Skip to content
Snippets Groups Projects
neural_nets_intro.ipynb 527 KiB
Newer Older
  • Learn to ignore specific revisions
  • chadhat's avatar
    chadhat committed
        "    model.compile(loss=\"binary_crossentropy\", optimizer=\"rmsprop\", metrics=[\"accuracy\"])\n",
        "    \n",
        "    return model\n",
    
    chadhat's avatar
    chadhat committed
        "model = a_simple_NN()"
    
       ]
      },
      {
       "cell_type": "code",
    
    chadhat's avatar
    chadhat committed
       "execution_count": 21,
    
       "metadata": {},
       "outputs": [
        {
    
    chadhat's avatar
    chadhat committed
         "name": "stdout",
         "output_type": "stream",
         "text": [
          "Train on 350 samples, validate on 150 samples\n",
          "Epoch 1/100\n",
          "350/350 [==============================] - 0s 83us/step - loss: 0.3633 - acc: 0.7457 - val_loss: 0.3889 - val_acc: 0.7733\n",
          "Epoch 2/100\n",
          "350/350 [==============================] - 0s 99us/step - loss: 0.3632 - acc: 0.7457 - val_loss: 0.3894 - val_acc: 0.7733\n",
          "Epoch 3/100\n",
          "350/350 [==============================] - 0s 150us/step - loss: 0.3629 - acc: 0.7429 - val_loss: 0.3898 - val_acc: 0.7667\n",
          "Epoch 4/100\n",
          "350/350 [==============================] - 0s 75us/step - loss: 0.3627 - acc: 0.7429 - val_loss: 0.3903 - val_acc: 0.7667\n",
          "Epoch 5/100\n",
          "350/350 [==============================] - 0s 80us/step - loss: 0.3626 - acc: 0.7457 - val_loss: 0.3904 - val_acc: 0.7667\n",
          "Epoch 6/100\n",
          "350/350 [==============================] - 0s 108us/step - loss: 0.3627 - acc: 0.7457 - val_loss: 0.3905 - val_acc: 0.7667\n",
          "Epoch 7/100\n",
          "350/350 [==============================] - 0s 103us/step - loss: 0.3627 - acc: 0.7457 - val_loss: 0.3906 - val_acc: 0.7667\n",
          "Epoch 8/100\n",
          "350/350 [==============================] - 0s 91us/step - loss: 0.3625 - acc: 0.7457 - val_loss: 0.3909 - val_acc: 0.7667\n",
          "Epoch 9/100\n",
          "350/350 [==============================] - 0s 88us/step - loss: 0.3625 - acc: 0.7457 - val_loss: 0.3912 - val_acc: 0.7667\n",
          "Epoch 10/100\n",
          "350/350 [==============================] - 0s 97us/step - loss: 0.3627 - acc: 0.7457 - val_loss: 0.3912 - val_acc: 0.7667\n",
          "Epoch 11/100\n",
          "350/350 [==============================] - 0s 96us/step - loss: 0.3627 - acc: 0.7457 - val_loss: 0.3912 - val_acc: 0.7667\n",
          "Epoch 12/100\n",
          "350/350 [==============================] - 0s 96us/step - loss: 0.3623 - acc: 0.7486 - val_loss: 0.3914 - val_acc: 0.7667\n",
          "Epoch 13/100\n",
          "350/350 [==============================] - 0s 92us/step - loss: 0.3626 - acc: 0.7457 - val_loss: 0.3916 - val_acc: 0.7667\n",
          "Epoch 14/100\n",
          "350/350 [==============================] - 0s 94us/step - loss: 0.3626 - acc: 0.7457 - val_loss: 0.3917 - val_acc: 0.7667\n",
          "Epoch 15/100\n",
          "350/350 [==============================] - 0s 99us/step - loss: 0.3627 - acc: 0.7457 - val_loss: 0.3916 - val_acc: 0.7667\n",
          "Epoch 16/100\n",
          "350/350 [==============================] - 0s 106us/step - loss: 0.3625 - acc: 0.7486 - val_loss: 0.3915 - val_acc: 0.7667\n",
          "Epoch 17/100\n",
          "350/350 [==============================] - 0s 102us/step - loss: 0.3625 - acc: 0.7457 - val_loss: 0.3917 - val_acc: 0.7667\n",
          "Epoch 18/100\n",
          "350/350 [==============================] - 0s 96us/step - loss: 0.3623 - acc: 0.7486 - val_loss: 0.3919 - val_acc: 0.7667\n",
          "Epoch 19/100\n",
          "350/350 [==============================] - 0s 96us/step - loss: 0.3624 - acc: 0.7457 - val_loss: 0.3918 - val_acc: 0.7667\n",
          "Epoch 20/100\n",
          "350/350 [==============================] - 0s 94us/step - loss: 0.3626 - acc: 0.7486 - val_loss: 0.3920 - val_acc: 0.7667\n",
          "Epoch 21/100\n",
          "350/350 [==============================] - 0s 105us/step - loss: 0.3624 - acc: 0.7486 - val_loss: 0.3920 - val_acc: 0.7667\n",
          "Epoch 22/100\n",
          "350/350 [==============================] - 0s 95us/step - loss: 0.3622 - acc: 0.7457 - val_loss: 0.3919 - val_acc: 0.7667\n",
          "Epoch 23/100\n",
          "350/350 [==============================] - 0s 102us/step - loss: 0.3624 - acc: 0.7486 - val_loss: 0.3920 - val_acc: 0.7667\n",
          "Epoch 24/100\n",
          "350/350 [==============================] - 0s 94us/step - loss: 0.3623 - acc: 0.7486 - val_loss: 0.3920 - val_acc: 0.7667\n",
          "Epoch 25/100\n",
          "350/350 [==============================] - 0s 105us/step - loss: 0.3623 - acc: 0.7486 - val_loss: 0.3922 - val_acc: 0.7667\n",
          "Epoch 26/100\n",
          "350/350 [==============================] - 0s 99us/step - loss: 0.3623 - acc: 0.7486 - val_loss: 0.3923 - val_acc: 0.7667\n",
          "Epoch 27/100\n",
          "350/350 [==============================] - 0s 96us/step - loss: 0.3624 - acc: 0.7486 - val_loss: 0.3923 - val_acc: 0.7667\n",
          "Epoch 28/100\n",
          "350/350 [==============================] - 0s 94us/step - loss: 0.3622 - acc: 0.7486 - val_loss: 0.3921 - val_acc: 0.7667\n",
          "Epoch 29/100\n",
          "350/350 [==============================] - 0s 92us/step - loss: 0.3621 - acc: 0.7486 - val_loss: 0.3921 - val_acc: 0.7667\n",
          "Epoch 30/100\n",
          "350/350 [==============================] - 0s 90us/step - loss: 0.3623 - acc: 0.7486 - val_loss: 0.3923 - val_acc: 0.7667\n",
          "Epoch 31/100\n",
          "350/350 [==============================] - 0s 94us/step - loss: 0.3622 - acc: 0.7486 - val_loss: 0.3924 - val_acc: 0.7667\n",
          "Epoch 32/100\n",
          "350/350 [==============================] - 0s 99us/step - loss: 0.3622 - acc: 0.7486 - val_loss: 0.3925 - val_acc: 0.7667\n",
          "Epoch 33/100\n",
          "350/350 [==============================] - 0s 92us/step - loss: 0.3623 - acc: 0.7486 - val_loss: 0.3926 - val_acc: 0.7667\n",
          "Epoch 34/100\n",
          "350/350 [==============================] - 0s 91us/step - loss: 0.3620 - acc: 0.7486 - val_loss: 0.3927 - val_acc: 0.7667\n",
          "Epoch 35/100\n",
          "350/350 [==============================] - 0s 85us/step - loss: 0.3621 - acc: 0.7486 - val_loss: 0.3927 - val_acc: 0.7667\n",
          "Epoch 36/100\n",
          "350/350 [==============================] - 0s 112us/step - loss: 0.3622 - acc: 0.7486 - val_loss: 0.3926 - val_acc: 0.7667\n",
          "Epoch 37/100\n",
          "350/350 [==============================] - 0s 87us/step - loss: 0.3621 - acc: 0.7486 - val_loss: 0.3926 - val_acc: 0.7667\n",
          "Epoch 38/100\n",
          "350/350 [==============================] - 0s 122us/step - loss: 0.3620 - acc: 0.7486 - val_loss: 0.3927 - val_acc: 0.7667\n",
          "Epoch 39/100\n",
          "350/350 [==============================] - 0s 87us/step - loss: 0.3620 - acc: 0.7457 - val_loss: 0.3926 - val_acc: 0.7667\n",
          "Epoch 40/100\n",
          "350/350 [==============================] - 0s 92us/step - loss: 0.3620 - acc: 0.7486 - val_loss: 0.3928 - val_acc: 0.7667\n",
          "Epoch 41/100\n",
          "350/350 [==============================] - 0s 80us/step - loss: 0.3618 - acc: 0.7457 - val_loss: 0.3929 - val_acc: 0.7667\n",
          "Epoch 42/100\n",
          "350/350 [==============================] - 0s 82us/step - loss: 0.3622 - acc: 0.7457 - val_loss: 0.3930 - val_acc: 0.7667\n",
          "Epoch 43/100\n",
          "350/350 [==============================] - 0s 100us/step - loss: 0.3619 - acc: 0.7457 - val_loss: 0.3930 - val_acc: 0.7667\n",
          "Epoch 44/100\n",
          "350/350 [==============================] - 0s 111us/step - loss: 0.3619 - acc: 0.7486 - val_loss: 0.3931 - val_acc: 0.7667\n",
          "Epoch 45/100\n",
          "350/350 [==============================] - 0s 80us/step - loss: 0.3621 - acc: 0.7457 - val_loss: 0.3930 - val_acc: 0.7667\n",
          "Epoch 46/100\n",
          "350/350 [==============================] - 0s 104us/step - loss: 0.3619 - acc: 0.7457 - val_loss: 0.3931 - val_acc: 0.7667\n",
          "Epoch 47/100\n",
          "350/350 [==============================] - 0s 88us/step - loss: 0.3619 - acc: 0.7486 - val_loss: 0.3931 - val_acc: 0.7667\n",
          "Epoch 48/100\n",
          "350/350 [==============================] - 0s 96us/step - loss: 0.3621 - acc: 0.7486 - val_loss: 0.3930 - val_acc: 0.7667\n",
          "Epoch 49/100\n",
          "350/350 [==============================] - 0s 98us/step - loss: 0.3619 - acc: 0.7457 - val_loss: 0.3930 - val_acc: 0.7667\n",
          "Epoch 50/100\n",
          "350/350 [==============================] - 0s 104us/step - loss: 0.3619 - acc: 0.7457 - val_loss: 0.3930 - val_acc: 0.7667\n",
          "Epoch 51/100\n",
          "350/350 [==============================] - 0s 94us/step - loss: 0.3618 - acc: 0.7457 - val_loss: 0.3930 - val_acc: 0.7667\n",
          "Epoch 52/100\n",
          "350/350 [==============================] - 0s 103us/step - loss: 0.3620 - acc: 0.7486 - val_loss: 0.3930 - val_acc: 0.7667\n",
          "Epoch 53/100\n",
          "350/350 [==============================] - 0s 101us/step - loss: 0.3618 - acc: 0.7486 - val_loss: 0.3931 - val_acc: 0.7667\n",
          "Epoch 54/100\n",
          "350/350 [==============================] - 0s 91us/step - loss: 0.3619 - acc: 0.7457 - val_loss: 0.3931 - val_acc: 0.7667\n",
          "Epoch 55/100\n",
          "350/350 [==============================] - 0s 102us/step - loss: 0.3619 - acc: 0.7457 - val_loss: 0.3930 - val_acc: 0.7667\n",
          "Epoch 56/100\n",
          "350/350 [==============================] - 0s 86us/step - loss: 0.3618 - acc: 0.7486 - val_loss: 0.3930 - val_acc: 0.7667\n",
          "Epoch 57/100\n",
          "350/350 [==============================] - 0s 86us/step - loss: 0.3616 - acc: 0.7457 - val_loss: 0.3929 - val_acc: 0.7667\n",
          "Epoch 58/100\n",
          "350/350 [==============================] - 0s 97us/step - loss: 0.3620 - acc: 0.7457 - val_loss: 0.3930 - val_acc: 0.7667\n",
          "Epoch 59/100\n",
          "350/350 [==============================] - 0s 78us/step - loss: 0.3616 - acc: 0.7457 - val_loss: 0.3932 - val_acc: 0.7667\n",
          "Epoch 60/100\n",
          "350/350 [==============================] - 0s 95us/step - loss: 0.3618 - acc: 0.7486 - val_loss: 0.3932 - val_acc: 0.7667\n",
          "Epoch 61/100\n"
         ]
        },
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
          "350/350 [==============================] - 0s 88us/step - loss: 0.3619 - acc: 0.7457 - val_loss: 0.3932 - val_acc: 0.7667\n",
          "Epoch 62/100\n",
          "350/350 [==============================] - 0s 97us/step - loss: 0.3616 - acc: 0.7457 - val_loss: 0.3933 - val_acc: 0.7667\n",
          "Epoch 63/100\n",
          "350/350 [==============================] - 0s 106us/step - loss: 0.3617 - acc: 0.7457 - val_loss: 0.3935 - val_acc: 0.7667\n",
          "Epoch 64/100\n",
          "350/350 [==============================] - 0s 95us/step - loss: 0.3619 - acc: 0.7457 - val_loss: 0.3936 - val_acc: 0.7667\n",
          "Epoch 65/100\n",
          "350/350 [==============================] - 0s 101us/step - loss: 0.3618 - acc: 0.7457 - val_loss: 0.3936 - val_acc: 0.7667\n",
          "Epoch 66/100\n",
          "350/350 [==============================] - 0s 91us/step - loss: 0.3617 - acc: 0.7486 - val_loss: 0.3937 - val_acc: 0.7667\n",
          "Epoch 67/100\n",
          "350/350 [==============================] - 0s 98us/step - loss: 0.3616 - acc: 0.7486 - val_loss: 0.3937 - val_acc: 0.7667\n",
          "Epoch 68/100\n",
          "350/350 [==============================] - 0s 93us/step - loss: 0.3618 - acc: 0.7457 - val_loss: 0.3939 - val_acc: 0.7667\n",
          "Epoch 69/100\n",
          "350/350 [==============================] - 0s 84us/step - loss: 0.3617 - acc: 0.7457 - val_loss: 0.3938 - val_acc: 0.7667\n",
          "Epoch 70/100\n",
          "350/350 [==============================] - 0s 90us/step - loss: 0.3617 - acc: 0.7457 - val_loss: 0.3939 - val_acc: 0.7667\n",
          "Epoch 71/100\n",
          "350/350 [==============================] - 0s 98us/step - loss: 0.3617 - acc: 0.7457 - val_loss: 0.3939 - val_acc: 0.7667\n",
          "Epoch 72/100\n",
          "350/350 [==============================] - 0s 90us/step - loss: 0.3616 - acc: 0.7457 - val_loss: 0.3938 - val_acc: 0.7667\n",
          "Epoch 73/100\n",
          "350/350 [==============================] - 0s 89us/step - loss: 0.3616 - acc: 0.7457 - val_loss: 0.3941 - val_acc: 0.7667\n",
          "Epoch 74/100\n",
          "350/350 [==============================] - 0s 95us/step - loss: 0.3615 - acc: 0.7486 - val_loss: 0.3945 - val_acc: 0.7667\n",
          "Epoch 75/100\n",
          "350/350 [==============================] - 0s 90us/step - loss: 0.3614 - acc: 0.7457 - val_loss: 0.3942 - val_acc: 0.7667\n",
          "Epoch 76/100\n",
          "350/350 [==============================] - 0s 81us/step - loss: 0.3617 - acc: 0.7486 - val_loss: 0.3940 - val_acc: 0.7667\n",
          "Epoch 77/100\n",
          "350/350 [==============================] - 0s 91us/step - loss: 0.3615 - acc: 0.7457 - val_loss: 0.3941 - val_acc: 0.7667\n",
          "Epoch 78/100\n",
          "350/350 [==============================] - 0s 103us/step - loss: 0.3616 - acc: 0.7457 - val_loss: 0.3943 - val_acc: 0.7667\n",
          "Epoch 79/100\n",
          "350/350 [==============================] - 0s 65us/step - loss: 0.3616 - acc: 0.7486 - val_loss: 0.3945 - val_acc: 0.7667\n",
          "Epoch 80/100\n",
          "350/350 [==============================] - 0s 92us/step - loss: 0.3617 - acc: 0.7457 - val_loss: 0.3945 - val_acc: 0.7667\n",
          "Epoch 81/100\n",
          "350/350 [==============================] - 0s 99us/step - loss: 0.3615 - acc: 0.7457 - val_loss: 0.3944 - val_acc: 0.7667\n",
          "Epoch 82/100\n",
          "350/350 [==============================] - 0s 95us/step - loss: 0.3617 - acc: 0.7457 - val_loss: 0.3944 - val_acc: 0.7667\n",
          "Epoch 83/100\n",
          "350/350 [==============================] - 0s 107us/step - loss: 0.3616 - acc: 0.7457 - val_loss: 0.3946 - val_acc: 0.7667\n",
          "Epoch 84/100\n",
          "350/350 [==============================] - 0s 93us/step - loss: 0.3614 - acc: 0.7486 - val_loss: 0.3947 - val_acc: 0.7667\n",
          "Epoch 85/100\n",
          "350/350 [==============================] - 0s 92us/step - loss: 0.3614 - acc: 0.7457 - val_loss: 0.3943 - val_acc: 0.7667\n",
          "Epoch 86/100\n",
          "350/350 [==============================] - 0s 102us/step - loss: 0.3615 - acc: 0.7457 - val_loss: 0.3944 - val_acc: 0.7667\n",
          "Epoch 87/100\n",
          "350/350 [==============================] - 0s 91us/step - loss: 0.3615 - acc: 0.7457 - val_loss: 0.3945 - val_acc: 0.7667\n",
          "Epoch 88/100\n",
          "350/350 [==============================] - 0s 92us/step - loss: 0.3614 - acc: 0.7457 - val_loss: 0.3944 - val_acc: 0.7667\n",
          "Epoch 89/100\n",
          "350/350 [==============================] - 0s 94us/step - loss: 0.3616 - acc: 0.7457 - val_loss: 0.3944 - val_acc: 0.7667\n",
          "Epoch 90/100\n",
          "350/350 [==============================] - 0s 99us/step - loss: 0.3615 - acc: 0.7457 - val_loss: 0.3944 - val_acc: 0.7667\n",
          "Epoch 91/100\n",
          "350/350 [==============================] - 0s 93us/step - loss: 0.3615 - acc: 0.7429 - val_loss: 0.3944 - val_acc: 0.7667\n",
          "Epoch 92/100\n",
          "350/350 [==============================] - 0s 90us/step - loss: 0.3618 - acc: 0.7457 - val_loss: 0.3943 - val_acc: 0.7667\n",
          "Epoch 93/100\n",
          "350/350 [==============================] - 0s 74us/step - loss: 0.3615 - acc: 0.7457 - val_loss: 0.3943 - val_acc: 0.7667\n",
          "Epoch 94/100\n",
          "350/350 [==============================] - 0s 94us/step - loss: 0.3614 - acc: 0.7486 - val_loss: 0.3942 - val_acc: 0.7667\n",
          "Epoch 95/100\n",
          "350/350 [==============================] - 0s 96us/step - loss: 0.3615 - acc: 0.7457 - val_loss: 0.3943 - val_acc: 0.7667\n",
          "Epoch 96/100\n",
          "350/350 [==============================] - 0s 99us/step - loss: 0.3613 - acc: 0.7457 - val_loss: 0.3943 - val_acc: 0.7667\n",
          "Epoch 97/100\n",
          "350/350 [==============================] - 0s 98us/step - loss: 0.3616 - acc: 0.7457 - val_loss: 0.3945 - val_acc: 0.7667\n",
          "Epoch 98/100\n",
          "350/350 [==============================] - 0s 93us/step - loss: 0.3615 - acc: 0.7457 - val_loss: 0.3945 - val_acc: 0.7667\n",
          "Epoch 99/100\n",
          "350/350 [==============================] - 0s 92us/step - loss: 0.3612 - acc: 0.7486 - val_loss: 0.3944 - val_acc: 0.7667\n",
          "Epoch 100/100\n",
          "350/350 [==============================] - 0s 92us/step - loss: 0.3614 - acc: 0.7457 - val_loss: 0.3944 - val_acc: 0.7667\n"
         ]
    
    chadhat's avatar
    chadhat committed
          "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd4XOWZ9/HvrV4s2WqusuSKjcGAjTCYFhNCJ5RNwyGQZCEkJKQQkg3Jm0o2CansJiHZJfQswbAOC4ZQA6aDbRkbcLdcJNuyLXkkWWXU9bx/zJnxNEkjWa78Ptflyzpt5jkzZ577PPWYcw4REZGkQ50AERE5PCggiIgIoIAgIiIeBQQREQEUEERExKOAICIigAKCiIh4FBBERARQQBAREU/KoU7AQBQWFroJEyYc6mSIiBxRli9fvsc5V9TffkdUQJgwYQLl5eWHOhkiIkcUM6tMZD9VGYmICKCAICIiHgUEEREBFBBERMSjgCAiIoACgoiIeBQQREQEOMLGIQzaM7fCrvcPdSpERAZn9Ey46PYD/jYqIYiICPBBKSEchMgqInKkUwlBREQABQQREfEoIIiICKCAICIiHgUEEREBFBBERMSjgCAiIoACgoiIeBIKCGZ2oZmtN7MKM7s1zvY7zGyl92+DmTWEbSsxs+fNbK2ZrTGzCd76+81sS9hxJw3VSYmIyMD1O1LZzJKBO4HzgO3AMjNb5JxbE9zHOXdz2P5fBWaFvcSDwM+ccy+Y2TCgJ2zbt51zC/fzHEREZAgkUkKYA1Q45zY75zqABcDlfew/H3gYwMxmACnOuRcAnHPNzjn/fqZZREQOgEQCwjhgW9jydm9dDDMrBSYCL3mrjgEazOwxM1thZr/2ShxBPzOz97wqp/RBpF9ERIZIIgHB4qxzvex7FbDQOdftLacAZwHfAk4BJgGf87Z9F5jurc8HvhP3zc1uMLNyMyuvra1NILkiIjIYiQSE7cD4sOVioLqXfa/Cqy4KO3aFV93UBTwOzAZwzu10Ae3AfQSqpmI45+5yzpU558qKiooSSK6IiAxGIgFhGTDVzCaaWRqBTH9R9E5mNg3IA96KOjbPzII5+YeBNd7+Y7z/DbgCWDXYkxARkf3Xby8j51yXmd0EPAckA/c651ab2W1AuXMuGBzmAwuccy7s2G4z+xbwopfxLwf+4m1+yAsUBqwEvjRkZyUiIgNmYfn3Ya+srMyVl5cf6mSIiBxRzGy5c66sv/00UllERAAFBBER8SggiIgIoIAgIiIeBQQREQEUEERExKOAICIigAKCiIh4FBBERARQQBAREY8CgoiIAAoIIiLiUUAQERFAAUFERDwKCCIiAiggiIiIRwFBREQABQQREfEoIIiICKCAICIiHgUEEREBFBBERMSjgCAiIoACgoiIeBQQREQEUEAQERGPAoKIiAAKCCIi4lFAEBERQAFBREQ8CggiIgIoIIiIiEcBQUREgAQDgpldaGbrzazCzG6Ns/0OM1vp/dtgZg1h20rM7HkzW2tma8xsgrd+opktMbONZvaImaUN1UmJiMjA9RsQzCwZuBO4CJgBzDezGeH7OOduds6d5Jw7CfgD8FjY5geBXzvnjgXmADXe+l8CdzjnpgL1wHX7ezIiIjJ4iZQQ5gAVzrnNzrkOYAFweR/7zwceBvACR4pz7gUA51yzc85vZgZ8GFjoHfMAcMUgz0FERIZAIgFhHLAtbHm7ty6GmZUCE4GXvFXHAA1m9piZrTCzX3sljgKgwTnX1d9riojIwZFIQLA461wv+14FLHTOdXvLKcBZwLeAU4BJwOcG8ppmdoOZlZtZeW1tbQLJFRGRwUgkIGwHxoctFwPVvex7FV51UdixK7zqpi7gcWA2sAcYYWYp/b2mc+4u51yZc66sqKgogeSKiMhgJBIQlgFTvV5BaQQy/UXRO5nZNCAPeCvq2DwzC+bkHwbWOOccsBj4uLf+s8ATgzsFEREZCv0GBO/O/ibgOWAt8KhzbrWZ3WZml4XtOh9Y4GX2wWO7CVQXvWhm7xOoKvqLt/k7wDfNrIJAm8I9Q3FCIiIyOBaWfx/2ysrKXHl5+aFOhojIEcXMljvnyvrbTyOVRUQEUEAQERGPAoKIiAAKCCIi4lFAEBERQAFBREQ8CggiIgIoIIiIiEcBQUREAAUEERHxKCCIiAiggCAiIh4FBBERARQQRETEo4AgIiKAAoKIiHgUEEREBFBAEBERjwKCiIgACggiIuJRQBAREUABQUREPAoIIiICKCCIiIhHAUFERAAFBBER8SggiIgIoIAgIiIeBQQREQEUEERExKOAICIigAKCiIh4EgoIZnahma03swozuzXO9jvMbKX3b4OZNYRt6w7btihs/f1mtiVs20lDc0oiIjIYKf3tYGbJwJ3AecB2YJmZLXLOrQnu45y7OWz/rwKzwl6i1TnXW2b/befcwkGlXEREhlQiJYQ5QIVzbrNzrgNYAFzex/7zgYeHInEiInLwJBIQxgHbwpa3e+timFkpMBF4KWx1hpmVm9nbZnZF1CE/M7P3vCqn9IEkXEREhlYiAcHirHO97HsVsNA51x22rsQ5VwZ8GvgPM5vsrf8uMB04BcgHvhP3zc1u8AJKeW1tbQLJFRGRwUgkIGwHxoctFwPVvex7FVHVRc65au//zcDLeO0LzrmdLqAduI9A1VQM59xdzrky51xZUVFRAskVEZHBSCQgLAOmmtlEM0sjkOkvit7JzKYBecBbYevyglVBZlYInAGs8ZbHeP8bcAWwav9ORURE9ke/vYycc11mdhPwHJAM3OucW21mtwHlzrlgcJgPLHDOhVcnHQv8t5n1EAg+t4f1TnrIzIoIVEmtBL40NKckIiKDYZH59+GtrKzMlZeXH+pkiIgcUcxsudeW2yeNVBYREUABQUREPAoIIiICKCCIiIhHAUFERAAFBBER8SggiIgIoIAgIiIeBQQREQEUEERExKOAICIigAKCiIh4FBBERARQQBAREY8CgoiIAAoIIiLiUUAQERFAAUFERDwKCCIiAiggiIiIRwFBREQABQQREfEoIIiICKCAICIiHgUEEREBFBBERMSjgCAiIoACgoiIeBQQREQEUEAQERGPAoKIiAAKCCIi4lFAEBERIMGAYGYXmtl6M6sws1vjbL/DzFZ6/zaYWUPYtu6wbYvC1k80syVmttHMHjGztKE5JRERGYx+A4KZJQN3AhcBM4D5ZjYjfB/n3M3OuZOccycBfwAeC9vcGtzmnLssbP0vgTucc1OBeuC6/TwXERHZD4mUEOYAFc65zc65DmABcHkf+88HHu7rBc3MgA8DC71VDwBXJJAWERE5QBIJCOOAbWHL2711McysFJgIvBS2OsPMys3sbTMLZvoFQINzrqu/1xQRkYMjJYF9LM4618u+VwELnXPdYetKnHPVZjYJeMnM3gcaE31NM7sBuAGgpKQkgeSKiMhgJFJC2A6MD1suBqp72fcqoqqLnHPV3v+bgZeBWcAeYISZBQNSr6/pnLvLOVfmnCsrKipKILkiIjIYiQSEZcBUr1dQGoFMf1H0TmY2DcgD3gpbl2dm6d7fhcAZwBrnnAMWAx/3dv0s8MT+nIiIiOyffgOCV89/E/AcsBZ41Dm32sxuM7PwXkPzgQVeZh90LFBuZu8SCAC3O+fWeNu+A3zTzCoItCncs/+nIyIig2WR+ffhrayszJWXlx/qZIiIHFHMbLlzrqy//TRSWUREAAUEERHxKCCIiAiggCAiIh4FBBERARIbqSxhnHNsqm1mysicA/5eHV09vL3ZB0BqchKnTMgjJTkyhjf4O3hv+14AcjNTOWn8CADKt9bh7+iO2DcvK42ZxcMBWLLZR3tXT8T2wmHpzBibC8CbFXvo6onsgTYqN4NpowPn/drGWqI7qI0dkcmUkcPo7nG8UbEn5nzG52cxsTA74rwAUpKNstJ80lIiz62prZOW9m5GD8/o5ROKtdffSXtXNyNzEzvG19zO6upGpo3OYVSCxwDUNLaxbldTaDl47kNtd2MbmWnJ5Gak7vdrtXd1s3xrfeh7PbF4BMOz9v91h1rgN9ayX59nRU0zkwqzSUqKN9HC4a+lvYu9rZ2MHZF5UN9XAWGAXt24h8/eu5T/ue5UzpxaeEDfq7m9i2vvXRpa/v38WVx24tiIfX74xGoWvRsY5H1yaR5/v/F0AL772PtsrGmO2PfsY4p48F/nAHDzIyup3tsWsf3imaP509UnA/Cl/1lOY1tXxPZPnFzMrz9xIgCfv29ZTMD43OkT+PFlx9HZ3ROR7qCvnDOZb18wnaa2zpjtv/zYTD51SuTUJFf+6U0qaprZevslMa/Vm3N/9wp7mtv7PMY5x97WTkZkpbFyWwPXPVBOWWkeC73PLhHvVDXw55creNcLxtlpybz34wtIHuIM6NI/vM6lJ4zhRx89br9f65Fl2/jhE6tDywu/NJeyCfn7/bpD7Z7Xt/Dv/1jLU189k+PHDR/w8WuqG7n496/x3Yum88UPTT4AKezf6xv3UNvcxpWzigd1/KfvXsK72xoGdO0PBQWEASrOC0Ts3Y1t/ey5z6baZv7w4kbmzynh1EkFEdtuf2Ydm2qb+cu1sV2EczJS+PuNc+lx8Kn/fouK3U0x+2ysaeaUCXncetF0stP3fZ13fOok2rsiSwjhd5n/dc3JdHZHlhBGZO17JMUD/zqHnqgiQEF2eujvR744l+jpp0bmBO6w05KT+PuNc2PSGrwDz81Mjdh+9d1L2Li7OWb/Ci+gtXZ0k5mWHLM9nj3N7QB097heM+eapnZO/fmL/PzKmVw8czQXzxzNGxW+uPv25oLjRjF2RAad3T28tK6GOxdvYufeVorzsuLu75zjJ0+uYczwjIQzqY6uHnzN7eSkD83PdOPuZnIyUrj/86cAcMyoA1PK/fen1tDV4/jhpTMi7tA31zbzx8UVfOLk8cydXNDr8cHS41Zfy6ACwlZfCwBvbfYdsoCwcPk2lm2tH3RAeHdb4JEye1s7GZ558EpxCggDVJyXiRlU1vkTPuZXz67judW7OXZMbkRAqPL5+a9XNsU95rfPr6e9q4fvXXwsAGOGZ8a8p3OOKl8Lnygbz8mlkXd6/f2QTige0ef2WSV5fW4/ubT37UlJFpOecKnJSRHb77qmjNKC2Iw0LSWJc6YVJRwMwgdZ7mpsY1wvxe1KX+BzHJeXyYisNGaNz+Pp93ex19+ZUBVKR1cPuxvbmDEml5TkJMyMd7ftjamCC1fb1M79b24F4AtnTUqoKmNHQys9Dopy0vvdNxGVdX4mFGSHPvtHllUxLD2VS04YMySvH3T361sAOP+4UZw+eV8penV1I4+9s4NXN+yh/Psf6fX4q04p4Z9ra9i1N/GbrnA7veN+/fETB3X8/mrt6GbLnhZ2NLTS0dUTUxWaiK99eAq/f6mCKp8/VM17MKhReYBue3INzkGVdxeSiHp/JxAbRLaGvcZeb5+gxetrIuqof3bl8XzhrEkR+zgHf/z0bD5ZNp4j2dnHFFFakB2xzt/RRUdXT7+BK5yZ8Y+vnckPLp1BTkbv9zqV3udemh8IQiVeMKqsS+w73VjTxFm/Wszza3YDMLskj/+5/lQmF/Ve5x3+3e9uSiyjC6bzB0+sprGts5+9+3fXNSdHlEQfWlLFgmVV+/264cKDcpUv8nqvCn0Gfc+OcO6xI8nNSKG2qX1QaajytZCTnkLhsEPzEMZNtc2hqsTt9YnfOIa7aGYgSCd6TQ4VBYQBChZnB1JCCP4wtkUdE/4a4V+8c45Knz+UYQHMmzYy5q4/Kck4Z/rIUEPwkWrLnhYWLK2KyEySzLjjUyfy/va9LF5fk/BrHTd2ONedObHPRtiqOj/JScY4r/rvmFE5XDxzNKnJif0cgt9nSX786qF4KsMyx0pfYtdOVdj1EZ25DkZGanJEA31JflbEewwFX0tH6O/o30gwwNX7O2OqK8Ot2tHIP2/5EN/1SscDdfmscZwzfSQ/fWrtoI7fXxHf9SA+37qWDlbt2Mtfr5vDudNHDWXS+qWAMAA9PY5t9a1kpyUz75iRCR3T1tnNLq+9ITojCC9lhG9r8HfS1NYVUY1S09jGk+9W0xrWc6iippmX1u2mo4+qiiPBaxtrufWx9yPuCDNSk7nipHG8UbGHxesSCwhLNvv4xTNreXPTHtZUx3vkRkClz8/YERmhADCxMJs/XX0yx45JLLAGM9GSsO/n2nuX8vUFK3o/Juy7TjRzD69USjSI9KamsY2fPrWGipp9pc7Sgix21LfS1UfmPFDh6Yw+z+C27h7HjvrWuMe3dnTz0T++zqPLtsXdnojZJXlMG53DvW9soaW9q/8Dhlj4zd1gAvn7O/by7YXvkZ6SnHB16VBRQBiAXY1tdHT18L1LjuXrH5ma0DHBIuOkwmzSUpLoCeuZU+nzU5yXyRlTChgW1nAYvKsIvwNdXlnPVx9ewabafY2vT71XzXUPlMc0/h5pgucZfje1YXcTy7bWM34Ad7FvbvJx16ub+fb/vsediyt63e/SE8bw5XlTYtb3ddcarrLOT15WakQpxNjXCN7bMaNzM0hOsoSrAa6ZO4FVP7nAO37/qg427G7mnte3UNu07w6+ND+brh5HdcPg6urj6XGOE8ePoLQg9nvzd3QzPj9QKuvtzjl4zFafn6889A7dPQO7trt7HK9uqA39noa6BJSIKp+fguw0Xvu3c/jMaaWDOD7wXW+saeKhJZVDnbw+qVF5AIJ3OKX52bR1dmMG6Sl9R/DczFS+d/F0LjhudEw9+ezSPI4bOzwmuHR09TBtVA4TC/ftH7wbrarzh6qOqrxMJiP14N5FDLXg51Lp83OK1w3ywbe28uS7Ozl9cgHrd8X2roqnqs7PmNwMpowc1mcGev5xo2PW/ev9y2hp7/J6T/XzPj4/JVHfZWlBFu9U1uOcI/DI8Ei/+JeZ+Jo72NXYFrcBvTfDvLrw/a0yileqCf69vcEfsX5/nDIhnye+cgaPlm+LaQN48qtnUt/SwdOrdjK1lzEGwWqltJQkFi7fzq0XTWf8AKrmdjW2ce29S5k/p8R7PX/CJb+hUukLfJ4DSXf08ekpSZRvrWfJZh9XnzrwoDJYCggDkJxknDoxn/aubqb/4Fn+fPXsUONPb0bmZHDD2fG7vn0prEtceEYyZ2I+z918dsS+4ZlmUJXPP6B67MPVuBGZJFlsFVppQRYlBVn8c+3uPruR7jumhZKCrEDmXBU/c27v6mZzbQsTC7MjAumIrFTW7uy9mincdWdNpDOqmq4kP4um9i7q/Z3kZ8c2ZmalpZCVn5JwJtHT47jkD6/z2bml3DhvSqi782BV1rWQlpzE6LDBd7NL8lhz2wVkpQ19NtBbR4e87LQ+M7hg4DprSiF/W1JFVZ1/QBlrMKCcPbWQh5dWUXWQG2UBfnrFcfg7unl+9S5WVzdy83nHDOj4yrrA77q0IIvHV+6gvau73xvPoaIqowGYMzGfR744l1MmBu5iE2kw2lzbzLY6P01tnXzm7iU8sXIHAF3dPaG6/188vZZ5v3m5z9cZlp5CQXZaxAVeWecf0N3m4SotJYmxIyK71VYFfxT52aQkJYXGF/Slqs5PaX52IHNuC4z0jLZxdzMX/edrMe0SpfnZ7Gpso62zO+aYaOdMGxlTytgXsGMzoOb2Ln7+9FpW7djL6uq93PfGln7fo6apnbU7G+ns7uG6MydyQZxSzUBU+fwU52dGBNW0lKQhDwafv28p333sfSDQhz7Y5rV0Sx03PFjOjoZWNtc2s6KqPu7xlT4/ORkpnOCNuB9o20mwJHX8uOEUDkujsfXgtyFMGZnDCcUjWLa1jv96ZVNENXEiqrybodKCLJyDbXXx21sOBAWEQcjNSCUvKzWhi/WnT63hhr8uJzsthWVb61i1I9AdbeW2Bqb/4BnerNhDZloyVXX+UGb05YeW86MnVsW8VklBVug9/R1d1Da1x1RDHanu//wcfnJZYDRuV3cPO+pbKS3I4pNlxay57YJ+p5Vo6+ymo6uH0sKsfW0Scb6f4LroKpLgj6+/boJ7Wzt5e7OP5qjGymmjcvjEycURgwODtu5p4a5XN1NV5+eNij385Mk1cYNVZDpbvHRm097VTUVNU8JtHL2luzTOnfbdr23udSzMYLy/o5GeHsfG3U2c+JPneX7NLgBW7djL82t2k56SxM+fXhsKGtHmzynh1x8/gdG5GaQlJw247aSyzk9qsjF2RCZLvvcRvnXBtP0+p4GobWrnoSWV7G5soyQ/i/auHmoTuJkJd9/nT+H7l8ygJL/3m4wDRVVGA/DJ/36LyUXZ/OJfTqCkIDuh4mhlnZ9jRuaQlGSU5O/L0Ct9fnocjB6eEZEZTRmZwzuVDZwxJXZajNv/5QSGef3r01OSeebrZzHiMJyLZjDC562pbmijq8cFSgcJdgXNSA1MHdHd42hs7eRvXziVyXHqqYMZTHQgDY1F8Pn7nKdq5bYGPnvvUh794lzmTNw3uK6kICs0rUe0qrBOAkleFVZ/A47Cj3nq3Z3c8r/v8uItH+pzrENf/vaF0+IGlLc2+djR0BpRfTlYLe1d7Glup6QgKzRiO3jHXlXnJzstmYLsNErys3lzky9uld6MsbmhbtQzxub2N2QhRpXPT3Fe1pBPIZKoVdV7+X//t4ppo3JC7UyVPv+A5skKzl8U/K3vaFAJ4bC0fldT6EIrDcvce9Pd49he1xqq1gnveVFZ5yfJoDgvK+xOwB/qphqvKmja6JzQ6NvkJOPYMbmMGX5wJ786UNbvauJ3z6+nub2LkbnpLPzSXOZNLwIC8zL9bUliA6iSk4y87DROn1wY0XMrKNgDJHrb5MJhXH/mxH4/z2A7R7zvxzlHU5wBZKHOCF41APTfa6jKuz7GjcgMHbO/DcvxxlmUeNfkUDxKN3htlxZkkZmWzMic9FA1YFVdoCHezCgtyMLf0R1z59zV3cMz7+8MjVB+/CtnDHgsws3nHcMvP3YCAC+s2c1n7126XyWrgaoKK4GWhkqqid/hb9nTwp9f3kRNUxsF2Wms+MF5XDOInkqDpYCQoL3+Tq/YHci8Lz9pLNefObHPY3Y1ttHR3RO6+yzJzw79+Kp8LYwZnklaStK+TMLnDw1ei5fh7Gho5a5XAxfLks0+HlpSOeD6ycPV5tpmfv9SBVv3tJCRmkzZhPzQ3Ehvb/bxekVtn8c/sXIHX3t4RejHv3h9TdzxC8EeINGGZ6Xy/Utn9DvIr9LnJyM1iZFxppP4zD1L+Nf7l8Wsr6prIT87jZyM1D6rs8KNys3gwuNHk5aSFFZ6GVzVwdqdjXz5oeVxu8WW5sfPnAcjvBceeDdAoRJxS8zI8OgAt3NvGzc+9A4vD2AgYrQpI4eFSm71LR28sqGW6oN4h13p85OVlkzRsHTG5WWSlpxEXdhgvf4sr6znl8+uo7mtC7PAzU28XmsHigJCgoJ3dMGL+dxjR/G5M/oOCMEf8ASv6DizOJdZJSPwd3SHehIAFGSnMX9OSaC7ZB+jYKsbWvn50+tYU93Ik+9V86tn1x+x0/tGC+9W+0bFHp5+f+e+bQmUxpZuqePVjbWhu+A/La7gz3Hqxr927lRu/kj8Xh9tnd39Zh7B7y3ej3TM8My46dzT3BH6PrPTUygclt7v3f5nTisNzTxbNCydrLTkQY16BVi3q5Gn399FvPqX4OcePYp+MPKyUrl45uiIG6DKuhaccxRk75tavbSXoBjdvvPy+hquuPONhDPU5vYuFiytClWxhFcDHixVdS2h6yM1OYnVt10woAn2qnwtoZoDgCffreZn/1hzoJIbQ20ICQov9kOgOqiqzs/wzNS43QwhMCXCH+bP4jjvh3DlrOLQ7Icfm11MdnqgK5mZ8Yt/mQkE6nTnTSsKBZFwwR9SVZ0/1C3zaFESdm4rquqpqGnmYq9Lb399/IPHhTealuRnx30mQ1+zbH5jwUo21DTx0i3zet0n0NU3fkN+aX4WNU3tMbOz/uXasojeS4tuOoPCYX1PWBd+rmaB9qfBVhlV+vxYWCYTriQ/m+GZqf02cifi1EkFEZM3XjlrHLNLA72FHv3SvvEd4/OzuO9zp8S0oUS373R1O1Zua2Crr6XX31i4ippmbn3sff5ybVlEVdtgA+lgVPr8EeOHEp0OJXR8nT9UcwCBUcsPvFXJdy869qDc/KmEkKBRuRlcOWtcKOPa09zOOb95mX+8V93rMYXD0vnoiWMjppUO+sxppRFT4zrn8DW3M3dyAfd/fg55cX4ARTnpZKYmU+nzh7plHi1yMgKBtdIXDHZhg/LC+vj3pjJqsFhpQVZMN9L6lg5eXLs7ZiLB8GO217X2OTr2Vx8/ga+fG3+UeuhuO05PpfAxD2NHZPY5A2ZjWyfH/+i5iOkbvnneMVzXTxVlb6p8vQ9gnFyUzbs/Op8PD8GcOdHTrZ85tZCrTy2NCeKpyUmcM31kTFCs8vkjxkoMtO2kMqp9Z1ROBmkpSUNS+knUwi+dzm2XHx9afuq9ar7yt3cSPj76Rq8kP4uOrp7Q9DcHmgJCguZMzOeOT50U6rc9MiedjNSkPoujb23y8d72htByd4/jvN+9wq+eXce2On9ExvPr59Yz9xcv9TmvTPBOcXNtc6hb5tGkJD+L6obWmGA3eeQwJhVlU++PX3XQ2d3DjobWiBJCaZyqkODDcDbWxB/5XFKQRUd33z++E8eP6LV3ULzBgzsaWrnpb++EuhsDrKiq58eLVsdkoEFVPj8tHd0RM7aef9xoTo/T8ywRlX3cPAxl/fT5d7zKrX9/L7Tc1d3Dul2N3P3aZi774+sRVT8rqup58t3Im6nKqLES4xNsbwkKBo7xXkkoKcmYMyGfjEFMPz1Yw7NSIyYQ3FHfyj/e25nwbLU7GiJ/16UHudpLASFBTW2dET0xgplzX8XRnz+9lt88vyG0nJxk+Du6ufeNLZz1q8URI2OL8wKZ0Yk/eZ7vPx6/jzYEMq2lW+pC3TKPJn+9bg6//sQJ+Du6I34U50wbyUu3zOu1y+Xe1k6mjhzG1FH7tsdrvN3Xtz9+5ljaT7/v7fV+Hl+xo9fqlUlF2Xzt3KlMCHv9jbubeOq9nbQT/J0ZAAAP7klEQVSGlVS2+lq4/82tvQ44ijdWYm9rJ69trI3bi6k/2ekpfU7f8IcXN0Zk5IPR2d3D9vpWCsKmnN7b2smF//Eav31+A2uqG8kNC3CPlm/jx4tWR7zGDz46g//81KzQckZqMqNzMxIei1BZ52dkTnpEdd3/XH8q3zz/4IxFqKhp4jfPrY94eNZASzlv3vrhiJ5VwWvyYI24VhtCgs773avMm1bE7V6XNvB6DfXxRVf6WkLPON53TFZMo1dwPUBLRzfD0nsfW/DLj51AdnoybZ09pBwlDcpBORmpbPCeCjeQ0k/hsHSe/UbkVB/Hjsll8bfmRUz5UFnnJzM10AMknvAf7+lx2gHf3lzHt/73XV665UNxn2KVm5HKN6OmKQh1xcyP/a6r6uI/NzjeWIl3tzVw7b1LWXDDaZw2qfd2kHiCj03tzfb6Vl5ct3tArxmtuiFQ1RZ+k5KfnUZOegpN7V1MKMiKGFNSkp+Nr6WD5vauUBfgcSMyYx5qdPYxhf22twRVHeJ2tXeqGgJPhCvbVxUc3qU8kae/pSYnRbQ7jB2RQU5GCs3t/Y+gHwoqISQgODYg+mHvwXEF8fpwN/g7aIyawjp4DBAzW2a8YmI8+dlppKckMzwzNe6o2CPZul2N/G3JNh794tyYTO9rD6/gF88kPr99RmoyEwuzI35c2/roIQQwZngG37/k2F6fBhfdAySeBn9HxIy0lT4vCIV1Uw3PJOK/T+xYiaEaixBPSUEWe5o7YkZfD0S8Uo2Z7etxFD0QMKqPfmNbJ3e/tjmmdParj5/Iv104PaE0/Nc1J/PbT5wUse7Ftbs573evDPphOwNR5Qs8Z2NsWFAbyMOXyrfW8cMnVuEL6wKckpzEez86f9DtRwOlgJCA4HQG0Rn1lbPG8dtPnki8Nsjeuo8GL5CCqLueMVEPLunNjoZWZv/0hQE1VB0pmtq6+Ps722np6IqZY2fX3jZWVDbEPe7OxRVcc8+SmPVPrNzBX9/eN31wb2MQglKSk7j+rElM7eVZw9E9QOL5f/+3iusfKI98z6ggVDgsLdCNtJfMfXZpHp8+tSRi3dgRgbr1gU7n/MqGWq780xt9NqwORbCp7GX8TGhQZn789cH3rKhp5t//sbbPKcT7k5+dFvP9Jpmxsab5oFS5VNVFPmcDAnOQTR+dg9F/ab68sp4H36okNer60jiEw8y+zD3yLuf4ccO5eOaYuMPk9/1AIo+ZNT5w9zkqNzIgpCQnhaYE7isgdHT1UNfSwT/e29nrPkeqYKbxy2fWxWwrKcjq9S7r3W0Noefohnt21S7ue33fRHJ/uno23+5nbptde9tYXtn7xGv9VUmUFGSxvX5fh4HUZGP6mMgAExitm01DL43knywbzy1R9d6pyUmMGxH7XO3+bNjVxIqqhj4fKToU9dTHjs7h+jMnMionshQdHPkdU3Ua1SU0GBiiP9/XN+5hzs/+2e8U6NUNrdzxwoaYwHcwxyJUepMrRnv2G2dz47z+xyJU+mKfswHw2Dvb+dx9S4csnX05uuoc+nD7M+tihrDPLsnjkhPG0NPj+NnTsdURp00q4LwZo6jxipvRF2tXdw+vbqzl8RXVEVUCY4Zn8KlTxvP3G+cyoTDymLmTC7jz07MjGt+CfnrF8TyxsjqiyBmttwfHHw2Cn+G6OD/+0vwsFja287vn14caCR9ZVsWG3c2s2NbACXHqZ4NTZ//0qcDAnhvnTe63PvrOxRUsXL494g794pljOLk0j6o6Pxcc13f3zJL8LDq7HT94YhWnTMjjz585Oe5+i246g9TkwJz/4Z0LunscFxw3Ou54idKCLIL3Hsu21vHsql0x+9x0zhTystN4o2IPL62rYckWH7kZKXG7PofSXJDFsWNyMTO21fm5/82tMft8bHYxM8bmsqm2Oe40IvPnlPD9S2fErP9k2XjOmFLA2VOLItbnZqTy3DfOpiQ/i7++XcmTK6vjjpXIyUihpqmd372wPrTta+dOZXhmKq9uqOWVDYER7DvqW3l29S7mTSuKmC67OC8TM3h4aRVTR+Yws3g4lb4WHnwr9sEznywbz7TROWzY3cQjUU9sO2tqIfOmRT4lsa2zmz8trmBm8QjOmzGKPU3toTFH0R54c2tM6W7M8Ayu956T/pdXN/N6RW1M1RqAr7mDl9fXstffyfADPHfZByYgLFy+PWZq4x7nuOSEwOCn6AsAIDM1mfNmjOLimWN4ZNk2CqLGBjjgV8+u9+ad2VdKOH5cLtefNYmTS/OJJ/ie0U6bVNBvg2FaShKnTsznnOmJPcLzSGJmnDOtiJnFI2K2nTqpgLysVB5fWR0KCK9t3MPL62sx4OxjimKOOX1yIQuWbgt9t585rbTfgHDGlEKeWLkj4nqYNjqHk0vzeOqrZ9Jf6b2sNI/CYeksWllNd7eLGGsSLlit8OamPTy/el+Dbo9zPL5yB3ddUxYxeR7Ah44p4sypga6nG3c3x71mP3f6BPKy01i7szG0/bwZfQex4ZmpPPP1s4BA19x4rztnYj4zxuaya29b3O3nTBsZt4F82ugcpo2OXwUXXP/K+hrW7GzkzCmFMWMlpo4axsTCbN6o8AGB55l/4axJDM9MZVX13oi0TCjIiqnuS09J5uypRSyvrGerr4WZxcOpaWqPew5nTilk2ugcqhtaI7a3dXbz+sY9MQHhzU17+P1LFdw4bzLnzRjF6985h/ZeHmf74roa3okqeR43NjcUEJ5bvYv6lk4+Njv2ernspLGcMaUwNJD1QLKhmNTqYCkrK3Pl5eX97ygiMkReXl9DY1sXl504NmL9va9v4ban1rD8+x+JaRM83JjZcudcWX/7JVRCMLMLgf8EkoG7nXO3R22/AzjHW8wCRjrnRoRtzwXWAv/nnLvJW/cyMAYIdsY+3zk3+FmtREQOgOiSQVBVnZ9h6SkJTatxpOg3IJhZMnAncB6wHVhmZoucc6EZl5xzN4ft/1VgVtTL/BR4Jc7LX+2c0y2/iBy22jq7WberieK8zIgqx0pfS5/dmI9EifQymgNUOOc2O+c6gAXA5X3sPx94OLhgZicDo4Dn9yehIiKHQnVDK1fc+QYvr4+cgn1m8QjO76eTwZEmkSqjcUB4C8x24NR4O5pZKTAReMlbTgJ+C1wDnBvnkPvMrBv4O/Dv7khq0BCRD4TivEDvrqqoQXPRo9KPBomUEOKVh3rLuK8CFjrngt15vgw87ZyLbdIPVBfNBM7y/l0T983NbjCzcjMrr63t+yEpIiJDLS0libFRY0C6e9xR83CqcIkEhO3A+LDlYqC3OZ+vIqy6CJgL3GRmW4HfANea2e0Azrkd3v9NwN8IVE3FcM7d5Zwrc86VFRXFdi0UETnQSgsiH9K0ZIuP6T98luWVdYcwVUMvkYCwDJhqZhPNLI1Apr8oeiczmwbkAW8F1znnrnbOlTjnJgDfAh50zt1qZilmVugdlwpcCqza77MRETkAgo+/Dary+eno6gk95vVo0W8bgnOuy8xuAp4j0O30XufcajO7DSh3zgWDw3xgQYLtAOnAc14wSAb+CfxlUGcgInKAXTu3lI+eMCb0JLvKOj8pURPZHQ0SGofgnHsaeDpq3Q+jln/cz2vcD9zv/d0CxB/TLyJymIl+nkSVz09xXmbcecyOZJrcTkSkH22d3Tz9/s7QbKyVdS1x5x060ikgiIj0o6vH8eWH3uGFNYF5py4/cRyXR01lcTT4wExuJyIyWMPSUyjITgtNEf6Fsycd4hQdGCohiIgkoMTretrS3kVtU3vcJyUe6RQQREQSUJIfeGTuP9fu5pSf/ZMNuwf/dLfDlQKCiEgCSvOzqG5oZVNtoNqorycbHqkUEEREEnD1aaW8eMs8dtS3MjInncy0A//AmoNNjcoiIgkYlRsYlbytrv9nax+pVEIQEUlAZ3cP97y+haVb6yjJP/rGIIACgohIQlKSjN88t54RWal87ORxhzo5B4SqjEREEmBmlORnMT4/i9MnFx7q5BwQKiGIiCQoIzWJf67dTWd3z6FOygGhgCAikqBdjW0ANLZ2HuKUHBiqMhIRSdBfrzuVF9bsJj877VAn5YBQQBARSdAxo3I4ZlTOoU7GAaMqIxERARQQRETEo4AgIiKAAoKIiHgUEEREBFBAEBERjwKCiIgACggiIuKxI+m5oGZWC1Qe6nQcRIXAnkOdiENMn4E+A9BnsL/nX+qcK+pvpyMqIHzQmFm5c67sUKfjUNJnoM8A9BkcrPNXlZGIiAAKCCIi4lFAOLzddagTcBjQZ6DPAPQZHJTzVxuCiIgAKiGIiIhHAeEwYWbjzWyxma01s9Vm9nVvfb6ZvWBmG73/8w51Wg8kM0s2sxVm9pS3PNHMlnjn/4iZHZ1PJvGY2QgzW2hm67xrYe4H8Bq42fsNrDKzh80s42i/DszsXjOrMbNVYevifu8W8HszqzCz98xs9lClQwHh8NEF3OKcOxY4DfiKmc0AbgVedM5NBV70lo9mXwfWhi3/ErjDO/964LpDkqqD5z+BZ51z04ETCXwWH5hrwMzGAV8DypxzxwPJwFUc/dfB/cCFUet6+94vAqZ6/24A/jxUiVBAOEw453Y6597x/m4ikBGMAy4HHvB2ewC44tCk8MAzs2LgEuBub9mADwMLvV2O9vPPBc4G7gFwznU45xr4AF0DnhQg08xSgCxgJ0f5deCcexWoi1rd2/d+OfCgC3gbGGFmY4YiHQoIhyEzmwDMApYAo5xzOyEQNICRhy5lB9x/AP8G9HjLBUCDc67LW95OIEgerSYBtcB9XrXZ3WaWzQfoGnDO7QB+A1QRCAR7geV8sK6DoN6+93HAtrD9huzzUEA4zJjZMODvwDecc42HOj0Hi5ldCtQ455aHr46z69HcLS4FmA382Tk3C2jhKK4eiserJ78cmAiMBbIJVJFEO5qvg/4csN+FAsJhxMxSCQSDh5xzj3mrdweLg97/NYcqfQfYGcBlZrYVWECgiuA/CBSHU7x9ioHqQ5O8g2I7sN05t8RbXkggQHxQrgGAjwBbnHO1zrlO4DHgdD5Y10FQb9/7dmB82H5D9nkoIBwmvPrye4C1zrnfhW1aBHzW+/uzwBMHO20Hg3Puu865YufcBAKNiC85564GFgMf93Y7as8fwDm3C9hmZtO8VecCa/iAXAOeKuA0M8vyfhPBz+ADcx2E6e17XwRc6/U2Og3YG6xa2l8amHaYMLMzgdeA99lXh/49Au0IjwIlBH4sn3DORTc+HVXMbB7wLefcpWY2iUCJIR9YAXzGOdd+KNN3IJnZSQQa1dOAzcDnCdy4fWCuATP7CfApAj3vVgDXE6gjP2qvAzN7GJhHYFbT3cCPgMeJ8717gfKPBHol+YHPO+fKhyQdCggiIgKqMhIREY8CgoiIAAoIIiLiUUAQERFAAUFERDwKCCIiAiggiIiIRwFBREQA+P8Z5M6BJxw7KwAAAABJRU5ErkJggg==\n",
    
          "text/plain": [
    
    chadhat's avatar
    chadhat committed
           "<Figure size 432x288 with 1 Axes>"
    
          ]
         },
         "metadata": {
          "needs_background": "light"
         },
         "output_type": "display_data"
        }
       ],
       "source": [
    
    chadhat's avatar
    chadhat committed
        "# Here we split the dataset into training (80%) and validation sets (20%) \n",
        "X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.3)\n",
        "\n",
        "num_epochs = 100\n",
        "\n",
        "model_run = model.fit(X_train, y_train, epochs=num_epochs, validation_data = (X_test,y_test))\n",
    
        "\n",
        "history_model = model_run.history\n",
        "\n",
    
    chadhat's avatar
    chadhat committed
        "plt.plot(np.arange(1,num_epochs+1)[5:], history_model[\"acc\"][5:], \"--\") ;\n",
    
    chadhat's avatar
    chadhat committed
        "plt.plot(np.arange(1,num_epochs+1)[5:], history_model[\"val_acc\"][5:]) ;"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "## Using SciKit learn functions on Keras models\n",
        "\n",
        "As we have seen from the previous chapters, SciKit learn offers very handy functions for evaluating and tuning the machine learning models.\n",
        "\n",
        "So the question is: Can we somehow use those functions with the models we build in Keras?\n",
        "\n",
        "The Answer is **YES !**\n",
        "\n",
        "Keras offers wrappers which allow its Sequential models to be used with SciKit learn. There 2 such wrappers: **KerasClassifier** and **KerasRegressor**.\n",
        "\n",
        "For more information:\n",
        "https://keras.io/scikit-learn-api/\n",
        "\n",
        "**Now lets see how this works!**"
    
       ]
      },
      {
       "cell_type": "code",
    
    chadhat's avatar
    chadhat committed
       "execution_count": 27,
    
       "metadata": {},
       "outputs": [
    
    chadhat's avatar
    chadhat committed
    1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
          "Epoch 1/100\n",
          "280/280 [==============================] - 1s 3ms/step - loss: 0.9489 - acc: 0.3321\n",
          "Epoch 2/100\n",
          "280/280 [==============================] - 0s 98us/step - loss: 0.9255 - acc: 0.3321\n",
          "Epoch 3/100\n",
          "280/280 [==============================] - 0s 94us/step - loss: 0.9084 - acc: 0.3429\n",
          "Epoch 4/100\n",
          "280/280 [==============================] - 0s 141us/step - loss: 0.8940 - acc: 0.3357\n",
          "Epoch 5/100\n",
          "280/280 [==============================] - 0s 117us/step - loss: 0.8808 - acc: 0.3464\n",
          "Epoch 6/100\n",
          "280/280 [==============================] - 0s 126us/step - loss: 0.8685 - acc: 0.3393\n",
          "Epoch 7/100\n",
          "280/280 [==============================] - 0s 85us/step - loss: 0.8571 - acc: 0.3357\n",
          "Epoch 8/100\n",
          "280/280 [==============================] - 0s 73us/step - loss: 0.8462 - acc: 0.3393\n",
          "Epoch 9/100\n",
          "280/280 [==============================] - 0s 76us/step - loss: 0.8360 - acc: 0.3321\n",
          "Epoch 10/100\n",
          "280/280 [==============================] - 0s 89us/step - loss: 0.8264 - acc: 0.3286\n",
          "Epoch 11/100\n",
          "280/280 [==============================] - 0s 91us/step - loss: 0.8170 - acc: 0.3321\n",
          "Epoch 12/100\n",
          "280/280 [==============================] - 0s 95us/step - loss: 0.8079 - acc: 0.3321\n",
          "Epoch 13/100\n",
          "280/280 [==============================] - 0s 93us/step - loss: 0.7991 - acc: 0.3321\n",
          "Epoch 14/100\n",
          "280/280 [==============================] - 0s 93us/step - loss: 0.7907 - acc: 0.3286\n",
          "Epoch 15/100\n",
          "280/280 [==============================] - 0s 91us/step - loss: 0.7828 - acc: 0.3393\n",
          "Epoch 16/100\n",
          "280/280 [==============================] - 0s 115us/step - loss: 0.7749 - acc: 0.3500\n",
          "Epoch 17/100\n",
          "280/280 [==============================] - 0s 84us/step - loss: 0.7673 - acc: 0.3536\n",
          "Epoch 18/100\n",
          "280/280 [==============================] - 0s 96us/step - loss: 0.7602 - acc: 0.3536\n",
          "Epoch 19/100\n",
          "280/280 [==============================] - 0s 112us/step - loss: 0.7535 - acc: 0.3571\n",
          "Epoch 20/100\n",
          "280/280 [==============================] - 0s 110us/step - loss: 0.7468 - acc: 0.3643\n",
          "Epoch 21/100\n",
          "280/280 [==============================] - 0s 100us/step - loss: 0.7405 - acc: 0.3750\n",
          "Epoch 22/100\n",
          "280/280 [==============================] - 0s 99us/step - loss: 0.7345 - acc: 0.3821\n",
          "Epoch 23/100\n",
          "280/280 [==============================] - 0s 98us/step - loss: 0.7290 - acc: 0.3893\n",
          "Epoch 24/100\n",
          "280/280 [==============================] - 0s 107us/step - loss: 0.7235 - acc: 0.3857\n",
          "Epoch 25/100\n",
          "280/280 [==============================] - 0s 84us/step - loss: 0.7184 - acc: 0.3893\n",
          "Epoch 26/100\n",
          "280/280 [==============================] - 0s 94us/step - loss: 0.7134 - acc: 0.3893\n",
          "Epoch 27/100\n",
          "280/280 [==============================] - 0s 96us/step - loss: 0.7084 - acc: 0.4036\n",
          "Epoch 28/100\n",
          "280/280 [==============================] - 0s 108us/step - loss: 0.7037 - acc: 0.4071\n",
          "Epoch 29/100\n",
          "280/280 [==============================] - 0s 99us/step - loss: 0.6993 - acc: 0.4107\n",
          "Epoch 30/100\n",
          "280/280 [==============================] - 0s 90us/step - loss: 0.6951 - acc: 0.4250\n",
          "Epoch 31/100\n",
          "280/280 [==============================] - 0s 105us/step - loss: 0.6908 - acc: 0.4321\n",
          "Epoch 32/100\n",
          "280/280 [==============================] - 0s 94us/step - loss: 0.6867 - acc: 0.4464\n",
          "Epoch 33/100\n",
          "280/280 [==============================] - 0s 91us/step - loss: 0.6826 - acc: 0.4607\n",
          "Epoch 34/100\n",
          "280/280 [==============================] - 0s 109us/step - loss: 0.6785 - acc: 0.4714\n",
          "Epoch 35/100\n",
          "280/280 [==============================] - 0s 98us/step - loss: 0.6746 - acc: 0.5071\n",
          "Epoch 36/100\n",
          "280/280 [==============================] - 0s 88us/step - loss: 0.6708 - acc: 0.5179\n",
          "Epoch 37/100\n",
          "280/280 [==============================] - 0s 93us/step - loss: 0.6670 - acc: 0.5250\n",
          "Epoch 38/100\n",
          "280/280 [==============================] - 0s 106us/step - loss: 0.6634 - acc: 0.5286\n",
          "Epoch 39/100\n",
          "280/280 [==============================] - 0s 93us/step - loss: 0.6599 - acc: 0.5429\n",
          "Epoch 40/100\n",
          "280/280 [==============================] - 0s 93us/step - loss: 0.6563 - acc: 0.5643\n",
          "Epoch 41/100\n",
          "280/280 [==============================] - 0s 93us/step - loss: 0.6529 - acc: 0.5857\n",
          "Epoch 42/100\n",
          "280/280 [==============================] - 0s 94us/step - loss: 0.6495 - acc: 0.6071\n",
          "Epoch 43/100\n",
          "280/280 [==============================] - 0s 99us/step - loss: 0.6461 - acc: 0.6107\n",
          "Epoch 44/100\n",
          "280/280 [==============================] - 0s 89us/step - loss: 0.6426 - acc: 0.6143\n",
          "Epoch 45/100\n",
          "280/280 [==============================] - 0s 92us/step - loss: 0.6390 - acc: 0.6500\n",
          "Epoch 46/100\n",
          "280/280 [==============================] - 0s 101us/step - loss: 0.6355 - acc: 0.6679\n",
          "Epoch 47/100\n",
          "280/280 [==============================] - 0s 103us/step - loss: 0.6321 - acc: 0.6821\n",
          "Epoch 48/100\n",
          "280/280 [==============================] - 0s 90us/step - loss: 0.6287 - acc: 0.6893\n",
          "Epoch 49/100\n",
          "280/280 [==============================] - 0s 94us/step - loss: 0.6254 - acc: 0.6964\n",
          "Epoch 50/100\n",
          "280/280 [==============================] - 0s 98us/step - loss: 0.6220 - acc: 0.7036\n",
          "Epoch 51/100\n",
          "280/280 [==============================] - 0s 92us/step - loss: 0.6185 - acc: 0.7107\n",
          "Epoch 52/100\n",
          "280/280 [==============================] - 0s 94us/step - loss: 0.6152 - acc: 0.7250\n",
          "Epoch 53/100\n",
          "280/280 [==============================] - 0s 83us/step - loss: 0.6120 - acc: 0.7250\n",
          "Epoch 54/100\n",
          "280/280 [==============================] - 0s 93us/step - loss: 0.6087 - acc: 0.7393\n",
          "Epoch 55/100\n",
          "280/280 [==============================] - 0s 86us/step - loss: 0.6057 - acc: 0.7286\n",
          "Epoch 56/100\n",
          "280/280 [==============================] - 0s 63us/step - loss: 0.6026 - acc: 0.7429\n",
          "Epoch 57/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.5995 - acc: 0.7393\n",
          "Epoch 58/100\n",
          "280/280 [==============================] - 0s 64us/step - loss: 0.5966 - acc: 0.7429\n",
          "Epoch 59/100\n",
          "280/280 [==============================] - 0s 81us/step - loss: 0.5934 - acc: 0.7536\n",
          "Epoch 60/100\n",
          "280/280 [==============================] - 0s 72us/step - loss: 0.5905 - acc: 0.7571\n",
          "Epoch 61/100\n",
          "280/280 [==============================] - 0s 87us/step - loss: 0.5878 - acc: 0.7571\n",
          "Epoch 62/100\n",
          "280/280 [==============================] - 0s 76us/step - loss: 0.5850 - acc: 0.7571\n",
          "Epoch 63/100\n",
          "280/280 [==============================] - 0s 83us/step - loss: 0.5823 - acc: 0.7571\n",
          "Epoch 64/100\n",
          "280/280 [==============================] - 0s 64us/step - loss: 0.5795 - acc: 0.7607\n",
          "Epoch 65/100\n",
          "280/280 [==============================] - 0s 72us/step - loss: 0.5766 - acc: 0.7536\n",
          "Epoch 66/100\n",
          "280/280 [==============================] - 0s 82us/step - loss: 0.5738 - acc: 0.7679\n",
          "Epoch 67/100\n",
          "280/280 [==============================] - 0s 87us/step - loss: 0.5714 - acc: 0.7679\n",
          "Epoch 68/100\n",
          "280/280 [==============================] - 0s 90us/step - loss: 0.5687 - acc: 0.7643\n",
          "Epoch 69/100\n",
          "280/280 [==============================] - 0s 86us/step - loss: 0.5662 - acc: 0.7679\n",
          "Epoch 70/100\n",
          "280/280 [==============================] - 0s 89us/step - loss: 0.5635 - acc: 0.7714\n",
          "Epoch 71/100\n",
          "280/280 [==============================] - 0s 86us/step - loss: 0.5610 - acc: 0.7714\n",
          "Epoch 72/100\n",
          "280/280 [==============================] - 0s 85us/step - loss: 0.5583 - acc: 0.7750\n",
          "Epoch 73/100\n",
          "280/280 [==============================] - 0s 100us/step - loss: 0.5559 - acc: 0.7750\n",
          "Epoch 74/100\n",
          "280/280 [==============================] - 0s 82us/step - loss: 0.5533 - acc: 0.7750\n",
          "Epoch 75/100\n",
          "280/280 [==============================] - 0s 89us/step - loss: 0.5507 - acc: 0.7750\n",
          "Epoch 76/100\n",
          "280/280 [==============================] - 0s 90us/step - loss: 0.5482 - acc: 0.7714\n",
          "Epoch 77/100\n",
          "280/280 [==============================] - 0s 90us/step - loss: 0.5458 - acc: 0.7821\n",
          "Epoch 78/100\n",
          "280/280 [==============================] - 0s 87us/step - loss: 0.5434 - acc: 0.7786\n",
          "Epoch 79/100\n",
          "280/280 [==============================] - 0s 88us/step - loss: 0.5409 - acc: 0.7857\n",
          "Epoch 80/100\n",
          "280/280 [==============================] - 0s 91us/step - loss: 0.5387 - acc: 0.7893\n",
          "Epoch 81/100\n",
          "280/280 [==============================] - 0s 90us/step - loss: 0.5364 - acc: 0.7893\n",
          "Epoch 82/100\n",
          "280/280 [==============================] - 0s 94us/step - loss: 0.5341 - acc: 0.7893\n",
          "Epoch 83/100\n",
          "280/280 [==============================] - 0s 89us/step - loss: 0.5318 - acc: 0.7929\n",
          "Epoch 84/100\n"
         ]
        },
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
          "280/280 [==============================] - 0s 89us/step - loss: 0.5294 - acc: 0.7929\n",
          "Epoch 85/100\n",
          "280/280 [==============================] - 0s 83us/step - loss: 0.5271 - acc: 0.7929\n",
          "Epoch 86/100\n",
          "280/280 [==============================] - 0s 87us/step - loss: 0.5248 - acc: 0.7929\n",
          "Epoch 87/100\n",
          "280/280 [==============================] - 0s 88us/step - loss: 0.5223 - acc: 0.7929\n",
          "Epoch 88/100\n",
          "280/280 [==============================] - 0s 85us/step - loss: 0.5201 - acc: 0.7929\n",
          "Epoch 89/100\n",
          "280/280 [==============================] - 0s 93us/step - loss: 0.5179 - acc: 0.7893\n",
          "Epoch 90/100\n",
          "280/280 [==============================] - 0s 75us/step - loss: 0.5158 - acc: 0.7893\n",
          "Epoch 91/100\n",
          "280/280 [==============================] - 0s 83us/step - loss: 0.5135 - acc: 0.7893\n",
          "Epoch 92/100\n",
          "280/280 [==============================] - 0s 84us/step - loss: 0.5114 - acc: 0.7893\n",
          "Epoch 93/100\n",
          "280/280 [==============================] - 0s 86us/step - loss: 0.5091 - acc: 0.7929\n",
          "Epoch 94/100\n",
          "280/280 [==============================] - 0s 81us/step - loss: 0.5072 - acc: 0.7964\n",
          "Epoch 95/100\n",
          "280/280 [==============================] - 0s 89us/step - loss: 0.5050 - acc: 0.8000\n",
          "Epoch 96/100\n",
          "280/280 [==============================] - 0s 85us/step - loss: 0.5032 - acc: 0.7964\n",
          "Epoch 97/100\n",
          "280/280 [==============================] - 0s 86us/step - loss: 0.5012 - acc: 0.7964\n",
          "Epoch 98/100\n",
          "280/280 [==============================] - 0s 82us/step - loss: 0.4993 - acc: 0.7964\n",
          "Epoch 99/100\n",
          "280/280 [==============================] - 0s 104us/step - loss: 0.4976 - acc: 0.7929\n",
          "Epoch 100/100\n",
          "280/280 [==============================] - 0s 86us/step - loss: 0.4958 - acc: 0.7929\n",
          "70/70 [==============================] - 0s 3ms/step\n",
          "Epoch 1/100\n",
          "280/280 [==============================] - 1s 4ms/step - loss: 0.9036 - acc: 0.3107\n",
          "Epoch 2/100\n",
          "280/280 [==============================] - 0s 129us/step - loss: 0.8788 - acc: 0.2143\n",
          "Epoch 3/100\n",
          "280/280 [==============================] - 0s 100us/step - loss: 0.8610 - acc: 0.1821\n",
          "Epoch 4/100\n",
          "280/280 [==============================] - 0s 126us/step - loss: 0.8447 - acc: 0.1643\n",
          "Epoch 5/100\n",
          "280/280 [==============================] - 0s 104us/step - loss: 0.8288 - acc: 0.1750\n",
          "Epoch 6/100\n",
          "280/280 [==============================] - 0s 121us/step - loss: 0.8148 - acc: 0.1750\n",
          "Epoch 7/100\n",
          "280/280 [==============================] - 0s 123us/step - loss: 0.8015 - acc: 0.1786\n",
          "Epoch 8/100\n",
          "280/280 [==============================] - 0s 118us/step - loss: 0.7890 - acc: 0.1714\n",
          "Epoch 9/100\n",
          "280/280 [==============================] - 0s 101us/step - loss: 0.7776 - acc: 0.1786\n",
          "Epoch 10/100\n",
          "280/280 [==============================] - 0s 108us/step - loss: 0.7665 - acc: 0.1821\n",
          "Epoch 11/100\n",
          "280/280 [==============================] - 0s 111us/step - loss: 0.7560 - acc: 0.1964\n",
          "Epoch 12/100\n",
          "280/280 [==============================] - 0s 102us/step - loss: 0.7466 - acc: 0.2179\n",
          "Epoch 13/100\n",
          "280/280 [==============================] - 0s 110us/step - loss: 0.7379 - acc: 0.2357\n",
          "Epoch 14/100\n",
          "280/280 [==============================] - 0s 97us/step - loss: 0.7294 - acc: 0.2786\n",
          "Epoch 15/100\n",
          "280/280 [==============================] - 0s 100us/step - loss: 0.7220 - acc: 0.3036\n",
          "Epoch 16/100\n",
          "280/280 [==============================] - 0s 91us/step - loss: 0.7153 - acc: 0.3143\n",
          "Epoch 17/100\n",
          "280/280 [==============================] - 0s 80us/step - loss: 0.7096 - acc: 0.3607\n",
          "Epoch 18/100\n",
          "280/280 [==============================] - 0s 95us/step - loss: 0.7049 - acc: 0.3821\n",
          "Epoch 19/100\n",
          "280/280 [==============================] - 0s 112us/step - loss: 0.7008 - acc: 0.4107\n",
          "Epoch 20/100\n",
          "280/280 [==============================] - 0s 107us/step - loss: 0.6977 - acc: 0.4571\n",
          "Epoch 21/100\n",
          "280/280 [==============================] - 0s 94us/step - loss: 0.6954 - acc: 0.4607\n",
          "Epoch 22/100\n",
          "280/280 [==============================] - 0s 90us/step - loss: 0.6936 - acc: 0.4714\n",
          "Epoch 23/100\n",
          "280/280 [==============================] - 0s 99us/step - loss: 0.6922 - acc: 0.4750\n",
          "Epoch 24/100\n",
          "280/280 [==============================] - 0s 84us/step - loss: 0.6908 - acc: 0.4821\n",
          "Epoch 25/100\n",
          "280/280 [==============================] - 0s 89us/step - loss: 0.6896 - acc: 0.4821\n",
          "Epoch 26/100\n",
          "280/280 [==============================] - 0s 89us/step - loss: 0.6886 - acc: 0.4857\n",
          "Epoch 27/100\n",
          "280/280 [==============================] - 0s 88us/step - loss: 0.6875 - acc: 0.4893\n",
          "Epoch 28/100\n",
          "280/280 [==============================] - 0s 83us/step - loss: 0.6864 - acc: 0.4964\n",
          "Epoch 29/100\n",
          "280/280 [==============================] - 0s 85us/step - loss: 0.6851 - acc: 0.4964\n",
          "Epoch 30/100\n",
          "280/280 [==============================] - 0s 82us/step - loss: 0.6838 - acc: 0.4964\n",
          "Epoch 31/100\n",
          "280/280 [==============================] - 0s 98us/step - loss: 0.6823 - acc: 0.4964\n",
          "Epoch 32/100\n",
          "280/280 [==============================] - 0s 94us/step - loss: 0.6807 - acc: 0.4964\n",
          "Epoch 33/100\n",
          "280/280 [==============================] - 0s 93us/step - loss: 0.6788 - acc: 0.4964\n",
          "Epoch 34/100\n",
          "280/280 [==============================] - 0s 87us/step - loss: 0.6770 - acc: 0.4964\n",
          "Epoch 35/100\n",
          "280/280 [==============================] - 0s 162us/step - loss: 0.6749 - acc: 0.4964\n",
          "Epoch 36/100\n",
          "280/280 [==============================] - 0s 112us/step - loss: 0.6728 - acc: 0.4964\n",
          "Epoch 37/100\n",
          "280/280 [==============================] - 0s 100us/step - loss: 0.6706 - acc: 0.4964\n",
          "Epoch 38/100\n",
          "280/280 [==============================] - 0s 97us/step - loss: 0.6683 - acc: 0.4964\n",
          "Epoch 39/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.6661 - acc: 0.4964\n",
          "Epoch 40/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.6638 - acc: 0.5071\n",
          "Epoch 41/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.6614 - acc: 0.6821\n",
          "Epoch 42/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.6590 - acc: 0.6893\n",
          "Epoch 43/100\n",
          "280/280 [==============================] - 0s 67us/step - loss: 0.6566 - acc: 0.6821\n",
          "Epoch 44/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.6542 - acc: 0.6821\n",
          "Epoch 45/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.6519 - acc: 0.6821\n",
          "Epoch 46/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.6496 - acc: 0.6821\n",
          "Epoch 47/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.6473 - acc: 0.6964\n",
          "Epoch 48/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.6449 - acc: 0.7071\n",
          "Epoch 49/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.6425 - acc: 0.7000\n",
          "Epoch 50/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.6401 - acc: 0.7000\n",
          "Epoch 51/100\n",
          "280/280 [==============================] - 0s 75us/step - loss: 0.6377 - acc: 0.7071\n",
          "Epoch 52/100\n",
          "280/280 [==============================] - 0s 78us/step - loss: 0.6352 - acc: 0.7107\n",
          "Epoch 53/100\n",
          "280/280 [==============================] - 0s 75us/step - loss: 0.6326 - acc: 0.7107\n",
          "Epoch 54/100\n",
          "280/280 [==============================] - 0s 88us/step - loss: 0.6299 - acc: 0.7286\n",
          "Epoch 55/100\n",
          "280/280 [==============================] - 0s 76us/step - loss: 0.6273 - acc: 0.7214\n",
          "Epoch 56/100\n",
          "280/280 [==============================] - 0s 81us/step - loss: 0.6247 - acc: 0.7250\n",
          "Epoch 57/100\n",
          "280/280 [==============================] - 0s 82us/step - loss: 0.6221 - acc: 0.7429\n",
          "Epoch 58/100\n",
          "280/280 [==============================] - 0s 73us/step - loss: 0.6193 - acc: 0.7500\n",
          "Epoch 59/100\n",
          "280/280 [==============================] - 0s 85us/step - loss: 0.6166 - acc: 0.7571\n",
          "Epoch 60/100\n",
          "280/280 [==============================] - 0s 77us/step - loss: 0.6137 - acc: 0.7714\n",
          "Epoch 61/100\n",
          "280/280 [==============================] - 0s 71us/step - loss: 0.6107 - acc: 0.7679\n",
          "Epoch 62/100\n",
          "280/280 [==============================] - 0s 85us/step - loss: 0.6077 - acc: 0.7786\n",
          "Epoch 63/100\n",
          "280/280 [==============================] - 0s 70us/step - loss: 0.6047 - acc: 0.7893\n",
          "Epoch 64/100\n",
          "280/280 [==============================] - 0s 68us/step - loss: 0.6016 - acc: 0.7893\n",
          "Epoch 65/100\n",
          "280/280 [==============================] - 0s 67us/step - loss: 0.5985 - acc: 0.7929\n",
          "Epoch 66/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.5952 - acc: 0.8000\n",
          "Epoch 67/100\n"
         ]
        },
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
          "280/280 [==============================] - 0s 76us/step - loss: 0.5920 - acc: 0.7964\n",
          "Epoch 68/100\n",
          "280/280 [==============================] - 0s 74us/step - loss: 0.5889 - acc: 0.8036\n",
          "Epoch 69/100\n",
          "280/280 [==============================] - 0s 83us/step - loss: 0.5857 - acc: 0.8000\n",
          "Epoch 70/100\n",
          "280/280 [==============================] - 0s 82us/step - loss: 0.5825 - acc: 0.8071\n",
          "Epoch 71/100\n",
          "280/280 [==============================] - 0s 79us/step - loss: 0.5792 - acc: 0.8071\n",
          "Epoch 72/100\n",
          "280/280 [==============================] - 0s 90us/step - loss: 0.5760 - acc: 0.8071\n",
          "Epoch 73/100\n",
          "280/280 [==============================] - 0s 95us/step - loss: 0.5726 - acc: 0.8143\n",
          "Epoch 74/100\n",
          "280/280 [==============================] - 0s 85us/step - loss: 0.5693 - acc: 0.8143\n",
          "Epoch 75/100\n",
          "280/280 [==============================] - 0s 86us/step - loss: 0.5660 - acc: 0.8143\n",
          "Epoch 76/100\n",
          "280/280 [==============================] - 0s 90us/step - loss: 0.5627 - acc: 0.8143\n",
          "Epoch 77/100\n",
          "280/280 [==============================] - 0s 79us/step - loss: 0.5593 - acc: 0.8179\n",
          "Epoch 78/100\n",
          "280/280 [==============================] - 0s 84us/step - loss: 0.5557 - acc: 0.8179\n",
          "Epoch 79/100\n",
          "280/280 [==============================] - 0s 73us/step - loss: 0.5522 - acc: 0.8393\n",
          "Epoch 80/100\n",
          "280/280 [==============================] - 0s 78us/step - loss: 0.5487 - acc: 0.8321\n",
          "Epoch 81/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.5452 - acc: 0.8429\n",
          "Epoch 82/100\n",
          "280/280 [==============================] - 0s 57us/step - loss: 0.5417 - acc: 0.8464\n",
          "Epoch 83/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.5382 - acc: 0.8464\n",
          "Epoch 84/100\n",
          "280/280 [==============================] - 0s 69us/step - loss: 0.5347 - acc: 0.8429\n",
          "Epoch 85/100\n",
          "280/280 [==============================] - 0s 73us/step - loss: 0.5312 - acc: 0.8500\n",
          "Epoch 86/100\n",
          "280/280 [==============================] - 0s 74us/step - loss: 0.5278 - acc: 0.8536\n",
          "Epoch 87/100\n",
          "280/280 [==============================] - 0s 88us/step - loss: 0.5243 - acc: 0.8571\n",
          "Epoch 88/100\n",
          "280/280 [==============================] - 0s 78us/step - loss: 0.5208 - acc: 0.8571\n",
          "Epoch 89/100\n",
          "280/280 [==============================] - 0s 86us/step - loss: 0.5174 - acc: 0.8571\n",
          "Epoch 90/100\n",
          "280/280 [==============================] - 0s 80us/step - loss: 0.5139 - acc: 0.8607\n",
          "Epoch 91/100\n",
          "280/280 [==============================] - 0s 78us/step - loss: 0.5105 - acc: 0.8643\n",
          "Epoch 92/100\n",
          "280/280 [==============================] - 0s 80us/step - loss: 0.5072 - acc: 0.8714\n",
          "Epoch 93/100\n",
          "280/280 [==============================] - 0s 71us/step - loss: 0.5039 - acc: 0.8714\n",
          "Epoch 94/100\n",
          "280/280 [==============================] - 0s 77us/step - loss: 0.5003 - acc: 0.8714\n",
          "Epoch 95/100\n",
          "280/280 [==============================] - 0s 142us/step - loss: 0.4969 - acc: 0.8750\n",
          "Epoch 96/100\n",
          "280/280 [==============================] - 0s 104us/step - loss: 0.4933 - acc: 0.8750\n",
          "Epoch 97/100\n",
          "280/280 [==============================] - 0s 74us/step - loss: 0.4899 - acc: 0.8750\n",
          "Epoch 98/100\n",
          "280/280 [==============================] - 0s 72us/step - loss: 0.4866 - acc: 0.8714\n",
          "Epoch 99/100\n",
          "280/280 [==============================] - 0s 76us/step - loss: 0.4836 - acc: 0.8714\n",
          "Epoch 100/100\n",
          "280/280 [==============================] - 0s 72us/step - loss: 0.4804 - acc: 0.8750\n",
          "70/70 [==============================] - 0s 3ms/step\n",
          "Epoch 1/100\n",
          "280/280 [==============================] - 1s 4ms/step - loss: 0.6613 - acc: 0.6929\n",
          "Epoch 2/100\n",
          "280/280 [==============================] - 0s 138us/step - loss: 0.6544 - acc: 0.7214\n",
          "Epoch 3/100\n",
          "280/280 [==============================] - 0s 83us/step - loss: 0.6492 - acc: 0.7357\n",
          "Epoch 4/100\n",
          "280/280 [==============================] - 0s 81us/step - loss: 0.6440 - acc: 0.7250\n",
          "Epoch 5/100\n",
          "280/280 [==============================] - 0s 73us/step - loss: 0.6389 - acc: 0.7321\n",
          "Epoch 6/100\n",
          "280/280 [==============================] - 0s 82us/step - loss: 0.6336 - acc: 0.7429\n",
          "Epoch 7/100\n",
          "280/280 [==============================] - 0s 79us/step - loss: 0.6283 - acc: 0.7429\n",
          "Epoch 8/100\n",
          "280/280 [==============================] - 0s 68us/step - loss: 0.6229 - acc: 0.7679\n",
          "Epoch 9/100\n",
          "280/280 [==============================] - 0s 89us/step - loss: 0.6177 - acc: 0.7571\n",
          "Epoch 10/100\n",
          "280/280 [==============================] - 0s 89us/step - loss: 0.6121 - acc: 0.7714\n",
          "Epoch 11/100\n",
          "280/280 [==============================] - 0s 77us/step - loss: 0.6066 - acc: 0.7714\n",
          "Epoch 12/100\n",
          "280/280 [==============================] - 0s 70us/step - loss: 0.6008 - acc: 0.7929\n",
          "Epoch 13/100\n",
          "280/280 [==============================] - 0s 72us/step - loss: 0.5951 - acc: 0.8036\n",
          "Epoch 14/100\n",
          "280/280 [==============================] - 0s 74us/step - loss: 0.5894 - acc: 0.8214\n",
          "Epoch 15/100\n",
          "280/280 [==============================] - 0s 69us/step - loss: 0.5839 - acc: 0.8250\n",
          "Epoch 16/100\n",
          "280/280 [==============================] - 0s 76us/step - loss: 0.5782 - acc: 0.8321\n",
          "Epoch 17/100\n",
          "280/280 [==============================] - 0s 63us/step - loss: 0.5723 - acc: 0.8500\n",
          "Epoch 18/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.5664 - acc: 0.8500\n",
          "Epoch 19/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.5605 - acc: 0.8750\n",
          "Epoch 20/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.5541 - acc: 0.8821\n",
          "Epoch 21/100\n",
          "280/280 [==============================] - 0s 63us/step - loss: 0.5475 - acc: 0.9000\n",
          "Epoch 22/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.5411 - acc: 0.9000\n",
          "Epoch 23/100\n",
          "280/280 [==============================] - 0s 57us/step - loss: 0.5345 - acc: 0.9071\n",
          "Epoch 24/100\n",
          "280/280 [==============================] - 0s 56us/step - loss: 0.5279 - acc: 0.9107\n",
          "Epoch 25/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.5212 - acc: 0.9071\n",
          "Epoch 26/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.5145 - acc: 0.9107\n",
          "Epoch 27/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.5076 - acc: 0.9214\n",
          "Epoch 28/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.5007 - acc: 0.9179\n",
          "Epoch 29/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.4937 - acc: 0.9143\n",
          "Epoch 30/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.4867 - acc: 0.9179\n",
          "Epoch 31/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.4795 - acc: 0.9143\n",
          "Epoch 32/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.4725 - acc: 0.9143\n",
          "Epoch 33/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.4655 - acc: 0.9286\n",
          "Epoch 34/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.4587 - acc: 0.9286\n",
          "Epoch 35/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.4517 - acc: 0.9357\n",
          "Epoch 36/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.4448 - acc: 0.9321\n",
          "Epoch 37/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.4379 - acc: 0.9357\n",
          "Epoch 38/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.4310 - acc: 0.9321\n",
          "Epoch 39/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.4244 - acc: 0.9321\n",
          "Epoch 40/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.4178 - acc: 0.9321\n",
          "Epoch 41/100\n",
          "280/280 [==============================] - 0s 57us/step - loss: 0.4112 - acc: 0.9321\n",
          "Epoch 42/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.4048 - acc: 0.9321\n",
          "Epoch 43/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.3985 - acc: 0.9321\n",
          "Epoch 44/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.3921 - acc: 0.9321\n",
          "Epoch 45/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.3860 - acc: 0.9321\n",
          "Epoch 46/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.3799 - acc: 0.9321\n",
          "Epoch 47/100\n",
          "280/280 [==============================] - 0s 57us/step - loss: 0.3742 - acc: 0.9321\n",
          "Epoch 48/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.3682 - acc: 0.9321\n",
          "Epoch 49/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.3624 - acc: 0.9321\n",
          "Epoch 50/100\n"
         ]
        },
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
          "280/280 [==============================] - 0s 58us/step - loss: 0.3567 - acc: 0.9321\n",
          "Epoch 51/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.3512 - acc: 0.9286\n",
          "Epoch 52/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.3458 - acc: 0.9321\n",
          "Epoch 53/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.3407 - acc: 0.9321\n",
          "Epoch 54/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.3355 - acc: 0.9321\n",
          "Epoch 55/100\n",
          "280/280 [==============================] - 0s 57us/step - loss: 0.3304 - acc: 0.9286\n",
          "Epoch 56/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.3252 - acc: 0.9357\n",
          "Epoch 57/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.3201 - acc: 0.9286\n",
          "Epoch 58/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.3152 - acc: 0.9321\n",
          "Epoch 59/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.3102 - acc: 0.9429\n",
          "Epoch 60/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.3055 - acc: 0.9321\n",
          "Epoch 61/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.3011 - acc: 0.9357\n",
          "Epoch 62/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.2967 - acc: 0.9393\n",
          "Epoch 63/100\n",
          "280/280 [==============================] - 0s 57us/step - loss: 0.2922 - acc: 0.9429\n",
          "Epoch 64/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.2877 - acc: 0.9464\n",
          "Epoch 65/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.2832 - acc: 0.9536\n",
          "Epoch 66/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.2788 - acc: 0.9536\n",
          "Epoch 67/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.2749 - acc: 0.9500\n",
          "Epoch 68/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.2708 - acc: 0.9536\n",
          "Epoch 69/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.2668 - acc: 0.9536\n",
          "Epoch 70/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.2632 - acc: 0.9571\n",
          "Epoch 71/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.2592 - acc: 0.9607\n",
          "Epoch 72/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.2555 - acc: 0.9536\n",
          "Epoch 73/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.2518 - acc: 0.9607\n",
          "Epoch 74/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.2484 - acc: 0.9571\n",
          "Epoch 75/100\n",
          "280/280 [==============================] - 0s 57us/step - loss: 0.2451 - acc: 0.9607\n",
          "Epoch 76/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.2420 - acc: 0.9607\n",
          "Epoch 77/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.2385 - acc: 0.9607\n",
          "Epoch 78/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.2352 - acc: 0.9607\n",
          "Epoch 79/100\n",
          "280/280 [==============================] - 0s 63us/step - loss: 0.2320 - acc: 0.9607\n",
          "Epoch 80/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.2289 - acc: 0.9643\n",
          "Epoch 81/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.2258 - acc: 0.9643\n",
          "Epoch 82/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.2230 - acc: 0.9679\n",
          "Epoch 83/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.2200 - acc: 0.9643\n",
          "Epoch 84/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.2169 - acc: 0.9679\n",
          "Epoch 85/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.2141 - acc: 0.9643\n",
          "Epoch 86/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.2113 - acc: 0.9679\n",
          "Epoch 87/100\n",
          "280/280 [==============================] - 0s 57us/step - loss: 0.2086 - acc: 0.9679\n",
          "Epoch 88/100\n",
          "280/280 [==============================] - 0s 56us/step - loss: 0.2057 - acc: 0.9679\n",
          "Epoch 89/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.2036 - acc: 0.9679\n",
          "Epoch 90/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.2009 - acc: 0.9679\n",
          "Epoch 91/100\n",
          "280/280 [==============================] - 0s 57us/step - loss: 0.1983 - acc: 0.9679\n",
          "Epoch 92/100\n",
          "280/280 [==============================] - 0s 57us/step - loss: 0.1958 - acc: 0.9679\n",
          "Epoch 93/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.1935 - acc: 0.9714\n",
          "Epoch 94/100\n",
          "280/280 [==============================] - 0s 56us/step - loss: 0.1909 - acc: 0.9750\n",
          "Epoch 95/100\n",
          "280/280 [==============================] - 0s 57us/step - loss: 0.1889 - acc: 0.9714\n",
          "Epoch 96/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.1867 - acc: 0.9750\n",
          "Epoch 97/100\n",
          "280/280 [==============================] - 0s 58us/step - loss: 0.1844 - acc: 0.9714\n",
          "Epoch 98/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.1821 - acc: 0.9750\n",
          "Epoch 99/100\n",
          "280/280 [==============================] - 0s 57us/step - loss: 0.1798 - acc: 0.9714\n",
          "Epoch 100/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.1777 - acc: 0.9750\n",
          "70/70 [==============================] - 0s 3ms/step\n",
          "Epoch 1/100\n",
          "280/280 [==============================] - 1s 3ms/step - loss: 0.7067 - acc: 0.4179\n",
          "Epoch 2/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.7000 - acc: 0.4214\n",
          "Epoch 3/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.6954 - acc: 0.3929\n",
          "Epoch 4/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.6917 - acc: 0.3964\n",
          "Epoch 5/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.6882 - acc: 0.4036\n",
          "Epoch 6/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.6849 - acc: 0.4000\n",
          "Epoch 7/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.6815 - acc: 0.4250\n",
          "Epoch 8/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.6783 - acc: 0.4750\n",
          "Epoch 9/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.6751 - acc: 0.5250\n",
          "Epoch 10/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.6717 - acc: 0.5714\n",
          "Epoch 11/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.6684 - acc: 0.5929\n",
          "Epoch 12/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.6649 - acc: 0.6071\n",
          "Epoch 13/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.6613 - acc: 0.6179\n",
          "Epoch 14/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.6575 - acc: 0.6464\n",
          "Epoch 15/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.6535 - acc: 0.6607\n",
          "Epoch 16/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.6494 - acc: 0.6750\n",
          "Epoch 17/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.6451 - acc: 0.6714\n",
          "Epoch 18/100\n",
          "280/280 [==============================] - 0s 59us/step - loss: 0.6407 - acc: 0.6929\n",
          "Epoch 19/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.6362 - acc: 0.7036\n",
          "Epoch 20/100\n",
          "280/280 [==============================] - 0s 65us/step - loss: 0.6316 - acc: 0.7143\n",
          "Epoch 21/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.6268 - acc: 0.7286\n",
          "Epoch 22/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.6218 - acc: 0.7464\n",
          "Epoch 23/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.6167 - acc: 0.7536\n",
          "Epoch 24/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.6114 - acc: 0.7643\n",
          "Epoch 25/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.6059 - acc: 0.7714\n",
          "Epoch 26/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.6001 - acc: 0.7929\n",
          "Epoch 27/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.5945 - acc: 0.8036\n",
          "Epoch 28/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.5887 - acc: 0.8179\n",
          "Epoch 29/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.5827 - acc: 0.8321\n",
          "Epoch 30/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.5765 - acc: 0.8393\n",
          "Epoch 31/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.5700 - acc: 0.8393\n",
          "Epoch 32/100\n",
          "280/280 [==============================] - 0s 63us/step - loss: 0.5634 - acc: 0.8429\n",
          "Epoch 33/100\n"
         ]
        },
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
          "280/280 [==============================] - 0s 60us/step - loss: 0.5570 - acc: 0.8464\n",
          "Epoch 34/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.5505 - acc: 0.8536\n",
          "Epoch 35/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.5442 - acc: 0.8500\n",
          "Epoch 36/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.5379 - acc: 0.8464\n",
          "Epoch 37/100\n",
          "280/280 [==============================] - 0s 60us/step - loss: 0.5317 - acc: 0.8464\n",
          "Epoch 38/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.5252 - acc: 0.8500\n",
          "Epoch 39/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.5187 - acc: 0.8536\n",
          "Epoch 40/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.5120 - acc: 0.8643\n",
          "Epoch 41/100\n",
          "280/280 [==============================] - 0s 63us/step - loss: 0.5053 - acc: 0.8643\n",
          "Epoch 42/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.4983 - acc: 0.8714\n",
          "Epoch 43/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.4916 - acc: 0.8750\n",
          "Epoch 44/100\n",
          "280/280 [==============================] - 0s 61us/step - loss: 0.4847 - acc: 0.8786\n",
          "Epoch 45/100\n",
          "280/280 [==============================] - 0s 62us/step - loss: 0.4782 - acc: 0.8821\n",
          "Epoch 46/100\n",