Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# IGNORE THIS CELL WHICH CUSTOMIZES LAYOUT AND STYLING OF THE NOTEBOOK !\n",
"from numpy.random import seed\n",
"\n",
"seed(42)\n",
"import tensorflow as tf\n",
"\n",
"tf.random.set_seed(42)\n",
"import matplotlib as mpl\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"\n",
"sns.set(style=\"darkgrid\")\n",
"mpl.rcParams[\"lines.linewidth\"] = 3\n",
"%matplotlib inline\n",
"%config InlineBackend.figure_format = 'retina'\n",
"%config IPCompleter.greedy=True\n",
"import warnings\n",
"\n",
"warnings.filterwarnings(\"ignore\", category=FutureWarning)\n",
"from IPython.core.display import HTML\n",
"\n",
"HTML(open(\"custom.html\", \"r\").read())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 8e: Sequence modeling: Natural language processing\n",
"## What is Natural language processing?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As the name suggests, it refers to processing of data such as text and speech. This involves tasks such as:\n",
"\n",
"- Automatic document processing\n",
"- Topic modeling\n",
"- Language translation\n",
"- sentiment analysis\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As we all know, computers cannot process data in text format. They need numbers. So we need some mechanism to convert our text to numbers.\n",
"\n",
"**Important to know libraries:**\n",
"- [Natural language toolkit](https://www.nltk.org/)\n",
"- [Gensim](https://radimrehurek.com/gensim/)\n",
"- [Tomotopy](https://bab2min.github.io/tomotopy/v0.12.3/en/)\n",
"- [fastext](https://fasttext.cc/)\n",
"\n",
"## Text prepocessing\n",
"\n",
"### Tokenization\n",
"\n",
"Text -> tokens\n",
"\n",
"The process of reducing a piece of text to tokens is called tokenization. It is genrally done at a word level but can also be done at other levels such as a sentence."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import nltk\n",
"\n",
"nltk.download(\"all\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"Is Monty a python or a group of pythons in a flying circus? What about swimming circuses?\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from nltk.tokenize import word_tokenize\n",
"\n",
"print(word_tokenize(text))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Lemmatization and Stemming\n",
"\n",
"Most of the time we want to also reduce the inflectional forms of the same word. For example, consider a text that has (organization, organizational, organizations)\n",
"\n",
"`Stemming`: This is a process of reducing a word to a stem form based on some pre-defined rules. The resulting stem might be a non-sensical word.\n",
"\n",
"`Lemmatization`: This is a process of reducing a word to a lemma or the dictionary form of the word. This follows lexicon rules and is much more comprehensive than `stemming`. However, it is also more computationally expensive."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from nltk.stem import PorterStemmer, WordNetLemmatizer\n",
"from nltk.tokenize import word_tokenize\n",
"from prettytable import PrettyTable\n",
"\n",
"words = word_tokenize(text)\n",
"print(\"Tokens \\n\")\n",
"print(words)\n",
"\n",
"stemmer = PorterStemmer()\n",
"\n",
"lemmatizer = WordNetLemmatizer()\n",
"\n",
"table = PrettyTable([\"Word\", \"Stem\", \"Lemma\"])\n",
"\n",
"for w in words:\n",
" table.add_row([w, stemmer.stem(w), lemmatizer.lemmatize(w)])\n",
"\n",
"print(table)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lemmatizer.lemmatize(\"swimming\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lemmatizer.lemmatize?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lemmatizer.lemmatize(\"swimming\", \"v\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Automatically find POS tag\n",
"from nltk.corpus import wordnet\n",
"\n",
"\n",
"def get_wordnet_pos(word):\n",
" \"\"\"Map POS tag to first character lemmatize() accepts\"\"\"\n",
" tag = nltk.pos_tag([word])[0][1][0].upper()\n",
" tag_dict = {\n",
" \"J\": wordnet.ADJ,\n",
" \"N\": wordnet.NOUN,\n",
" \"V\": wordnet.VERB,\n",
" \"R\": wordnet.ADV,\n",
" }\n",
"\n",
" return tag_dict.get(tag, wordnet.NOUN)\n",
"\n",
"\n",
"words = word_tokenize(text)\n",
"\n",
"table = PrettyTable([\"Word\", \"Stem\", \"Lemma\"])\n",
"\n",
"for w in words:\n",
" table.add_row([w, stemmer.stem(w), lemmatizer.lemmatize(w, get_wordnet_pos(w))])\n",
"\n",
"print(table)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Other:\n",
"\n",
"- Text to lower case\n",
"- Remove punctuations\n",
"- Remove stopwords"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Text to lower case\n",
"text = text.lower()\n",
"print(text)\n",
"\n",
"# Remove punctuations\n",
"import string\n",
"\n",
"text = text.translate(str.maketrans(\"\", \"\", string.punctuation))\n",
"print(text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Remove stopwords\n",
"from nltk.corpus import stopwords\n",
"\n",
"print(stopwords.words(\"english\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"words = word_tokenize(text)\n",
"\n",
"filtered_text = [w for w in words if not w in set(stopwords.words(\"english\"))]\n",
"\n",
"print(filtered_text)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tokens to Vectors\n",
"\n",
"Once we have cleaned up our text we have different ways in which we can tokenize them:\n",
"\n",
"### Bag-of-Words (BoW)\n",
"\n",
"Imagine that all the unique words in our text corpus are put together in one big bag. \n",
"\n",
"All or a subset of this bag is then considered as our `vocabulary`.\n",
"\n",
"Each unit (document/line/...) in our corpus can now be represented as a vector of length equal to our vocabulary size with each index of the vector representing a word from our `vocabulary`.\n",
"\n",
"We count the number of occurences of each word in a unit of text and put this number at the corresponding location in this vector. If the word does not exist in the unit we enter 0."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Let's consider each sentence of our example text as a document/unit we want to process\n",
"import numpy as np\n",
"\n",
"text = [\n",
" \"Is Monty a python or a group of pythons in a flying circus?\",\n",
" \"What about swimming circuses?\",\n",
"]\n",
"\n",
"for index, value in enumerate(text):\n",
" text[index] = value.lower().translate(str.maketrans(\"\", \"\", string.punctuation))\n",
"\n",
"lemmatizer = WordNetLemmatizer()\n",
"\n",
"unique_words = {}\n",
"\n",
"bow_text = []\n",
"\n",
"for index, value in enumerate(text):\n",
" words = word_tokenize(value)\n",
" words = [w for w in words if not w in set(stopwords.words(\"english\"))]\n",
" words = [lemmatizer.lemmatize(w) for w in words]\n",
" print(words)\n",
" for token in words:\n",
" if token not in unique_words.keys():\n",
" unique_words[token] = 1\n",
" else:\n",
" unique_words[token] += 1\n",
" bow_text.append(words)\n",
"\n",
"print(unique_words)\n",
"\n",
"unique_words = list(unique_words.keys())\n",
"\n",
"bow_vectors = np.zeros((len(unique_words), len(text)))\n",
"\n",
"for column, value in enumerate(bow_text):\n",
" for _, word in enumerate(value):\n",
" if word in unique_words:\n",
" bow_vectors[unique_words.index(word), column] += 1\n",
"print(bow_vectors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Much better way of doing this is:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from string import punctuation\n",
"\n",
"from sklearn.feature_extraction.text import CountVectorizer\n",
"\n",
"# CountVectorizer automatically makes the text lowercase\n",
"\n",
"text = [\n",
" \"Is Monty a python or a group of python in a flying circus?\",\n",
" \"What about swimming circuses?\",\n",
"]\n",
"\n",
"\n",
"class LemmaTokenizer:\n",
" def __init__(self):\n",
" self.wnl = WordNetLemmatizer()\n",
"\n",
" def __call__(self, doc):\n",
" return [self.wnl.lemmatize(t) for t in word_tokenize(doc)]\n",
"\n",
"\n",
"vectorizer = CountVectorizer(\n",
" stop_words=set(stopwords.words(\"english\")).union(set(punctuation)),\n",
" tokenizer=LemmaTokenizer(),\n",
")\n",
"\n",
"bow_vectors = vectorizer.fit_transform(text)\n",
"\n",
"print(f\"The vocabulary of our corpus is: \\n {vectorizer.vocabulary_}\\n\")\n",
"\n",
"print(f\"Vectorizer from Scikit learn creates sparse matrices: {type(bow_vectors)} \\n\")\n",
"\n",
"print(f\"The created vectors are: {bow_vectors.todense()}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Other tokenizers\n",
"from string import punctuation\n",
"\n",
"from nltk.tokenize import TweetTokenizer\n",
"from sklearn.feature_extraction.text import CountVectorizer\n",
"\n",
"tokenizer = TweetTokenizer()\n",
"\n",
"text = [\n",
" \"Is Monty a python or a group of python's in a flying circus?\",\n",
" \"What about swimming circuses?\",\n",
"]\n",
"\n",
"\n",
"class LemmaTokenizer:\n",
" def __init__(self):\n",
" self.wnl = WordNetLemmatizer()\n",
"\n",
" def __call__(self, doc):\n",
" return [self.wnl.lemmatize(t) for t in tokenizer.tokenize(doc)]\n",
"\n",
"\n",
"vectorizer = CountVectorizer(\n",
" stop_words=set(stopwords.words(\"english\")).union(set(punctuation)),\n",
" tokenizer=LemmaTokenizer(),\n",
")\n",
"\n",
"bow_vectors = vectorizer.fit_transform(text)\n",
"\n",
"print(f\"The vocabulary of our corpus is: \\n {vectorizer.vocabulary_}\\n\")\n",
"\n",
"print(f\"Vectorizer from Scikit learn creates sparse matrices: {type(bow_vectors)} \\n\")\n",
"\n",
"print(f\"The created vectors are: {bow_vectors.todense()}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Term frequency inverse document frequency (Tf-idf)\n",
"\n",
"A numerical statistic that is intended to reflect how important a word is to a document in a collection or corpus.\n",
"\n",
"A survey conducted in 2015 showed that 83% of text-based recommender systems in digital libraries use tf–idf(*)\n",
"\n",
"*[Research-paper recommender systems : a literature survey](https://link.springer.com/article/10.1007/s00799-015-0156-0)\n",
"\n",
"$TF-IDF = TF * IDF$\n",
"\n",
"**TF = Term frequency**\n",
"\n",
"**IDF = Inverse document/text frequency**\n",
"\n",
"$T_{t',d}$ = Number of occurences of a particular term ($t'$) in a document ($d$).\n",
"\n",
"$\\sum_{t' \\in d} T_{t',d}$ : Total number of terms in the document\n",
"\n",
"$N_T$ = Total number of documents/text samples.\n",
"\n",
"$N_{t'}$ = Number of documents/text samples that contain the term $t'$-\n",
"\n",
"$TF-IDF = \\dfrac{T_{t',d}}{\\sum_{t' \\in d} T_{t',d}} * \\dfrac{N_T}{N_{t'}}$\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### IMDB dataset\n",
"\n",
"Let's have a look at a sample dataset.\n",
"\n",
"IMDB dataset comprises of 50,000 movie reviews. Each of them has a label `0` or `1` representing a bad or a good review, respectively.\n",
"\n",
"`Note`: This dataset is also contained in tensorflow.keras.datasets, however that data is already preprocessed. Therefore, we import it from tensorflow_datasets instead."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exercise: Explore the IMDB dataset and vectorize the tokens"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import tensorflow_datasets as tfds\n",
"\n",
"train_data, test_data = tfds.load(\n",
" name=\"imdb_reviews\", split=[\"train\", \"test\"], batch_size=-1, as_supervised=True\n",
")\n",
"\n",
"X_train, y_train = tfds.as_numpy(train_data)\n",
"X_test, y_test = tfds.as_numpy(test_data)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(f\"Number of: training samples - {len(y_train)}, test_samples - {len(y_test)}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(X_train[:5])\n",
"print(y_train[:5])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exercise: Apply tokenization and vectorization (e.g. CountVectorizer) to the imdb dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Create a vectorizer e.g. CountVectorizer\n",
"# Pass maximum features=10000 to the vectorizer to avoid running out of memory\n",
"\n",
"\n",
"# train it on the training set (HINT: one can pass an array of texts)\n",
"\n",
"\n",
"# Look at the resulting vocabulary\n",
"# vectorizer.vocabulary_\n",
"\n",
"\n",
"# Transform the test data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Build a 3 layer simple vanilla neural network\n",
"# Dont forget to add dropout\n",
"\n",
"\n",
"\n",
"\n",
"model.compile(optimizer=\"adam\", loss=\"binary_crossentropy\", metrics=[\"accuracy\"])\n",
"\n",
"# We need to convert the sparse vector to dense\n",
"results = model.fit(\n",
" train.todense(),\n",
" y_train,\n",
" epochs=10,\n",
" batch_size=512,\n",
" validation_data=(test.todense(), y_test),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"solution"
]
},
"outputs": [],
"source": [
"# Solution\n",
"vectorizer = CountVectorizer(\n",
" stop_words=set(stopwords.words(\"english\")).union(set(punctuation)),\n",
" tokenizer=LemmaTokenizer(),\n",
" max_features=20000,\n",
")\n",
"\n",
"train = vectorizer.fit_transform(X_train)\n",
"\n",
"print(vectorizer.vocabulary_)\n",
"\n",
"test = vectorizer.transform(X_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"solution"
]
},
"outputs": [],
"source": [
"# Build a 3 layer simple vanilla neural network\n",
"# Dont forget to add dropout\n",
"\n",
"from tensorflow.keras.layers import Dense, Dropout\n",
"from tensorflow.keras.models import Sequential\n",
"\n",
"\n",
"model = Sequential()\n",
"model.add(Dense(50, activation=\"relu\", input_shape=(test.shape[1],)))\n",
"# Hidden - Layers\n",
"model.add(Dropout(0.5))\n",
"model.add(Dense(30, activation=\"relu\"))\n",
"model.add(Dropout(0.5))\n",
"model.add(Dense(20, activation=\"relu\"))\n",
"# Output- Layer\n",
"model.add(Dense(1, activation=\"sigmoid\"))\n",
"model.summary()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"solution"
]
},
"outputs": [],
"source": [
"model.compile(optimizer=\"adam\", loss=\"binary_crossentropy\", metrics=[\"accuracy\"])\n",
"\n",
"# We need to convert the sparse vector to dense\n",
"results = model.fit(\n",
" train.todense(),\n",
" y_train,\n",
" epochs=10,\n",
" batch_size=512,\n",
" validation_data=(test.todense(), y_test),\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Word embeddings: Featurized representation of words"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<center>\n",
"<figure>\n",
"<img src=\"./images/neuralnets/word_embedding.png\" width=\"700\"/>\n",
"<figcaption>Embedding words in a higher dimensional feature space</figcaption>\n",
"</figure>\n",
"</center>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"| <div style=\"width:150px\"></div> | <div style=\"width:150px\"></div> Apple | <div style=\"width:150px\"></div> Orange | <div style=\"width:150px\"></div> Pants | <div style=\"width:150px\"></div> Tiger |\n",
"| :-----------: | :-----------: | :-----------: | :-----------: | :-----------: |\n",
"| Animal |0.01 |0.015 |0.006 | 0.96 |\n",
"| Fruit | 0.99 | 0.97 | -0.001 | -0.01 |\n",
"| Clothing | 0.02 | 0.07 | 0.97 | 0.002 |\n",
"| FeatureX | - | - | - | - |\n",
"| FeatureY | - | - | - | - |\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Some models to compute word embeddings:\n",
"- Word2Vec\n",
"- GloVe\n",
"- fastText\n",
"- BERT"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pretrained embeddings\n",
"\n",
"Example:\n",
"https://fasttext.cc/docs/en/crawl-vectors.html"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install fasttext"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import fasttext\n",
"\n",
"ft = fasttext.load_model(\"./data/cc.en.100.bin\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"words = [\"cat\", \"dog\", \"cream\", \"pizza\", \"car\", \"tractor\"]\n",
"\n",
"word_vectors = {}\n",
"for word in words:\n",
" word_vectors[word] = ft.get_word_vector(word)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from scipy import spatial\n",
"\n",
"\n",
"def compute_similarity(a, b):\n",
" \"\"\"This function computes cosine similarity between two vectors\"\"\"\n",
" return 1 - spatial.distance.cosine(a, b)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# similarities = np.zeros([len(words)]*2)\n",
"similarities = pd.DataFrame(columns=words, index=words)\n",
"for word_a, vec_a in word_vectors.items():\n",
" for word_b, vec_b in word_vectors.items():\n",
" similarities.at[word_a, word_b] = compute_similarity(vec_a, vec_b)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"similarities"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Recurrent Neural Networks (RNNs)\n",
"\n",
"RNNs are used for problems such as time-series data, speech recognition and translation.\n",
"\n",
"<center>\n",
"<figure>\n",
"<img src=\"./images/neuralnets/RNNs.png\" width=\"700\"/>\n",
"<figcaption>Recurrent neural network</figcaption>\n",
"</figure>\n",
"</center>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There are newer variants that overcome some issues with a vanilla RNN:\n",
"- Gated Recurrent Unit (GRU)\n",
"- Long Short Term Memory (LSTM)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Example walkthrough** : https://keras.io/examples/vision/video_classification/"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transformer models\n",
"\n",
"Transformers are models based on an encoder-decoder architecture and mainly using the attention.\n",
"\n",
"<center>\n",
"<figure>\n",
"<img src=\"./images/neuralnets/transformer.png\" width=\"400\"/>\n",
"<figcaption>Transformer architecture</figcaption>\n",
"</figure>\n",
"</center>\n",
"\n",
"[Attention is all you need](https://arxiv.org/abs/1706.03762)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Putting it all together\n",
"\n",
"https://paperswithcode.com/sota/sentiment-analysis-on-imdb"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}