Newer
Older
from scipy import ndimage as ndi
from skimage.feature import peak_local_max
from skimage.morphology import watershed, dilation
def segment(th, pred, min_distance=10, topology=None):
"""
Performs watershed segmentation on thresholded image. Seeds have to
have minimal distance of min_distance. topology defines the watershed
topology to be used, default is the negative distance transform. Can
either be an array with the same size af th, or a function that will
be applied to the distance transform.
After watershed, the borders found by watershed will be evaluated in terms
of their predicted value. If the borders are highly predicted to be cells,
the two cells are merged.
"""
dtr = ndi.morphology.distance_transform_edt(th)
if topology is None:
topology = -dtr
elif callable(topology):
topology = topology(dtr)
m = peak_local_max(-topology, min_distance, indices=False)
m_lab = ndi.label(m)[0]
wsh = watershed(topology, m_lab, mask=th)
def cell_merge(wsh, pred):
"""
Procedure that merges cells if the border between them is predicted to be
cell pixels.
"""
wshshape=wsh.shape
# masks for the original cells
objs = np.zeros((wsh.max()+1,wshshape[0],wshshape[1]))
# masks for dilated cells
dil_objs = np.zeros((wsh.max()+1,wshshape[0],wshshape[1]))
# bounding box coordinates
obj_coords = np.zeros((wsh.max()+1,4))
# cleaned watershed, output of function
wshclean = np.zeros((wshshape[0],wshshape[1]))
# kernel to dilate objects
kernel = np.ones((3,3), dtype=bool)
for obj1 in range(wsh.max()):
# create masks and dilated masks for obj
objs[obj1,:,:] = wsh==(obj1+1)
dil_objs[obj1,:,:] = dilation(objs[obj1,:,:], kernel)
# bounding box
obj_coords[obj1,:] = get_bounding_box(dil_objs[obj1,:,:])
# objallpixels = np.where(dilobjs[obj1,:,:] != 0)
# objcoords[obj1,0]=np.min(objallpixels[0])
# objcoords[obj1,1]=np.max(objallpixels[0])
# objcoords[obj1,2]=np.min(objallpixels[1])
# objcoords[obj1,3]=np.max(objallpixels[1])
objcounter = 0 # will build up a new watershed mask, have to run a counter because some objects lost
print("Processing cell ",obj1+1," of ",wsh.max()," for oversegmentation.")
if np.sum(dil1) > 0: #dil1 can be empty because in the loop, maskobj2 can be deleted if it is joined with a (previous) maskobj1
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
if (do_box_overlap(obj_coords[obj1,:], obj_coords[obj2,:])
and np.sum(dil2) > 0):
border = dil1 * dil2
border_pred = pred[border]
# Border is too small to be considered
if len(border_pred) < 32:
continue
# Sum of top 25% of predicted border values
q75 = np.quantile(border_pred, .75)
top_border_pred = border_pred[border_pred > q75]
top_border_height = top_border_pred.sum()
top_border_area = len(top_border_pred)
# borderprednonzero = pred[np.nonzero(border)] # all the prediction values inside the border area
# sortborderprednonzero = sorted(borderprednonzero) # sort the values
# borderprednonzeroarea = len(borderprednonzero) # how many values are there?
# quartborderarea = round(borderprednonzeroarea/4) # take one fourth of the values. there is some subtlety about how round() rounds but doesn't matter
# topborderpred = sortborderprednonzero[quartborderarea:] # take top 3/4 of the predictions
# topborderheight = np.sum(topborderpred) # sum over top 3/4 of the predictions
# topborderarea = len(topborderpred) # area of 3/4 of predictions. In principle equal to 3/4 of borderprednonzeroarea but because of strange rounding, will just measure again
# merge cells
if top_border_height / top_border_area > .99:
orig1 = np.logical_or(orig1, objs[obj2,:,:])
dil_objs[obj1,:,:] = np.logical_or(dil1, dil2)
dil_objs[obj2,:,:] = np.zeros((wshshape[0], wshshape[1]))
obj_coords[obj1,:] = get_bounding_box(dil_objs[obj1,:,:])
print("Merged cell ",obj1+1," and ",obj2+1,".")
# if topborderarea > 8: # SJR: Not only must borderarea be greater than 0 but also have a little bit of border to go on.
# #print(obj1+1, obj2+1, topborderheight/topborderarea)
# if topborderheight/topborderarea > 0.99 : # SJR: We are really deep inside a cell, where the prediction is =1. Won't use: borderheight/borderarea > 0.95. Redundant.
# #print("--")
# #print(objcounter)
# #wsh=np.where(wsh==obj2+1, obj1+1, wsh)
# maskoriobj1 = np.uint8(np.multiply((maskoriobj1 > 0) | (oriobjs[obj2,:,:] > 0),1)) #have to do boolean then integer just to do an 'or'
# dilobjs[obj1,:,:] = np.uint8(np.multiply((maskobj1 > 0) | (maskobj2 > 0),1)) #have to do boolean then integer just to do an 'or'
# dilobjs[obj2,:,:] = np.zeros((wshshape[0],wshshape[1]))
# objcoords[obj1,0] = min(objcoords[obj1,0],objcoords[obj2,0])
# objcoords[obj1,1] = max(objcoords[obj1,1],objcoords[obj2,1])
# objcoords[obj1,2] = min(objcoords[obj1,2],objcoords[obj2,2])
# objcoords[obj1,3] = max(objcoords[obj1,3],objcoords[obj2,3])
# print("Merged cell ",obj1+1," and ",obj2+1,".")
wshclean = wshclean + orig1*objcounter
return wshclean
def do_box_overlap(coord1, coord2):
"""Checks if boxes, determined by their coordinates, overlap. Safety
margin of 2 pixels"""
return (
(coord1[0] - 2 < coord2[0] and coord1[1] + 2 > coord2[0]
or coord2[0] - 2 < coord1[0] and coord2[1] + 2 > coord1[0])
and (coord1[2] - 2 < coord2[2] and coord1[3] + 2 > coord2[2]
or coord2[2] - 2 < coord1[2] and coord2[3] + 2 > coord1[2]))
def get_bounding_box(im):
"""Returns bounding box of object in boolean image"""
coords = np.where(im)
min0, min1 = coords.min(axis=0)
max0, max1 = coords.max(axis=0)
return np.array([min0, max0, min1, max1])