RS709PTlZ2drc6dO6tt27YV2nv06CFJOnnyZI1jnTp1SteuXZOXl5feeustffHFF0pLS1PHjh01evRoTZ8+XW3atGnw59CUunu0piBq4/ILi5v0PgAAAAAAAMCWNZttTC5duiRJ6tSpU6XtZdczMzNrHKvscMro6GitW7dOXbt21aBBg/Tjjz/q/fff18SJE5WVVbftJYC6cnWu33dV9b0PAAAAAAAAsGWGrnrNmTNHx44dq7Hf3XffreHDh0tSlYdPOjs7S5Ly8/NrHK/scMqgoCAtW7ZM7u7X97jOysrSb37zGx04cEB//OMftWLFihrH2rhxoyIjI2vs99PHBSRpQPf6HTRZ3/sAAAAAAAAAW2boYvf58+eVlJRUY79Lly7JwaF2i9hLS0tr7DN37lxNmTJFnTp1UqtWrSzX3d3dtXjxYt17773auXOn0tPT5eHhUe1YaWlpio2NrVVswE9192itft7udTqkMqCbO9vTAAAAAAAAwC4ZutgdERFR674nTpyQJBUWFlbaXna9NgdOtmzZUj4+PpW2eXp66tZbb9U333yj48eP11js9vLyUlBQUI2PKV1f2Z2Tk1Orvmgewob5aW54jMzmmvuaTNIjQ/0aPygAAAAAAADACgxd7K6LsqJzRkZGpe017eldFx07Xt8moqCgoMa+oaGhCg0NrdW4U6ZMYRU4ygn06ajn7+unpVuPVlvwNpmk2eMCFOjDFiYAAAAAAACwT83mgEp3d3d16NBBFy5cUG5uboX2xMRESZK/v3+NYy1YsEAzZsyo8jDLc+fOSZI6d+58AxEDtXNvoLcWhgUroJt7pe0B3dy1MCxYowd0beLIAAAAAAAAgKbTbFZ2S9LQoUO1adMm7d69WyEhIeXaoqKiJMlykGV14uLidOzYMY0YMUITJ04s13by5EnFx8erXbt26tOnT8MFD1Qj0KejAn06Kjk9R4eTM5RfWCxXZ0cN6N6RPboBAAAAAADQLDSbld2S9PDDD8tkMmnJkiVKTU21XN+zZ48iIyPVqVMnjRs3rtw9iYmJSkxMLLclyeTJkyVJb731lmVFuCRlZWVp7ty5Kikp0bRp0+Tk5NTIzwgor7tHa40P8tEjQ/00PsiHQjcAAGhS27Zt0+TJkzVo0CAFBQXp6aef1pEjR+o8zqeffqqwsDANGjRIffv21T333KPFixcrOzu7EaIGAACAvWhWK7sHDBigJ554Qu+9955CQkI0ZMgQ5eXl6eDBg3J0dNSSJUsqFKjHjh0rSVq3bp2Cg4MlSRMnTtT+/fu1Y8cO3X///Ro8eLBcXFwUExOjvLw8jRkzRo8//niTPz8AAADAWlasWKGVK1fKzc1NQ4YM0Y8//qjo6Gj95z//0erVq2v1C0pJeuWVV7RhwwY5OTkpICBArVu31tGjR/X+++8rKipKERERljNyAAAAgJ9qVsVuSXrxxRfl6+ur9evX68CBA3Jzc9OIESM0a9asWm874uDgoGXLlmnDhg3617/+pbi4ODk4OMjX11eTJk3Sgw8+KJPJ1MjPBAAAALAN33//vVauXCkvLy9FRETI09NT0vVfUM6YMUPz5s1TVFSUXFxcqh1n37592rBhgzw9PbVmzRr17NlTkpSfn68XX3xRUVFR+tOf/qQ333yz0Z8TAAAAjKfZFbslacKECZowYUKt+iYkJFR63WQy6aGHHtJDDz3UkKEBAAAAhrNmzRpJ0qxZsyyFbkkaMWKEQkND9fHHH2vbtm164IEHqh0nMjJSkvTrX//aUuiWJFdXV73xxhv68ssvtXPnThUVFbFlIAAAACpoVnt2AwAAAGh4+/btk8lk0siRIyu0jRo1SpK0d+/eGsdxc3OTn5+fAgMDK7S1a9dO7du3V1FRka5cuXLjQQMAAMDuNMuV3QAAAAAaRnp6urKzs9W5c2e1bdu2QnuPHj0kSSdPnqxxrAULFlTZdv78eWVmZsrZ2Vnt27evf8AAAACwWxS7AQAAANTbpUuXJEmdOnWqtL3semZm5g09ztKlSyVJd955p1q2bFlj/40bN1q2RalJfHz8DcUGAAAA20CxGwAAAEA5c+bM0bFjx2rsd/fdd2v48OGSVOXhk87OzpKuHzJZXx999JE2b94sFxcXPffcc7W6Jy0tTbGxsfV+TAAAABgPxW4AAAAA5Zw/f15JSUk19rt06ZIcHGp3DFBpaWm9Yvn444/16quvymQy6Y033ih3cGV1vLy8FBQUVKu+8fHxysnJqVd8AAAAsB0UuwEAAACUExERUeu+J06ckCQVFhZW2l523dXVtc5xrFy5UitWrJCDg4MWLFig++67r9b3hoaGKjQ0tFZ9p0yZwipwAAAAO0CxGwAAAEC9eXh4SJIyMjIqba9pT+/KFBcX6+WXX9bGjRvl5OSkP//5zxozZsyNBwsAAAC7RrEbAAAAQL25u7urQ4cOunDhgnJzc9WqVaty7YmJiZIkf3//Wo1XVFSkGTNmaO/evWrTpo1WrVpV6+1IAAAA0LzVboM9AAAAAKjC0KFDVVJSot27d1doi4qKkiTLQZY1mTNnjvbu3SsPDw+Fh4dT6AYAAECtUewGAAAAcEMefvhhmUwmLVmyRKmpqZbre/bsUWRkpDp16qRx48aVuycxMVGJiYkqKCiwXIuIiNAXX3yhVq1aad26dbVeDQ4AAABIbGMCAAAA4AYNGDBATzzxhN577z2FhIRoyJAhysvL08GDB+Xo6KglS5bIycmp3D1jx46VJK1bt07BwcEqLi7W6tWrJV3f33vVqlVVPt68efPk7u7eeE8IAAAAhkSxGwAAAMANe/HFF+Xr66v169frwIEDcnNz04gRIzRr1iz16dOnxvsTEhKUnp4uSUpKSlJSUlKVfZ9//nmK3QAAAKiAYjcAAACABjFhwgRNmDChVn0TEhLK/blPnz4VrgEAAAB1wZ7dAAAAAAAAAADDo9gNAAAAAAAAADA8it0AAAAAAAAAAMOj2A0AAAAAAAAAMDyK3QAAAAAAAAAAw6PYDQAAAAAAAAAwPIrdAAAAAAAAAADDo9gNAAAAAAAAADA8it0AAAAAAAAAAMOj2A0AAAAAAAAAMDyK3QAAAAAAAAAAw6PYDQAAAAAAAAAwPIrdAAAAAAAAAADDo9gNAAAAAAAAADA8it0AAAAAAAAAAMOj2A0AAAAAAAAAMDyK3QAAAAAAAAAAw6PYDQAAAAAAAAAwPIrdAAAAAAAAAADDo9gNAAAAAAAAADA8it0AAAAAAAAAAMOj2A0AAAAAAAAAMDyK3QAAAAAAAAAAw6PYDQAAAAAAAAAwPIrdAAAAAAAAAADDo9gNAAAAAAAAADA8it0AAAAAAAAAAMOj2A0AAAAAAAAAMDyK3QAAAAAAAAAAw6PYDQAAAAAAAAAwPIrdAAAAAAAAAADDo9gNAAAAAAAAADA8it0AAAAAAAAAAMOj2A0AAAAAAAAAMDyK3QAAAAAAAAAAw6PYDQAAAAAAAAAwPIrdAAAAAAAAAADDo9gNAAAAAAAAADA8it0AAAAAAAAAAMOj2A0AAAAAAAAAMDyK3QAAAAAAAAAAw6PYDQAAAAAAAAAwPIrdAAAAAAAAAADDo9gNAAAAAAAAADA8it0AAAAAAAAAAMNr9sXuFStWqFevXrpw4UKd701KStJvfvMbDR8+XP3791dISIjWr1+v0tLSRogUAAAAAAAAAFCVZl3sjoqK0jvvvFOve0+cOKEHH3xQW7du1c0336yhQ4fqwoULev311/Xb3/62gSMFAAAAAAAAAFTH0doBWEt4eLgWLlyo4uLiOt9rNpv129/+Vrm5ufrzn/+s+++/X5KUlZWlqVOnasuWLbr77rs1evTohg4bAAAAAAAAAFCJZreyOzExUU899ZRee+01tWrVSm5ubnUeY//+/UpISFBQUJCl0C1J7u7umj9/viRp/fr1DRUyAAAAAAAAAKAGza7YPX/+fEVHR+uOO+7Qxo0b1a5duzqPsW/fPknSqFGjKrQNHDhQHTp00KFDh5Sbm3vD8QIAAAAAAAAAatbstjHp27evfvWrX2nkyJH1HuP06dOSJH9//0rbfXx8lJmZqcTERPXv37/ejwMAAAAAAAAAqJ1mV+z+3e9+d8NjpKenS5I6depUaXvZ9YyMjBrH2rhxoyIjI2v1uPHx8bWMEAAAAAAAAACaF0MXu+fMmaNjx47V2O/uu+/WnDlzGuxxCwoKJEk33XRTpe1l1/Pz82scKy0tTbGxsQ0WGwAAAAAAAAA0R4Yudp8/f15JSUk19rt06VKDPm6LFi0kSSaTqdp+paWlNY7l5eWloKCgWj1ufHy8cnJyatUXAAAAAAAAAJoTQxe7IyIirPK4Li4ukqSrV69W2l523c3NrcaxQkNDFRoaWqvHnTJlCqvAAQAAAAAAAKASDtYOwIg8PDwkVb0nd9lK8qr29AYAAAAAAAAANCyK3fXg5+cnSTp9+nSFNrPZrDNnzqhFixbq2bNnU4cGAAAAAAAAAM0Sxe56GDp0qCRp165dFdq+/fZbZWVladCgQWrVqlVThwYAAAAAAAAAzRLF7hqcPXtWiYmJ5Q6GDAoKkp+fn/bv36+PP/7Ycj0rK0uvvvqqJOlXv/pVk8cKAAAAAAAAAM0Vxe4aTJ06VWPHjtXOnTst1xwcHPSnP/1Jrq6uevnllzVp0iTNnDlT9957rxISEjRp0iSNHDnSilEDAAAAAAAAQPPiaO0AjCogIED/+te/tHz5csXExOjUqVPq1q2bfvOb32jixInWDg8AAAAAAAAAmpVmX+z+8ssv693u6+ur5cuXN3RIAAAAAAAAAIA6YhsTAAAAAAAAAIDhUewGAAAAAAAAABgexW4AAAAAAAAAgOFR7AYAAAAAAAAAGB7FbgAAAAAAAACA4VHsBgAAAAAAAAAYHsVuAAAAAAAAAIDhUewGAAAAAAAAABgexW4AAAAADWLbtm2aPHmyBg0apKCgID399NM6cuTIDY1ZVFSkX/ziF+rVq5fOnTvXQJECAADAHlHsBgAAAHDDVqxYodmzZ+vUqVMKDg6Wv7+/oqOj9fDDDys6Orre4y5btkwJCQkNGCkAAADslaO1AwAAAABgbN9//71WrlwpLy8vRUREyNPTU5K0Z88ezZgxQ/PmzVNUVJRcXFzqNO6hQ4f0/vvvN0bIAAAAsEOs7AYAAABwQ9asWSNJmjVrlqXQLUkjRoxQaGioMjIytG3btjqNmZ+fr5deekldunSRh4dHg8YLAAAA+0SxGwAAAMAN2bdvn0wmk0aOHFmhbdSoUZKkvXv31mnMRYsW6dy5c1q4cKFuuummBokTAAAA9o1iNwAAAIB6S09PV3Z2tjw9PdW2bdsK7T169JAknTx5stZjRkdHa8OGDZo6daoGDx7cYLECAADAvrFnNwAAAIB6u3TpkiSpU6dOlbaXXc/MzKzVeFeuXNHvf/97+fr66vnnn693XBs3blRkZGSt+sbHx9f7cQAAAGA7KHYDAAAAKGfOnDk6duxYjf3uvvtuDR8+XJKqPHzS2dlZ0vU9uGvj1Vdf1eXLl/X2229b7q2PtLQ0xcbG1vt+AAAAGA/FbgAAAADlnD9/XklJSTX2u3TpkhwcarczYmlpaY19PvvsM23btk3Tp09Xv379ajVuVby8vBQUFFSrvvHx8crJybmhxwMAAID1UewGAAAAUE5ERESt+544cUKSVFhYWGl72XVXV9dqx7l48aJee+019e7dWzNmzKj141clNDRUoaGhteo7ZcoUVoEDAADYAYrdAAAAAOrNw8NDkpSRkVFpe017epd59913lZ2drR49emju3Lnl2srGXrhwoVxcXDR9+nT17NnzRkMHAACAnaHYDQAAAKDe3N3d1aFDB124cEG5ublq1apVufbExERJkr+/f7XjlO3pHRcXp7i4uEr7REVFSZImTpxIsRsAAAAV1G6DPQAAAACowtChQ1VSUqLdu3dXaCsrUJcdZFmVRYsWKSEhodL/eXt7S5J27dqlhIQEBQcH+kFJ9AAAHZpJREFUN/yTAAAAgOFR7AYAAABwQx5++GGZTCYtWbJEqamplut79uxRZGSkOnXqpHHjxpW7JzExUYmJiSooKGjqcAEAAGCn2MYEAAAAwA0ZMGCAnnjiCb333nsKCQnRkCFDlJeXp4MHD8rR0VFLliyRk5NTuXvGjh0rSVq3bh0rtQEAANAgKHYDAAAAuGEvvviifH19tX79eh04cEBubm4aMWKEZs2apT59+lg7PAAAADQDFLsBAAAANIgJEyZowoQJteqbkJBQ63F37txZ35AAAADQjLBnNwAAAAAAAADA8Ch2AwAAAAAAAAAMj2I3AAAAAAAAAMDwKHYDAAAAAAAAAAyPYjcAAAAAAAAAwPAodgMAAAAAAAAADI9iNwAAAAAAAADA8Ch2AwAAAAAAAAAMj2I3AAAAAAAAAMDwKHYDAAAAAAAAAAyPYjcAAAAAAAAAwPAodgMAAAAAAAAADI9iNwAAAAAAAADA8Ch2AwAAAAAAAAAMj2I3AAAAAAAAAMDwKHYDAAAAAAAAAAyPYjcAAAAAAAAAwPAodgMAAAAAAAAADI9iNwAAAAAAAADA8Ch2AwAAAAAAAAAMj2I3AAAAAAAAAMDwKHYDAAAAAAAAAAyPYjcAAAAAAAAAwPAodgMAAAAAAAAADI9iNwAAAAAAAADA8Ch2AwAAAAAAAAAMj2I3AAAAAAAAAMDwKHYDAAAAAAAAAAyPYjcAAAAAAAAAwPAodgMAAAAAAAAADI9iNwAAAAAAAADA8Ch2AwAAAAAAAAAMj2I3AAAAAAAAAMDwHK0dAGovJSVFkhQfH68pU6ZYORoAAIDmIT4+XtL/cjHYH/JsAACAptcYeTbFbgPJz8+XJOXk5Cg2NtbK0QAAADQvZbkY7A95NgAAgPU0ZJ5NsdtAunTponPnzsnV1VXdunVr9MeLj49XTk6OWrdurd69ezf646FhMG/GxdwZF3NnTMybcTX13KWkpCg/P19dunRp9MeCdZBno7aYO2Ni3oyLuTMu5s6Y7CHPNpnNZnODjQa7MmXKFMXGxiooKEjr16+3djioJebNuJg742LujIl5My7mDkbHf8PGxdwZE/NmXMydcTF3xmQP88YBlQAAAAAAAAAAw6PYDQAAAAAAAAAwPIrdAAAAAAAAAADDo9gNAAAAAAAAADA8it0AAAAAAAAAAMOj2A0AAAAAAAAAMDyK3QAAAAAAAAAAw6PYDQAAAAAAAAAwPIrdAAAAAAAAAADDazF//vz51g4Ctqt3794KCgpS7969rR0K6oB5My7mzriYO2Ni3oyLuYPR8d+wcTF3xsS8GRdzZ1zMnTEZfd5MZrPZbO0gAAAAAAAAAAC4EWxjAgAAAAAAAAAwPIrdAAAAAAAAAADDo9gNAAAAAAAAADA8it0AAAAAAAAAAMOj2A0AAAAAAAAAMDxHawcA2/PVV1/pnXfeUUJCgq5du6Y+ffroySef1LBhw6wdGqqxadMm/e53v6uy/ZlnntHs2bObMCJUZ+PGjZo7d67Cw8M1ePDgCu1JSUlasWKFDh06pCtXrsjb21uTJk1SWFiYHBz4ntKaqpu7H374QSNGjKjy3oEDByoiIqKRI0SZkpISRUREKDIyUmfOnFFJSYm6du2qsWPHatq0aXJ2di7X/+jRo1q1apWOHj2q/Px8+fr66pe//KVCQkKs9Ayap7rM2zfffKOwsLAqxwoJCdGSJUuaImyg1si1jYlc21jItY2JPNs4yLONqznk2hS7UU7Zm4uTk5OGDBmi0tJSxcTE6Mknn9Rrr72myZMnWztEVCE+Pl6SdMcdd8jd3b1Ce+/evZs6JFQhLi5OCxYsqLL9xIkTCgsLU25urgYOHKh+/fopJiZGr7/+ur777jubfDNpLmqau+PHj0uSevXqJX9//wrtPj4+jRYbyispKdGzzz6rPXv2yNXVVf3795ejo6O+++47LV++XNHR0Vq7dq1cXFwkSfv379fTTz+t0tJS3XbbbXJxcdGBAwf0wgsv6PTp0xQwmkhd563sNRcYGKguXbpUGG/gwIFNGj9QE3Jt4yLXNg5ybWMizzYO8mzjaja5thn4rwsXLpj79u1rHjRokDkhIcFy/bvvvjMPHDjQ3K9fP/OFCxesGCGq8+ijj5r9/f2ZIxu3fft2c2BgoNnf39/s7+9vPnjwYLn20tJSc0hIiNnf39+8adMmy/XMzEzL9e3btzd12DDXPHdms9m8YsUKs7+/v3nz5s1WiBA/FRERYfb39zeHhISU+3cxMzPTPHnyZLO/v795yZIlZrPZbC4oKDDffvvt5j59+pgPHDhg6ZuSkmIeNmyY2d/f33z06NEmfw7NUV3mzWw2m1966SWzv7+/+ZtvvrFGuECdkGsbG7m2MZBrGxN5trGQZxtXc8m1+X0OLMLDw1VUVKSpU6eW+6Y0ICBATz75pAoLC7VhwwYrRojqnDhxQh07dpSnp6e1Q0ElLly4oN/+9rd67rnnVFpaqo4dO1bab//+/UpISFBQUJDuv/9+y3V3d3fNnz9fkrR+/fqmCBn/Vdu5k/73zXefPn2aKjxUITIyUpI0b968cv8u/vS1tHXrVknS5s2blZmZqZCQEA0ZMsTS19vbWy+88IIkXndNpS7zJl1/zTk4OLCiEoZArm1s5Nq2jVzbmMizjYk827iaS65NsRsW+/btkySNGjWqQlvZtb179zZpTKid1NRU/fjjj7zx27ClS5dq8+bN6tu3rzZs2KAePXpU2q+61+HAgQPVoUMHHTp0SLm5uY0aL/6ntnMnXf+Js6urKz+jtAHt27dXjx49FBAQUKGte/fukqT09HRJ/3vd3XXXXRX63nnnnWrRogXvf02kLvNWVFSkxMRE9ejRQ66urk0ZJlAv5NrGRa5t+8i1jYk825jIs42rueTa7NkNSZLZbNbp06fl4OBQ6RtM9+7d5eDgoNOnT8tsNstkMlkhSlSlbA/BDh06aMGCBdq7d68uXLigm2++Wb/4xS8qPSACTatHjx5avHixfvGLX1R76M3p06clqdJ96KTre9FlZmYqMTFR/fv3b5RYUV5t5+7KlSs6f/68+vTpozVr1mjz5s1KSUlR69atdeedd2rmzJmsBmtC77zzTpVtR48elSR17txZknTq1ClJlb/uWrVqJQ8PD/3www/KyMiodsURblxd5+3atWvy8vLSW2+9pS+++EJpaWnq2LGjRo8erenTp6tNmzZNEjdQE3JtYyPXtn3k2sZEnm1M5NnG1VxybVZ2Q5KUnZ2toqIitWvXTk5OThXaHR0d1b59exUUFCgvL88KEaI6ZT/p2rhxoz777DP5+vqqf//+unjxopYvX67HHntMV69etXKUzdtTTz2l8ePH13i6e9m3qJ06daq0vex6RkZGwwaIKtV27so+CB87dkxvvfWWOnTooODgYJWUlOjjjz/WAw88oDNnzjRFyKiG2WzWsmXLJEn33HOPJOnSpUuSeN3Zssrmrey9Lzo6WuvWrVPXrl01aNAg/fjjj3r//fc1ceJEZWVlWS1m4KfItY2NXNv2kWsbE3m2fSHPNi57y7UpdkOSVFBQIEmWE1crc9NNN0kSCbgNKnvzHzNmjHbv3q23335bH374oT777DPdcsstiouL09KlS60cJWqj7LVY9nr7/8qu5+fnN1lMqJ2yZMDf31+ff/651qxZo7/97W/atWuXxo0bp0uXLln2pYP1vPnmmzp48KA6duyoadOmSeJ1ZwSVzVvZe19QUJB27dqlv/3tb1qzZo2++OIL3X777UpOTtYf//hHa4YNWJBrGxu5tv3gPd+YyLONgTzbuOwt16bYDUmq8ZvUnzKbzY0YCepj+fLl2rp1q/785z+X20upS5cuWrRokUwmkzZs2KBr165ZMUrURosWLSSpxp8vl5aWNkU4qIOpU6cqKipKa9euVdeuXS3XXV1d9frrr8vT01PHjh3T4cOHrRhl87Zs2TL97W9/k5OTk5YuXSp3d3dJ1193JpOJ152Nqmre5s6dq+3bt+vtt9+2XJOuH7CzePFiubq6aufOnZZVfIA1kWsbG7m2/SDXNibybNtHnm1c9phrU+yGJFmStsLCwir7lP00z2gb0zcHzs7O8vX1rfRnsb1791bnzp2Vn5+v5OTkpg8OdVK24quqn8KWXXdzc2uymFA7LVq0UNeuXcslAmVcXFwsp48fO3asqUNr9oqLi/XKK69o9erVcnZ21sqVK3XbbbdZ2l1cXGQ2m6t8D+R1Zx01zVvLli3l4+OjVq1aVbjX09NTt956q8xms2U1GGBN5NrGRq5tP8i1jYk823aRZxuXPefaFLsh6frBAK6urrp8+bKKi4srtBcXF+vy5ctydna22Q3oUbWygx7KfkIE2+Xh4SGp6j3LatrzDLaL16F15OXl6ZlnntGGDRvUpk0b/eMf/9Dw4cPL9Sl73ZW9vv4/XndNrzbzVhNec7Al5Nr2jX9vjINc2z7xGrQO8mzjsvdcm2I3JF3/GZevr69KSkoqXZGQlJSk0tLSKk+thvXk5ubq5Zdf1nPPPVfphydJOnfunKT/naoL2+Xn5yfpfyfF/5TZbNaZM2fUokUL9ezZs6lDQw1Wrlyp5557TgkJCZW28zpsetnZ2ZoyZYr27dunn/3sZwoPDy+3WqFM2esuMTGxQltubq7S09Pl7u7OCfFNpLbztmDBAs2YMUOZmZmVjsNrDraEXNu4yLXtC7m2MZFn2x7ybONqDrk2xW5YDB06VJIUFRVVoa3sWl2/6UHjc3Nz086dO7Vjxw4dPHiwQnt0dLQuX74sf39/y7eqsF1lr8Ndu3ZVaPv222+VlZWlQYMGVfpTIlhXQkKCduzYoc8//7xCW2Zmpvbv36+WLVsqODjYCtE1P0VFRXrqqad07Ngx+fr66qOPPqqyiFTd+9+XX36pkpIS3v+aSF3mLS4uTlFRUfryyy8rtJ08eVLx8fFq166d+vTp09hhA7VCrm1M5Nr2hVzbmMizbQt5tnE1l1ybYjcsQkND5ezsrL///e/6/vvvLdePHj2q9957TzfddJMeeeQRK0aIyphMJk2aNEnS9W/eLl68aGk7e/asXnvtNUnS9OnTrRIf6iYoKEh+fn7av3+/Pv74Y8v1rKwsvfrqq5KkX/3qV9YKD9WYPHmyJGnNmjU6dOiQ5XpeXp7mzZun3NxcPfjgg/xEr4ksX75chw8f1s9+9jOtX7++2hUHo0ePVocOHRQZGano6GjL9dTUVP31r3+VyWTS1KlTmyBq1GXeyl5zb731VrnVQllZWZo7d65KSko0bdq0SvfYBayBXNuYyLXtC7m2MZFn2xbybONqLrm2ycxx3/iJ8PBwvfbaa+W+FY2JiVFxcbEWL16s+++/38oRojJXr17V448/rkOHDsnV1VWDBg2SdH3uioqK9Pjjj+t3v/udlaPET02ZMkWxsbEKDw/X4MGDy7UdOXJEjz32mPLz89W/f395eHgoNjZW2dnZmjRpkhYsWGClqCFVP3eLFi3SmjVr5ODgoIEDB6p9+/b65ptvdPnyZQ0ePFjvvfee5WAkNJ7Lly9rxIgRunr1qvr06aMePXpU2XfJkiWSrq/weu6551RSUqLbbrtNbm5u+vrrr1VQUKDZs2frmWeeaarwm626zltpaamef/557dixQy1bttTgwYPl4uKimJgY5eXlacyYMfrrX/+qFi1aNOGzAKpHrm1M5NrGQ65tTOTZto8827iaU65NsRsV7N69W++9956OHz8uJycn9erVS9OnT9ftt99u7dBQjaKiIn3wwQfasmWLkpOT5eTkpFtvvVVTpkzRPffcY+3w8P9Ul8hJ1/cRXL58ueVDVLdu3fTQQw9p4sSJNvlm0pzUNHeff/65PvzwQx0/flylpaXy9vbW/fffr8cee0wtW7a0QsTNzxdffKFZs2bVqu9P93789ttvtWrVKn333Xcym83y9fXV1KlTNWbMmMYKFT9Rn3kzm83asGGD/vWvf+n06dNycHCQr6+vJk2apAcffFAmk6kxQwbqhVzbmMi1jYVc25jIs20febZxNadcm2I3AAAAAAAAAMDw2LMbAAAAAAAAAGB4FLsBAAAAAAAAAIZHsRsAAAAAAAAAYHgUuwEAAAAAAAAAhkexGwAAAAAAAABgeBS7AQAAAAAAAACGR7EbAAAAAAAAAGB4FLsBAAAAAAAAAIZHsRsAAAAAAAAAYHgUuwEAAAAAAAAAhkexGwAAAAAAAABgeBS7AQA246WXXlKvXr20ePHiRnuMc+fOqVevXurVq5fy8vJqfV9wcLB69eqlmJiYRosNAAAAaAzk2QCaC4rdAAAAAAAAAADDc7R2AAAANCVPT09t27ZNkuTq6mrlaAAAAAD7QJ4NwBZQ7AYANCstW7ZUz549rR0GAAAAYFfIswHYArYxAQAAAAAAAAAYHiu7AcAAUlNT9e677+qrr75Senq6brrpJvn4+Gj06NEKCwuTi4tLhXt2796tjRs36siRI8rKypKjo6M6d+6sYcOGadq0aerUqVO5/r169VLr1q118OBBRURE6KOPPlJKSopatWqloUOH6sUXX1SHDh10/PhxLV++XIcOHVJhYaF69+6tZ599VsOHDy833siRI5WWlqb//Oc/2rdvn9asWaOUlBS5u7srODhYzzzzjHx8fGr9d5Cbm6sPPvhAO3bs0NmzZ9WiRQv5+/srNDRUDzzwgFq0aFGrcc6dO6e77rpLkvTtt9/Kzc3N0lZUVKR//vOf+uSTT5SamqrWrVvr3nvv1a9//etaxwkAAADjIM8mzwZgXyh2A4CNS0xM1MMPP6zs7Gy1bdtW/v7+ys/P19GjR3XkyBHt3LlTH374oVq2bGm55/e//73+/e9/S5Juvvlm+fv7KyMjQ2fOnNGZM2f0+eefa/PmzWrfvn25xzKbzXrhhRf02Wef6Wc/+5m8vb2VmJioyMhIHTt2THPmzNHMmTPl6Oio7t27Ky0tTYcPH9YzzzyjdevW6bbbbqsQ/9tvv63w8HC1bt1afn5+Sk5O1qZNmxQVFaV3331XgwcPrvHv4Ny5c3r88ceVkpJieezS0lLFxcUpLi5OX3zxhVavXi0nJ6d6/z3n5+frmWeeUUxMjBwcHOTn56fCwkKtW7dOsbGxunbtWr3HBgAAgO0hzybPBmB/2MYEAGzcsmXLlJ2drV/+8pfav3+/Nm7cqO3bt2vjxo1q3769Dh8+rK1bt1r6f/nll/r3v/8tV1dXrV27Vrt379Ynn3yi6OhorV+/Xq6urrp48aIlSf+p3Nxcbd++XYsXL9aePXu0ZcsWrV27ViaTSSdPntT06dN177336quvvtKmTZu0Z88eBQYGqrS0VGvXrq00/vDwcI0fP1779u3TJ598or179+q+++5Tbm6u5syZo4KCgmqff0lJiWbNmqWUlBSNHDlS0dHR2rp1qz7//HNt3bpVPXv21L59+/SXv/zlhv6eV69erZiYGHl5eenTTz/Vp59+qh07duiDDz5QWlqa8vLybmh8AAAA2BbybPJsAPaHYjcA2LiTJ09KkkJDQ8utKrn11ls1a9YsjR49Ws7OzpbrX331lVq2bKlHH31UQ4YMKTdWUFCQxo4dK+n6SpbKTJgwQePHj7f8+bbbbtOAAQMkSR4eHlq0aJHldHU3Nzc9/PDDkqT4+PhKx+vbt68WLlxo+Qmom5ubFi1apO7du+vChQv69NNPq33+O3fu1PHjx+Xj46OlS5eqY8eOljZfX18tXbpUDg4OioiIUGZmZrVjVaWwsFDr16+XJC1cuFB+fn6Wtttvv11z586t17gAAACwXeTZ5NkA7A/FbgCwcd7e3pKk+fPnKzY2VsXFxZa2sLAwLV++XGPGjLFc+8Mf/qDvvvtOs2bNqnS8smS4qpUew4YNq3DNy8tLkhQcHCxHx/I7YJUlxVWtyAgLC5ODQ/m3GycnJ91///2Sru95WJ1du3ZJkkaNGlXuw0YZf39/+fv769q1a/r666+rHasqBw8e1NWrV9W5c2cFBwdXaB83bpxuuummeo0NAAAA20SeTZ4NwP6wZzcA2LgZM2bo66+/1uHDhzVlyhS1bt1aQ4YM0bBhwzRy5MhyKzDKtGjRQoWFhfr666+VmJio1NRUpaSk6NixY7p8+bKk6/sGVsbT07PCtbKVLu7u7hXaypLyqsbr27dvpdf9/f0lSWfPnq20vUzZypjt27fr0KFDlfa5cOGCJCkpKanasaqSkpIiSerZs2el7c7OzurevbtOnDhRr/EBAABge8izybMB2B+K3QBg4/r376/IyEi9/fbb+vLLL5WTk6OdO3dq586dmj9/vsaOHas//vGPat26tSSptLRU7777rj744ANduXLFMo6zs7MCAgJUWlpaZTIrqdIT58uYTKY6x9+2bdtKr5edzp6Tk1Pt/bm5uZKk1NRUpaamVtu3prFquq+6596mTZt6jQ0AAADbRJ5Nng3A/lDsBgAD6Nmzp5YsWaKioiIdPnxYBw4cUHR0tI4dO6YtW7aooKBAq1atknT9oJ133nlHjo6OevTRRxUUFCQ/Pz95e3vL0dFRb775ZrVJeEOr6mecZcn1/z+p/v8rS4yXLVume++9t2GD+6+yBDs/P7/KPlevXm2UxwYAAID1kGeTZwOwL+zZDQA2rLS0VKmpqYqNjZV0fQ++oKAg/frXv9bGjRv1xhtvSJKioqKUl5ena9euad26dZKk119/XS+//LJGjx6tHj16WH4GWfZTxKZy+vTpSq+X/VTR19e32vu7desmSTpz5kyVfeLi4nTy5Ml6J8o+Pj6SpISEhEp/JlpaWqrk5OR6jQ0AAADbQ55Nng3APlHsBgAbdunSJd1999167LHHdPHixQrtP//5zy3/v7S0VFlZWZZVE717967QPzMzU3v27JGkcgfwNKZNmzZVuFZUVKTNmzdLun4gTnVGjBhhGaewsLBCe2pqqh599FGFhIQoLi6uXjEOHjxYbdu2VWZmpuWgnp+KiorSjz/+WK+xAQAAYHvIs8mzAdgnit0AYMM8PT0VFBSk0tJSvfDCC+US8dzcXP31r3+VJAUGBqp169bq0KGD5aeC77//voqKiiz94+Pj9cQTTyg7O1uSKk1oG8POnTu1evVqlZSUWOJ+4YUXlJqaqltuuUWjR4+u9v5x48ape/fuSklJ0axZs3Tp0iVLW3Jysp599lkVFxerd+/euv322+sVY8uWLTV9+nRJ0h/+8Ad9++23lrbDhw9r/vz59RoXAAAAtok8mzwbgH1iz24AsHFvvPGGHnzwQcXGxuquu+6St7e3WrZsqbNnzyo/P1/t2rXTggULJF0/sX3GjBlauHChNm/erD179qhLly7Kzs7WuXPnJEnBwcGKiYlRenp6k8Tv5+enZcuW6cMPP/y/9u5el5YojOPw/2RCJaGQYBIkbJ1Wj7gAJY3s2JVWr1TSYbca3Y5IuADXoPKVTAidVkHknE51vhInOZY8Tz0zWeWbX9bkTV3Xub29zfPzc8bGxrK7u5uqqn77fn9/f/b29tLpdHJ+fp75+fm0Wq28vr6maZq8vb1ldHQ0+/v7Hzrn2tpaLi4ucnZ2ltXV1fffPm9ubjI5OZmhoaH3jfUAAJTPnG3OBr4eN7sBPrnx8fH0er2srKykruvc39+naZqMjIyk3W7n9PQ0MzMz78+32+10u93Mzc2lqqpcXV3l5eUlS0tLOTw8zMHBQfr6+nJ9ff3Hrev/wubmZra2tjI4OJjLy8sMDw+n0+mk1+tlenr6r77RarVycnKSjY2NTE1NpWma3N3dZWJiIuvr6zk+Pk5d1x86Z1VV2dnZyfb2dmZnZ/P4+Jinp6csLy/n6OgoAwMDH/o+AACfiznbnA18Pd++/2xDAAB80OLiYh4eHtLtdrOwsPC/jwMAAF+CORvg19zsBgAAAACgeGI3AAAAAADFE7sBAAAAACie2A0AAAAAQPEsqAQAAAAAoHhudgMAAAAAUDyxGwAAAACA4ondAAAAAAAUT+wGAAAAAKB4YjcAAAAAAMUTuwEAAAAAKJ7YDQAAAABA8cRuAAAAAACKJ3YDAAAAAFA8sRsAAAAAgOKJ3QAAAAAAFE/sBgAAAACgeGI3AAAAAADF+wFnIPxQx2YeVwAAAABJRU5ErkJggg==\n",
]
},
"metadata": {
"image/png": {
"height": 269,
},
"output_type": "display_data"
}
],
"source": [
"from sklearn.model_selection import GridSearchCV\n",
"\n",
"search = GridSearchCV(p, param_grid, scoring=\"neg_median_absolute_error\", cv=4, n_jobs=4)\n",
"\n",
"search.fit(features, values)\n",
"\n",
"\n",
"print(search.best_params_)\n",
"eval_regression(search, features, values)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- Play with the examples above and try different algorithms, metrics and pipelines.\n",
"### Optional exercise: Timeseries prediction\n",
"The file `data/sales.csv` holds sales data of a swiss sportsshop selling skiing equipment. The time axis is in units of months, starting with January.\n",
"\n",
"- Load the data and plot it"
]
},
{
"cell_type": "code",
"execution_count": 25,
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>month</th>\n",
" <th>sales</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>1.085941</td>\n",
" </tr>\n",
" <tr>\n",