diff --git a/02_classification.ipynb b/02_classification.ipynb index 77fa99885ff1bc6e80b5905b9b10ce537014d7cc..ac272bac000bf261f20f628917471bba63618156 100644 --- a/02_classification.ipynb +++ b/02_classification.ipynb @@ -2014,6 +2014,13 @@ " In <code>scikit-learn</code> many classifiers support multi-class problems out of the box and also offer functionalities to implement <strong>one-vs-all</strong> or <strong>one-vs-one</strong> in some cases (cf. <a href=\"https://scikit-learn.org/stable/modules/multiclass.html\"><code>scikit-learn</code> multiclass and multilabel algorithms</a>).\n", "</p></div>" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Copyright (C) 2019 ETH Zurich, SIS ID" + ] } ], "metadata": { @@ -2033,7 +2040,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.2" + "version": "3.7.4" }, "latex_envs": { "LaTeX_envs_menu_present": true, diff --git a/03_overfitting_and_cross_validation.ipynb b/03_overfitting_and_cross_validation.ipynb index e84f7725bf876af89d3935677d2203476c198193..e2159a70908fda6a1015d8710601f3c01947dd8f 100644 --- a/03_overfitting_and_cross_validation.ipynb +++ b/03_overfitting_and_cross_validation.ipynb @@ -1395,6 +1395,13 @@ "print(\"BEST RESULT CROSS VALIDATION\")\n", "print(\"score = {:.3f} C={:.1f} gamma={:.1f}\".format(best_score, C, gamma))" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Copyright (C) 2019 ETH Zurich, SIS ID" + ] } ], "metadata": { @@ -1414,7 +1421,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.2" + "version": "3.7.4" }, "latex_envs": { "LaTeX_envs_menu_present": true, diff --git a/04_measuring_quality_of_a_classifier.ipynb b/04_measuring_quality_of_a_classifier.ipynb index ff5da770c14aeae04da8135f05f988c0df8a34b7..1917213f83124a081f8aaf10a45abd8d4e42f3a2 100644 --- a/04_measuring_quality_of_a_classifier.ipynb +++ b/04_measuring_quality_of_a_classifier.ipynb @@ -808,6 +808,13 @@ "classifier.fit(features, labels)\n", "predicted = classifier.predict(eval_features)" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Copyright (C) 2019 ETH Zurich, SIS ID" + ] } ], "metadata": { @@ -827,7 +834,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.2" + "version": "3.7.4" }, "latex_envs": { "LaTeX_envs_menu_present": true, diff --git a/05_preprocessing_pipelines_and_hyperparameter_optimization.ipynb b/05_preprocessing_pipelines_and_hyperparameter_optimization.ipynb index 8c0d9045b12bb51147a7f813c0e60ca8462e99db..a169eb0b9aa69b0fb8cec0df3e2d006976ba4f0d 100644 --- a/05_preprocessing_pipelines_and_hyperparameter_optimization.ipynb +++ b/05_preprocessing_pipelines_and_hyperparameter_optimization.ipynb @@ -1358,7 +1358,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.2" + "version": "3.7.4" }, "latex_envs": { "LaTeX_envs_menu_present": true, diff --git a/06_classifiers_overview.ipynb b/06_classifiers_overview.ipynb index c4965e4f270f342d6bac34b6b9e05f4419dfb9fe..697b49cad1513ec5d93a7c5cdc96010f5678c8de 100644 --- a/06_classifiers_overview.ipynb +++ b/06_classifiers_overview.ipynb @@ -3127,7 +3127,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.2" + "version": "3.7.4" }, "latex_envs": { "LaTeX_envs_menu_present": true, diff --git a/07_regression.ipynb b/07_regression.ipynb index d575c458305f6c0d9d0946e7c95001d06509cfa9..febedf681168024b0373a2a844e813705b668c10 100644 --- a/07_regression.ipynb +++ b/07_regression.ipynb @@ -1395,11 +1395,11 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "Copyright (C) 2019 ETH Zurich, SIS ID" + ] } ], "metadata": { @@ -1419,7 +1419,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.2" + "version": "3.7.4" }, "latex_envs": { "LaTeX_envs_menu_present": true, diff --git a/08_neural_networks.ipynb b/08_neural_networks.ipynb index 343143b5d27aac9a3456b6371c096f057ebc756a..5702360de410dafa9809a1fa728cc312c666270a 100644 --- a/08_neural_networks.ipynb +++ b/08_neural_networks.ipynb @@ -3564,18 +3564,11 @@ ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "Copyright (C) 2019 ETH Zurich, SIS ID" + ] } ], "metadata": { @@ -3594,7 +3587,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.2" + "version": "3.7.4" }, "latex_envs": { "LaTeX_envs_menu_present": true, @@ -3613,6 +3606,19 @@ "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": true } }, "nbformat": 4,