Skip to content
Snippets Groups Projects
index.html 11.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • schmittu's avatar
    schmittu committed
    <!DOCTYPE html>
    <html>
      <head>
        <title>Title</title>
        <meta charset="utf-8">
        <style>
          @import url(https://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
          @import url(https://fonts.googleapis.com/css?family=Droid+Serif:400,700,400italic);
          @import url(https://fonts.googleapis.com/css?family=Ubuntu+Mono:400,700,400italic);
          @import url(https://fonts.googleapis.com/css?family=Abel:400,700,400italic);
          @import url(https://fonts.googleapis.com/css?family=Ropa+Sans:400,700,400italic);
          @import url(https://fonts.googleapis.com/css?family=Cabin:400,700,400italic);
          @import url(https://fonts.googleapis.com/css?family=Roboto+Mono:400,700,400italic);
    
          body { font-family: 'Arial'; font-size: 200%; color: #404040;}
          h1, h2, h3 {
            font-family: 'Cabin';
            font-weight: 400;
            color: #1F407A;
          }
    
    
    
          .remark-frontslide-content { padding: 0; border: 10 px solid blue; }
          .remark-slide-content-large { font-size: 90%; }
          .remark-slide { border: 10 px solid blue; }
          .remark-slide-content h1 { font-size: 3em; }
          .remark-slide-content h2 { font-size: 2em; }
          .remark-slide-content h3 { font-size: 1.6em; }
          .remark-slide-content-large h1 { font-size: 2em; }
          .remark-slide-content-large h2 { font-size: 1.6em; }
          .footnote {
            position: absolute;
            bottom: 3em;
          }
          p {
                  display: block;
                -webkit-margin-before: 0em;
                -webkit-margin-after: 0em;
                -webkit-margin-start: 0px;
          }
                                                  -
          li p { line-height: 1.25em; }
          .red { color: #fa0000; }
          .large { font-size: 2em; }
          a, a > code {
            color: #404040;
            text-decoration: none;
            font-family: 'Ubuntu Mono';
          }
    
          .inverse {
            background: #1F407A;
            color: #777872;
            text-shadow: 0 0 20px #333;
          }
          .inverse h1, .inverse h2 {
            color: #f3f3f3;
            line-height: 0.8em;
          }
          code {
            -moz-border-radius: 5px;
            -web-border-radius: 5px;
            background: #e7e8e2;
            border-radius: 5px;
          }
          .remark-code, .remark-inline-code { font-family: 'Ubuntu Mono'; }
          .remark-code-line-highlighted     { background-color: #373832; }
          .pull-left {
            float: left;
            width: 47%;
          }
          .pull-right {
            float: right;
            width: 47%;
          }
          .pull-right ~ p {
            clear: both;
          }
          #slideshow .slide .content code {
            font-size: 0.8em;
          }
          #slideshow .slide .content pre code {
            font-size: 0.9em;
            padding: 15px;
          }
          strong {
              color: #E67116;
          }
    
    
    
          .remark-code, .remark-inline-code { font-family: 'Cabin';}
        </style>
      </head>
      <body>
        <textarea id="source">
    
    class: inverse, center, middle, remark-frontslide-content
    <img src="./front_page.png" width=100%/>
    
    ---
    class: center, middle, inverse, remark-slide-content-large
    
    # About us
    
    
    ---
    class: remark-slide-content-large
    
    
    ## About Scientific IT Services (SIS)
    
    ---
    class: remark-slide-content-large
    
    
    ## About Scientific IT Services (SIS)
    
    - IT Services close to research
    
    ---
    class: remark-slide-content-large
    
    
    ## About Scientific IT Services (SIS)
    
    - IT Services close to research
    
    
    - Zoo of experts with diverse background
    
    
    ---
    class: remark-slide-content-large
    
    
    ## About Scientific IT Services (SIS)
    
    - IT Services close to research
    
    
    - Zoo of experts with diverse background
    
    
    
    schmittu's avatar
    schmittu committed
    ### Here today in real:
    
    schmittu's avatar
    schmittu committed
    
    * Dr. Tarun Chadha
    
    
    * Dr. Mikolaj Rybinski
    
    
    * Dr. Uwe Schmitt
    
    
    
    ---
    class: remark-slide-content-large
    
    
    
    schmittu's avatar
    schmittu committed
    ## Our Services
    
    
    schmittu's avatar
    schmittu committed
    - Scientific Computing Services: Euler, ...
    
    
    ---
    class: remark-slide-content-large
    
    
    
    schmittu's avatar
    schmittu committed
    ## Our Services
    
    
    schmittu's avatar
    schmittu committed
    - Scientific Computing Services: Euler, ...
    
    
    
    - Data Science Support
    
    
    ---
    class: remark-slide-content-large
    
    
    
    schmittu's avatar
    schmittu committed
    ## Our Services
    
    
    schmittu's avatar
    schmittu committed
    - Scientific Computing Services: Euler, ...
    
    
    
    - Data Science Support
    
    
    
    schmittu's avatar
    schmittu committed
    - Software Development: openBIS, ELN, ...
    
    schmittu's avatar
    schmittu committed
    
    ---
    class: remark-slide-content-large
    
    
    
    schmittu's avatar
    schmittu committed
    ## Our Services
    
    
    schmittu's avatar
    schmittu committed
    - Scientific Computing Services: Euler, ...
    
    
    
    - Data Science Support
    
    
    
    schmittu's avatar
    schmittu committed
    - Software Development: openBIS, ELN, ...
    
    schmittu's avatar
    schmittu committed
    
    
    
    - Scientific Visualization
    
    
    ---
    class: remark-slide-content-large
    
    
    
    schmittu's avatar
    schmittu committed
    ## Our Services
    
    
    schmittu's avatar
    schmittu committed
    - Scientific Computing Services: Euler, ...
    
    
    
    - Data Science Support
    
    
    
    schmittu's avatar
    schmittu committed
    - Software Development: openBIS, ELN, ...
    
    schmittu's avatar
    schmittu committed
    
    
    
    - Scientific Visualization
    
    
    
    - Consulting and Training: Code Clinics, ...
    
    
    ---
    class: remark-slide-content-large
    
    
    
    schmittu's avatar
    schmittu committed
    ## Our Services
    
    
    schmittu's avatar
    schmittu committed
    - Scientific Computing Services: Euler, ...
    
    
    
    - Data Science Support
    
    
    
    schmittu's avatar
    schmittu committed
    - Software Development: openBIS, ELN, ...
    
    schmittu's avatar
    schmittu committed
    
    
    
    - Scientific Visualization
    
    
    
    - Consulting and Training: Code Clinics, ...
    
    
    - Research Data Management
    
    
    
    ---
    class: remark-slide-content-large
    
    
    
    schmittu's avatar
    schmittu committed
    ## Our Services
    
    
    schmittu's avatar
    schmittu committed
    - Scientific Computing Services: Euler, ...
    
    
    
    - Data Science Support
    
    
    
    schmittu's avatar
    schmittu committed
    - Software Development: openBIS, ELN, ...
    
    schmittu's avatar
    schmittu committed
    
    
    
    - Scientific Visualization
    
    
    
    - Consulting and Training: Code Clinics, ...
    
    
    
    - Research Data Management
    
    
    
    - Research Data Analysis
    
    
    ---
    class: remark-slide-content-large
    
    
    
    schmittu's avatar
    schmittu committed
    ## Our Services
    
    
    schmittu's avatar
    schmittu committed
    - Scientific Computing Services: Euler, ...
    
    
    
    - Data Science Support
    
    
    
    schmittu's avatar
    schmittu committed
    - Software Development: openBIS, ELN, ...
    
    schmittu's avatar
    schmittu committed
    313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
    
    
    
    - Scientific Visualization
    
    
    
    - Consulting and Training: Code Clinics, ...
    
    
    - Research Data Management
    
    
    
    - Research Data Analysis
    
    
    - Personalized Health Data Services
    
    ---
    class: center, middle, remark-slide-content-large
    
    <span style="font-size: 200%; color: #1F407A;">
    Contact us !
    <br/>
    <br/>
    https://sis.id.ethz.ch/
    </span>
    
    ---
    class: center, middle, inverse, remark-slide-content-large
    
    # About the course
    
    ---
    class: remark-slide-content-large
    
    # About the course
    
    
    * First version, might be a bit rough, not sure if time planning is good.
    
    ---
    class: remark-slide-content-large
    
    # About the course
    
    
    * First version, might be a bit rough, not sure if time planning is good.
    
    
    * Pragmatic approach, little math.
    
    ---
    class: remark-slide-content-large
    
    # About the course
    
    
    * First version, might be a bit rough, not sure if time planning is good.
    
    
    * Pragmatic approach, little math.
    
    
    * Introduction only !
    
    ---
    class: remark-slide-content-large
    
    # About the course (2)
    
    What will you learn ?
    
    * Basic concepts of Machine Learning (ML).
    
    ---
    class: remark-slide-content-large
    
    # About the course (2)
    
    What will you learn ?
    
    * Basic concepts of Machine Learning (ML).
    
    
    * More classical machine learning than artificial neural networks.
    
    ---
    class: remark-slide-content-large
    
    # About the course (2)
    
    What will you learn ?
    
    * Basic concepts of Machine Learning (ML).
    
    
    * More classical machine learning than artificial neural networks.
    
    
    * General overview of supervised learning and related methods.
    
    
    ---
    class: remark-slide-content-large
    
    # About the course (2)
    
    What will you learn ?
    
    * Basic concepts of Machine Learning (ML).
    
    
    * More classical machine learning than artificial neural networks.
    
    
    * General overview of supervised learning and related methods.
    
    
    * How to start with ML using `scikit-learn` and `Keras`.
    
    
    ---
    class: remark-slide-content-large
    
    # About the course (3)
    
    
    What will you NOT learn?
    
    
    * How to program with Python.
    
    
    ---
    class: remark-slide-content-large
    
    # About the course (3)
    
    
    What will you NOT learn?
    
    
    * How to program with Python.
    
    
    * How exactly ML methods work.
    
    
    ---
    class: remark-slide-content-large
    
    # About the course (3)
    
    
    What will you NOT learn?
    
    
    * How to program with Python.
    
    
    * How exactly ML methods work.
    
    
    * Unsupervised learning methods.
    
    ---
    class: center, middle, inverse, remark-slide-content-large
    
    # Schedule
    
    ---
    class: remark-slide-content-large
    
    # Day 1
    
    - Chapter 0: Quick Introduction to numpy, pandas, matplotlib
    
    
    ---
    class: remark-slide-content-large
    
    # Day 1
    
    - Chapter 0: Quick Introduction to numpy, pandas, matplotlib
    
    
    - Chapter 1: General Introduction to Machine Learning
    ---
    class: remark-slide-content-large
    
    # Day 1
    
    - Chapter 0: Quick Introduction to numpy, pandas, matplotlib
    
    
    - Chapter 1: General Introduction to Machine Learning
    
    
    
    - Chapter 2: Introduction to Classification
    ---
    class: remark-slide-content-large
    
    # Day 1
    
    - Chapter 0: Quick Introduction to numpy, pandas, matplotlib
    
    
    - Chapter 1: General Introduction to Machine Learning
    
    
    
    - Chapter 2: Introduction to Classification
    
    
    
    - Chapter 3: Overfitting and Cross Validation
    
    ---
    class: remark-slide-content-large
    
    # Day 1
    
    - Chapter 0: Quick Introduction to numpy, pandas, matplotlib
    
    
    - Chapter 1: General Introduction to Machine Learning
    
    
    
    - Chapter 2: Introduction to Classification
    
    
    
    - Chapter 3: Overfitting and Cross Validation
    
    
    - Chapter 4: Measuring Quality of a Classifier
    
    ---
    class: remark-slide-content-large
    
    # Day 1
    
    - Chapter 0: Quick Introduction to numpy, pandas, matplotlib
    
    
    - Chapter 1: General Introduction to Machine Learning
    
    
    
    - Chapter 2: Introduction to Classification
    
    
    
    - Chapter 3: Overfitting and Cross Validation
    
    
    - Chapter 4: Measuring Quality of a Classifier
    
    
    - Chapter 5: Classification Algorithms Overview
    
    
    ---
    class: remark-slide-content-large
    
    # Day 2
    
    - Chapter 6: Pipelines and Hyperparameter Optimisation
    
    ---
    class: remark-slide-content-large
    
    # Day 2
    
    - Chapter 6: Pipelines and Hyperparameter Optimisation
    
    
    - Chapter 7: Introduction to Regression
    
    ---
    class: remark-slide-content-large
    
    # Day 2
    
    - Chapter 6: Pipelines and Hyperparameter Optimisation
    
    
    - Chapter 7: Introduction to Regression
    
    
    - Chapter 8: Introduction to Neural Networks
    
    ---
    class: center, middle, inverse, remark-slide-content-large
    
    # Quick poll
    
    ---
    class: remark-slide-content-large
    
    # Who used ... before ?
    
    - Jupyter Notebooks
    
    
    ---
    class: remark-slide-content-large
    
    # Who used ... before ?
    
    - Jupyter Notebooks
    
    
    - Pandas
    
    ---
    class: remark-slide-content-large
    
    # Who used ... before ?
    
    - Jupyter Notebooks
    
    
    - Pandas
    
    
    - Matplotlib
    
    ---
    class: remark-slide-content-large
    
    # Who used ... before ?
    
    - Jupyter Notebooks
    
    
    - Pandas
    
    
    - Matplotlib
    
    
    - seaborn
    
    ---
    class: remark-slide-content-large
    
    # Who used ... before ?
    
    
    - Jupyter Notebooks
    
    
    - Pandas
    
    
    - Matplotlib
    
    
    - seaborn
    
    
    - numpy
    
    
    ---
    class: center, middle, inverse, remark-slide-content-large
    
    # Questions ?
    
    
    ---
    class: remark-slide-content-large
    
    # Get started
    
    <p>1. Start Computer, chose  `fedora` during startup
    <br/>
    <br/>
    
    ---
    class: remark-slide-content-large
    
    # Get started
    
    <p>1. Start Computer, chose  `fedora` during startup
    <br/>
    <br/>
    <p>2. Login with your `NETHZ` credentials
    <br/>
    <br/>
    
    ---
    class: remark-slide-content-large
    
    # Get started
    
    <p>1. Start Computer, chose  `fedora` during startup
    <br/>
    <br/>
    <p>2. Login with your `NETHZ` credentials
    <br/>
    <br/>
    
    
    <p>3. Start Terminal (click `activity` top-left corner)
    <br/>
    <br/>
    
    ---
    class: remark-slide-content-large
    
    # Get started
    
    <p>1. Start Computer, chose  `fedora` during startup
    <br/>
    <br/>
    <p>2. Login with your `NETHZ` credentials
    <br/>
    <br/>
    
    
    <p>3. Start Terminal (click `activity` top-left corner)
    <br/>
    <br/>
    
    
    <p>4. Enter <br/><br/><div style="font-family: Ubuntu Mono; font-size: .8em;"><center>curl https://sis.id.ethz.ch/mlw/install.sh | bash</center></div>
    <br/>
    <br/>
    
    ---
    class: remark-slide-content-large
    
    # Get started
    
    <p>1. Start Computer, chose  `fedora` during startup
    <br/>
    <br/>
    <p>2. Login with your `NETHZ` credentials
    <br/>
    <br/>
    
    
    <p>3. Start Terminal (click `activity` top-left corner)
    <br/>
    <br/>
    
    
    <p>4. Enter <br/><br/><div style="font-family: Ubuntu Mono; font-size: .8em;"><center>curl https://sis.id.ethz.ch/mlw/install.sh | bash</center></div>
    <br/>
    <br/>
    
    
    
    <p>5. Wait and press `ENTER` when asked
    
    
    
        </textarea>
        <script src="https://remarkjs.com/downloads/remark-latest.min.js">
        </script>
        <script>
          var slideshow = remark.create();
        </script>
      </body>
    </html>