{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<div class=\"alert alert-block alert-danger\"><p>\n",
    "<strong>TODOs</strong>\n",
    "<ol>\n",
    "<li>Write script which removes the solution proposals (cells starting with <code>#SOLUTION</code>) and creates a new notebook.</li>\n",
    "</ol>\n",
    "</p></div>\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<div class=\"alert alert-block alert-danger\">\n",
    "Course layout w/ local notebooks links .. anything in scope of org/general comments goes also here.\n",
    "</div>\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Course: Introduction to Machine Learning with Python\n",
    "\n",
    "<div class=\"alert alert-block alert-warning\">\n",
    "    <p><i class=\"fa fa-warning\"></i>&nbsp;<strong>Goal</strong></p>\n",
    "    <p>Quickly get your hands dirty with Machine Learning and know what your doing.<p>\n",
    "</div>\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## What will you learn?\n",
    "\n",
    "* Basic concepts of Machine Learning (ML).\n",
    "* General overview of supervised learning and related methods.\n",
    "* How to quickly start with ML using `scikit-learn` Python library."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## What will you NOT learn?\n",
    "\n",
    "* How to program with Python.\n",
    "* How exactly ML methods work.\n",
    "* Unsupervised learning methods."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Course scripts\n",
    "\n",
    "<ol>\n",
    "    <li><a href=\"01_introduction.ipynb\">Introduction</a></li>\n",
    "    <li><a href=\"02_classification.ipynb\">Classification</a></li>\n",
    "    <li><a href=\"03_overfitting_and_cross_validation.ipynb\">Overfitting and cross-validation</a></li>\n",
    "    <li><a href=\"04_measuring_quality_of_a_classifier.ipynb\">Metrics for evaluating the performance</a></li>\n",
    "    <li><a href=\"05_classifiers_overview.ipynb\">An overview of classifiers</a></li>\n",
    "    <li><a href=\"06_preprocessing_pipelines_and_hyperparameter_optimization.ipynb\">Preprocessing pipelines and hyperparameters optmization</a></li>\n",
    "    <li>...</li>\n",
    "    \n",
    "</ol>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}