Skip to content
Snippets Groups Projects
02_classification.ipynb 41 KiB
Newer Older
  • Learn to ignore specific revisions
  •     "### Tuning classifiers in a difficult problem\n",
        "\n",
        "Load the data from `\"data/spiral.csv\"`, plot points and train both Logistic Regression classfier with polynomial features and the Support Vector Classifier `sklearn.svm.SVC` with no preprocessing. Compare the decision surfaces.\n",
    
        "Try different values of degree of the polynomial features and of the hyperparameter `C` (applicable to both classifiers).\n"
    
      },
      {
       "cell_type": "code",
    
       "metadata": {
        "tags": [
         "solution"
        ]
       },
       "outputs": [],
    
       "source": [
        "df = pd.read_csv(\"data/spiral.csv\")\n",
        "\n",
        "features = df.iloc[:, :-1]\n",
        "labels = df.iloc[:, -1]\n",
        "\n",
        "x = features.iloc[:, 0]\n",
        "y = features.iloc[:, 1]\n",
        "color = [[\"steelblue\", \"chocolate\"][l] for l in labels]\n",
        "plt.figure(figsize=(6, 6))\n",
        "plt.scatter(x, y, color=color)\n",
        "\n",
    
        "\n",
        "from sklearn.linear_model import LogisticRegression\n",
        "from sklearn.preprocessing import PolynomialFeatures\n",
        "\n",
    
        "clf = LogisticRegression(C=1, max_iter=1000)\n",
    
        "preproc = PolynomialFeatures(4, include_bias=False)\n",
        "\n",
        "plt.figure(figsize=(6, 6))\n",
        "train_and_plot_decision_surface(\"Logistic regression\", clf, features, labels, preproc=preproc)\n",
        "\n",
        "\n",
    
        "from sklearn.svm import SVC\n",
        "\n",
    
        "plt.figure(figsize=(6, 6))\n",
        "train_and_plot_decision_surface(\"SVC\", clf, features, labels, preproc=None)"
    
      },
      {
       "cell_type": "markdown",
    
       "metadata": {},
    
       "source": [
        "### Comparison of decision surfaces for different classifiers and datasets\n",
    
        "Compare decision surfaces for different classifiers listed below for both `\"data/xor.csv\"` and `\"data/circle.csv\"` (circle) datasets. For which classifiers does it help to add polynomial features? How many degrees suffice?"
    
       "metadata": {},
       "outputs": [],
    
       "source": [
        "from sklearn.linear_model import LogisticRegression\n",
        "from sklearn.svm import LinearSVC, SVC\n",
    
    schmittu's avatar
    schmittu committed
        "from sklearn.tree import DecisionTreeClassifier\n",
        "from sklearn.neighbors import KNeighborsClassifier\n",
        "\n",
    
    schmittu's avatar
    schmittu committed
        "# ...."
    
       "metadata": {
        "tags": [
         "solution"
        ]
       },
       "outputs": [],
    
       "source": [
        "from sklearn.linear_model import LogisticRegression\n",
        "from sklearn.svm import LinearSVC, SVC\n",
        "from sklearn.tree import DecisionTreeClassifier\n",
        "from sklearn.neighbors import KNeighborsClassifier\n",
        "\n",
    
    schmittu's avatar
    schmittu committed
        "def try_dataset(dataset, preproc):\n",
    
    schmittu's avatar
    schmittu committed
        "    \n",
    
        "    df = pd.read_csv(dataset)\n",
        "    features = df.iloc[:, :-1]\n",
        "    labels = df.iloc[:, -1]\n",
    
    schmittu's avatar
    schmittu committed
        "    \n",
    
    schmittu's avatar
    schmittu committed
        "    plt.figure(figsize=(11, 28))\n",
    
    schmittu's avatar
    schmittu committed
        "    \n",
        "    clf = LogisticRegression()\n",
        " \n",
        "    plt.subplot(5, 2, 1)\n",
    
        "    train_and_plot_decision_surface(\"LogisticRegression\", clf, features, labels, preproc=None, N=300)\n",
    
    schmittu's avatar
    schmittu committed
        "    \n",
        "    plt.subplot(5, 2, 2)\n",
    
        "    train_and_plot_decision_surface(\"LogisticRegression\", clf, features, labels, preproc=preproc, N=300)\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
    
    schmittu's avatar
    schmittu committed
        "    clf = LinearSVC()\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
    
    schmittu's avatar
    schmittu committed
        "    plt.subplot(5, 2, 3)\n",
    
        "    train_and_plot_decision_surface(\"LinearSVC\", clf, features, labels, preproc=None, N=300)\n",
    
    schmittu's avatar
    schmittu committed
        "    plt.subplot(5, 2, 4)\n",
    
        "    train_and_plot_decision_surface(\"LinearSVC\", clf, features, labels, preproc=preproc, N=300)\n",
    
    schmittu's avatar
    schmittu committed
        "    \n",
        "    clf = SVC()\n",
        "    plt.subplot(5, 2, 5)\n",
    
        "    train_and_plot_decision_surface(\"SVC\", clf, features, labels, preproc=None, N=300)\n",
    
    schmittu's avatar
    schmittu committed
        "    plt.subplot(5, 2, 6)\n",
    
        "    train_and_plot_decision_surface(\"SVC\", clf, features, labels, preproc=preproc, N=300)\n",
    
    schmittu's avatar
    schmittu committed
        "    \n",
        "    clf = DecisionTreeClassifier()\n",
        "    plt.subplot(5, 2, 7)\n",
    
        "    train_and_plot_decision_surface(\"DecisionTreeClassifier\", clf, features, labels, preproc=None, N=300)\n",
    
    schmittu's avatar
    schmittu committed
        "    plt.subplot(5, 2, 8)\n",
    
        "    train_and_plot_decision_surface(\"DecisionTreeClassifier\", clf, features, labels, preproc=preproc, N=300)\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
        "    clf = KNeighborsClassifier()\n",
        "    plt.subplot(5, 2, 9)\n",
    
        "    train_and_plot_decision_surface(\"KNeighborsClassifier\", clf, features, labels, preproc=None, N=300)\n",
    
    schmittu's avatar
    schmittu committed
        "    \n",
        "    plt.subplot(5, 2, 10)\n",
    
        "    train_and_plot_decision_surface(\"KNeighborsClassifier\", clf, features, labels, preproc=preproc, N=300)\n",
    
    schmittu's avatar
    schmittu committed
        "\n",
        "\n",
    
        "try_dataset(\"data/xor.csv\", PolynomialFeatures(2, include_bias=False))\n"
    
    schmittu's avatar
    schmittu committed
      },
    
       },
       "outputs": [],
       "source": [
        "try_dataset(\"data/circle.csv\", PolynomialFeatures(4, include_bias=False))"
       ]
    
    schmittu's avatar
    schmittu committed
      {
       "cell_type": "markdown",
    
       "metadata": {},
    
    schmittu's avatar
    schmittu committed
       "source": [
        "## But.. what if there are more than two classes?\n",
        "\n",
        "\n",
        "Previous and the following examples in this script consider two class problems.\n",
        "Before we dig deeper into classification, let's say a few words on how to handle more than two classes.\n",
        "\n",
        "\n",
        "<div class=\"alert alert-block alert-warning\"><p><i class=\"fa fa-warning\"></i>&nbsp;\n",
        "    The general idea for <code>n > 2</code> classes is to build multiple 2-class classifiers and determine a winning class by applying all of them:\n",
        "<ul>\n",
    
        "    <li>in the <strong>one-vs-rest</strong> (OvR; or <strong>one-vs-all</strong>, OvA) approach build <code>n</code> classifiers for \"label n vs. the rest\";</li>\n",
    
    schmittu's avatar
    schmittu committed
        "    <br/>\n",
        "    \n",
    
        "  <li>in the <strong>one-vs-one</strong> (OvO) approach builds  classifiers for `label i vs label j` (in total <code>n x (n - 1) / 2</code> classifiers).</li>\n",
    
    schmittu's avatar
    schmittu committed
        "</ul>\n",
        "</p></div>\n",
        "\n",
        "For new incoming data then all classifiers (`n` or `n x (n -1) / 2`) are applied and the overall winning class gives the final result.\n",
        "\n",
        "For instance, to classify images of digits:\n",
        "\n",
        "- we could build 10 classifiers `is it 0 or other digit`, `is it 1 or other digit`, etc.\n",
        "  \n",
        "  A new image then would hopefully yield `True` for exactly one of the classifier, in other situations the result is unclear.\n",
        "   \n",
        "   \n",
        "- we could build 45 classifiers `is it 0 or 1`, `is it 0 or 2`, etc.\n",
        "\n",
        "  For a new image we could choose the final outcome based on which class \"wins\" most often.\n",
        "\n",
        "\n",
        "<div class=\"alert alert-block alert-info\"><p><i class=\"fa fa-info-circle\"></i>&nbsp;\n",
    
        "    In <code>scikit-learn</code> many classifiers support multi-class problems out of the box and also offer functionalities to implement <strong>one-vs-rest</strong> or <strong>one-vs-one</strong> in some cases (cf. <a href=\"https://scikit-learn.org/stable/modules/multiclass.html\"><code>scikit-learn</code> multiclass and multilabel algorithms</a>).\n",
    
    schmittu's avatar
    schmittu committed
        "</p></div>"
    
    Mikolaj Rybinski's avatar
    Mikolaj Rybinski committed
      },
      {
       "cell_type": "markdown",
    
       "metadata": {},
    
    Mikolaj Rybinski's avatar
    Mikolaj Rybinski committed
       "source": [
    
    schmittu's avatar
    schmittu committed
        "Copyright (C) 2019-2022 ETH Zurich, SIS ID"
    
    schmittu's avatar
    schmittu committed
      }
     ],
     "metadata": {
    
      "kernelspec": {
    
       "display_name": "Python 3 (ipykernel)",
    
       "language": "python",
    
       "name": "python3"
    
    schmittu's avatar
    schmittu committed
      "language_info": {
    
       "codemirror_mode": {
        "name": "ipython",
        "version": 3
       },
       "file_extension": ".py",
       "mimetype": "text/x-python",
       "name": "python",
       "nbconvert_exporter": "python",
       "pygments_lexer": "ipython3",
    
       "version": "3.10.10"
    
    schmittu's avatar
    schmittu committed
      }
     },
     "nbformat": 4,
    
     "nbformat_minor": 4
    }