From 95f1fa467fcc56104c342e6c279647915d2e5681 Mon Sep 17 00:00:00 2001 From: Mikolaj Rybinski <mikolaj.rybinski@id.ethz.ch> Date: Mon, 6 May 2019 08:46:38 +0200 Subject: [PATCH] metrics: fix solution bug --- 04_measuring_quality_of_a_classifier.ipynb | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/04_measuring_quality_of_a_classifier.ipynb b/04_measuring_quality_of_a_classifier.ipynb index 8597d27..3380a08 100644 --- a/04_measuring_quality_of_a_classifier.ipynb +++ b/04_measuring_quality_of_a_classifier.ipynb @@ -312,7 +312,7 @@ "source": [ "## Exercise block 1\n", "\n", - "1.1 A classifier predicts labels `[0, 0, 1, 1, 1, 0, 1, 1]` whereas true labels are `[0, 1, 0, 1, 1, 0, 1, 0]`. First write these values as a two columned table using pen & paper and assign `FP`, `TP`, ... to each row. Now create the confusion matrix and compute accuracy.\n", + "1.1 A classifier predicts labels `[0, 1, 0, 1, 1, 0, 1, 0]` whereas true labels are `[0, 0, 1, 1, 1, 0, 1, 1]`. First write these values as a two columned table using pen & paper and assign `FP`, `TP`, ... to each row. Now create the confusion matrix and compute accuracy.\n", "\n", "1.2 A random classfier just assign a randomly chosen label `0` or `1` for a given feature. What is the average accuracy of such a classifier?" ] @@ -809,6 +809,7 @@ } ], "metadata": { + "celltoolbar": "Tags", "kernelspec": { "display_name": "Python 3", "language": "python", @@ -824,7 +825,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.2" + "version": "3.7.3" }, "latex_envs": { "LaTeX_envs_menu_present": true, -- GitLab