{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<div class=\"alert alert-block alert-danger\"><p>\n", "<strong>TODOs</strong>\n", "<ol>\n", "<li>Write script which removes the solution proposals (cells starting with <code>#SOLUTION</code>) and creates a new notebook.</li>\n", "</ol>\n", "</p></div>\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<div class=\"alert alert-block alert-danger\">\n", "Course layout w/ local notebooks links .. anything in scope of org/general comments goes also here.\n", "</div>\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Course: Introduction to Machine Learning with Python\n", "\n", "<div class=\"alert alert-block alert-warning\">\n", " <p><i class=\"fa fa-warning\"></i> <strong>Goal</strong></p>\n", " <p>Quickly get your hands dirty with Machine Learning and know what your doing.<p>\n", "</div>\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## What will you learn?\n", "\n", "* Basic concepts of Machine Learning (ML).\n", "* General overview of supervised learning and related methods.\n", "* How to quickly start with ML using `scikit-learn` Python library." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## What will you NOT learn?\n", "\n", "* How to program with Python.\n", "* How exactly ML methods work.\n", "* Unsupervised learning methods." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Course scripts\n", "\n", "<ol>\n", " <li><a href=\"01_introduction.ipynb\">Introduction</a></li>\n", " <li><a href=\"02_classification.ipynb\">Classification</a></li>\n", " <li><a href=\"03_overfitting_and_cross_validation.ipynb\">Overfitting and cross-validation</a></li>\n", " <li><a href=\"04_measuring_quality_of_a_classifier.ipynb\">Metrics for evaluating the performance</a></li>\n", " <li><a href=\"05_classifiers_overview.ipynb\">An overview of classifiers</a></li>\n", " <li><a href=\"06_preprocessing_pipelines_and_hyperparameter_optimization.ipynb\">Preprocessing pipelines and hyperparameters optmization</a></li>\n", " <li>...</li>\n", " \n", "</ol>" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2" } }, "nbformat": 4, "nbformat_minor": 2 }