diff --git a/content.md b/content.md index 02f0636528fa81b59d57c56ab267f7896655d8d3..3eb413bbecf474b78928336e995de470dffa1170 100644 --- a/content.md +++ b/content.md @@ -7,7 +7,7 @@ # Course structure - Two days workshop, 1.5 days workshop + .5 day working on own data / prepared data. -- Every part below includes a coding session using Jupter notebooks. +- Every part below includes a coding session using Jupyter notebooks. - Coding sessions provide code frames which should be completed. - We provide solutions. @@ -16,7 +16,7 @@ ## Part 0: Preparation -- Quick basics matplotlib, numpy, pandas?: +- Quick basics matplotlib, numpy, pandas? ### Coding session @@ -59,7 +59,7 @@ ## Part 3: accuracy, F1, ROC, ... -Intention: accuracy is usefull but has pitfalls +Intention: accuracy is useful but has pitfalls - how to measure accuracy ? @@ -83,9 +83,8 @@ classifiers / regressors have parameters / degrees of freedom. - overfitting: - - features have actual noise, or not enough information - not enough information: orchid example in 2d. elevate to 3d using another feature. - - polnome of degree 5 to fit points on a line + noise + - features have actual noise, or not enough information: orchid example in 2d. elevate to 3d using another feature. + - polynome of degree 5 to fit points on a line + noise - points in a circle: draw very exact boundary line - how to check underfitting / overfitting ? @@ -97,14 +96,14 @@ classifiers / regressors have parameters / degrees of freedom. ### Coding session: - How to do cross validation with scikit-learn -- run crossvalidation on classifier for beer data +- run cross validation on classifier for beer data ## Part 5: pipelines / parameter tuning with scikit-learn -- Scicit learn API incl summary what we have seen up to now. +- Scikit learn API incl. summary of what we have seen up to now. - pipelines, preprocessing (scaler, PCA) -- cross validatioon +- cross validation - Hyper parameter tuning: grid search / random search. ### Coding session @@ -116,7 +115,7 @@ classifiers / regressors have parameters / degrees of freedom. ## Part 6: Overview classifiers -- Neighrest neighbours +- Nearest neighbours - SVMs - demo for RBF: different parameters influence on decision line - Random forests @@ -125,7 +124,7 @@ classifiers / regressors have parameters / degrees of freedom. ### Coding session -- Prepare examples for 2d classification problems incl visualization of different +- Prepare examples for 2d classification problems incl. visualization of different decision surfaces. - Play with different classifiers on beer data @@ -146,7 +145,7 @@ Introduce movie data set, learn SVR or other regressor on this data set. - Overview of the field -- Introduction feed forward neural networks +- Introduction to feed forward neural networks - Demo Keras ### Coding Session @@ -156,7 +155,7 @@ Introduce movie data set, learn SVR or other regressor on this data set. ## Workshop -- assist to setup own computer. +- assist to setup the workshop material on own computer. - provide example problems if attendees don't bring own data.