Newer
Older
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
This script is the main script used to produce a GUI which should help for
cell segmentation. This script can only read .nd2 files containing the
images of cells, especially it displays for each recorded positions (field
of view) the pictures in the time axis.
The script opens first a window which allows you to load an nd2 file and
to load or create an hdf file. The hdf file contains all the masks, so if
it is the first the user segments an nd2 file, a new one should be created.
And it can be then loaded for later use. Along with new hdf file, created
by the name entered by the user (say filename), it creates three other hdf
files (filename_predicted.h5, filename_thresholded.h5 and
filename_segmented.h5) these contain all the steps of the NN to get to the
segmented picture.
After the first window is finished a second one opens, where at each time
index, three pictures
are displayed the t-1 picture, the t picture (current frame which can be
edited) and the t+1 picture. Using the arrows one can navigate through time.
On top of the picture, there is always a mask which is displayed, if no cells
are present in the mask then the mask is blank and the user does not see it.
If one wants to hand anmotate the pictures, one can just start to draw on the
picture using the different functions (New Cell, Add Region, Brush, Eraser,
Save Mask, ...) and the informations will be saved in the mask overlayed on
If one wants to segment using a neural network, one can press the
corresponding button (Launch CNN) and select the time range and
the field of views on which the neural network is applied.
Once the neural network has finished predicting, there are still no visible
masks, but on the field of views and time indices where the NN has been
applied, the threshold and segment buttons are enabled. By checking these
two buttons one can either display the thresholded image of the prediction or
display the segmentation of the thresholded prediction.
At this stage, one can correct the segmentation of the prediction using
the functions (New Cell, Add Region, etc..) by selecting the Segment
checkbox and then save them using the Save Seg button.
If the user is happy with the segmentation, the Cell Correspondance button
can be clicked. Until then, the cells get random numbers attributed by
the segmentation algorithm. In order to keep track of the cell through time,
the same cells should have the same number between two different time pictures.
This can be (with some errors) achieved by the Cell Correspondance button,
which tries to attribute the same number to corresponding cells in time.
After that, the final mask is saved and it is always visible when you go on
the corresponding picture. This mask can also be corrected using the
usual buttons (because the Cell Correspondance makes also mistakes).
import pandas as pd
import h5py
#from openpyxl import load_workbook
#from openpyxl import Workbook
# Import everything for the Graphical User Interface from the PyQt5 library.
from PyQt5.QtWidgets import (QApplication, QMainWindow, QDialog, QSpinBox,
QMessageBox, QPushButton, QCheckBox, QAction, QStatusBar, QLabel)
from PyQt5 import QtGui
#Import from matplotlib to use it to display the pictures and masks.
from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar
from sklearn.decomposition import PCA
#append all the paths where the modules are stored. Such that this script
#looks into all of these folders when importing modules.
sys.path.append("./unet")
sys.path.append("./disk")
sys.path.append("./icons")
sys.path.append("./init")
sys.path.append("./misc")
#Import all the other python files
#this file handles the interaction with the disk, so loading/saving images
#and masks and it also runs the neural network.
#this file contains a dialog window that takes two integers as entry to swap
#two cell values
import ExchangeCellValues as ecv
#this file contains a dialog window which is opened before the main program
#and allows to load the nd2 and hdf files by browsing through the computer.
import DialogFileBrowser as dfb
#this file contains a window that opens to change the value of one cell. It
#is opened as soon as the user presses with the left click on a specific cell.
import ChangeOneCellValue as cocv
#this file contains a dialog window where a time range and the field of views
#can be selected to then launch a prediction of the neural network on
#a specific range of pictures.
import LaunchBatchPrediction as lbp
#this file initializes all the buttons present in the gui, sets the shortcuts
#to these buttons and also connect the buttons to the function that are
#triggered when the buttons are pressed.
import InitButtons
#this file contains the layout of the main window so it justs puts the buttons
#and the pictures at the desired position in the main window.
import InitLayout
# PlotCanvas for fast plotting
from PlotCanvas import PlotCanvas
import Extract as extr
from image_loader import load_image
from segment import segment
import neural_network as nn
class NavigationToolbar(NavigationToolbar):
"""This is the standard matplotlib toolbar but only the buttons
that are of interest for this gui are loaded. These buttons allow
to zoom into the pictures/masks and to navigate in the zoomed picture.
A Home button can be used to set the view back to the original view.
"""
toolitems = [t for t in NavigationToolbar.toolitems if
t[0] in ('Home', 'Pan', 'Zoom','Back', 'Forward')]
class App(QMainWindow):
"""This class creates the main window.
"""
def __init__(self, nd2pathstr, hdfpathstr, newhdfstr):
super().__init__()
# all these ids are integers which are used to set a connection between
# the button and the function that this button calls.
# There are three of them because it happens that one can trigger three
# different functions with one button.
self.reader = nd.Reader(hdfpathstr, newhdfstr, nd2pathstr)
# these variables are used to create/read/load the excel file used
# to write the fluorescence values extracted. For each field of view,
# the user will be asked each time to create a new xls file for the
# field of view or to load an existing field of view (this is the role
# of the boolean variable)
self.xlsfilename = ''
self.nd2path = nd2pathstr
# Set the indices for the time axis and the field of view index. These
# indices represent everywhere the current picture (the one that can be
# edited, i.e. the time t frame)
# loading the first images of the cells from the nd2 file
self.currentframe = self.reader.LoadOneImage(self.Tindex,self.FOVindex)
# check if the t+1 time frame exists, avoid failure if there is only
# one picture in the folder/nd2 file
if self.Tindex+1 < self.reader.sizet:
self.nextframe = self.reader.LoadOneImage(self.Tindex+1, self.FOVindex)
else:
self.nextframe = np.zeros([self.reader.sizey, self.reader.sizex])
self.previousframe = np.zeros([self.reader.sizey, self.reader.sizex])
# loading the first masks from the hdf5 file
self.mask_curr = self.reader.LoadMask(self.Tindex, self.FOVindex)
self.mask_previous = np.zeros([self.reader.sizey, self.reader.sizex])
# check if the t+1 mask exists, avoid failure if there is only
# one mask in the hdf file
if self.Tindex+1 < self.reader.sizet:
self.mask_next = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
else:
self.mask_next = np.zeros([self.reader.sizey, self.reader.sizex])
# creates a list of all the buttons, which will then be used in order
# to disable all the other buttons at once when one button/function
# is pressed/used in the gui.
# setting buttons as attributes
# the shortcuts for the buttons, the functions to which they are
# connected to,... are all set up in the ButtonInit file which is called
# in the self.initUI() method below.
self.button_newcell = QPushButton("New cell")
self.buttonlist.append(self.button_newcell)
self.button_add_region = QPushButton("Add region")
self.buttonlist.append(self.button_add_region)
mattminder
committed
# self.button_savemask = QPushButton("Save Mask")
# self.buttonlist.append(self.button_savemask)
self.button_drawmouse = QPushButton('Brush')
self.buttonlist.append(self.button_drawmouse)
self.button_eraser = QPushButton('Eraser')
self.buttonlist.append(self.button_eraser)
self.label_brushsize = QLabel('Brush Radius:')
self.spinbox_brushsize = QSpinBox()
self.buttonlist.append(self.spinbox_brushsize)
self.button_exval = QPushButton('Exchange Cell Values')
self.buttonlist.append(self.button_exval)
self.button_showval = QCheckBox('Show Cell Values')
self.buttonlist.append(self.button_showval)
self.button_hidemask = QCheckBox('Hide Mask')
self.buttonlist.append(self.button_hidemask)
self.button_nextframe = QPushButton("Next Time Frame")
self.buttonlist.append(self.button_nextframe)
self.button_previousframe = QPushButton("Previous Time Frame")
self.buttonlist.append(self.button_previousframe)
self.button_cnn = QPushButton('Launch CNN')
self.buttonlist.append(self.button_cnn)
self.button_cellcorespondance = QPushButton('Retracking')
self.buttonlist.append(self.button_cellcorespondance)
self.button_changecellvalue = QPushButton('Change cell value')
self.buttonlist.append(self.button_changecellvalue)
self.button_extractfluorescence = QPushButton('Extract')
self.buttonlist.append(self.button_extractfluorescence)
self.button_hide_show = QPushButton('CNN')
self.buttonlist.append(self.button_hide_show)
"""Initializing the widgets contained in the window.
Especially, it creates the widget to plot the
pictures/masks by creating an object of the PlotCanvas class self.m.
Every interaction with the masks or the pictures (loading new
frames/editing the frames/masks) occurs through this class.
This method initializes all the buttons with the InitButtons file.
It connects the buttons to the functions that they should trigger,
it sets the shortcuts to the buttons, a tool tip,
eventually a message on the status bar when the user hovers
This function also sets all the layout in the InitLayout file. It
takes and places the widgets (buttons, canvas, toolbar).
The function initializes a Menu Bar to have a menu which can be
improved later on.
It sets a toolbar of the matplotlib library and hides it. But it allows
to connect to the functions of this toolbar through "homemade"
QPushButtons instead of the ones provided by matplotlib.
Finally, it sets a StatusBar which displays some text to describe
the use of some buttons, or to show that the program is working on
something (running the neural network, loading frames, etc...)
After all this has been initialized, the program is ready to be used.
"""
self._main = QtWidgets.QWidget()
self.setCentralWidget(self._main)
# Here our canvas is created where using matplotlib,
# one can plot data to display the pictures and masks.
# Initialize all the buttons that are needed and the functions that are
# connected when the buttons are triggered.
# MENU, TOOLBAR AND STATUS BAR
# creates a menu just in case, some other functions can be added later
# in this menu.
self.saveactionmenu = QAction('Save')
self.fileMenu.addAction(self.saveactionmenu)
mattminder
committed
self.saveactionmenu.triggered.connect(self.SaveMask)
# hide the toolbar and instead of the original buttons of matplotlib,
# QPushbuttons are used and are connected to the functions of the toolbar
# it is than easier to interact with these buttons (for example to
# to disable them and so on..)
self.Nvgtlbar = NavigationToolbar(self.m, self)
self.addToolBar(self.Nvgtlbar)
self.Nvgtlbar.hide()
# creates a status bar with user instructions
self.statusBar = QStatusBar()
self.setStatusBar(self.statusBar)
self.statusBarText = QLabel()
self.statusBar.addWidget(self.statusBarText)
# -----------------------------------------------------------------------------
# FUNCTIONS LINKED TO NAVIGATION
# connect the functions of the toolbar to our custom QPushbuttons.
"""The button_zoom is connected to the zoom function of the toolbar
Depending on the buttons that are active or checked, when the zoom
function is used, it does not disable all the buttons.
If the segment and threshold button are not checked or used
when the zoom button is clicked, it disables all the button
using self.Disable which disables everything except the button passed
in argument (in this case button_zoom).
If the zoom button is used while the segment button is checked,
it disables all the buttons (1st elif) except the segment button
but once it is finished (so the zoom button becomes unchecked)
then it enables only the editing buttons (as long as the segment
button is still checked) such as New Cell, Add Region, Eraser,
Brush,etc.. and the other toolbar buttons (3rd elif)
If the zoom button is clicked while the threshold button is checked,
it disables all the button except the threshold button (2nd elif).
Once the zoom button is unchecked, it enables the toolbar buttons
(4th elif)
In any other case, it just enables all the buttons again.
"""
self.Nvgtlbar.zoom()
mattminder
committed
if (self.button_zoom.isChecked()):
"""
connects the home button to the home function of the matplotlib
toolbar. It sets the view to the original view (no zoom)
"""
"""
It calls the back function of the matplotlib toolbar which sets the
view to the previous one (if the user does several zooms/pans,
this button allows to go back in the "history of views")
"""
"""
It calls the forward function of the matplotlib toolbar which sets the
view to the next one (if the user does several zooms/pans,
this button allows to go forward in the "history of views"
"""
"""The button_pan is connected to the pan function of the toolbar
Depending on the buttons that are active or checked, when the pan
function is used, it does not disable all the buttons.
If the segment and threshold button are not checked or used
when the pan button is clicked, it disables all the button
using self.Disable which disables everything except the button passed
in argument (in this case button_pan).
If the pan button is used while the segment button is checked,
it disables all the buttons (1st elif) except the segment button
but once it is finished (so the zoom button becomes unchecked)
then it enables only the editing buttons (as long as the segment
button is still checked) such as New Cell, Add Region, Eraser,
Brush,etc.. and the other toolbar buttons (3rd elif)
If the pan button is clicked while the threshold button is checked,
it disables all the button except the threshold button (2nd elif).
Once the pan button is unchecked, it enables the toolbar buttons
(4th elif)
In any other case, it just enables all the buttons again.
"""
self.Nvgtlbar.pan()
mattminder
committed
if (self.button_pan.isChecked()):
self.Disable(self.button_pan)
else:
self.Enable(self.button_pan)
"""This function is called everytime the Extract Fluorescence button is
clicked (self.button_extractfluorescence).
self.Disable(self.button_extractfluorescence)
self.WriteStatusBar('Extracting ...')
# Get last image with mask
for time_index in range(self.reader.sizet-1, -1, -1):
# Test if time has a mask
file = h5py.File(self.reader.hdfpath, 'r+')
time_exist = self.reader.TestTimeExist(time_index, self.FOVindex, file)
file.close()
if not time_exist:
continue
# load picture and sheet
image = self.reader.LoadImageChannel(time_index, self.FOVindex,
self.reader.default_channel)
mask = self.reader.LoadMask(time_index, self.FOVindex)
# Break if mask is non-empty
if mask.sum()>0:
break
if time_index==0:
QMessageBox(self, 'Error', 'No mask found')
self.Enable(self.button_extractfluorescence)
self.ClearStatusBar()
# Launch dialog with last image
dlg = extr.Extract(image, mask, self.reader.channel_names)
dlg.exec()
if dlg.exit_code == 1: # Fluorescence
self.ExtractFluo(dlg.cells, dlg.desel_cells, dlg.outfile, dlg.file_list)
self.ExtractMask(dlg.desel_cells, dlg.outfile)
self.Enable(self.button_extractfluorescence)
self.ClearStatusBar()
def ExtractMask(self, desel_cells, outfile):
"""Extract the mask to the specified tiff file. Only take cells
specified by the cell_list"""
mask_list = []
for time_index in range(0, self.reader.sizet):
# Test if time has a mask
file = h5py.File(self.reader.hdfpath, 'r+')
time_exist = self.reader.TestTimeExist(time_index, self.FOVindex, file)
file.close()
if not time_exist:
continue
mask = self.reader.LoadMask(time_index, self.FOVindex)
mask[mask==cell] = 0
mask_list.append(mask)
imageio.mimwrite(outfile, np.array(mask_list, dtype=np.uint16))
def ExtractFluo(self, sel_cells, desel_cells, csv_filename, channel_list):
"""This is the function that takes as argument the filepath to the xls
file and writes in the file.
It iterates over the different channels (or the sheets of the file,
each channel has one sheet.), and reads the image corresponding
to the time, field of view and channel index. It reads the already
existing file and makes a copy in which the data will be written in it.
The first step of calculating the data is to iterate through each
cell/segment of the mask (so each cell is a submatrix of one value
in the matrix of the mask).
For each of these value /cell, the area is extracted as being
the number of pixels corresponding to this cell/value.
(it is known from the microscope settings how to convert
the pixel in area).
The total intensity is just the value of the pixel and it is added over
all the pixels corresonding to the cell/value.
The mean is then calculated as being the total intensity divided by
the number of pixels (which here is equal to the area also).
With the mean it is then possible to calculate the variance of the
Then, it is checked if the value of the cell (cell number) already
exists in the first column, if it already exists it continues to
find the column corresponding to the time index where the values
should be written. It sets the flag to True such that it does not
write the cell as new one and adds it at the end of the column
If the value is not found in the cell number column (new cell or
first time writing in the file), the flag is False, thus it adds the
cell number at the end of the column.
It then saves the xls file.
# List of cell properties
cell_list = []
for time_index in range(0, self.reader.sizet):
# Test if time has a mask
file = h5py.File(self.reader.hdfpath, 'r+')
time_exist = self.reader.TestTimeExist(time_index, self.FOVindex, file)
file.close()
if not time_exist:
continue
mask = self.reader.LoadMask(time_index, self.FOVindex)
for channel in channel_list:
# check if channel is in list of nd2 channels
try:
channel_ix = self.reader.channel_names.index(channel)
image = self.reader.LoadImageChannel(time_index, self.FOVindex, channel_ix)
# channel is a file
except ValueError:
image = load_image(channel, ix=time_index)
for val in np.unique(mask):
# bg is not cell
if val == 0:
continue
# Calculate stats
stats = self.cell_statistics(image, mask == val)
stats['Time'] = time_index
stats['Channel'] = channel
stats['Cell'] = val
stats['Disappeared'] = not (val in sel_cells)
cell_list.append(stats)
# Use Pandas to write csv
df = pd.DataFrame(cell_list)
df.to_csv(csv_filename, index=False)
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
def cell_statistics(self, image, mask):
"""Calculate statistics about cells. Passing None to image will
create dictionary to zeros, which allows to extract dictionary keys"""
if image is not None:
cell_vals = image[mask]
area = mask.sum()
tot_intensity = cell_vals.sum()
mean = tot_intensity/area if area > 0 else 0
var = np.var(cell_vals)
# Center of mass
y,x = mask.nonzero()
com_x = np.mean(x)
com_y = np.mean(y)
# PCA only works for multiple points
if area > 1:
pca = PCA().fit(np.array([y,x]).T)
pc1_x, pc1_y = pca.components_[0,:]
angle = np.arctan(pc1_y / pc1_x) / np.pi * 360
v1, v2 = pca.explained_variance_
roundness = v2 / v1
else:
angle = 0
roundness = 1
else:
mean = 0
var = 0
tot_intensity = 0
com_x = 0
com_y = 0
angle = 0
roundness = 0
return {'Mean': mean,
'Variance': var,
'Total Intensity': tot_intensity,
'Center of Mass X': com_x,
'Center of Mass Y': com_y,
'Cell Angle': angle,
'Roundness': roundness}
# -----------------------------------------------------------------------------
# NEURAL NETWORK
def ShowHideCNNbuttons(self):
"""hide and show the buttons corresponding to the neural network.
this function is called by the button CNN which is hidden. But
if activated in the InitLayout.py then you can have a button
which hides the CNN buttons (which are now on the normal also
hidden...).
"""
if self.button_hide_show.isChecked():
self.button_cnn.setVisible(True)
else:
self.button_cnn.setVisible(False)
def LaunchBatchPrediction(self):
"""This function is called whenever the button Launch CNN is pressed.
It allows to run the neural network over a time range and selected
field of views.
mattminder
committed
It creates a dialog window with two entries, that define the time range
and a list where the user can select the desired fields of view.
Once it reads all the value, it calls the neural network function
inside of self.PredThreshSeg and it does the prediction of the neural
network, thresholds this prediction and then segments it.
"""
def reset():
self.m.UpdatePlots()
self.ClearStatusBar()
self.Enable(self.button_cnn)
self.EnableCNNButtons()
self.WriteStatusBar('Running the neural network...')
self.Disable(self.button_cnn)
# creates a dialog window from the LaunchBatchPrediction.py file
# this if tests if the user pressed 'ok' in the dialog window
if dlg.exec_() == QDialog.Accepted:
# it tests if the user has entered some values
# if not it ignores and returns.
if not (dlg.entry1.text()!= '' and dlg.entry2.text() != ''):
QMessageBox.critical(self, "Error", "No Time Specified")
# reads out the entry given by the user and converts the index
# to integers
time_value1 = int(dlg.entry1.text())
time_value2 = int(dlg.entry2.text())
# it tests if the first value is smaller or equal such that
# time_value1 is the lower range of the time range
# and time_value2 the upper boundary of the range.
if time_value1 > time_value2 :
QMessageBox.critical(self, "Error", 'Invalid Time Constraints')
return
# displays that the neural network is running
self.WriteStatusBar('Running the neural network...')
#it iterates in the list of the user-selected fields
#of view, to return the corresponding index, the function
#dlg.listfov.row(item) is used which gives an integer
if len(dlg.listfov.selectedItems())==0:
QMessageBox.critical(self, "Error", "No FOV Selected")
for item in dlg.listfov.selectedItems():
#iterates over the time indices in the range
for t in range(time_value1, time_value2+1):
#calls the neural network for time t and selected
#fov
if dlg.entry_threshold.text() != '':
thr_val = float(dlg.entry_threshold.text())
else:
thr_val = None
if dlg.entry_segmentation.text() != '':
seg_val = int(dlg.entry_segmentation.text())
else:
seg_val = 10
self.PredThreshSeg(t, dlg.listfov.row(item), thr_val, seg_val,
# apply tracker if wanted and if not at first time
temp_mask = self.reader.CellCorrespondance(t, dlg.listfov.row(item))
self.reader.SaveMask(t,dlg.listfov.row(item), temp_mask)
def PredThreshSeg(self, timeindex, fovindex, thr_val, seg_val,
is_pc):
"""
This function is called in the LaunchBatchPrediction function.
This function calls the neural network function in the
InteractionDisk.py file and then thresholds the result
of the prediction, saves this thresholded prediction.
Then it segments the thresholded prediction and saves the
im = self.reader.LoadOneImage(timeindex, fovindex)
pred = self.LaunchPrediction(im, is_pc)
thresh = self.ThresholdPred(thr_val, pred)
seg = segment(thresh, pred, seg_val)
self.reader.SaveMask(timeindex, fovindex, seg)
def LaunchPrediction(self, im, is_pc):
"""It launches the neural neutwork on the current image and creates
an hdf file with the prediction for the time T and corresponding FOV.
"""
if is_pc:
im = skimage.exposure.equalize_adapthist(im)
im = im*1.0;
pred = nn.prediction(im)
else:
'Brightfield support is not implemented yet. '
'Using the same neural net as for phase contrast. '
'We recommend choosing a high threshold when '
'predicting brightfield images, around 0.95 '
'seems to work reasonably well.')
im = skimage.exposure.equalize_adapthist(im)
im = im*1.0;
pred = nn.prediction(im)
return pred
def ThresholdPred(self, thvalue, pred):
"""Thresholds prediction with value"""
if thvalue == None:
thresholdedmask = nn.threshold(pred)
else:
thresholdedmask = nn.threshold(pred,thvalue)
return thresholdedmask
def SelectChannel(self, index):
"""This function is called when the button to select different channels
is used. From the displayed list in the button, the chosen index
corresponnds to the same index in the list of channels from the reader.
So, it sets the default channel with the new index (called index below)
"""
self.reader.default_channel = index
# update the pictures using the same function as the one used to
# change the fields of view.
"""This function is called when the button containing the list of
fields od view is used.
The index correspondds to the field of view selected in the list.
"""
# mask is automatically saved.
self.reader.SaveMask(self.Tindex, self.FOVindex, self.m.plotmask)
# it updates the fov in the plot with the new index.
def ChangeFOV(self):
"""
it changes the fov or channel according to the choice of the user
and it updates the plot shown and it initializes the new fov/channel
at t=0 by default.
"""
# load the image and mask for the current plot
self.m.currpicture = self.reader.LoadOneImage(self.Tindex,self.FOVindex)
self.m.plotmask = self.reader.LoadMask(self.Tindex,self.FOVindex)
# sets the image and the mask to 0 for the previous plot
self.m.prevpicture = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
self.m.prevplotmask = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
# load the image and the mask for the next plot, check if it exists
if self.Tindex+1 < self.reader.sizet:
self.m.nextpicture = self.reader.LoadOneImage(self.Tindex+1, self.FOVindex)
self.m.nextplotmask = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
# enables the next frame button in case it was disabled when the
# fov/channel was changed
self.button_nextframe.setEnabled(True)
else:
self.m.nextpicture = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
self.m.nextplotmask = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
# disables the next frame button if the mask or the picture
# does not exist.
self.button_nextframe.setEnabled(False)
# once the images and masks are loaded into the variables, they are
# displaye in the gui.
# disables the previous frame button in case it was active before
# changing fov/channel.
# updates the title of the plots to display the right time indices
# aboves the plots.
# if the button to hide the mask was checked before changing fov/channel,
# it hides the mask again.
if self.button_hidemask.isChecked():
self.m.HideMask()
# the button to set the time index is also set to 0/default again.
# enables the neural network buttons if there is already an
# existing prediction for the current image.
def ReloadThreeMasks(self):
"""
A function which replots all the masks at the current time and fov
indices. Needed after the batch prediction is completed to display
the result of the NN.
"""
if self.Tindex >= 0 and self.Tindex <= self.reader.sizet-1:
if self.Tindex == 0:
self.button_nextframe.setEnabled(True)
if self.Tindex < self.reader.sizet-1:
self.m.nextplotmask = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
else:
np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
self.m.prevplotmask = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
self.button_previousframe.setEnabled(False)
elif self.Tindex == self.reader.sizet-1:
self.button_previousframe.setEnabled(True)
self.m.prevplotmask = self.reader.LoadMask(self.Tindex-1, self.FOVindex)
self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
self.m.nextplotmask = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
self.button_nextframe.setEnabled(False)
else:
self.button_nextframe.setEnabled(True)
self.button_previousframe.setEnabled(True)
self.m.prevplotmask = self.reader.LoadMask(self.Tindex-1, self.FOVindex)
self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
self.m.nextplotmask = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
if self.button_hidemask.isChecked():
self.m.HideMask()
self.EnableCNNButtons()
else:
return
"""This funcion is called whenever the user gives a new time index,
to jump to the new given index, once "enter" button is pressed.
# it reads out the text in the button and converts it to an int.
newtimeindex = int(self.button_timeindex.text())
if newtimeindex >= 0 and newtimeindex <= self.reader.sizet-1:
self.reader.SaveMask(self.Tindex, self.FOVindex, self.m.plotmask)
if self.Tindex == 0:
self.button_nextframe.setEnabled(True)
self.m.nextpicture = self.reader.LoadOneImage(self.Tindex+1,self.FOVindex)
self.m.nextplotmask = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
self.m.currpicture = self.reader.LoadOneImage(self.Tindex, self.FOVindex)
self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
self.m.prevpicture = np.zeros([self.reader.sizey, self.reader.sizex],
dtype = np.uint16)
self.m.prevplotmask = np.zeros([self.reader.sizey, self.reader.sizex],
dtype = np.uint16)
elif self.Tindex == self.reader.sizet-1:
self.button_previousframe.setEnabled(True)
self.m.prevpicture = self.reader.LoadOneImage(self.Tindex-1, self.FOVindex)
self.m.prevplotmask = self.reader.LoadMask(self.Tindex-1, self.FOVindex)
self.m.currpicture = self.reader.LoadOneImage(self.Tindex, self.FOVindex)
self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
self.m.nextpicture = np.zeros([self.reader.sizey, self.reader.sizex],
dtype = np.uint16)
self.m.nextplotmask = np.zeros([self.reader.sizey, self.reader.sizex],
dtype = np.uint16)
else:
self.button_nextframe.setEnabled(True)
self.button_previousframe.setEnabled(True)
self.m.prevpicture = self.reader.LoadOneImage(self.Tindex-1, self.FOVindex)
self.m.prevplotmask = self.reader.LoadMask(self.Tindex-1, self.FOVindex)
self.m.currpicture = self.reader.LoadOneImage(self.Tindex, self.FOVindex)
self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
self.m.nextpicture = self.reader.LoadOneImage(self.Tindex+1,self.FOVindex)
self.m.nextplotmask = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
self.UpdateTitleSubplots()
self.button_timeindex.clearFocus()
self.button_timeindex.setText(str(self.Tindex)+'/'+str(self.reader.sizet-1))
if self.button_hidemask.isChecked():
self.m.HideMask()
self.EnableCNNButtons()
else:
self.button_timeindex.clearFocus()
return
self.Disable(self.button_cellcorespondance)
self.WriteStatusBar('Doing the cell correspondance')
if self.Tindex != 0:
self.m.plotmask = self.reader.CellCorrespondance(self.Tindex, self.FOVindex)
self.m.updatedata()
else:
self.m.plotmask = self.reader.LoadSeg(self.Tindex, self.FOVindex)
self.m.updatedata()
self.Enable(self.button_cellcorespondance)
self.button_cellcorespondance.setChecked(False)
self.ClearStatusBar()
mattminder
committed
def ButtonSaveSegMask(self):
"""saves the segmented mask
"""
self.reader.SaveSegMask(self.Tindex, self.FOVindex, self.m.plotmask)
"""This function is called when the previous frame buttons is pressed
and it tests if the buttons is enabled and if so it calls the
BackwardTime() function. It should avoid the let the user do multiple
clicks and that the function is then called afterwards several times,
once the frames and masks of the current time index have been loaded.
"""
if self.button_previousframe.isEnabled():
self.button_previousframe.setEnabled(False)
self.BackwardTime()
if self.Tindex >0:
self.button_previousframe.setEnabled(True)
else:
return
"""This function is called when the next frame buttons is pressed
and it tests if the buttons is enabled and if so it calls the
ForwardTime() function. It should avoid the let the user do multiple
clicks and that the function is then called afterwards several times,
once the frames and masks of the current time index have been loaded.
"""
if self.button_nextframe.isEnabled():
self.button_nextframe.setEnabled(False)
self.ForwardTime()
if self.Tindex + 1 < self.reader.sizet:
self.button_nextframe.setEnabled(True)
def ForwardTime(self):
"""This function switches the frame in forward time index. And it tests
several conditions if t == lastTimeIndex-1, because then the next frame
button has to be disabled. It also tests if the show value of cells
button and hidemask are active in order to hide/show the mask or to
# the t frame is defined as the currently shown frame on the display.
# If the button "Next time frame" is pressed, this function is called
self.WriteStatusBar('Loading the next frame...')
self.Disable(self.button_nextframe)
if self.Tindex + 1 < self.reader.sizet - 1 :
self.reader.SaveMask(self.Tindex, self.FOVindex, self.m.plotmask)
self.m.prevpicture = self.m.currpicture.copy()
self.m.prevplotmask = self.m.plotmask.copy()
self.m.currpicture = self.m.nextpicture.copy()
self.m.plotmask = self.m.nextplotmask.copy()
self.m.nextpicture = self.reader.LoadOneImage(self.Tindex+2, self.FOVindex)
self.m.nextplotmask = self.reader.LoadMask(self.Tindex+2, self.FOVindex)
if self.Tindex + 1 == 1:
self.button_previousframe.setEnabled(True)
self.reader.SaveMask(self.Tindex, self.FOVindex, self.m.plotmask)
self.m.prevpicture = self.m.currpicture.copy()
self.m.prevplotmask = self.m.plotmask.copy()
self.m.currpicture = self.m.nextpicture.copy()
self.m.plotmask = self.m.nextplotmask.copy()
self.m.nextpicture = np.zeros([self.reader.sizey, self.reader.sizex],
dtype = np.uint16)
self.m.nextplotmask = np.zeros([self.reader.sizey,self.reader.sizex],
dtype = np.uint16)
self.m.UpdatePlots()
self.Tindex = self.Tindex+1
self.UpdateTitleSubplots()
if self.button_hidemask.isChecked():
self.m.HideMask()
self.Enable(self.button_nextframe)
self.button_timeindex.setText(str(self.Tindex)+'/'+str(self.reader.sizet-1))
"""This function switches the frame in backward time index. And it
several conditions if t == 1, because then the button previous frame has to
be disabled. It also tests if the show value of cells button and
hidemask are active in order to hide/show the mask or to show the cell
values.
"""
# the t frame is defined as the currently shown frame on the display.
# If the button "Previous time frame" is pressed, this function is called
self.WriteStatusBar('Loading the previous frame...')
self.reader.SaveMask(self.Tindex, self.FOVindex, self.m.plotmask)
self.m.nextpicture = self.m.currpicture.copy()
self.m.nextplotmask = self.m.plotmask.copy()
self.m.currpicture = self.m.prevpicture.copy()
self.m.plotmask = self.m.prevplotmask.copy()
self.m.prevpicture = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
self.m.prevplotmask = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
self.button_previousframe.setEnabled(False)
else:
self.m.prevpicture = self.reader.LoadOneImage(self.Tindex-2, self.FOVindex)
self.m.prevplotmask = self.reader.LoadMask(self.Tindex-2, self.FOVindex)
if self.Tindex-1 == self.reader.sizet-2:
self.button_nextframe.setEnabled(True)
if self.button_hidemask.isChecked():
self.m.HideMask()
self.Tindex -= 1
self.UpdateTitleSubplots()
self.button_previousframe.setEnabled(True)
self.button_timeindex.setText(str(self.Tindex)+'/' + str(self.reader.sizet-1))
# -----------------------------------------------------------------------------
# MANUAL MASK CORRECTIONS
def ChangeOneValue(self):
"""This function is called when the button Change cell value is
clicked. It displays the instructions on the status bar.
And if the user clicks in the graph where the current mask is displayed
it connects the event of the click (meaning that user has clicked on
one cell) to the function self.DialogBoxChangeOneValue.
This function will then replaces the cell selected by the user with
the click with a new value entered by the user.
"""
# displaying the instructions on the statusbar
mattminder
committed
'Left-click to select cell, right-click to abort.'))
# disables all the buttons
self.Disable(self.button_changecellvalue)
# connects the event "press mouse button" in the matplotlib plot
# (picture) to the function self.DialogBoxChangeOneValue
self.id = self.m.mpl_connect('button_press_event', self.DialogBoxChangeOneValue)
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
def DialogBoxChangeOneValue(self, event):
"""This function is called when the user after the user has selected
the button Change cell value and clicked in the picture to select
the desired cell to change.
It first deconnects the mouse click event in matplotlib with this
function to not generate any other dialog window.
It then tests if the click is inside the matplotlib plot (if it is
outside it equals to None) and if it is the current and editable plot
(the one in the middle of the gui, self.m.ax)
If is true, then it sets the coordinates to int. and creates a dialog
window where the user is asked to type a value to set it to the cell.
If the user presses ok, it tests if the entry is valid (>0 and not
empty) and looks for the old cell value and replaces it. And then
it updates the plot such that the result of the change can be seen.
"""
# the function is disconnected from the matplotlib event.
self.m.mpl_disconnect(self.id)
# test if the button is a left click and if the coordinates
# chosen by the user click is inside of the current matplotlib plot
# which is given by self.m.ax
if (event.button == 1
and (event.xdata != None and event.ydata != None)
and self.m.ax == event.inaxes):
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
newx = int(event.xdata)
newy = int(event.ydata)
# creates a dialog window
dlg = cocv.CustomDialog(self)
#if the user presses 'ok' in the dialog window it executes the code
#else it does nothing
if dlg.exec_():
#it tests that the user has entered some value, that it is not
#empty and that it is equal or bigger to 0.
if dlg.entry1.text() != '' and int(dlg.entry1.text()) >= 0:
#reads the new value to set and converts it from str to int
value = int(dlg.entry1.text())
# gives the coordinates where it is equal to the value
# selected by the user. And it replaces it with the new
# value.
self.m.plotmask[self.m.plotmask == self.m.plotmask[newy,newx]] = value
# updates the plot to see the modification.
self.m.updatedata()
self.Enable(self.button_changecellvalue)
self.button_changecellvalue.setChecked(False)
mattminder
committed
self.SaveMask()
self.ClearStatusBar()
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
def DialogBoxECV(self, s):
"""This functions creates from the ExchangeCellValues.py file a
window which takes two integer entries and then swaps the cells having
the given integer values.
"""
# creates a dialog window from the ExchangeCellValues.py file
dlg = ecv.CustomDialog(self)
# if the user presses 'ok', it executes the code
if dlg.exec_():
# it tests if both value to be swapped are not empty.
if dlg.entry1.text()!= '' and dlg.entry2.text() != '':
# reads out the values and converts it into integers.
value1 = int(dlg.entry1.text())
value2 = int(dlg.entry2.text())
# calls the function which does the swap
mattminder
committed
try:
self.m.ExchangeCellValue(value1,value2)
except ValueError as e:
QMessageBox.critical(self, 'Error', str(e))
mattminder
committed
self.SaveMask()
else:
return
def MouseDraw(self):
"""
This function is called whenever the brush or the eraser button is
pressed. On the first press event it calls the self.m.OneClick, which
tests whether it is a right click or a left click. If it a right click
it assigns the value of the pixel which has been right clicked
to self.cellval, meaning that the next drawn pixels will be set to this
value.
If it is left clicked, then it draws a 3x3 square with the current
value of self.cellval.
If after left clicking you drag the mouse, then you start drawing
using the mouse and it stops once you release the left click.
Same for the eraser button, it sets directly the value of self.cellval
to 0.
"""
do_draw = self.button_drawmouse.isChecked()
do_erase = self.button_eraser.isChecked()
if do_draw:
self.WriteStatusBar(('Draw using the brush, right click to select '
'the cell to draw.'))
self.Disable(self.button_drawmouse)
pixmap = QtGui.QPixmap('./icons/brush2.png')
elif do_erase:
self.WriteStatusBar('Erasing by setting the values to 0.')
self.Disable(self.button_eraser)
pixmap = QtGui.QPixmap('./icons/eraser.png')
self.m.cellval = 0
radius = self.spinbox_brushsize.value()
self.id2 = self.m.mpl_connect('button_press_event',
lambda e: self.m.OneClick(e, radius))
self.id = self.m.mpl_connect('motion_notify_event',
lambda e: self.m.PaintBrush(e, radius))
self.id3 = self.m.mpl_connect('button_release_event', self.m.ReleaseClick)
cursor = QtGui.QCursor(pixmap, 0,9)
else:
self.m.mpl_disconnect(self.id3)
self.m.mpl_disconnect(self.id2)
self.m.mpl_disconnect(self.id)
QApplication.restoreOverrideCursor()
self.Enable(self.button_drawmouse)
self.Enable(self.button_eraser)
mattminder
committed
self.SaveMask()
"""This function updates the title of the plots according to the
current time index. So it called whenever a frame or a fov is changed.
"""
if self.Tindex == 0:
self.m.titlecurr.set_text('Time index {}'.format(self.Tindex))
self.m.titleprev.set_text('No frame {}'.format(''))
self.m.titlenext.set_text('Next time index {}'.format(self.Tindex+1))
elif self.Tindex == self.reader.sizet-1:
self.m.titlecurr.set_text('Time index {}'.format(self.Tindex))
self.m.titleprev.set_text('Previous time index {}'.format(self.Tindex-1))
self.m.titlenext.set_text('No frame {}'.format(''))
else:
self.m.titlecurr.set_text('Time index {}'.format(self.Tindex))
self.m.titleprev.set_text('Previous time index {}'.format(self.Tindex-1))
self.m.titlenext.set_text('Next time index {}'.format(self.Tindex+1))
this method is called when the button New Cell is clicked. If the button
state corresponds to True (if is activated) then it connects the mouse
clicks on the pyqt window to the canvas (so to the matplolib figure).
The connection has an "id" which is given by the integer self.id
After the connections is made, it calls the Disable function with argument 0
which turns off the other button(s).
If the button is clicked but it is deactivated then it disconnects the
connection between the canvas and the window (the user can not interact
Storemouseclicks is a list corresponding to the coordinates of all mouse
clicks between the activation and the deactivation of the button.
So if it is empty, it does not draw anything because no clicks
But if it has some coordinates, it will draw a polygon where the vertices
are the coordinates of all the mouseclicks.
Once the figure has been updated with a new polygon, the other button(s)
self.WriteStatusBar(('Draw a new cell. Use the left click to '
'produce a polygon with a new cell value. '
'Click the button again to confirm.'))
self.m.tempmask = self.m.plotmask.copy()
self.id = self.m.mpl_connect('button_press_event', self.m.MouseClick)
self.Disable(self.button_newcell)
else:
self.m.mpl_disconnect(self.id)
if self.m.storemouseclicks and self.TestSelectedPoints():
self.m.DrawRegion(True)
else:
self.m.updatedata()
self.Enable(self.button_newcell)
mattminder
committed
self.SaveMask()
def TestSelectedPoints(self):
"""This function is just used to catch an exception, when the new cell
or the add region function is called. If all the dots drawn by the user
are located on one line (horizontal or vertical) the DrawRegion
function calls a method to create a polygon and
it can not make a polygon out of straight line so it gives an error.
In order to prevent this error, this function avoids to attempt to draw
by returning False if the square are all on one line.
"""
allx = list(np.array(self.m.storemouseclicks)[:,0])
ally = list(np.array(self.m.storemouseclicks)[:,1])
resultx = all(elem == allx[0] for elem in allx)
resulty = all(elem == ally[0] for elem in ally)
if resultx or resulty:
return False
else:
return True
this method is called when the button Add region is clicked. If the button
state corresponds to True (if is activated) then it connects the mouse
clicks on the pyqt window to the canvas (so to the matplolib figure).
The connection has an "id" which is given by the integer self.id
After the connections is made, it calls the Disable function with argument 1
which turns off the other button(s).
If the button is clicked and it is deactivated then it disconnects the
connection between the canvas and the window (the user can not interact
Storemouseclicks is a list corresponding to the coordinates of all mouse
clicks between the activation and the deactivation of the button.
So if it is empty, it does not draw anything because no clicks
But if it has some coordinates, it will draw a polygon where the vertices
are the coordinates of all the mouseclicks.
Once the figure has been updated with a new polygon, the other button(s)
self.WriteStatusBar(('Select the cell with the first click, '
'then draw polygon with subsequent '
'clicks. Reclick the button to confirm.'))
self.id = self.m.mpl_connect('button_press_event', self.m.MouseClick)
self.Disable(self.button_add_region)
# test if the list is not empty and if the dots are not all in the same line
if self.m.storemouseclicks and self.TestSelectedPoints():
self.m.DrawRegion(False)
else:
self.m.updatedata()
mattminder
committed
self.SaveMask()
# -----------------------------------------------------------------------------
# BUTTON ENABLE / DISABLE
def Enable(self, button):
"""
this functions turns on buttons all the buttons, depending on the time
index. (next and previous buttons should not be turned on if t = 0
mattminder
committed
for k in range(0, len(self.buttonlist)):
if button != self.buttonlist[k]:
self.buttonlist[k].setEnabled(True)
if self.Tindex == 0:
self.button_previousframe.setEnabled(False)
if self.Tindex == self.reader.sizet-1:
self.button_nextframe.setEnabled(False)
this functions turns off all the buttons except the one given in
argument.
"""
for k in range(0,len(self.buttonlist)):
if button != self.buttonlist[k]:
self.buttonlist[k].setEnabled(False)
if self.reader.TestTimeExist(self.Tindex, self.FOVindex):
self.button_cellcorespondance.setEnabled(True)
self.button_extractfluorescence.setEnabled(True)
else:
self.button_cellcorespondance.setEnabled(False)
self.button_extractfluorescence.setEnabled(False)
def EnableCorrectionsButtons(self):
self.button_newcell.setEnabled(True)
self.button_add_region.setEnabled(True)
self.button_drawmouse.setEnabled(True)
self.button_eraser.setEnabled(True)
self.button_exval.setEnabled(True)
self.button_changecellvalue.setEnabled(True)
self.button_showval.setEnabled(True)
def DisableCorrectionsButtons(self):
self.button_newcell.setEnabled(False)
self.button_add_region.setEnabled(False)
self.button_drawmouse.setEnabled(False)
self.button_eraser.setEnabled(False)
self.button_exval.setEnabled(False)
self.button_changecellvalue.setEnabled(False)
self.button_showval.setEnabled(False)
mattminder
committed
def SaveMask(self):
"""
When this function is called, it saves the current mask
(self.m.plotmask)
"""
self.reader.SaveMask(self.Tindex, self.FOVindex, self.m.plotmask)
def WriteStatusBar(self, text):
"""Writes text to status bar"""
self.statusBarText.setText(text)
def ClearStatusBar(self):
"""Removes text from status bar"""
self.statusBarText.setText('')
if __name__ == '__main__':
app = QApplication(sys.argv)
# If two arguments are given, make them nd2name and hdfname
if len(sys.argv)==3:
nd2name1 = sys.argv[1]
hdfname1 = sys.argv[2]
ex = App(nd2name1, hdfname1, '')
wind = dfb.FileBrowser()
if wind.exec_():
nd2name1 = wind.nd2name
hdfname1 = wind.hdfname
hdfnewname = wind.newhdfentry.text()
ex = App(nd2name1, hdfname1, hdfnewname)
sys.exit(app.exec_())
else:
app.exit()