From 940e8de705010bdf234a30f061aeffb4f66e99ba Mon Sep 17 00:00:00 2001 From: Mikolaj Rybinski <mikolaj.rybinski@id.ethz.ch> Date: Fri, 12 Feb 2021 12:18:05 +0100 Subject: [PATCH] Mention GradientBoostingClassifier and improve HistGradientBoostingClassifier note --- 06_classifiers_overview-part_2.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/06_classifiers_overview-part_2.ipynb b/06_classifiers_overview-part_2.ipynb index 5d6c813..5181389 100644 --- a/06_classifiers_overview-part_2.ipynb +++ b/06_classifiers_overview-part_2.ipynb @@ -1224,11 +1224,11 @@ "\n", "In contrast to AdaBoost, GTB relies on using decision trees.\n", "\n", - "In particular, try out [XGboost](https://xgboost.readthedocs.io/en/latest/); it's a package that won many competitions, cf. [XGboost@Kaggle](https://www.kaggle.com/dansbecker/xgboost). It is not part of scikit-learn, but it offers a scikit-learn API (see https://www.kaggle.com/stuarthallows/using-xgboost-with-scikit-learn ).\n", + "In particular, try out [XGboost](https://xgboost.readthedocs.io/en/latest/); it's a package that won many competitions, cf. [XGboost@Kaggle](https://www.kaggle.com/dansbecker/xgboost). It is not part of scikit-learn, but it offers a `scikit-learn` API (see https://www.kaggle.com/stuarthallows/using-xgboost-with-scikit-learn ); a `scikit-learn` equivalent is [`GradientBoostingClassifier`](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html).\n", "\n", "#### Histogram-based Gradient Boosting Classification Tree.\n", "\n", - "Scikit-learn own new fast and performant implementation of boosting based on decision trees; see [`HistGradientBoostingClassifier` documentation](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html).\n", + "A new `scikit-learn` implementation of boosting based on decision trees is [`HistGradientBoostingClassifier`](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html). It is much faster then `GradientBoostingClassifier` for big datasets (`n_samples >= 10 000`).\n", "\n", "\n" ] -- GitLab