diff --git a/eu_basynthec/source/core-plugins/basynthec/1/as/webapps/basynthec/browser/basynthec-browser.js b/eu_basynthec/source/core-plugins/basynthec/1/as/webapps/basynthec/browser/basynthec-browser.js index 6fcaf0e7e7e2f5a022c5b17c51e301999ca454f5..f5817fc003cc016bc8440d6be46ebfd59b66e8e7 100644 --- a/eu_basynthec/source/core-plugins/basynthec/1/as/webapps/basynthec/browser/basynthec-browser.js +++ b/eu_basynthec/source/core-plugins/basynthec/1/as/webapps/basynthec/browser/basynthec-browser.js @@ -542,9 +542,19 @@ AppModel.prototype.initializeOd600WithPhenotypesAndPredictionsModel = function(c return "OD600" == dataset.dataSetTypeCode; }); - if(hasPhenotypesOrPredictions && hasOd600Datasets){ - strainData.isKnown = true; - strainsKnownToOpenbisWithPhenotypesOrPredictions.push(strainData); + if (hasOd600Datasets) { + if(hasPhenotypesOrPredictions){ + strainData.isKnown = true; + strainsKnownToOpenbisWithPhenotypesOrPredictions.push(strainData); + } else { + strainData.isKnown = true; + strainsKnownToOpenbisWithPhenotypesOrPredictions.push(strainData); + } + } else { + if (strainDatasets && strainDatasets.dataSets.length > 0) { + strainData.isKnown = true; + strainsKnownToOpenbisWithPhenotypesOrPredictions.push(strainData); + } } } @@ -577,8 +587,8 @@ AppModel.prototype.initializeOd600WithPhenotypesAndPredictionsModel = function(c } AppModel.prototype.od600DataSets = function() { - var ds = this.dataSetsByType["OD600"]; - return ds ? ds : []; + var ds = this.dataSetsByType["OD600"]; + return ds ? ds : []; } /** @@ -814,8 +824,10 @@ Od600StrainWithPhenotypesAndPredictionsView.prototype.updateView = function(dura return "green"; }else if(d.data.hasPhenotypes){ return "blue"; - }else if(d.data.hasPredictions){ + } else if(d.data.hasPredictions){ return "red"; + } else { + return "black" } }) tds.attr("class", function(d){ @@ -837,6 +849,7 @@ Od600StrainWithPhenotypesAndPredictionsView.prototype.updateView = function(dura legendList.append("li").append("span").text("strain with phenotypes and predictions").style("color","green"); legendList.append("li").append("span").text("strain with phenotypes only").style("color","blue"); legendList.append("li").append("span").text("strain with predictions only").style("color","red"); + legendList.append("li").append("span").text("strain with no phenotypes or predictions").style("color","black"); } /** diff --git a/eu_basynthec/source/core-plugins/basynthec/1/dss/reporting-plugins/chicago/load-data-from-file-and-put-to-table.py b/eu_basynthec/source/core-plugins/basynthec/1/dss/reporting-plugins/chicago/load-data-from-file-and-put-to-table.py index f11c6f68aab2220bcc62a21ff3128e6c53e7f7c4..39bda74d153acbd1e2e5fcae5285b2c103a4b6bd 100644 --- a/eu_basynthec/source/core-plugins/basynthec/1/dss/reporting-plugins/chicago/load-data-from-file-and-put-to-table.py +++ b/eu_basynthec/source/core-plugins/basynthec/1/dss/reporting-plugins/chicago/load-data-from-file-and-put-to-table.py @@ -1,6 +1,10 @@ #! /usr/bin/env python import csv +from ch.systemsx.cisd.openbis.generic.shared.api.v1.dto import SearchCriteria +from ch.systemsx.cisd.openbis.generic.shared.api.v1.dto.SearchCriteria import MatchClause +from ch.systemsx.cisd.openbis.generic.shared.api.v1.dto.SearchCriteria import MatchClauseAttribute + FIELD_STRAIN = 'strain' @@ -21,13 +25,55 @@ def loadDataFromFile(filePath): if file != None: file.close() +def indexDataByStrainId(data): + dataById = {} + for strainData in data: + tokens = strainData.strip("{} \n").split(',') + theIds = [token for token in tokens if token.startswith('"id"')] + if (len(theIds) < 1): + continue + theId = theIds[0].split(':')[1].strip('" \n') + dataById[theId] = strainData + + return dataById + def addDataToTable(dataList, table): table.addHeader(FIELD_STRAIN) for dataItem in dataList: row = table.addRow() row.setCell(FIELD_STRAIN, dataItem) + +def addStrainsNotInChicagoDb(strainsNotInChicagoDb, table): + for strain in strainsNotInChicagoDb: + row = table.addRow() + dataItem = '{"id": "' + strain + '"}' + row.setCell(FIELD_STRAIN, dataItem) + +def allDataSets(): + searchCriteria = SearchCriteria() + searchCriteria.addMatchClause(MatchClause.createAttributeMatch(MatchClauseAttribute.CODE, '*')) + return searchService.searchForDataSets(searchCriteria) + +def filterToUnknownStrains(dataSets, dataById): + unknownStrains = set() + for dataSet in dataSets: + strainNames = dataSet.getPropertyValue('STRAIN_NAMES') + if (strainNames is None): + continue + strains = strainNames.split(",") + for strain in strains: + if dataById.get(strain) is None: + unknownStrains.add(strain) + print unknownStrains + return unknownStrains def aggregate(parameters, table): data = loadDataFromFile('TODO_PATH_TO_FILE_WITH_SERVER_DATA') addDataToTable(data, table) + + # Now get the strains in out db. We want to find the ones that might not be in their system + dataById = indexDataByStrainId(data) + dataSets = allDataSets() + strainsNotInChicagoDb = filterToUnknownStrains(dataSets, dataById) + addStrainsNotInChicagoDb(strainsNotInChicagoDb, table) \ No newline at end of file