Skip to content
Snippets Groups Projects
06_classifiers_overview-part_1.ipynb 57 KiB
Newer Older
schmittu's avatar
schmittu committed
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
  "cells": [
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "# IGNORE THIS CELL WHICH CUSTOMIZES LAYOUT AND STYLING OF THE NOTEBOOK !\n",
        "%matplotlib inline\n",
        "%config InlineBackend.figure_format = 'retina'\n",
        "import warnings\n",
        "\n",
        "import matplotlib.pyplot as plt\n",
        "\n",
        "warnings.filterwarnings(\"ignore\", category=FutureWarning)\n",
        "warnings.filterwarnings(\n",
        "    \"ignore\",\n",
        "    message=\"X does not have valid feature names, but [a-zA-Z]+ was fitted with feature names\",\n",
        "    category=UserWarning,\n",
        ")\n",
        "\n",
        "warnings.filterwarnings = lambda *a, **kw: None\n",
        "from IPython.core.display import HTML\n",
        "\n",
        "HTML(open(\"custom.html\", \"r\").read())"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "# Chapter 6: An overview of classifiers, Part 1\n",
        "\n",
        "<span style=\"font-size: 150%;\">Nearest Neighbors and linear-based methods</span>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "This script gives a quick hands-on overview of **how different types of classifiers work, their advantages and their disadvantages**. This should give you an idea of a concept behind each classifier type as well as when and which classifier type to use.\n",
        "\n",
        "For the sake of visualisation we continue with 2 dimensional data examples. For different classifiers we'll be looking at their decision surfaces. Let's start with some helper functions for that:"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "import matplotlib\n",
        "import matplotlib.pyplot as plt\n",
        "import numpy as np\n",
        "\n",
        "\n",
        "def samples_color(ilabels, colors=[\"steelblue\", \"chocolate\"]):\n",
        "    \"\"\"Return colors list from labels list given as indices.\"\"\"\n",
        "    return [colors[int(i)] for i in ilabels]\n",
        "\n",
        "\n",
        "def plot_decision_surface(\n",
        "    features_2d,\n",
        "    labels,\n",
        "    classifier,\n",
        "    preprocessing=None,\n",
        "    plt=plt,\n",
        "    marker=\".\",\n",
        "    N=100,\n",
        "    alpha=0.2,\n",
        "    colors=[\"steelblue\", \"chocolate\"],\n",
        "    title=None,\n",
        "    test_features_2d=None,\n",
        "    test_labels=None,\n",
        "    test_s=60,\n",
        "):\n",
        "    \"\"\"Plot a 2D decision surface for a already trained classifier.\"\"\"\n",
        "\n",
        "    # sanity check\n",
        "    assert len(features_2d.columns) == 2\n",
        "\n",
        "    # pandas to numpy array; get min/max values\n",
        "    xy = np.array(features_2d)\n",
        "    min_x, min_y = xy.min(axis=0)\n",
        "    max_x, max_y = xy.max(axis=0)\n",
        "\n",
        "    # create mesh of NxN points; tech: `N*1j` is spec for including max value\n",
        "    XX, YY = np.mgrid[min_x : max_x : N * 1j, min_y : max_y : N * 1j]\n",
        "    points = np.c_[XX.ravel(), YY.ravel()]  # shape: (N*N)x2\n",
        "    # points = pd.DataFrame(points, columns=[\"x\", \"y\"])\n",
        "\n",
        "    # apply scikit-learn API preprocessing\n",
        "    if preprocessing is not None:\n",
        "        points = preprocessing.transform(points)\n",
        "\n",
        "    # classify grid points\n",
        "    classes = classifier.predict(points)\n",
        "\n",
        "    # plot classes color mesh\n",
        "    ZZ = classes.reshape(XX.shape)  # shape: NxN\n",
        "    plt.pcolormesh(\n",
        "        XX,\n",
        "        YY,\n",
        "        ZZ,\n",
        "        alpha=alpha,\n",
        "        cmap=matplotlib.colors.ListedColormap(colors),\n",
        "        shading=\"auto\",\n",
        "    )\n",
        "    # plot points\n",
        "    plt.scatter(\n",
        "        xy[:, 0],\n",
        "        xy[:, 1],\n",
        "        marker=marker,\n",
        "        color=samples_color(labels, colors=colors),\n",
        "    )\n",
        "    # set title\n",
        "    if title:\n",
        "        if hasattr(plt, \"set_title\"):\n",
        "            plt.set_title(title)\n",
        "        else:\n",
        "            plt.title(title)\n",
        "    # plot test points\n",
        "    if test_features_2d is not None:\n",
        "        assert test_labels is not None\n",
        "        assert len(test_features_2d.columns) == 2\n",
        "        test_xy = np.array(test_features_2d)\n",
        "        plt.scatter(\n",
        "            test_xy[:, 0],\n",
        "            test_xy[:, 1],\n",
        "            s=test_s,\n",
        "            facecolors=\"none\",\n",
        "            linewidths=2,\n",
        "            color=samples_color(test_labels),\n",
        "        );"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "Since the latest version, `sklearn` offers its own method for visualizing decision boundaries: `DecisionBoundaryDisplay`. Documentation for this method can be found here: https://scikit-learn.org/stable/modules/generated/sklearn.inspection.DecisionBoundaryDisplay.html."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "## Nearest Neighbors\n",
        "\n",
        "The idea is very simple: to classify a sample $x$ look for **$N$ closest samples in the training data** (by default, using the Euclidean distance) and take **majority of their labels** as a result.\n",
        "\n",
        "This method does well where the fast linear classifiers would fail, such as with the XOR dataset:"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "import pandas as pd\n",
        "\n",
        "df = pd.read_csv(\"data/xor.csv\")\n",
        "df.head(2)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "features_2d = df.loc[:, (\"x\", \"y\")]\n",
        "labelv = df[\"label\"]\n",
        "\n",
        "plt.figure(figsize=(5, 5))\n",
        "plt.scatter(features_2d.iloc[:, 0], features_2d.iloc[:, 1], color=samples_color(labelv));"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "You will find the Nearest Neighbors method in the `sklearn.neighbors` module."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "from sklearn.model_selection import train_test_split\n",
        "from sklearn.neighbors import KNeighborsClassifier\n",
        "\n",
        "X_train, X_test, y_train, y_test = train_test_split(\n",
        "    features_2d, labelv, random_state=10\n",
        ")\n",
        "X_train"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "# Let's use 5 neighbors to learn\n",
        "classifier = KNeighborsClassifier(n_neighbors=5)\n",
        "classifier.fit(X_train, y_train)\n",
        "\n",
        "print(\"train score: {:.2f}%\".format(100 * classifier.score(X_train, y_train)))\n",
        "print(\"test score: {:.2f}%\".format(100 * classifier.score(X_test, y_test)))\n",
        "\n",
        "plt.figure(figsize=(5, 5))\n",
        "plot_decision_surface(\n",
        "    features_2d,\n",
        "    labelv,\n",
        "    classifier,\n",
        "    test_features_2d=X_test,\n",
        "    test_labels=y_test,\n",
        ")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "About the plot: **the points surrounded with a circle are from the test data set** (not used for learning), all other points belong to the training data.\n",
        "\n",
        "We can query directly for the closest neighbors of a point. Let's check neighborhood of the origin:"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "# distances and row indices of neighbours around (0, 0):\n",
        "dist_nn, ind_nn = classifier.kneighbors([[0, 0]])\n",
        "\n",
        "# tech: simplify dimensions\n",
        "ind_nn = ind_nn.squeeze()\n",
        "dist_nn = dist_nn.squeeze()\n",
        "\n",
        "# build data frame with neighbours\n",
        "df = X_train.iloc[ind_nn, :].copy()\n",
        "df[\"label\"] = y_train.iloc[ind_nn]\n",
        "df[\"dist\"] = dist_nn\n",
        "df"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "### Exercise section\n",
        "\n",
        "Load the beers dataset and experiment with a number of neighbors (`n_neighbors`) as well as with the Manhattan distance norm `p = 1` (`2` is Euclidian distance)."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "import pandas as pd\n",
        "from sklearn.model_selection import train_test_split\n",
        "from sklearn.neighbors import KNeighborsClassifier\n",
        "from sklearn.pipeline import make_pipeline\n",
        "from sklearn.preprocessing import StandardScaler\n",
        "\n",
        "df = pd.read_csv(\"data/beers.csv\")\n",
        "features = df.iloc[:, :-1]\n",
        "labelv = df.iloc[:, -1]\n",
        "\n",
        "n_neighbors_values = [2, 3, 5, 10, 20]\n",
        "p_values = [1, 2]\n",
        "# ..."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "tags": [
          "solution"
        ]
      },
      "outputs": [],
      "source": [
        "# SOLUTION\n",
        "import pandas as pd\n",
        "from sklearn.model_selection import train_test_split\n",
        "from sklearn.neighbors import KNeighborsClassifier\n",
        "from sklearn.pipeline import make_pipeline\n",
        "from sklearn.preprocessing import StandardScaler\n",
        "\n",
        "df = pd.read_csv(\"data/beers.csv\")\n",
        "features = df.iloc[:, :-1]\n",
        "labelv = df.iloc[:, -1]\n",
        "\n",
        "\n",
        "X_train, X_test, y_train, y_test = train_test_split(features, labelv, random_state=10)\n",
        "\n",
        "p_values = [1, 2]\n",
        "n_neighbors_values = [2, 3, 5, 10, 20]\n",
        "\n",
        "for p in p_values:\n",
        "    print(f\"#### Norm L{p}\")\n",
        "    for n_neighbors in n_neighbors_values:\n",
        "\n",
        "        print(\"n_neighbors =\", n_neighbors)\n",
        "\n",
        "        pipeline = make_pipeline(\n",
        "            StandardScaler(), KNeighborsClassifier(p=p, n_neighbors=n_neighbors)\n",
        "        )\n",
        "        pipeline.fit(X_train, y_train)\n",
        "\n",
        "        print(f\"  train score: {100 * pipeline.score(X_train, y_train):.2f}%\")\n",
        "        print(f\"   test score: {100 * pipeline.score(X_test, y_test):.2f}%\")\n",
        "\n",
        "    print()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "#### Optional exercise\n",
        "\n",
        "\n",
        "Instead of choosing a number of neighbors you can also specify a radius within which samples make decision, or center of a closest class. Compare decision surface for these methods, as represented by [`RadiusNeighborsClassifier`](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.RadiusNeighborsClassifier.html#sklearn.neighbors.RadiusNeighborsClassifier) and [`NearestCentroid`](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestCentroid.html#sklearn.neighbors.NearestCentroid) classifiers in the scikit-learn library.\n",
        "\n",
        "<div class=\"alert alert-block alert-info\">\n",
        "<i class=\"fa fa-info-circle\"></i>\n",
        "    Choice of an specific querying algorithm (<code>algorithm</code> parameter) becomes important with larger datasets; see: <a href=\"https://scikit-learn.org/stable/modules/neighbors.html#choice-of-nearest-neighbors-algorithm\"><em>Choice of Nearest Neighbors Algorithm</em>.</a>.\n",
        "</div>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "## Few words about optimization and regularization in ML\n",
        "\n",
        "Many machine learning algorithms adapt internal weights (or similar parameters) to match predictions on the training data as good as possible.\n",
        "\n",
        "Finding these weights can be formulated as an optimzation problem which **minimizes a cost function**. Solution is usually computed in iterative improvements.\n",
        "\n",
        "<table>\n",
        "    <tr><td><img src=\"./images/cost_minimization_iterative.png\" width=400px></td></tr>\n",
        "    <tr><td><center><sub>Source: <a href=\"https://towardsdatascience.com/machine-learning-fundamentals-via-linear-regression-41a5d11f5220\">https://towardsdatascience.com/machine-learning-fundamentals-via-linear-regression-41a5d11f5220</a></sub></center></td></tr>\n",
        "</table>\n",
        "\n",
        "\n",
        "As the optimization only considers training data, taking only classification error/loss as a cost function introduces overfitting. We've seen this before in the overfitting chapter. To compensate for overfitting we can add penalty for more complex models.\n",
        "\n",
        "### The cost function\n",
        "\n",
        "<div class=\"alert alert-block alert-warning\">\n",
        "<i class=\"fa fa-info-circle\"></i> The cost function to minimize consists of an term measuring a <strong>classification loss</strong> and an additional <strong>regularization penalty</strong>:\n",
        "\n",
        "$$\\text{cost} =  \\text{classification_loss} + \\lambda \\cdot \\text{regularization_penalty}$$\n",
        "\n",
        "</div>\n",
        "\n",
        "\n",
        "The **regularization weight $\\lambda$** allows to balance out both terms and must be chosen depending on the actual algorithm and the data. In general:\n",
        "\n",
        "\n",
        "* $\\lambda$ close to `0`, $$\\text{cost} \\approx \\text{classification_loss},$$ implies more focus on training data, thus, more complex models and possible overfitting,\n",
        "\n",
        "\n",
        "* $\\lambda$ very large, $$\\text{cost} \\approx \\lambda\\cdot\\text{regularization_penalty},$$  implies less focus on training data, thus, simpler models and possible underfitting.\n",
        "\n",
        "\n",
        "Weighting-in regularization penalty relates to [Occam's razor](https://en.wikipedia.org/wiki/Occam%27s_razor) which states **_\"simpler solutions are more likely to be correct than complex ones.\"_**"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "## Logistic Regression\n",
        "\n",
        "The name is misleading: a) despite \"logistic\" the method is linear, b) despite \"regression\" (as in unsupervised learning), it's a classification method.\n",
        "\n",
        "The method learns weights $w_1,\\cdots,w_n$ for sum of features and the threshold $b$, i.e. to learn a spearation hyper-plane:\n",
        "\n",
        "$$\n",
        "\\text{class}~0:\\quad w_1 \\cdot \\text{feature}_1 + \\ldots + w_n \\cdot \\text{feature}_n \\geq b\n",
        "$$\n",
        "$$\n",
        "\\text{class}~1:\\quad w_1 \\cdot \\text{feature}_1 + \\ldots + w_n \\cdot \\text{feature}_n \\lt b\n",
        "$$\n",
        "\n",
        "Then, to classify, transform the weighting result to a probability of belonging to one of the two classes using the **logistic function**:\n",
        "\n",
        "\n",
        "$$\n",
        "p\\left(x_1,\\cdots,x_n\\right)=\\frac{1}{1+\\exp\\left(b - \\sum_{i=1}^{n} w_i \\cdot x_i\\right)}.\n",
        "$$\n",
        "\n",
        "which looks like that:"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "# classification threshold\n",
        "threshold = 3\n",
        "# results of weighted sum (around the threshold)\n",
        "weighted_sum = np.linspace(-10 + threshold, 10 + threshold, 100)\n",
        "# logistic function\n",
        "plt.plot(weighted_sum, 1 / (1 + np.exp(threshold - weighted_sum)))\n",
        "plt.axvline(x=threshold, linestyle=\"--\")\n",
        "\n",
        "plt.ylabel(\"probability that sample's class is 0\")\n",
        "plt.xlabel(\"weighted sum of features values\");"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "### Demonstration\n",
        "\n",
        "Let's use a (almost) line-separable dataset:"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "import pandas as pd\n",
        "\n",
        "df = pd.read_csv(\"data/line_separable_2d.csv\")\n",
        "df.head(2)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "features_2d = df.loc[:, (\"x\", \"y\")]\n",
        "labelv = df[\"label\"]\n",
        "\n",
        "plt.figure(figsize=(5, 5))\n",
        "plt.scatter(features_2d.iloc[:, 0], features_2d.iloc[:, 1], color=samples_color(labelv));"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "You can find the Logistic Regression method in the `sklearn.linear_model` module.\n",
        "\n",
        "In scikit-learn `LogisticRegression` the regularization weight is passed here in \"inverse\", as a classification weight parameter `C` (default `1`), meaning that it multiplies the classification loss, not the regularization penalty:\n",
        "\n",
        "$$\\text{cost} =  \\text{C}\\cdot\\text{classification_loss} + \\text{regularization_penalty}$$\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "from sklearn.linear_model import LogisticRegression\n",
        "from sklearn.model_selection import train_test_split\n",
        "\n",
        "X_train, X_test, y_train, y_test = train_test_split(features_2d, labelv, random_state=0)\n",
        "\n",
        "classifier = LogisticRegression(C=1, random_state=0)\n",
        "classifier.fit(X_train, y_train)\n",
        "print(\"train score: {:.2f}%\".format(100 * classifier.score(X_train, y_train)))\n",
        "print(\"test score: {:.2f}%\".format(100 * classifier.score(X_test, y_test)))"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "Feature weights are available via `.coef_` attribute, whereas threshold is the negated `.intercept_` attribute. With these we can plot separation line.\n",
        "\n",
        "Let's see how does it look like and what happens if we put more weight on the classification loss (increase `C` parameter)."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "fig, ax_arr = plt.subplots(ncols=2, nrows=1, figsize=(2 * 5, 5))\n",
        "\n",
        "plot_decision_surface(\n",
        "    features_2d,\n",
        "    labelv,\n",
        "    classifier,\n",
        "    test_features_2d=X_test,\n",
        "    test_labels=y_test,\n",
        "    plt=ax_arr[0],\n",
        "    title=\"C=1\",\n",
        ")\n",
        "\n",
        "print(\"feature weights:\", classifier.coef_)\n",
        "\n",
        "\n",
        "def plot_separation_line(features_2d, linear_classifier, plt=plt):\n",
        "    \"\"\"Plot a separation line for 2D dataset\"\"\"\n",
        "\n",
        "    assert hasattr(linear_classifier, \"coef_\")\n",
        "\n",
        "    w = linear_classifier.coef_[0]\n",
        "    b = -linear_classifier.intercept_  # NOTE: intercept = negative threshold\n",
        "\n",
        "    # separation line: w[0] * x + w[1] * y - b == 0\n",
        "    feat_x = features_2d.iloc[:, 0]\n",
        "    x = np.linspace(np.min(feat_x), np.max(feat_x), 2)\n",
        "    y = (b - w[0] * x) / w[1]\n",
        "    plt.plot(x, y, color=\"k\", linestyle=\":\")\n",
        "\n",
        "\n",
        "plot_separation_line(features_2d, classifier, plt=ax_arr[0])\n",
        "\n",
        "\n",
        "print()\n",
        "print()\n",
        "print(\"With C=100\")\n",
        "print()\n",
        "\n",
        "classifier = LogisticRegression(C=100, random_state=0)\n",
        "classifier.fit(X_train, y_train)\n",
        "print(\"train score: {:.2f}%\".format(100 * classifier.score(X_train, y_train)))\n",
        "print(\"test score: {:.2f}%\".format(100 * classifier.score(X_test, y_test)))\n",
        "print(\"feature weights:\", classifier.coef_)\n",
        "\n",
        "plot_decision_surface(\n",
        "    features_2d,\n",
        "    labelv,\n",
        "    classifier,\n",
        "    test_features_2d=X_test,\n",
        "    test_labels=y_test,\n",
        "    plt=ax_arr[1],\n",
        "    title=\"C=100\",\n",
        ")\n",
        "plot_separation_line(features_2d, classifier, plt=ax_arr[1])"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "### Exercise section\n",
        "\n",
        "1. Why does the test score drop when we penalize more misclassifications?\n",
        "2. For the higher dimensional beers dataset experiment with both `C` and `penalty` parameters of the linear regression classfier. Compare scores and the resulting weights. What does the `l1` penalty do? What is the sweet spot of the \"inverse regularization\" `C`?\n",
        "  "
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "tags": [
          "solution"
        ]
      },
      "outputs": [],
      "source": [
        "# SOLUTION 1\n",
        "\n",
        "# With C=100 we try hard to get all training points correctly classified, whereas with C=1\n",
        "# you can see we allow misclassification in training, in order to possibly get more general\n",
        "# model and avoid overfitting.\n",
        "#\n",
        "# You can see in the test data, that reverse - one misclassfied point with C=100.\n",
        "# If we would have that point for for training, the line would look more like in C=1 case.\n",
        "# (Go regularization!)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "import pandas as pd\n",
        "from sklearn.linear_model import LogisticRegression\n",
        "from sklearn.model_selection import train_test_split\n",
        "from sklearn.pipeline import make_pipeline\n",
        "from sklearn.preprocessing import StandardScaler\n",
        "\n",
        "df = pd.read_csv(\"data/beers.csv\")\n",
        "features = df.iloc[:, :-1]\n",
        "labelv = df.iloc[:, -1]\n",
        "\n",
        "C_values = [0.01, 0.1, 1, 10, 100, 1000]\n",
        "penalty_values = [\"l1\", \"l2\"]\n",
        "# ..."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "tags": [
          "solution"
        ]
      },
      "outputs": [],
      "source": [
        "# SOLUTION 2\n",
        "import pandas as pd\n",
        "from sklearn.linear_model import LogisticRegression\n",
        "from sklearn.model_selection import train_test_split\n",
        "from sklearn.pipeline import make_pipeline\n",
        "from sklearn.preprocessing import StandardScaler\n",
        "\n",
        "df = pd.read_csv(\"data/beers.csv\")\n",
        "print(df.head(2))\n",
        "\n",
        "features = df.iloc[:, :-1]\n",
        "labelv = df.iloc[:, -1]\n",
        "\n",
        "X_train, X_test, y_train, y_test = train_test_split(features, labelv, random_state=10)\n",
        "\n",
        "C_values = [0.01, 0.1, 1, 10, 100, 1000]\n",
        "penalty_values = [\"l1\", \"l2\"]\n",
        "\n",
        "print()\n",
        "for norm in penalty_values:\n",
        "    print(\"#### Norm\", norm)\n",
        "    print()\n",
        "    for C in C_values:\n",
        "        print(\"C:\", C)\n",
        "        # Note: use non-default solver for L1 penalty support\n",
        "        # Note: increase max iterations 10x for solver's convergence\n",
        "        pipeline = make_pipeline(\n",
        "            StandardScaler(),\n",
        "            LogisticRegression(\n",
        "                C=C, solver=\"liblinear\", penalty=norm, dual=False, max_iter=10000\n",
        "            ),\n",
        "        )\n",
        "        pipeline.fit(X_train, y_train)\n",
        "        print(f\"  train score: {100 * pipeline.score(X_train, y_train):.2f}%\")\n",
        "        print(f\"   test score: {100 * pipeline.score(X_test, y_test):.2f}%\")\n",
        "        print(\"      weights:\", pipeline[-1].coef_[0])\n",
        "    print()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "<div class=\"alert alert-block alert-info\">\n",
        "\n",
        "<p><i class=\"fa fa-info-circle\"></i>&nbsp;\n",
        "The <strong>classification loss</strong> in logistic regression is a so called <em>negative-log likelihood</em>, i.e. a negative logarithm of the logistic probability above:\n",
        "<p/>\n",
        "    \n",
        "<p>\n",
        "$$ \\text{classification_loss} = -\\log(p(x^k; p^k)) = \\log{\\left(1+\\exp{\\left(y^k\\left(b - \\sum_{i=1}^{n} w_i x_i^k\\right)\\right)}\\right)}$$\n",
        "<p/>\n",
        "\n",
        "<p>\n",
        "where $y^k$ is -1 or 1, representing class of $k$-th sample from the training data, corresponding, respectively, to class below and above the threshold (the separation line).\n",
        "\n",
        "The $+/-$ sign for the class penalizes missclassifications. If sample is below the threshold $\\sum_{i=1}^{n} w_i x_i^k < b$ and have the correct class $y^k = -1$, then we have $\\exp{\\left(\\text{negative value}\\right)}$ giving small loss. In case of misclassification $\\exp{\\left(\\text{positive value}\\right)}$ gives a much bigger loss.\n",
        "</p>\n",
        "</div>\n",
        "\n",
        "<div class=\"alert alert-block alert-info\">\n",
        "<p><i class=\"fa fa-info-circle\"></i>&nbsp;\n",
        "The <strong>reqularization penalty</strong> in logistic regression is a <em>norm of the learnt weights</em>, denoted as:\n",
        "\n",
        "<p>\n",
        "$$\\text{regularization_penalty} = \\left\\lVert w \\right\\rVert_p$$\n",
        "</p>\n",
        "\n",
        "<p>\n",
        "Using <em>L1 norm</em> ($p=1$, Manhattan distance from origin, which is sum of absolute weight values) is know for finding sparse solutions, i.e. eliminating features (weight equal to 0) when they are have low significance. With the default <em>L2 norm</em> ($p=2$, Euclidian distance from origin, which is square root of sum of squared weight values), weights of insignificant features would have small non-zero values instead.\n",
        "</p>\n",
        "\n",
        "<p>\n",
        "In <code>LogisticRegression</code> class, <code>penalty</code> parameter allows to specify type of norm to use.\n",
        "</p>\n",
        "\n",
        "<p>\n",
        "Note that any solution weights and its threshold can be scaled to give the same result. Thus the regularization penalty not only prevents overfitting but also ensures a unique solution.\n",
        "</p>\n",
        "\n",
        "</div>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "## Linear SVM\n",
        "\n",
        "Support-Vector Machine (SVM) classifier tries to separate two classes with a line by **finding data points (support vectors) lying closest to the separation plane**. These points determine separation plane (weights and threshold/intercept).\n",
        "\n",
        "The weights are learned such that the **margin between support vectors of different classes is maximized**.\n",
        "\n",
        "<table>\n",
        "    <tr><td><img src=\"./images/svm_margin.png\" width=400px></td></tr>\n",
        "    <tr><td><center><sub>Source: <a href=\"https://en.wikipedia.org/wiki/Support-vector_machine\">https://en.wikipedia.org/wiki/Support-vector_machine</a></sub></center></td></tr>\n",
        "</table>\n",
        "\n",
        "Like in linear regression the classification is based on a weighted sum of the features (and margin maximization corresponds to minimization of the regularization penalty). \n",
        "\n",
        "Analogously to the Nearest Neighbors method the data points (support vectors) decide the class of a new data sample."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "### Demonstration\n",
        "\n",
        "Let's try it out on the line-separable dataset.\n",
        "\n",
        "You will find the SVM method in the `sklearn.svm` module."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "import pandas as pd\n",
        "from sklearn.model_selection import train_test_split\n",
        "from sklearn.svm import LinearSVC\n",
        "\n",
        "df = pd.read_csv(\"data/line_separable_2d.csv\")\n",
        "features_2d = df.loc[:, (\"x\", \"y\")]\n",
        "labelv = df[\"label\"]\n",
        "\n",
        "X_train, X_test, y_train, y_test = train_test_split(features_2d, labelv, random_state=0)\n",
        "\n",
        "classifier = LinearSVC(C=1)\n",
        "classifier.fit(X_train, y_train)\n",
        "print(\"train score: {:.2f}%\".format(100 * classifier.score(X_train, y_train)))\n",
        "print(\"test score: {:.2f}%\".format(100 * classifier.score(X_test, y_test)))"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "Again, let's see how does the separation line look like here and what happens if we put more weight on the classification loss (increase `C` parameter)."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "fig, ax_arr = plt.subplots(ncols=2, nrows=1, figsize=(2 * 5, 5))\n",
        "\n",
        "plot_decision_surface(\n",
        "    features_2d,\n",
        "    labelv,\n",
        "    classifier,\n",
        "    test_features_2d=X_test,\n",
        "    test_labels=y_test,\n",
        "    plt=ax_arr[0],\n",
        "    title=\"C=1\",\n",
        ")\n",
        "\n",
        "print(\"feature weights:\", classifier.coef_)\n",
        "\n",
        "\n",
        "def plot_margins(features_2d, linear_classifier, plt=plt):\n",
        "    \"\"\"Plot a separation line and margin lines for 2D dataset\"\"\"\n",
        "\n",
        "    assert hasattr(linear_classifier, \"coef_\")\n",
        "\n",
        "    w = linear_classifier.coef_[0]\n",
        "    b = -linear_classifier.intercept_  # NOTE: intercept = negative threshold\n",
        "\n",
        "    # separation line: w[0] * x + w[1] * y - b == 0\n",
        "    feat_x = features_2d.iloc[:, 0]\n",
        "    x = np.linspace(np.min(feat_x), np.max(feat_x), 2)\n",
        "    y = (b - w[0] * x) / w[1]\n",
        "    plt.plot(x, y, color=\"k\", linestyle=\":\")\n",
        "\n",
        "    # margin lines: w[0] * x + w[1] * y - b == +/-1\n",
        "    y = ((b - 1) - w[0] * x) / w[1]\n",
        "    plt.plot(x, y, color=\"r\", linestyle=\":\")\n",
        "    y = ((b + 1) - w[0] * x) / w[1]\n",
        "    plt.plot(x, y, color=\"r\", linestyle=\":\")\n",
        "\n",
        "\n",
        "plot_margins(features_2d, classifier, plt=ax_arr[0])\n",
        "\n",
        "\n",
        "print()\n",
        "print()\n",
        "print(\"With C=100\")\n",
        "print()\n",
        "\n",
        "# higher C = more narrow (\"harder\") margin\n",
        "# Note: increase max iterations 50x for solver's convergence\n",
        "classifier = LinearSVC(C=100, max_iter=50000)\n",
        "classifier.fit(X_train, y_train)\n",
        "print(\"train score: {:.2f}%\".format(100 * classifier.score(X_train, y_train)))\n",
        "print(\"test score: {:.2f}%\".format(100 * classifier.score(X_test, y_test)))\n",
        "print(\"feature weights:\", classifier.coef_)\n",
        "\n",
        "plot_decision_surface(\n",
        "    features_2d,\n",
        "    labelv,\n",
        "    classifier,\n",
        "    test_features_2d=X_test,\n",
        "    test_labels=y_test,\n",
        "    plt=ax_arr[1],\n",
        "    title=\"C=100\",\n",
        ")\n",
        "plot_margins(features_2d, classifier, plt=ax_arr[1]);"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "Why are there **training data samples within the margin**?\n",
        "\n",
        "This is because the scikit-learn `LinearSVC` implementation by default uses so called **\"soft margins\"**, (\"hinge\" loss function in `loss` parameter). They allow support vectors to lie within the -1, 1 margin (with appropriately lower weights than -1, 1).\n",
        "\n",
        "You can control \"softness\" or \"hardness\" of classification loss by, respectively, decreasing or increasing its weight (parameter `C` of the `LinearSVC` class)."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "### Exercise section\n",
        "\n",
        "1. It looks like we did train our classifier \"perfectly\" with \"harder\" margins. Why is the score then lower then previously?\n",
        "2. For the higher dimensional beers dataset experiment with both `C` and `penalty` parameters of the linear SVM classfier (note: set `dual=False` to work with `penalty='l1'`). Compare scores and the resulting weights.\n",
        "  "
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "import pandas as pd\n",
        "from sklearn.model_selection import train_test_split\n",
        "from sklearn.pipeline import make_pipeline\n",
        "from sklearn.preprocessing import StandardScaler\n",
        "from sklearn.svm import LinearSVC\n",
        "\n",
        "df = pd.read_csv(\"data/beers.csv\")\n",
        "features = df.iloc[:, :-1]\n",
        "labelv = df.iloc[:, -1]\n",
        "\n",
        "C_values = [0.01, 0.1, 1, 10, 100, 1000]\n",
        "penalty_values = [\"l1\", \"l2\"]\n",
        "\n",
        "# ..."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "tags": [
          "solution"
        ]
      },
      "outputs": [],
      "source": [
        "# SOLUTION 1\n",
        "\n",
        "# Again, with C=100 we've just tried to hard to get all training points correctly classified,\n",
        "# but this time it meant essentially no points within the margin. Thus, by overfitting we\n",
        "# lost the linear trend in the data, which is represented by the one test data sample that\n",
        "# just did not make it over the separation line (and a bit overrepresented by the other quite\n",
        "# badly misclassfied test sample)."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "tags": [
          "solution"
        ]
      },
      "outputs": [],
      "source": [
        "# SOLUTION 2\n",
        "import pandas as pd\n",
        "from sklearn.model_selection import train_test_split\n",
        "from sklearn.pipeline import make_pipeline\n",
        "from sklearn.preprocessing import StandardScaler\n",
        "from sklearn.svm import LinearSVC\n",
        "\n",
        "df = pd.read_csv(\"data/beers.csv\")\n",
        "print(df.head(2))\n",
        "\n",
        "features = df.iloc[:, :-1]\n",
        "labelv = df.iloc[:, -1]\n",
        "\n",
        "X_train, X_test, y_train, y_test = train_test_split(features, labelv, random_state=10)\n",
        "\n",
        "C_values = [0.01, 0.1, 1, 10, 100, 1000]\n",
        "penalty_values = [\"l1\", \"l2\"]\n",
        "\n",
        "print()\n",
        "for norm in penalty_values:\n",
        "    print(\"#### Norm\", norm)\n",
        "    print()\n",
        "    for C in C_values:\n",
        "        print(\"C:\", C)\n",
        "        # Note: increase max iterations 10x for solver's convergence\n",
        "        pipeline = make_pipeline(\n",
        "            StandardScaler(),\n",
        "            LinearSVC(C=C, penalty=norm, dual=False, max_iter=10000),\n",
        "        )\n",
        "        pipeline.fit(X_train, y_train)\n",
        "        print(f\"  train score: {100 * pipeline.score(X_train, y_train):.2f}%\")\n",
        "        print(f\"   test score: {100 * pipeline.score(X_test, y_test):.2f}%\")\n",
        "        print(\"      weights:\", pipeline[-1].coef_[0])\n",
        "    print()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "## Kernel based SVM\n",
        "\n",
        "### Dealing with not linearily-separable data\n",
        "\n",
        "Data is usually not at all linearily separable.\n",
        "\n",
        "Let's revisit the \"circle\" data."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "import pandas as pd\n",
        "\n",
        "df = pd.read_csv(\"data/circle.csv\")\n",
        "df.head(2)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "features_2d = df.loc[:, (\"x\", \"y\")]\n",
        "labelv = df[\"label\"]\n",
        "\n",
        "plt.figure(figsize=(5, 5))\n",
        "plt.scatter(features_2d.iloc[:, 0], features_2d.iloc[:, 1], color=samples_color(labelv));"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "Linear methods like SVM fail in such cases to learn the underlying pattern:"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {},
      "outputs": [],
      "source": [
        "from sklearn.model_selection import train_test_split\n",
        "from sklearn.svm import LinearSVC\n",
        "\n",