Skip to content
Snippets Groups Projects
GUI_main.py 70.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • lpbsscientist's avatar
    lpbsscientist committed
    #!/usr/bin/env python3
    # -*- coding: utf-8 -*-
    """
    This script is the main script used to produce a GUI which should help for
    
    cell segmentation. This script can only read .nd2 files containing the 
    
    lpbsscientist's avatar
    lpbsscientist committed
    images of cells, especially it displays for each recorded positions (field
    of view) the pictures in the time axis.
    
    The script opens first a window which allows you to load an nd2 file and
    to load or create an hdf file. The hdf file contains all the masks, so if
    it is the first the user segments an nd2 file, a new one should be created.
    And it can be then loaded for later use.  Along with new hdf file, created
    
    by the name entered by the user (say filename), it creates three other hdf 
    files (filename_predicted.h5, filename_thresholded.h5 and 
    filename_segmented.h5) these contain all the steps of the NN to get to the 
    segmented picture. 
    
    After the first window is finished a second one opens, where at each time 
    index, three pictures 
    
    lpbsscientist's avatar
    lpbsscientist committed
    are displayed the t-1 picture, the t picture (current frame which can be
    edited) and the t+1 picture. Using the arrows one can navigate through time.
    On top of the picture, there is always a mask which is displayed, if no cells
    
    are present in the mask then the mask is blank and the user does not see it. 
    
    lpbsscientist's avatar
    lpbsscientist committed
    If one wants to hand anmotate the pictures, one can just start to draw on the
    picture using the different functions (New Cell, Add Region, Brush, Eraser,
    
    mattminder's avatar
    mattminder committed
    Save Mask, ...) and the informations will be saved in the mask overlayed on 
    
    top of the pictures. 
    
    lpbsscientist's avatar
    lpbsscientist committed
    
    If one wants to segment using a neural network, one can press the
    
    corresponding button (Launch CNN) and select the time range and 
    
    lpbsscientist's avatar
    lpbsscientist committed
    the field of views on which the neural network is applied.
    
    Once the neural network has finished predicting, there are still no visible
    masks, but on the field of views and time indices where the NN has been
    applied, the threshold and segment buttons are enabled. By checking these
    two buttons one can either display the thresholded image of the prediction or
    display the segmentation of the thresholded prediction.
    
    At this stage, one can correct the segmentation of the prediction using
    the functions (New Cell, Add Region, etc..) by selecting the Segment
    checkbox and then save them using the Save Seg button.
    
    If the user is happy with the segmentation, the Cell Correspondance button 
    
    lpbsscientist's avatar
    lpbsscientist committed
    can be clicked. Until then, the cells get random numbers attributed by
    the segmentation algorithm. In order to keep track of the cell through time,
    the same cells should have the same number between two different time pictures.
    This can be (with some errors) achieved by the Cell Correspondance button,
    which tries to attribute the same number to corresponding cells in time.
    After that, the final mask is saved and it is always visible when you go on
    
    the corresponding picture. This mask can also be corrected using the 
    usual buttons (because the Cell Correspondance makes also mistakes). 
    
    lpbsscientist's avatar
    lpbsscientist committed
    import sys
    import numpy as np
    
    import pandas as pd
    import h5py
    
    # For writing excel files
    
    #from openpyxl import load_workbook
    #from openpyxl import Workbook
    
    lpbsscientist's avatar
    lpbsscientist committed
    
    # Import everything for the Graphical User Interface from the PyQt5 library.
    
    from PyQt5.QtWidgets import (QApplication, QMainWindow, QDialog, QFileDialog, 
    
    mattminder's avatar
    mattminder committed
        QMessageBox, QPushButton, QCheckBox, QAction, QStatusBar, QLabel)
    
    lpbsscientist's avatar
    lpbsscientist committed
    from PyQt5 import QtGui
    
    #Import from matplotlib to use it to display the pictures and masks.
    
    mattminder's avatar
    mattminder committed
    from matplotlib.backends.qt_compat import QtWidgets
    
    mattminder's avatar
    mattminder committed
    from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar
    
    from sklearn.decomposition import PCA
    
    import imageio
    
    #append all the paths where the modules are stored. Such that this script
    #looks into all of these folders when importing modules.
    sys.path.append("./unet")
    sys.path.append("./disk")
    sys.path.append("./icons")
    sys.path.append("./init")
    sys.path.append("./misc")
    
    lpbsscientist's avatar
    lpbsscientist committed
    
    #Import all the other python files
    #this file handles the interaction with the disk, so loading/saving images
    #and masks and it also runs the neural network.
    import InteractionDisk_temp as nd
    
    lpbsscientist's avatar
    lpbsscientist committed
    #this file contains a dialog window that takes two integers as entry to swap
    #two cell values
    import ExchangeCellValues as ecv
    
    lpbsscientist's avatar
    lpbsscientist committed
    #this file contains a dialog window which is opened before the main program
    #and allows to load the nd2 and hdf files by browsing through the computer.
    import DialogFileBrowser as dfb
    
    #this file contains a window that opens to change the value of one cell. It 
    
    lpbsscientist's avatar
    lpbsscientist committed
    #is opened as soon as the user presses with the left click on a specific cell.
    import ChangeOneCellValue as cocv
    
    lpbsscientist's avatar
    lpbsscientist committed
    #this file contains a dialog window where a time range and the field of views
    #can be selected to then launch a prediction of the neural network on
    #a specific range of pictures.
    import LaunchBatchPrediction as lbp
    
    #this file initializes all the buttons present in the gui, sets the shortcuts
    
    #to these buttons and also connect the buttons to the function that are 
    
    lpbsscientist's avatar
    lpbsscientist committed
    #triggered when the buttons are pressed.
    import InitButtons
    
    #this file contains the layout of the main window so it justs puts the buttons
    #and the pictures at the desired position in the main window.
    import InitLayout
    
    mattminder's avatar
    mattminder committed
    
    # PlotCanvas for fast plotting
    from PlotCanvas import PlotCanvas
    
    
    import Extract as extr
    from image_loader import load_image
    
    lpbsscientist's avatar
    lpbsscientist committed
    
    class NavigationToolbar(NavigationToolbar):
        """This is the standard matplotlib toolbar but only the buttons
    
        that are of interest for this gui are loaded. These buttons allow 
        to zoom into the pictures/masks and to navigate in the zoomed picture. 
    
    lpbsscientist's avatar
    lpbsscientist committed
        A Home button can be used to set the view back to the original view.
        """
        toolitems = [t for t in NavigationToolbar.toolitems if
                     t[0] in ('Home', 'Pan', 'Zoom','Back', 'Forward')]
    
    lpbsscientist's avatar
    lpbsscientist committed
    class App(QMainWindow):
        """This class creates the main window.
        """
    
        def __init__(self, nd2pathstr, hdfpathstr, newhdfstr):
            super().__init__()
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.title = 'YeaZ 1.0'
    
            # all these ids are integers which are used to set a connection between
            # the button and the function that this button calls.
            # There are three of them because it happens that one can trigger three 
            # different functions with one button.        
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.id = 0
            self.id2 = 0
    
            self.id3 = 0 
    
    lpbsscientist's avatar
    lpbsscientist committed
    
            self.reader = nd.Reader(hdfpathstr, newhdfstr, nd2pathstr)
    
            # these variables are used to create/read/load the excel file used
            # to write the fluorescence values extracted. For each field of view,
            # the user will be asked each time to create a new xls file for the 
            # field of view or to load an existing field of view (this is the role
            # of the boolean variable)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.xlsfilename = ''
            self.nd2path = nd2pathstr
    
            # Set the indices for the time axis and the field of view index. These
            # indices represent everywhere the current picture (the one that can be
            # edited, i.e. the time t frame)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.Tindex = 0
            self.FOVindex = 0
    
            # loading the first images of the cells from the nd2 file
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.currentframe = self.reader.LoadOneImage(self.Tindex,self.FOVindex)
    
    lpbsscientist's avatar
    lpbsscientist committed
            
    
            # check if the t+1 time frame exists, avoid failure if there is only
            # one picture in the folder/nd2 file
    
    lpbsscientist's avatar
    lpbsscientist committed
            if self.Tindex+1 < self.reader.sizet:
                self.nextframe = self.reader.LoadOneImage(self.Tindex+1, self.FOVindex)
            else:
                self.nextframe = np.zeros([self.reader.sizey, self.reader.sizex])
            
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.previousframe = np.zeros([self.reader.sizey, self.reader.sizex])
    
    
            # loading the first masks from the hdf5 file
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.mask_curr = self.reader.LoadMask(self.Tindex, self.FOVindex)
            self.mask_previous = np.zeros([self.reader.sizey, self.reader.sizex])
    
    lpbsscientist's avatar
    lpbsscientist committed
            
    
            # check if the t+1 mask exists, avoid failure if there is only
            # one mask in the hdf file
    
    lpbsscientist's avatar
    lpbsscientist committed
            if self.Tindex+1 < self.reader.sizet:
                self.mask_next = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
            else:
                self.mask_next = np.zeros([self.reader.sizey, self.reader.sizex])
            
    
            # creates a list of all the buttons, which will then be used in order
            # to disable all the other buttons at once when one button/function
            # is pressed/used in the gui.
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.buttonlist = []
    
            # setting buttons as attributes
            # the shortcuts for the buttons, the functions to which they are
            # connected to,... are all set up in the ButtonInit file which is called
            # in the self.initUI() method below.
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.button_newcell = QPushButton("New cell")
            self.buttonlist.append(self.button_newcell)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.button_add_region = QPushButton("Add region")
            self.buttonlist.append(self.button_add_region)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.button_savemask = QPushButton("Save Mask")
            self.buttonlist.append(self.button_savemask)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.button_drawmouse = QPushButton('Brush')
            self.buttonlist.append(self.button_drawmouse)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.button_eraser = QPushButton('Eraser')
            self.buttonlist.append(self.button_eraser)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.button_exval = QPushButton('Exchange Cell Values')
            self.buttonlist.append(self.button_exval)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.button_showval = QCheckBox('Show Cell Values')
            self.buttonlist.append(self.button_showval)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.button_hidemask = QCheckBox('Hide Mask')
            self.buttonlist.append(self.button_hidemask)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.button_nextframe = QPushButton("Next Time Frame")
            self.buttonlist.append(self.button_nextframe)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.button_previousframe = QPushButton("Previous Time Frame")
            self.buttonlist.append(self.button_previousframe)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.button_cnn = QPushButton('Launch CNN')
            self.buttonlist.append(self.button_cnn)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.button_threshold = QCheckBox('Threshold prediction')
            self.buttonlist.append(self.button_threshold)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.button_segment = QCheckBox('Segment')
            self.buttonlist.append(self.button_segment)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.button_cellcorespondance = QPushButton('Tracking')
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.buttonlist.append(self.button_cellcorespondance)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.button_changecellvalue = QPushButton('Change cell value')
    
            self.buttonlist.append(self.button_changecellvalue)        
            
    
            self.button_extractfluorescence = QPushButton('Extract')
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.buttonlist.append(self.button_extractfluorescence)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.button_hide_show = QPushButton('CNN')
            self.buttonlist.append(self.button_hide_show)
            
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.initUI()
    
    
        def initUI(self):
    
            """Initializing the widgets contained in the window. 
            Especially, it creates the widget to plot the 
            pictures/masks by creating an object of the PlotCanvas class self.m. 
    
    lpbsscientist's avatar
    lpbsscientist committed
            Every interaction with the masks or the pictures (loading new
            frames/editing the frames/masks) occurs through this class.
    
    lpbsscientist's avatar
    lpbsscientist committed
            This method initializes all the buttons with the InitButtons file.
            It connects the buttons to the functions that they should trigger,
    
            it sets the shortcuts to the buttons, a tool tip, 
            eventually a message on the status bar when the user hovers 
    
    lpbsscientist's avatar
    lpbsscientist committed
            over the button, etc..
    
            
            This function also sets all the layout in the InitLayout file. It 
    
    lpbsscientist's avatar
    lpbsscientist committed
            takes and places the widgets (buttons, canvas, toolbar).
    
    
            The function initializes a Menu Bar to have a menu which can be 
    
    lpbsscientist's avatar
    lpbsscientist committed
            improved later on.
            It sets a toolbar of the matplotlib library and hides it. But it allows
    
            to connect to the functions of this toolbar through "homemade" 
    
    lpbsscientist's avatar
    lpbsscientist committed
            QPushButtons instead of the ones provided by matplotlib.
            Finally, it sets a StatusBar which displays some text to describe
    
            the use of some buttons, or to show that the program is working on 
    
    lpbsscientist's avatar
    lpbsscientist committed
            something (running the neural network, loading frames, etc...)
    
    lpbsscientist's avatar
    lpbsscientist committed
            After all this has been initialized, the program is ready to be used.
            """
            self._main = QtWidgets.QWidget()
            self.setCentralWidget(self._main)
    
    
            # Here our canvas is created where using matplotlib, 
            # one can plot data to display the pictures and masks.
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.m = PlotCanvas(self)
    
            # Initialize all the buttons that are needed and the functions that are 
            # connected when the buttons are triggered.
    
    lpbsscientist's avatar
    lpbsscientist committed
            InitButtons.Init(self)
            InitLayout.Init(self)
    
            # MENU, TOOLBAR AND STATUS BAR
            # creates a menu just in case, some other functions can be added later
            # in this menu.
    
    lpbsscientist's avatar
    lpbsscientist committed
            menubar = self.menuBar()
    
            self.fileMenu = menubar.addMenu('File')   
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.saveactionmenu = QAction('Save')
            self.fileMenu.addAction(self.saveactionmenu)
            self.saveactionmenu.triggered.connect(self.ButtonSaveMask)
    
            # hide the toolbar and instead of the original buttons of matplotlib,
            # QPushbuttons are used and are connected to the functions of the toolbar
            # it is than easier to interact with these buttons (for example to 
            # to disable them and so on..)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.Nvgtlbar = NavigationToolbar(self.m, self)
            self.addToolBar(self.Nvgtlbar)
            self.Nvgtlbar.hide()
    
            # creates a status bar with user instructions
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.statusBar = QStatusBar()
            self.setStatusBar(self.statusBar)
    
            self.statusBarText = QLabel()
            self.statusBar.addWidget(self.statusBarText)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.show()
    
    lpbsscientist's avatar
    lpbsscientist committed
        def mousePressEvent(self, QMouseEvent):
    
            """this function is implemented just to have the QLineButtons of the 
    
    lpbsscientist's avatar
    lpbsscientist committed
            change time index button, setthreshold button and the setsegmentation
            button out of focus when the user clicks somewhere
            on the gui. (to unfocus the buttons)
            """
            self.button_timeindex.clearFocus()
            if self.button_SetThreshold.isEnabled():
                self.button_SetThreshold.clearFocus()
    
    lpbsscientist's avatar
    lpbsscientist committed
            if self.button_SetSegmentation.isEnabled():
                self.button_SetSegmentation.clearFocus()
    
    # -----------------------------------------------------------------------------
    # FUNCTIONS LINKED TO NAVIGATION
    # connect the functions of the toolbar to our custom QPushbuttons.
    
    lpbsscientist's avatar
    lpbsscientist committed
        def ZoomTlbar(self):
    
            """The button_zoom is connected to the zoom function of the toolbar 
    
    lpbsscientist's avatar
    lpbsscientist committed
            already present in the matplotlib library.
    
            
            Depending on the buttons that are active or checked, when the zoom 
    
    lpbsscientist's avatar
    lpbsscientist committed
            function is used, it does not disable all the buttons.
    
    lpbsscientist's avatar
    lpbsscientist committed
            If the segment and threshold button are not checked or used
            when the zoom button is clicked, it disables all the button
            using self.Disable which disables everything except the button passed
            in argument (in this case button_zoom).
    
    lpbsscientist's avatar
    lpbsscientist committed
            If the zoom button is used while the segment button is checked,
            it disables all the buttons (1st elif) except the segment button
    
            but once it is finished (so the zoom button becomes unchecked) 
    
    lpbsscientist's avatar
    lpbsscientist committed
            then it enables only the editing buttons (as long as the segment
    
            button is still checked) such as New Cell, Add Region, Eraser, 
    
    lpbsscientist's avatar
    lpbsscientist committed
            Brush,etc.. and the other toolbar buttons (3rd elif)
    
    lpbsscientist's avatar
    lpbsscientist committed
            If the zoom button is clicked while the threshold button is checked,
            it disables all the button except the threshold button (2nd elif).
            Once the zoom button is unchecked, it enables the toolbar buttons
            (4th elif)
            In any other case, it just enables all the buttons again.
            """
            self.Nvgtlbar.zoom()
    
            if (self.button_zoom.isChecked() and not(self.button_segment.isChecked() 
                or self.button_threshold.isChecked())):
    
    lpbsscientist's avatar
    lpbsscientist committed
                self.Disable(self.button_zoom)
    
    lpbsscientist's avatar
    lpbsscientist committed
            elif self.button_zoom.isChecked() and self.button_segment.isChecked():
                self.Disable(self.button_zoom)
                self.button_segment.setEnabled(True)
    
    lpbsscientist's avatar
    lpbsscientist committed
            elif self.button_zoom.isChecked() and self.button_threshold.isChecked():
                self.Disable(self.button_zoom)
                self.button_threshold.setEnabled(True)
    
    lpbsscientist's avatar
    lpbsscientist committed
            elif self.button_zoom.isChecked() == False and self.button_segment.isChecked():
                self.button_pan.setEnabled(True)
                self.button_home.setEnabled(True)
                self.button_back.setEnabled(True)
                self.button_forward.setEnabled(True)
                self.EnableCorrectionsButtons()
    
    lpbsscientist's avatar
    lpbsscientist committed
            elif self.button_zoom.isChecked() == False and self.button_threshold.isChecked():
                self.button_pan.setEnabled(True)
                self.button_home.setEnabled(True)
                self.button_back.setEnabled(True)
                self.button_forward.setEnabled(True)
    
    lpbsscientist's avatar
    lpbsscientist committed
            else:
                self.Enable(self.button_zoom)
    
    lpbsscientist's avatar
    lpbsscientist committed
        def HomeTlbar(self):
    
            """
            connects the home button to the home function of the matplotlib
            toolbar. It sets the view to the original view (no zoom)
            """
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.Nvgtlbar.home()
    
    
    lpbsscientist's avatar
    lpbsscientist committed
        def BackTlbar(self):
    
            """
            It calls the back function of the matplotlib toolbar which sets the 
            view to the previous one (if the user does several zooms/pans, 
            this button allows to go back in the "history of views")
            """
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.Nvgtlbar.back()
    
    
    lpbsscientist's avatar
    lpbsscientist committed
        def ForwardTlbar(self):
    
            """
            It calls the forward function of the matplotlib toolbar which sets the 
            view to the next one (if the user does several zooms/pans, 
            this button allows to go forward in the "history of views"
            """
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.Nvgtlbar.forward()
    
    
    lpbsscientist's avatar
    lpbsscientist committed
        def PanTlbar(self):
    
            """The button_pan is connected to the pan function of the toolbar 
    
    lpbsscientist's avatar
    lpbsscientist committed
            already present in the matplotlib library.
    
            
            Depending on the buttons that are active or checked, when the pan 
    
    lpbsscientist's avatar
    lpbsscientist committed
            function is used, it does not disable all the buttons.
    
    lpbsscientist's avatar
    lpbsscientist committed
            If the segment and threshold button are not checked or used
            when the pan button is clicked, it disables all the button
            using self.Disable which disables everything except the button passed
            in argument (in this case button_pan).
    
    lpbsscientist's avatar
    lpbsscientist committed
            If the pan button is used while the segment button is checked,
            it disables all the buttons (1st elif) except the segment button
    
            but once it is finished (so the zoom button becomes unchecked) 
    
    lpbsscientist's avatar
    lpbsscientist committed
            then it enables only the editing buttons (as long as the segment
    
            button is still checked) such as New Cell, Add Region, Eraser, 
    
    lpbsscientist's avatar
    lpbsscientist committed
            Brush,etc.. and the other toolbar buttons (3rd elif)
    
    lpbsscientist's avatar
    lpbsscientist committed
            If the pan button is clicked while the threshold button is checked,
            it disables all the button except the threshold button (2nd elif).
            Once the pan button is unchecked, it enables the toolbar buttons
            (4th elif)
            In any other case, it just enables all the buttons again.
            """
    
            self.Nvgtlbar.pan()
    
    
            if (self.button_pan.isChecked() and not(self.button_segment.isChecked()
                or self.button_threshold.isChecked())):
    
    lpbsscientist's avatar
    lpbsscientist committed
                self.Disable(self.button_pan)
    
    lpbsscientist's avatar
    lpbsscientist committed
            elif self.button_pan.isChecked() and self.button_segment.isChecked():
                self.Disable(self.button_pan)
                self.button_segment.setEnabled(True)
    
    lpbsscientist's avatar
    lpbsscientist committed
            elif self.button_pan.isChecked() and self.button_threshold.isChecked():
                self.Disable(self.button_pan)
                self.button_threshold.setEnabled(True)
    
    lpbsscientist's avatar
    lpbsscientist committed
            elif not(self.button_pan.isChecked()) and self.button_segment.isChecked():
    
    lpbsscientist's avatar
    lpbsscientist committed
                self.button_zoom.setEnabled(True)
                self.button_home.setEnabled(True)
                self.button_back.setEnabled(True)
                self.button_forward.setEnabled(True)
    
    lpbsscientist's avatar
    lpbsscientist committed
                self.EnableCorrectionsButtons()
    
    lpbsscientist's avatar
    lpbsscientist committed
            elif not(self.button_pan.isChecked()) and self.button_threshold.isChecked():
                self.button_zoom.setEnabled(True)
                self.button_home.setEnabled(True)
                self.button_back.setEnabled(True)
                self.button_forward.setEnabled(True)
    
    lpbsscientist's avatar
    lpbsscientist committed
            else:
                self.Enable(self.button_pan)
    
    
    lpbsscientist's avatar
    lpbsscientist committed
        def ButtonFluo(self):
    
            """This function is called everytime the Extract Fluorescence button is 
            clicked (self.button_extractfluorescence). 
    
            self.Disable(self.button_extractfluorescence)
            self.WriteStatusBar('Extracting ...')
            
            # Get last image with mask
    
            for time_index in range(self.reader.sizet-1, -1, -1):            
    
                # Test if time has a mask
                file = h5py.File(self.reader.hdfpath, 'r+')
                time_exist = self.reader.TestTimeExist(time_index, self.FOVindex, file)
                file.close()
                
                if not time_exist:
                    continue
                
                # load picture and sheet
                image = self.reader.LoadImageChannel(time_index, self.FOVindex, 
                                                     self.reader.default_channel)
                mask = self.reader.LoadMask(time_index, self.FOVindex)
                
                # Break if mask is non-empty
                if mask.sum()>0:
                    break
    
                
                if time_index==0:
                    QMessageBox(self, 'Error', 'No mask found')
                    self.Enable(self.button_extractfluorescence)
                    self.ClearStatusBar()
    
            
            # Launch dialog with last image
            dlg = extr.Extract(image, mask, self.reader.channel_names)
            dlg.exec()
            if dlg.exit_code == 1: # Fluorescence
                self.ExtractFluo(dlg.cells, dlg.outfile, dlg.file_list)
            elif dlg.exit_code == 2: # Mask
                self.ExtractMask(dlg.cells, dlg.outfile)
                
            self.Enable(self.button_extractfluorescence)
            self.ClearStatusBar()
    
    
        def ExtractMask(self, cell_list, outfile):
            """Extract the mask to the specified tiff file. Only take cells 
            specified by the cell_list"""
            
            mask_list = []
            for time_index in range(0, self.reader.sizet):
                
                # Test if time has a mask
                file = h5py.File(self.reader.hdfpath, 'r+')
                time_exist = self.reader.TestTimeExist(time_index, self.FOVindex, file)
                file.close()
                
                if not time_exist:
                    continue
    
                mask = self.reader.LoadMask(time_index, self.FOVindex)
                all_cells = np.unique(mask)
                for cell in set(all_cells)-set(cell_list):
                    mask[mask==cell] = 0
                mask_list.append(mask)
                
            imageio.mimwrite(outfile, np.array(mask_list, dtype=np.uint16))
                            
    
        def ExtractFluo(self, cells_to_use, csv_filename, channel_list):
    
    lpbsscientist's avatar
    lpbsscientist committed
            """This is the function that takes as argument the filepath to the xls
            file and writes in the file.
            It iterates over the different channels (or the sheets of the file,
            each channel has one sheet.), and reads the image corresponding
            to the time, field of view and channel index. It reads the already
            existing file and makes a copy in which the data will be written in it.
    
    lpbsscientist's avatar
    lpbsscientist committed
            The first step of calculating the data is to iterate through each
            cell/segment of the mask (so each cell is a submatrix of one value
            in the matrix of the mask).
            For each of these value /cell, the area is extracted as being
    
            the number of pixels corresponding to this cell/value. 
    
    lpbsscientist's avatar
    lpbsscientist committed
            (it is known from the microscope settings how to convert
            the pixel in area).
            The total intensity is just the value of the pixel and it is added over
            all the pixels corresonding to the cell/value.
            The mean is then calculated as being the total intensity divided by
            the number of pixels (which here is equal to the area also).
    
            With the mean it is then possible to calculate the variance of the 
    
    lpbsscientist's avatar
    lpbsscientist committed
            signal for one cell/value.
    
    lpbsscientist's avatar
    lpbsscientist committed
            Then, it is checked if the value of the cell (cell number) already
            exists in the first column, if it already exists it continues to
            find the column corresponding to the time index where the values
            should be written. It sets the flag to True such that it does not
            write the cell as new one and adds it at the end of the column
    
    lpbsscientist's avatar
    lpbsscientist committed
            If the value is not found in the cell number column (new cell or
    
            first time writing in the file), the flag is False, thus it adds the 
    
    lpbsscientist's avatar
    lpbsscientist committed
            cell number at the end of the column.
            It then saves the xls file.
    
    lpbsscientist's avatar
    lpbsscientist committed
            """
    
            # List of cell properties
            cell_list = []
    
            for time_index in range(0, self.reader.sizet):
                # Test if time has a mask
                file = h5py.File(self.reader.hdfpath, 'r+')
                time_exist = self.reader.TestTimeExist(time_index, self.FOVindex, file)
                file.close()
    
                if not time_exist:
                    continue
    
                mask = self.reader.LoadMask(time_index, self.FOVindex)
                
                for channel in channel_list:
                    # check if channel is in list of nd2 channels
                    try:
                        channel_ix = self.reader.channel_names.index(channel)
                        image = self.reader.LoadImageChannel(time_index, self.FOVindex, channel_ix)
                    
                    # channel is a file
                    except ValueError:
                        image = load_image(channel, ix=time_index)
                        
    
                    for val in np.unique(mask):
                        # bg is not cell
                        if val == 0:
                            continue
    
                        # disregard cells not in cell_list
                        if not (val in cells_to_use):
                            continue
    
                        
                        # Calculate stats
                        stats = self.cell_statistics(image, mask == val)
                        stats['Time'] = time_index
    
                        stats['Channel'] = channel
                        stats['Cell'] = val
    
                        cell_list.append(stats)
            
            # Use Pandas to write csv
            df = pd.DataFrame(cell_list)
    
            df.to_csv(csv_filename, index=False)
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.Enable(self.button_extractfluorescence)
    
            self.ClearStatusBar()
    
        def cell_statistics(self, image, mask):
            """Calculate statistics about cells. Passing None to image will
            create dictionary to zeros, which allows to extract dictionary keys"""
            if image is not None:
                cell_vals = image[mask]
                area = mask.sum()
                tot_intensity = cell_vals.sum()
                mean = tot_intensity/area if area > 0 else 0
                var = np.var(cell_vals)
                
                # Center of mass
                y,x = mask.nonzero()
                # sample = np.random.choice(len(x), size=50, replace=True)
                com_x = np.mean(x)
                com_y = np.mean(y)
                
                # PCA only works for multiple points
                if area > 1:
                    pca = PCA().fit(np.array([y,x]).T)
                    pc1_x, pc1_y = pca.components_[0,:]
                    angle = np.arctan(pc1_y / pc1_x) / np.pi * 360
                    v1, v2 = pca.explained_variance_
                    roundness = v2 / v1
                else:
                    angle = 0
                    roundness = 1
                
            else:
                mean = 0
                var = 0
                tot_intensity = 0
                com_x = 0
                com_y = 0
                angle = 0
                roundness = 0
            
            return {'Mean': mean,
                    'Variance': var,
                    'Total Intensity': tot_intensity,
                    'Center of Mass X': com_x,
                    'Center of Mass Y': com_y,
                    'Cell Angle': angle,
                    'Roundness': roundness}
    
    
    # -----------------------------------------------------------------------------
    # NEURAL NETWORK
    
    lpbsscientist's avatar
    lpbsscientist committed
        def ShowHideCNNbuttons(self):
            
            """hide and show the buttons corresponding to the neural network.
                this function is called by the button CNN which is hidden. But
                if activated in the InitLayout.py then you can have a button
                which hides the CNN buttons (which are now on the normal also
                hidden...).
            """
            if self.button_hide_show.isChecked():
                self.button_cnn.setVisible(True)
                self.button_segment.setVisible(True)
                self.button_savesegmask.setVisible(True)
                self.button_threshold.setVisible(True)
                self.button_SetThreshold.setVisible(True)
                self.button_savethresholdmask.setVisible(True)
                self.button_SetSegmentation.setVisible(True)
    
            else:
                self.button_cnn.setVisible(False)
                self.button_segment.setVisible(False)
                self.button_savesegmask.setVisible(False)
                self.button_threshold.setVisible(False)
                self.button_SetThreshold.setVisible(False)
                self.button_savethresholdmask.setVisible(False)
                self.button_SetSegmentation.setVisible(False)
                
    
    
    lpbsscientist's avatar
    lpbsscientist committed
        def LaunchBatchPrediction(self):
            """This function is called whenever the button Launch CNN is pressed.
            It allows to run the neural network over a time range and selected
            field of views.
    
    lpbsscientist's avatar
    lpbsscientist committed
            It creates a dialog window with two entries, that define the time range
            and a list where the user can select the desired fields of view.
    
    lpbsscientist's avatar
    lpbsscientist committed
            Once it reads all the value, it calls the neural network function
            inside of self.PredThreshSeg and it does the prediction of the neural
            network, thresholds this prediction and then segments it.
            """
    
            
            self.WriteStatusBar('Running the neural network...')
            self.Disable(self.button_cnn)
    
    
            # creates a dialog window from the LaunchBatchPrediction.py file
    
    lpbsscientist's avatar
    lpbsscientist committed
            dlg = lbp.CustomDialog(self)
    
            # this if tests if the user pressed 'ok' in the dialog window
    
            if dlg.exec_() == QDialog.Accepted:
    
                # it tests if the user has entered some values
                # if not it ignores and returns.
    
                if not (dlg.entry1.text()!= '' and dlg.entry2.text() != ''):
                    QMessageBox.critical(self, "Error", "No Time Specified")
                    return 
    
                
                # reads out the entry given by the user and converts the index
                # to integers
    
                time_value1 = int(dlg.entry1.text())
                time_value2 = int(dlg.entry2.text())
        
    
                # it tests if the first value is smaller or equal such that
                # time_value1 is the lower range of the time range
                # and time_value2 the upper boundary of the range.
    
                if time_value1 > time_value2 :
                    QMessageBox.critical(self, "Error", 'Invalid Time Constraints')
                    return
                
                # displays that the neural network is running
    
                self.WriteStatusBar('Running the neural network...')
    
        
                #it iterates in the list of the user-selected fields 
                #of view, to return the corresponding index, the function
                #dlg.listfov.row(item) is used which gives an integer
                if len(dlg.listfov.selectedItems())==0:
                    QMessageBox.critical(self, "Error", "No FOV Selected")
                
                for item in dlg.listfov.selectedItems():
                    #iterates over the time indices in the range
                    for t in range(time_value1, time_value2+1):                    
                        #calls the neural network for time t and selected
                        #fov
                        if dlg.entry_threshold.text() !=  '':
                            thr_val = float(dlg.entry_threshold.text())
                        else:
                            thr_val = None
                        if dlg.entry_segmentation.text() != '':
                            seg_val = int(dlg.entry_segmentation.text())
                        else:
                            seg_val = 10
                        self.PredThreshSeg(t, dlg.listfov.row(item), thr_val, seg_val)
    
    lpbsscientist's avatar
    lpbsscientist committed
                        
                        # if tracker has been checked then apply it
                        if dlg.tracking_checkbox.isChecked():
    
    mattminder's avatar
    mattminder committed
                            if t != time_value1:
                                temp_mask = self.reader.CellCorrespondance(t, dlg.listfov.row(item))
    
    lpbsscientist's avatar
    lpbsscientist committed
                                self.reader.SaveMask(t,dlg.listfov.row(item), temp_mask)
                            
                            else:
                                temp_mask = self.reader.LoadSeg(t, dlg.listfov.row(item))
                                self.reader.SaveMask(t,dlg.listfov.row(item), temp_mask)
                
    
    mattminder's avatar
    mattminder committed
                self.ReloadThreeMasks()
                
            self.m.UpdatePlots()
            self.ClearStatusBar()
            self.EnableCNNButtons()
            self.Enable(self.button_cnn)
    
    lpbsscientist's avatar
    lpbsscientist committed
        def PredThreshSeg(self, timeindex, fovindex, thr_val, seg_val):
              """
              This function is called in the LaunchBatchPrediction function.
              This function calls the neural network function in the
              InteractionDisk.py file and then thresholds the result
              of the prediction, saves this thresholded prediction.
              Then it segments the thresholded prediction and saves the
    
              segmentation. 
    
    lpbsscientist's avatar
    lpbsscientist committed
              """
              self.reader.LaunchPrediction(timeindex, fovindex)
              self.m.ThresholdMask = self.reader.ThresholdPred(thr_val, timeindex,fovindex)
              self.reader.SaveThresholdMask(timeindex, fovindex, self.m.ThresholdMask)
              self.m.SegmentedMask = self.reader.Segment(seg_val, timeindex,fovindex)
              self.reader.SaveSegMask(timeindex, fovindex, self.m.SegmentedMask)
    
    mattminder's avatar
    mattminder committed
              self.reader.SaveMask(timeindex, fovindex, self.m.SegmentedMask)
    
    lpbsscientist's avatar
    lpbsscientist committed
        def SelectChannel(self, index):
            """This function is called when the button to select different channels
            is used. From the displayed list in the button, the chosen index
            corresponnds to the same index in the list of channels from the reader.
            So, it sets the default channel with the new index (called index below)
            """
            self.reader.default_channel = index
    
            # update the pictures using the same function as the one used to 
            # change the fields of view.
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.ChangeFOV()
    
    lpbsscientist's avatar
    lpbsscientist committed
    
        def SelectFov(self, index):
    
            """This function is called when the button containing the list of 
    
    lpbsscientist's avatar
    lpbsscientist committed
            fields od view is used.
            The index correspondds to the field of view selected in the list.
            """
    
            # mask is automatically saved.
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.reader.SaveMask(self.Tindex, self.FOVindex, self.m.plotmask)
    
            self.FOVindex = index    
            
    
            # it updates the fov in the plot with the new index.
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.ChangeFOV()
    
        def ChangeFOV(self):
            """
            it changes the fov or channel according to the choice of the user
            and it updates the plot shown and it initializes the new fov/channel
            at t=0 by default.
            """
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.Tindex = 0
    
            # load the image and mask for the current plot
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.m.currpicture = self.reader.LoadOneImage(self.Tindex,self.FOVindex)
            self.m.plotmask = self.reader.LoadMask(self.Tindex,self.FOVindex)
    
            # sets the image and the mask to 0 for the previous plot
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.m.prevpicture = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
            self.m.prevplotmask = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
    
            # load the image and the mask for the next plot, check if it exists
    
    lpbsscientist's avatar
    lpbsscientist committed
            if self.Tindex+1 < self.reader.sizet:
                self.m.nextpicture = self.reader.LoadOneImage(self.Tindex+1, self.FOVindex)
                self.m.nextplotmask = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
    
                
                # enables the next frame button in case it was disabled when the 
                # fov/channel was changed
    
    lpbsscientist's avatar
    lpbsscientist committed
                self.button_nextframe.setEnabled(True)
            else:
                self.m.nextpicture = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
                self.m.nextplotmask =  np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
    
                
                # disables the next frame button if the mask or the picture
    
    lpbsscientist's avatar
    lpbsscientist committed
                # does not exist.
                self.button_nextframe.setEnabled(False)
                
    
            # once the images and masks are loaded into the variables, they are 
            # displaye in the gui.
    
            self.m.UpdatePlots()
    
            # disables the previous frame button in case it was active before 
            # changing fov/channel.
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.button_previousframe.setEnabled(False)
    
            # updates the title of the plots to display the right time indices
            # aboves the plots.
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.UpdateTitleSubplots()
    
            # if the button to hide the mask was checked before changing fov/channel,
            # it hides the mask again.
    
    lpbsscientist's avatar
    lpbsscientist committed
            if self.button_hidemask.isChecked():
                self.m.HideMask()
    
            # the button to set the time index is also set to 0/default again.
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.button_timeindex.setText('')
    
            # enables the neural network buttons if there is already an 
            # existing prediction for the current image.
    
    lpbsscientist's avatar
    lpbsscientist committed
            self.EnableCNNButtons()
    
    lpbsscientist's avatar
    lpbsscientist committed
            
            
        def ReloadThreeMasks(self):
            """
            A function which replots all the masks at the current time and fov 
            indices. Needed after the batch prediction is completed to display
            the result of the NN.
            """
            
            if self.Tindex >= 0 and self.Tindex <= self.reader.sizet-1:
                if self.Tindex == 0:
                    self.button_nextframe.setEnabled(True)
                    
    
    lpbsscientist's avatar
    lpbsscientist committed
                    if self.Tindex < self.reader.sizet-1:
                        self.m.nextplotmask = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
                    else:
                        np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
    
    lpbsscientist's avatar
    lpbsscientist committed
                    
                    self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
                    self.m.prevplotmask = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
    
                    self.m.UpdatePlots()
    
    lpbsscientist's avatar
    lpbsscientist committed
                    self.button_previousframe.setEnabled(False)
                    
                    
                elif self.Tindex == self.reader.sizet-1:
                    self.button_previousframe.setEnabled(True)
                    self.m.prevplotmask = self.reader.LoadMask(self.Tindex-1, self.FOVindex)
                    self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
                    self.m.nextplotmask =  np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
    
                    self.m.UpdatePlots()
    
    lpbsscientist's avatar
    lpbsscientist committed
                    self.button_nextframe.setEnabled(False)
                    
                else:
                    self.button_nextframe.setEnabled(True)
                    self.button_previousframe.setEnabled(True)
                    self.m.prevplotmask = self.reader.LoadMask(self.Tindex-1, self.FOVindex)
                    self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)              
                    self.m.nextplotmask = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
    
                    self.m.UpdatePlots()
    
    lpbsscientist's avatar
    lpbsscientist committed
                
                self.UpdateTitleSubplots()
    
    lpbsscientist's avatar
    lpbsscientist committed
                if self.button_hidemask.isChecked():
                    self.m.HideMask()
                self.EnableCNNButtons()
            
            else:
                return
            
        
    
    lpbsscientist's avatar
    lpbsscientist committed
        def ChangeTimeFrame(self):
    
    lpbsscientist's avatar
    lpbsscientist committed
            """This funcion is called whenever the user gives a new time index, 
            to jump to the new given index, once "enter" button is pressed.
    
    lpbsscientist's avatar
    lpbsscientist committed
            """
    
            # it reads out the text in the button and converts it to an int.
    
    lpbsscientist's avatar
    lpbsscientist committed
            newtimeindex = int(self.button_timeindex.text())
            if newtimeindex >= 0 and newtimeindex <= self.reader.sizet-1:
                self.reader.SaveMask(self.Tindex, self.FOVindex, self.m.plotmask)
    
    lpbsscientist's avatar
    lpbsscientist committed
                self.Tindex = newtimeindex
    
    lpbsscientist's avatar
    lpbsscientist committed
                if self.Tindex == 0:
                    self.button_nextframe.setEnabled(True)
                    self.m.nextpicture = self.reader.LoadOneImage(self.Tindex+1,self.FOVindex)
                    self.m.nextplotmask = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
    
    lpbsscientist's avatar
    lpbsscientist committed
                    self.m.currpicture = self.reader.LoadOneImage(self.Tindex, self.FOVindex)
                    self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
    
                    self.m.prevpicture = np.zeros([self.reader.sizey, self.reader.sizex], 
                                                  dtype = np.uint16)
                    self.m.prevplotmask = np.zeros([self.reader.sizey, self.reader.sizex], 
                                                   dtype = np.uint16)
    
                    self.m.UpdatePlots()
    
    lpbsscientist's avatar
    lpbsscientist committed
                    self.button_previousframe.setEnabled(False)
    
    lpbsscientist's avatar
    lpbsscientist committed
                elif self.Tindex == self.reader.sizet-1:
                    self.button_previousframe.setEnabled(True)
                    self.m.prevpicture = self.reader.LoadOneImage(self.Tindex-1, self.FOVindex)
                    self.m.prevplotmask = self.reader.LoadMask(self.Tindex-1, self.FOVindex)
    
    lpbsscientist's avatar
    lpbsscientist committed
                    self.m.currpicture = self.reader.LoadOneImage(self.Tindex, self.FOVindex)
                    self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
    
                    self.m.nextpicture =  np.zeros([self.reader.sizey, self.reader.sizex], 
                                                   dtype = np.uint16)
                    self.m.nextplotmask =  np.zeros([self.reader.sizey, self.reader.sizex], 
                                                    dtype = np.uint16)
    
                    self.m.UpdatePlots()
    
    lpbsscientist's avatar
    lpbsscientist committed
                    self.button_nextframe.setEnabled(False)
    
    lpbsscientist's avatar
    lpbsscientist committed
                else:
                    self.button_nextframe.setEnabled(True)
                    self.button_previousframe.setEnabled(True)
                    self.m.prevpicture = self.reader.LoadOneImage(self.Tindex-1, self.FOVindex)
                    self.m.prevplotmask = self.reader.LoadMask(self.Tindex-1, self.FOVindex)
    
    lpbsscientist's avatar
    lpbsscientist committed
                    self.m.currpicture = self.reader.LoadOneImage(self.Tindex, self.FOVindex)
    
                    self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)              
                      
    
    lpbsscientist's avatar
    lpbsscientist committed
                    self.m.nextpicture = self.reader.LoadOneImage(self.Tindex+1,self.FOVindex)
                    self.m.nextplotmask = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
    
                    self.m.UpdatePlots()
    
    lpbsscientist's avatar
    lpbsscientist committed
                self.UpdateTitleSubplots()
                self.button_timeindex.clearFocus()
    
    lpbsscientist's avatar
    lpbsscientist committed
                self.button_timeindex.setText(str(self.Tindex)+'/'+str(self.reader.sizet-1))
    
    lpbsscientist's avatar
    lpbsscientist committed
                if self.button_hidemask.isChecked():
                    self.m.HideMask()
                self.EnableCNNButtons()
    
    lpbsscientist's avatar
    lpbsscientist committed
            else:
                self.button_timeindex.clearFocus()
                return
    
    lpbsscientist's avatar
    lpbsscientist committed
        def CellCorrespActivation(self):
    
    mattminder's avatar
    mattminder committed
            self.Disable(self.button_cellcorespondance)
            self.WriteStatusBar('Doing the cell correspondance')
    
    mattminder's avatar
    mattminder committed
            if self.Tindex != 0:
                self.m.plotmask = self.reader.CellCorrespondance(self.Tindex, self.FOVindex)
                self.m.updatedata()
            else: