diff --git a/DialogDataBrowser.py b/DialogDataBrowser.py
new file mode 100644
index 0000000000000000000000000000000000000000..fe6c8fe6b6d1a70ed2a950205ab55459eb6f14e5
--- /dev/null
+++ b/DialogDataBrowser.py
@@ -0,0 +1,65 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Nov 19 17:38:58 2019
+"""
+
+from PyQt5.QtWidgets import QApplication, QMainWindow, QMenu, QVBoxLayout, QSizePolicy, QMessageBox, QWidget, QPushButton, QShortcut, QComboBox, QDialog, QDialogButtonBox, QInputDialog, QLineEdit, QFormLayout, QFileDialog, QLabel
+from PyQt5 import QtGui
+#from PyQt5.QtGui import QIcon, QKeySequence
+from PyQt5.QtCore import pyqtSignal, QObject, Qt
+#import PyQt package, allows for GUI interactions
+
+class FileBrowser(QDialog):
+
+    def __init__(self, *args, **kwargs):
+        super(FileBrowser, self).__init__(*args, **kwargs)
+        
+        self.setWindowTitle("Data file")
+        self.setGeometry(100,100, 800,200)
+        
+        
+        self.button_openxls = QPushButton('Open excel file')
+        self.button_openxls.setEnabled(True)
+        self.button_openxls.clicked.connect(self.getxlspath)
+        self.button_openxls.setToolTip("Browse for an xls file")
+        self.button_openxls.setMaximumWidth(150)
+        
+
+        
+        self.newxlsentry = QLineEdit()
+
+        self.xlsname = ''
+#        
+        flo = QFormLayout()
+#        flo.addRow('Enter Cell value 1 (integer):', self.entry1)
+                
+        
+        QBtn = QDialogButtonBox.Ok | QDialogButtonBox.Cancel
+        
+        self.buttonBox = QDialogButtonBox(QBtn)
+        self.buttonBox.accepted.connect(self.accept)
+        self.buttonBox.rejected.connect(self.reject)
+
+
+        self.labelxls = QLabel()
+        self.labelxls.setText('No xls file selected')
+
+        flo.addRow(self.labelxls, self.button_openxls)
+
+#        flo.addWidget(self.button_openhdf)
+        flo.addRow('If no xls data file already exists, give a name to create a new file', self.newxlsentry)
+        
+        flo.addWidget(self.buttonBox)
+       
+        self.setLayout(flo)
+        
+        
+        
+
+    def getxlspath(self):
+      self.xlsname,_ = QFileDialog.getOpenFileName(self, 'Open .xls File','', 'xls Files (*.xls)')
+#      print(self.nd2name)
+#      print(self.nd2name)
+      self.labelxls.setText(self.xlsname)
+
+        
\ No newline at end of file
diff --git a/DialogFileBrowser.py b/DialogFileBrowser.py
new file mode 100644
index 0000000000000000000000000000000000000000..8be3a282898591356a90a5d3f48a91a28ca09336
--- /dev/null
+++ b/DialogFileBrowser.py
@@ -0,0 +1,78 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Nov 19 17:38:58 2019
+"""
+
+from PyQt5.QtWidgets import QApplication, QMainWindow, QMenu, QVBoxLayout, QSizePolicy, QMessageBox, QWidget, QPushButton, QShortcut, QComboBox, QDialog, QDialogButtonBox, QInputDialog, QLineEdit, QFormLayout, QFileDialog, QLabel
+from PyQt5 import QtGui
+#from PyQt5.QtGui import QIcon, QKeySequence
+from PyQt5.QtCore import pyqtSignal, QObject, Qt
+#import PyQt package, allows for GUI interactions
+
+class FileBrowser(QDialog):
+
+    def __init__(self, *args, **kwargs):
+        super(FileBrowser, self).__init__(*args, **kwargs)
+        
+        self.setWindowTitle("Open Files")
+        self.setGeometry(100,100, 800,200)
+        
+        
+        self.button_opennd2 = QPushButton('Open nd2 file')
+        self.button_opennd2.setEnabled(True)
+        self.button_opennd2.clicked.connect(self.getnd2path)
+        self.button_opennd2.setToolTip("Browse for an nd2 file")
+        self.button_opennd2.setMaximumWidth(150)
+        
+        self.button_openhdf = QPushButton('Open hdf file')
+        self.button_openhdf.setEnabled(True)
+        self.button_openhdf.clicked.connect(self.gethdfpath)
+        self.button_openhdf.setToolTip("Browse for an hdf file containing the masks")
+        self.button_openhdf.setMaximumWidth(150)
+        
+        self.newhdfentry = QLineEdit()
+#        self.newhdfentry(Qt.AlignLeft)
+
+
+
+        self.nd2name = ''
+        self.hdfname = ''
+#        
+        flo = QFormLayout()
+#        flo.addRow('Enter Cell value 1 (integer):', self.entry1)
+                
+        
+        QBtn = QDialogButtonBox.Ok | QDialogButtonBox.Cancel
+        
+        self.buttonBox = QDialogButtonBox(QBtn)
+        self.buttonBox.accepted.connect(self.accept)
+        self.buttonBox.rejected.connect(self.reject)
+
+
+        self.labelnd2 = QLabel()
+        self.labelnd2.setText('No nd2 file selected')
+        
+        self.labelhdf = QLabel()
+        self.labelhdf.setText('No hdf file selected')
+        flo.addRow(self.labelnd2, self.button_opennd2)
+        flo.addRow(self.labelhdf, self.button_openhdf)
+#        flo.addWidget(self.button_openhdf)
+        flo.addRow('If no hdf file already exists, give a name to create a new file', self.newhdfentry)
+        
+        flo.addWidget(self.buttonBox)
+       
+        self.setLayout(flo)
+        
+        
+        
+
+    def getnd2path(self):
+      self.nd2name,_ = QFileDialog.getOpenFileName(self, 'Open .nd2 File','', 'nd2 Files (*.nd2)')
+#      print(self.nd2name)
+#      print(self.nd2name)
+      self.labelnd2.setText(self.nd2name)
+      
+    def gethdfpath(self):
+        self.hdfname,_ = QFileDialog.getOpenFileName(self,'Open .hdf File','', 'hdf Files (*.h5)')
+        self.labelhdf.setText(self.hdfname)
+        
\ No newline at end of file
diff --git a/GUI_main.py b/GUI_main.py
new file mode 100644
index 0000000000000000000000000000000000000000..3765ac322e566c412fb72dd1fa25aa36876ae9d0
--- /dev/null
+++ b/GUI_main.py
@@ -0,0 +1,2601 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+This script is the main script used to produce a GUI which should help for
+cell segmentation. This script can only read .nd2 files containing the
+images of cells, especially it displays for each recorded positions (field
+of view) the pictures in the time axis.
+
+The script opens first a window which allows you to load an nd2 file and
+to load or create an hdf file. The hdf file contains all the masks, so if
+it is the first the user segments an nd2 file, a new one should be created.
+And it can be then loaded for later use.  Along with new hdf file, created
+by the name entered by the user (say filename), it creates three other hdf
+files (filename_predicted.h5, filename_thresholded.h5 and
+filename_segmented.h5) these contain all the steps of the NN to get to the
+segmented picture.
+
+After the first window is finished a second one opens, where at each time
+index, three pictures
+are displayed the t-1 picture, the t picture (current frame which can be
+edited) and the t+1 picture. Using the arrows one can navigate through time.
+On top of the picture, there is always a mask which is displayed, if no cells
+are present in the mask then the mask is blank and the user does not see it.
+If one wants to hand anmotate the pictures, one can just start to draw on the
+picture using the different functions (New Cell, Add Region, Brush, Eraser,
+Save Mask,...) and the informations will be saved in the mask overlayed on
+top of the pictures.
+
+If one wants to segment using a neural network, one can press the
+corresponding button (Launch CNN) and select the time range and
+the field of views on which the neural network is applied.
+
+Once the neural network has finished predicting, there are still no visible
+masks, but on the field of views and time indices where the NN has been
+applied, the threshold and segment buttons are enabled. By checking these
+two buttons one can either display the thresholded image of the prediction or
+display the segmentation of the thresholded prediction.
+
+At this stage, one can correct the segmentation of the prediction using
+the functions (New Cell, Add Region, etc..) by selecting the Segment
+checkbox and then save them using the Save Seg button.
+If the user is happy with the segmentation, the Cell Correspondance button
+can be clicked. Until then, the cells get random numbers attributed by
+the segmentation algorithm. In order to keep track of the cell through time,
+the same cells should have the same number between two different time pictures.
+This can be (with some errors) achieved by the Cell Correspondance button,
+which tries to attribute the same number to corresponding cells in time.
+After that, the final mask is saved and it is always visible when you go on
+the corresponding picture. This mask can also be corrected using the
+usual buttons (because the Cell Correspondance makes also mistakes).
+
+"""
+
+import sys
+#append all the paths where the modules are stored. Such that this script
+#looks into all of these folders when importing modules.
+sys.path.append("./unet")
+sys.path.append("./disk")
+sys.path.append("./icons")
+sys.path.append("./init")
+sys.path.append("./misc")
+import time
+import os
+import numpy as np
+
+
+# Import everything for the Graphical User Interface from the PyQt5 library.
+from PyQt5.QtWidgets import QApplication, QMainWindow, QMenu, QVBoxLayout, QSizePolicy, QMessageBox, QWidget, QPushButton, QShortcut, QComboBox, QCheckBox, QLineEdit, QMenu, QAction, QStatusBar
+from PyQt5 import QtGui
+from PyQt5.QtCore import pyqtSignal, QObject, Qt
+
+#Import from matplotlib to use it to display the pictures and masks.
+from matplotlib.backends.qt_compat import QtCore, QtWidgets, is_pyqt5
+from matplotlib.backends.backend_qt5agg import (FigureCanvasQTAgg as FigureCanvas, NavigationToolbar2QT as NavigationToolbar)
+from matplotlib.figure import Figure
+import matplotlib.pyplot as plt
+#import the colormaps function to create a customed colormap scale with 10
+#colors only
+from matplotlib import cm
+from matplotlib.colors import ListedColormap, LinearSegmentedColormap
+#import Path functions to handle the regions drawn by the user. ("add region
+#and new cell")
+from matplotlib.path import Path
+
+
+#Import all the other python files
+#this file handles the interaction with the disk, so loading/saving images
+#and masks and it also runs the neural network.
+import InteractionDisk_temp as nd
+#this file contains a dialog window that takes two integers as entry to swap
+#two cell values
+import ExchangeCellValues as ecv
+#this file contains a dialog window which is opened before the main program
+#and allows to load the nd2 and hdf files by browsing through the computer.
+import DialogFileBrowser as dfb
+#this file contains a window that opens to change the value of one cell. It
+#is opened as soon as the user presses with the left click on a specific cell.
+import ChangeOneCellValue as cocv
+#this file contains a dialog window to browse for the excel file where
+#all the extracted information on the fluoerscence is written. Or to create a
+#new excel file by typing a name in the text box. It is thought to have one
+#excel file per field of view.
+import DialogDataBrowser as ddb
+#this file contains a dialog window where a time range and the field of views
+#can be selected to then launch a prediction of the neural network on
+#a specific range of pictures.
+import LaunchBatchPrediction as lbp
+
+#this file initializes all the buttons present in the gui, sets the shortcuts
+#to these buttons and also connect the buttons to the function that are
+#triggered when the buttons are pressed.
+import InitButtons
+
+#this file contains the layout of the main window so it justs puts the buttons
+#and the pictures at the desired position in the main window.
+import InitLayout
+
+
+import random
+
+#import everything needed to write and read excel files.
+from openpyxl import load_workbook
+from openpyxl import Workbook
+
+
+
+
+class NavigationToolbar(NavigationToolbar):
+    """This is the standard matplotlib toolbar but only the buttons
+    that are of interest for this gui are loaded. These buttons allow
+    to zoom into the pictures/masks and to navigate in the zoomed picture.
+    A Home button can be used to set the view back to the original view.
+    """
+    toolitems = [t for t in NavigationToolbar.toolitems if
+                 t[0] in ('Home', 'Pan', 'Zoom','Back', 'Forward')]
+
+class App(QMainWindow):
+    """This class creates the main window.
+
+    """
+
+    def __init__(self, nd2pathstr, hdfpathstr, newhdfstr):
+        super().__init__()
+#        initializes the window
+
+
+#        id is an integer that gives the id of the connection between the mouseclick method
+#        and the activation of the button.
+
+#       all these ids are integers which are used to set a connection between
+#       the button and the function that this button calls.
+#       There are three of them because it happens that one can trigger three
+#       different functions with one button.
+        self.id = 0
+        self.id2 = 0
+        self.id3 = 0
+
+
+
+#       it calls an object of the class Load Image from the InteractionDisk
+#       file which is used to load images and masks from the nd2 file. To
+#       initialize this object it needs the path of the nd2 file, of an
+#       existing hdf file and the name of a new hdf file. If the user has no
+#       hdf file yet the hdfpathstr will be empty and vice versa if the user
+#       selects an already existing hdf file.
+#       It takes all the strings given by the first window
+#       (called before the main window opens) from the DialogFileBrowser.py
+#       file. (see at the end of this code)
+
+        self.reader = nd.Reader(hdfpathstr, newhdfstr, nd2pathstr)
+
+
+#       these variables are used to create/read/load the excel file used
+#       to write the fluorescence values extracted. For each field of view,
+#       the user will be asked each time to create a new xls file for the
+#       field of view or to load an existing field of view (this is the role
+#       of the boolean variable)
+        self.xlsfilename = ''
+        self.nd2path = nd2pathstr
+        self.FlagFluoExtraction = False
+
+
+
+
+#        Set the indices for the time axis and the field of view index. These
+#        indices represent everywhere the current picture (the one that can be
+#        edited, i.e. the time t frame)
+        self.Tindex = 0
+        self.FOVindex = 0
+
+#        loading the first images of the cells from the nd2 file
+        self.currentframe = self.reader.LoadOneImage(self.Tindex,self.FOVindex)
+        self.nextframe = self.reader.LoadOneImage(self.Tindex+1, self.FOVindex)
+        self.previousframe = np.zeros([self.reader.sizey, self.reader.sizex])
+
+
+
+#        loading the first masks from the hdf5 file
+        self.mask_curr = self.reader.LoadMask(self.Tindex, self.FOVindex)
+        self.mask_previous = np.zeros([self.reader.sizey, self.reader.sizex])
+        self.mask_next = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
+
+
+#        creates a list of all the buttons, which will then be used in order
+#        to disable all the other buttons at once when one button/function
+#        is pressed/used in the gui.
+        self.buttonlist = []
+
+
+#        setting buttons as attributes
+#        the shortcuts for the buttons, the functions to which they are
+#        connected to,... are all set up in the ButtonInit file which is called
+#        in the self.initUI() method below.
+
+        self.button_newcell = QPushButton("New cell")
+        self.buttonlist.append(self.button_newcell)
+
+        self.button_add_region = QPushButton("Add region")
+        self.buttonlist.append(self.button_add_region)
+
+        self.button_savemask = QPushButton("Save Mask")
+        self.buttonlist.append(self.button_savemask)
+
+        self.button_drawmouse = QPushButton('Brush')
+        self.buttonlist.append(self.button_drawmouse)
+
+        self.button_eraser = QPushButton('Eraser')
+        self.buttonlist.append(self.button_eraser)
+
+        self.button_exval = QPushButton('Exchange Cell Values')
+        self.buttonlist.append(self.button_exval)
+
+        self.button_showval = QCheckBox('Show Cell Values')
+        self.buttonlist.append(self.button_showval)
+
+        self.button_hidemask = QCheckBox('Hide Mask')
+        self.buttonlist.append(self.button_hidemask)
+
+        self.button_nextframe = QPushButton("Next Time Frame")
+        self.buttonlist.append(self.button_nextframe)
+
+        self.button_previousframe = QPushButton("Previous Time Frame")
+        self.buttonlist.append(self.button_previousframe)
+
+        self.button_cnn = QPushButton('Launch CNN')
+        self.buttonlist.append(self.button_cnn)
+
+        self.button_threshold = QCheckBox('Threshold prediction')
+        self.buttonlist.append(self.button_threshold)
+
+        self.button_segment = QCheckBox('Segment')
+        self.buttonlist.append(self.button_segment)
+
+        self.button_cellcorespondance = QPushButton('Cell Correspondance')
+        self.buttonlist.append(self.button_cellcorespondance)
+
+        self.button_changecellvalue = QPushButton('Change cell value')
+        self.buttonlist.append(self.button_changecellvalue)
+
+        self.button_extractfluorescence = QPushButton('Extract Fluorescence')
+        self.buttonlist.append(self.button_extractfluorescence)
+
+
+        self.initUI()
+
+
+
+
+    def initUI(self):
+        """Initializing the widgets contained in the window.
+        Especially, it creates the widget to plot the
+        pictures/masks by creating an object of the PlotCanvas class self.m.
+        Every interaction with the masks or the pictures (loading new
+        frames/editing the frames/masks) occurs through this class.
+
+        This method initializes all the buttons with the InitButtons file.
+        It connects the buttons to the functions that they should trigger,
+        it sets the shortcuts to the buttons, a tool tip,
+        eventually a message on the status bar when the user hovers
+        over the button, etc..
+
+        This function also sets all the layout in the InitLayout file. It
+        takes and places the widgets (buttons, canvas, toolbar).
+
+        The function initializes a Menu Bar to have a menu which can be
+        improved later on.
+        It sets a toolbar of the matplotlib library and hides it. But it allows
+        to connect to the functions of this toolbar through "homemade"
+        QPushButtons instead of the ones provided by matplotlib.
+        Finally, it sets a StatusBar which displays some text to describe
+        the use of some buttons, or to show that the program is working on
+        something (running the neural network, loading frames, etc...)
+
+        After all this has been initialized, the program is ready to be used.
+
+        """
+        self._main = QtWidgets.QWidget()
+        self.setCentralWidget(self._main)
+
+#       Here our canvas is created where using matplotlib,
+#       one can plot data to display the pictures and masks.
+        self.m = PlotCanvas(self)
+
+#       Initialize all the buttons that are needed and the functions that are
+#       connected when the buttons are triggered.
+        InitButtons.Init(self)
+        InitLayout.Init(self)
+
+#        MENU, TOOLBAR AND STATUS BAR
+#       creates a menu just in case, some other functions can be added later
+#        in this menu.
+        menubar = self.menuBar()
+        self.fileMenu = menubar.addMenu('File')
+        self.saveactionmenu = QAction('Save')
+        self.fileMenu.addAction(self.saveactionmenu)
+        self.saveactionmenu.triggered.connect(self.ButtonSaveMask)
+
+
+#       hide the toolbar and instead of the original buttons of matplotlib,
+#       QPushbuttons are used and are connected to the functions of the toolbar
+#       it is than easier to interact with these buttons (for example to
+#       to disable them and so on..)
+        self.Nvgtlbar = NavigationToolbar(self.m, self)
+        self.addToolBar(self.Nvgtlbar)
+        self.Nvgtlbar.hide()
+
+#        creates a status bar, which displays (or should display) some text
+#        whenever a function is used.
+        self.statusBar = QStatusBar()
+        self.setStatusBar(self.statusBar)
+
+        self.show()
+
+
+    def mousePressEvent(self, QMouseEvent):
+        """this function is implemented just to have the QLineButtons of the
+        change time index button, setthreshold button and the setsegmentation
+        button out of focus when the user clicks somewhere
+        on the gui. (to unfocus the buttons)
+        """
+        self.button_timeindex.clearFocus()
+        if self.button_SetThreshold.isEnabled():
+            self.button_SetThreshold.clearFocus()
+
+        if self.button_SetSegmentation.isEnabled():
+            self.button_SetSegmentation.clearFocus()
+
+
+
+#        CONNECT the functions of the toolbar to our custom QPushbuttons.
+    def ZoomTlbar(self):
+        """The button_zoom is connected to the zoom function of the toolbar
+        already present in the matplotlib library.
+
+        Depending on the buttons that are active or checked, when the zoom
+        function is used, it does not disable all the buttons.
+
+        If the segment and threshold button are not checked or used
+        when the zoom button is clicked, it disables all the button
+        using self.Disable which disables everything except the button passed
+        in argument (in this case button_zoom).
+
+
+        If the zoom button is used while the segment button is checked,
+        it disables all the buttons (1st elif) except the segment button
+        but once it is finished (so the zoom button becomes unchecked)
+        then it enables only the editing buttons (as long as the segment
+        button is still checked) such as New Cell, Add Region, Eraser,
+        Brush,etc.. and the other toolbar buttons (3rd elif)
+
+
+        If the zoom button is clicked while the threshold button is checked,
+        it disables all the button except the threshold button (2nd elif).
+        Once the zoom button is unchecked, it enables the toolbar buttons
+        (4th elif)
+        In any other case, it just enables all the buttons again.
+
+
+        """
+        self.Nvgtlbar.zoom()
+
+        if self.button_zoom.isChecked() and not(self.button_segment.isChecked() or self.button_threshold.isChecked()):
+            self.Disable(self.button_zoom)
+
+        elif self.button_zoom.isChecked() and self.button_segment.isChecked():
+            self.Disable(self.button_zoom)
+            self.button_segment.setEnabled(True)
+
+        elif self.button_zoom.isChecked() and self.button_threshold.isChecked():
+            self.Disable(self.button_zoom)
+            self.button_threshold.setEnabled(True)
+
+        elif self.button_zoom.isChecked() == False and self.button_segment.isChecked():
+
+            self.button_pan.setEnabled(True)
+            self.button_home.setEnabled(True)
+            self.button_back.setEnabled(True)
+            self.button_forward.setEnabled(True)
+
+            self.EnableCorrectionsButtons()
+
+        elif self.button_zoom.isChecked() == False and self.button_threshold.isChecked():
+
+            self.button_pan.setEnabled(True)
+            self.button_home.setEnabled(True)
+            self.button_back.setEnabled(True)
+            self.button_forward.setEnabled(True)
+
+        else:
+            self.Enable(self.button_zoom)
+
+    def HomeTlbar(self):
+#        connects the home button to the home function of the matplotlib
+#        toolbar. It sets the view to the original view (no zoom)
+        self.Nvgtlbar.home()
+
+
+    def BackTlbar(self):
+#        It calls the back function of the matplotlib toolbar which sets the
+#        view to the previous one (if the user does several zooms/pans,
+#        this button allows to go back in the "history of views")
+        self.Nvgtlbar.back()
+
+
+
+    def ForwardTlbar(self):
+#        It calls the forward function of the matplotlib toolbar which sets the
+#        view to the next one (if the user does several zooms/pans,
+#        this button allows to go forward in the "history of views"
+
+        self.Nvgtlbar.forward()
+
+
+
+    def PanTlbar(self):
+        """The button_pan is connected to the pan function of the toolbar
+        already present in the matplotlib library.
+
+        Depending on the buttons that are active or checked, when the pan
+        function is used, it does not disable all the buttons.
+
+        If the segment and threshold button are not checked or used
+        when the pan button is clicked, it disables all the button
+        using self.Disable which disables everything except the button passed
+        in argument (in this case button_pan).
+
+
+        If the pan button is used while the segment button is checked,
+        it disables all the buttons (1st elif) except the segment button
+        but once it is finished (so the zoom button becomes unchecked)
+        then it enables only the editing buttons (as long as the segment
+        button is still checked) such as New Cell, Add Region, Eraser,
+        Brush,etc.. and the other toolbar buttons (3rd elif)
+
+
+        If the pan button is clicked while the threshold button is checked,
+        it disables all the button except the threshold button (2nd elif).
+        Once the pan button is unchecked, it enables the toolbar buttons
+        (4th elif)
+        In any other case, it just enables all the buttons again.
+        """
+
+        self.Nvgtlbar.pan()
+
+        if self.button_pan.isChecked() and not(self.button_segment.isChecked() or self.button_threshold.isChecked()):
+            self.Disable(self.button_pan)
+
+        elif self.button_pan.isChecked() and self.button_segment.isChecked():
+            self.Disable(self.button_pan)
+            self.button_segment.setEnabled(True)
+
+        elif self.button_pan.isChecked() and self.button_threshold.isChecked():
+            self.Disable(self.button_pan)
+            self.button_threshold.setEnabled(True)
+
+        elif not(self.button_pan.isChecked()) and self.button_segment.isChecked():
+
+            self.button_zoom.setEnabled(True)
+            self.button_home.setEnabled(True)
+            self.button_back.setEnabled(True)
+            self.button_forward.setEnabled(True)
+
+            self.EnableCorrectionsButtons()
+
+        elif not(self.button_pan.isChecked()) and self.button_threshold.isChecked():
+            self.button_zoom.setEnabled(True)
+            self.button_home.setEnabled(True)
+            self.button_back.setEnabled(True)
+            self.button_forward.setEnabled(True)
+
+
+        else:
+            self.Enable(self.button_pan)
+
+
+    def ButtonFluo(self):
+        """This function is called everytime the Extract Fluorescence button is
+        clicked (self.button_extractfluorescence).
+
+        self.FlagFluoExtraction is boolean which is True when the path to the
+        excel file has already been loaded into self.xlsfilename.
+        This pathname changes for each field of view as it is thought to have
+        one xls file per field of view.
+        So at the beginning and each time the user changes field of view,
+        self.FlagFluoExtraction is set to False.
+
+        When it is set to False, this function calls a dialog window where
+        the user is asked to load an already existing xls file for the current
+        field of view or to give a name to create a new xls file for
+        the current field of view. (self.Dialogxls)
+
+        If it set to true, it means that self.xlsfilename contains the path
+        to the xls file for the current field of view and it is directly given
+        to the function that writes the fluorescence into the xls file.
+        (self.ExtractFluo)
+        """
+
+        if self.FlagFluoExtraction:
+            self.ExtractFluo(self.xlsfilename)
+        else:
+            self.DialogXls()
+
+
+    def DialogXls(self):
+        """This function creates a dialog window which gives two options to the
+        user either to load an existing xls file or to give a new name in order
+        to create a new xls file.
+        """
+#        creates the window
+        dwind = ddb.FileBrowser()
+
+#        this test is True if the user presses ok in the dialog window, if the
+#        user presses cancels it returns and nothing happens.
+
+        if dwind.exec_():
+
+#            read the entry given by the file browser
+            xlsname = dwind.xlsname
+
+#            reads the entry given by the new filename text field.
+            newxlsname = dwind.newxlsentry.text()
+
+#            if the string containing the filepath to an existing xls file
+#            is not empty then it calls directly the function to write the
+#            data into this existing xls file and sets self.xlsfilename
+            if xlsname:
+
+                self.xlsfilename = xlsname
+                self.ExtractFluo(xlsname)
+
+#           if xlsname is empty then it creates a new pathfilename and puts
+#           the new created xls file into the folder where nd2 is located.
+#           the string containing the nd2 namepath is split
+            else:
+                xlsname = ''
+                templist = self.nd2path.split('/')
+
+                for k in range(0, len(templist)-1):
+
+                    xlsname = xlsname + templist[k] + '/'
+#               this is the new path/filename
+                xlsname = xlsname + newxlsname + '.xlsx'
+                self.xlsfilename = xlsname
+
+#               here as a new name has been given, it means that a new xls file
+#                should be created, this is done with CreateXls
+                self.CreateXls(xlsname)
+#                once there is an existing xls file, it writes in this file
+#                using self.ExtractFluo.
+                self.ExtractFluo(xlsname)
+#           this flag is set to true, for the current field of view each
+#           time extract fluorescence is clicked it writes in the file located
+#           at self.xlsfilename.
+            self.FlagFluoExtraction = True
+        else:
+
+            return
+
+
+    def CreateXls(self, xlsfilename):
+        """In case there is no xls file existing, here a new one is created
+        and prepared. For each channel a new sheet is created.
+        In the first row for each sheet, the time indices are written t = 0,
+        t = 1, etc... but only every third column. Because in the row below,
+        three values are extracted 'Total intensity', 'Area' and 'Variance'
+        at each time index. So three columns for each time index are needed,
+        for the three data points.
+        The first column is left empty (starting from third row) because
+        the cell numbers will be written in there.
+        """
+
+#        creates a new xls file using xlwt library.
+        book = Workbook()
+        nbrchannels = self.reader.sizec
+
+        for i in range(0,nbrchannels):
+            sheetname = self.reader.channel_names[i]
+#            creates a sheet with the name of the corresponding channel.
+            if i == 0:
+                sheet = book.active
+                sheet.title = sheetname
+            else:
+                sheet = book.create_sheet(sheetname)
+            sheet.cell(1,1, 'Cell Number / Time axis')
+            sheet.cell(2,1, 'labels')
+            timeaxissize = self.reader.sizet
+#           start writing the time index at column 1, column 0 is reserved for
+#           cell numbers.
+            timecolindex = 2
+
+            for t in range(1,timeaxissize+1):
+#                in row 0 the time index is written
+                sheet.cell(1,timecolindex).value = 't = {}'.format(t-1)
+#                in row 1, the label of the three data points are written
+                sheet.cell(2,timecolindex).value = 'Total Intensity'
+                sheet.cell(2,timecolindex+1).value = 'Total Area'
+                sheet.cell(2,timecolindex+2).value = 'Mean Intensity'
+                sheet.cell(2,timecolindex+3).value =  'Variance'
+#                updates the index, where the next time index should be written
+                timecolindex = timecolindex + 4
+
+#       saves the xls file.
+        book.save(xlsfilename)
+
+
+
+
+    def ExtractFluo(self, xlsfilename):
+        """This is the function that takes as argument the filepath to the xls
+        file and writes in the file.
+        It iterates over the different channels (or the sheets of the file,
+        each channel has one sheet.), and reads the image corresponding
+        to the time, field of view and channel index. It reads the already
+        existing file and makes a copy in which the data will be written in it.
+
+        The first step of calculating the data is to iterate through each
+        cell/segment of the mask (so each cell is a submatrix of one value
+        in the matrix of the mask).
+        For each of these value /cell, the area is extracted as being
+        the number of pixels corresponding to this cell/value.
+        (it is known from the microscope settings how to convert
+        the pixel in area).
+        The total intensity is just the value of the pixel and it is added over
+        all the pixels corresonding to the cell/value.
+        The mean is then calculated as being the total intensity divided by
+        the number of pixels (which here is equal to the area also).
+        With the mean it is then possible to calculate the variance of the
+        signal for one cell/value.
+
+        Then, it is checked if the value of the cell (cell number) already
+        exists in the first column, if it already exists it continues to
+        find the column corresponding to the time index where the values
+        should be written. It sets the flag to True such that it does not
+        write the cell as new one and adds it at the end of the column
+
+        If the value is not found in the cell number column (new cell or
+        first time writing in the file), the flag is False, thus it adds the
+        cell number at the end of the column.
+        It then saves the xls file.
+
+        """
+
+#        disables all the buttons except the one passed in argument.
+        self.Disable(self.button_extractfluorescence)
+#        shows a message on the status bar to show that the program is working
+        self.statusBar.showMessage('Extracting the fluorescence...')
+
+#        opens the file to read it.
+        book = load_workbook(self.xlsfilename)
+
+#       makes a copy of the reading file to write in it the new values.
+#        wb = xlscopy(readbook) # a writable copy (can't read values out of this, only write to it)
+
+#        iterate over all the channels, so over all the sheets in the file
+        for channel in range(0, self.reader.sizec):
+#           loads the picture corresponding to the channel, time index and fov
+            image = self.reader.LoadImageChannel(self.Tindex, self.FOVindex, channel)
+
+#            loads the sheet to read out corresponding to the current channel
+            sheet = book.worksheets[channel]
+#            sheet = readbook.sheet_by_index(channel)
+
+#            this line is here to prevent some errors of streaming into
+#            the file due to read file which is open (I am not sure about this
+#            but it is a more or less working solution found on stackoverflow)
+#            os.remove(xlsfilename)
+
+#           load the sheet corresponding to the current channel to write in it
+#            writingsheet = wb.get_sheet(channel)
+
+#           this index contains the value of the maximum number of rows in the
+#           file, it is used to append at the end the cell number column a new
+#           cell/value, and it is updated each time a new cell is added.
+            tempidx = sheet.max_row
+
+#           np.unique(array) returns an array which contains all the value
+#           that appear in self.m.plotmask, so it returns every cell value
+#           including the background (value 0) present in self.m.plotmask
+            for val in np.unique(self.m.plotmask):
+
+#                exclude the background, as it is not a cell
+                if val != 0:
+
+#                    this (self.m.plotmask==val).sum() adds one at every pixel
+#                    where self.m.plotmask has the value val
+                    area = (self.m.plotmask == val).sum()
+#                    it sums the value of the pixel in image at the coordinates
+#                    where self.m.plotmask equals val.
+                    tot_intensity = image[self.m.plotmask == val].sum()
+
+#                    calculate the mean to use it in the calc. of the variance.
+                    mean = tot_intensity/area
+
+#                    create a copy of plotmask because I had weird experiences
+#                    with np.where where it modified sometimes the given array
+#                    (not sure)
+                    temparr = self.m.plotmask.copy()
+
+#                    extract the coordinates of the mask matrix where it equals
+#                    the current cell value val
+                    coord = np.where(temparr == val)
+
+#                    variable to save the variance.
+                    var = 0
+
+#                    we loop over the coord of the pixel where mask == val
+                    for i in range(0,len(coord[0])):
+#                        extract the intensity at the coordinate
+                        val_intensity = image[coord[0][i], coord[1][i]]
+#                        substract the value of the intensity with the mean,
+#                        and square it. It is then add to the var.
+                        var = var + (val_intensity-mean)*(val_intensity-mean)
+
+#                   var is then divided by the number of the pixel
+#                   corresponding to this value (also equal to the area)
+#                   to get the variance.
+                    var = var/area
+
+#                    if flag is false it means that the cell number
+#                    corresponding to val is not present in the xls file, first
+#                    column.
+                    flag = False
+
+
+#                    iterate over all the rows
+                    for row in range(sheet.max_row+1):
+
+#                        test if in the first column 0, the number of the cell
+#                        is already present
+#                         if sheet.cell_value(row,0) == str(val):
+                         if sheet.cell(row = row+1, column = 1).value == str(val):
+
+#                             if is present, the column corresponding to the
+#                             current time index is by iterating over the cols.
+                             for col in range(sheet.max_column+1):
+#                                 test if it is the right column
+#                                 if sheet.cell_value(0, col) == 't = {}'.format(self.Tindex):
+                                 if sheet.cell(row = 1, column = col+1).value == 't = {}'.format(self.Tindex):
+#                                   write in the xls file at the row, col coord
+                                     sheet.cell(row+1, col+1, str(tot_intensity))
+                                     sheet.cell(row+1, col+2, str(area))
+                                     sheet.cell(row+1,col+3, str(mean))
+                                     sheet.cell(row+1, col+4, str(var))
+                                     book.save(xlsfilename)
+
+
+#                                     the flag is set to True so that it does
+#                                     not execute the code where the cell is
+#                                     added in the xls file in a new row.
+                                     flag = True
+                    if not flag:
+#                    this lines are executed if a new cell is detected or if
+#                    if it is the first time to write in the file.
+                        for col in range(sheet.max_column+1):
+                            if sheet.cell(row = 1, column =  col+1).value == 't = {}'.format(self.Tindex):
+#                                it write the cell value/cell number in the
+#                                column
+                                sheet.cell(tempidx+1,1, str(val))
+
+#                                writes the data extracted before
+                                sheet.cell(tempidx+1,col+1,str(tot_intensity))
+                                sheet.cell(tempidx+1, col+2, str(area))
+                                sheet.cell(tempidx+1, col+3, str(mean))
+                                sheet.cell(tempidx+1, col+4, str(var))
+#                                it updates the number of rows as a new cell
+#                                has been added, so there is one more row.
+                                tempidx = tempidx + 1
+#                               save in the file
+                                book.save(xlsfilename)
+
+
+#       Enable again all the buttons
+        self.Enable(self.button_extractfluorescence)
+
+#        clear the message shown in the status bar
+        self.statusBar.clearMessage()
+
+
+
+    def LaunchBatchPrediction(self):
+        """This function is called whenever the button Launch CNN is pressed.
+        It allows to run the neural network over a time range and selected
+        field of views.
+
+        It creates a dialog window with two entries, that define the time range
+        and a list where the user can select the desired fields of view.
+
+        Once it reads all the value, it calls the neural network function
+        inside of self.PredThreshSeg and it does the prediction of the neural
+        network, thresholds this prediction and then segments it.
+        """
+#        creates a dialog window from the LaunchBatchPrediction.py file
+        dlg = lbp.CustomDialog(self)
+
+#        this if tests if the user pressed 'ok' in the dialog window
+        if dlg.exec_():
+
+#           it tests if the user has entered some values
+#           if not it ignores and returns.
+            if dlg.entry1.text()!= '' and dlg.entry2.text() != '':
+
+#                reads out the entry given by the user and converts the index
+#                to integers
+                time_value1 = int(dlg.entry1.text())
+                time_value2 = int(dlg.entry2.text())
+
+
+#                it tests if the first value is smaller or equal such that
+#                time_value1 is the lower range of the time range
+#                and time_value2 the upper boundary of the range.
+                if time_value1 <= time_value2 :
+
+#                    displays that the neural network is running
+                    self.statusBar.showMessage('Running the neural network...')
+
+#                    it iterates in the list of the user-selected fields
+#                    of view, to return the corresponding index, the function
+#                    dlg.listfov.row(item) is used which gives an integer
+                    for item in dlg.listfov.selectedItems():
+
+#                        iterates over the time indices in the range
+                        for t in range(time_value1, time_value2+1):
+
+#                            calls the neural network for time t and selected
+#                            fov
+                            if dlg.entry_threshold.text() !=  '':
+                                thr_val = float(dlg.entry_threshold.text())
+                            else:
+                                thr_val = None
+                            if dlg.entry_segmentation.text() != '':
+                                seg_val = int(dlg.entry_segmentation.text())
+                            else:
+                                seg_val = 10
+
+                            self.PredThreshSeg(t, dlg.listfov.row(item), thr_val, seg_val)
+
+
+#                   once it has iterated over all the fov, the message in
+#                   the status bar is cleared and the buttons are enabled.
+                    self.statusBar.clearMessage()
+                    self.EnableCNNButtons()
+
+                else:
+                    return
+            else:
+                return
+        else:
+            return
+
+    def PredThreshSeg(self, timeindex, fovindex, thr_val, seg_val):
+          """
+          This function is called in the LaunchBatchPrediction function.
+          This function calls the neural network function in the
+          InteractionDisk.py file and then thresholds the result
+          of the prediction, saves this thresholded prediction.
+          Then it segments the thresholded prediction and saves the
+          segmentation.
+          """
+#          launches the neural network
+          self.reader.LaunchPrediction(timeindex, fovindex)
+#          thresholds the prediction
+          self.m.ThresholdMask = self.reader.ThresholdPred(thr_val, timeindex,fovindex)
+#          saves the thresholded pred.
+          self.reader.SaveThresholdMask(timeindex, fovindex, self.m.ThresholdMask)
+#          segments the thresholded pred.
+          self.m.SegmentedMask = self.reader.Segment(seg_val, timeindex,fovindex)
+#          saves the segmentation
+          self.reader.SaveSegMask(timeindex, fovindex, self.m.SegmentedMask)
+
+
+    def LaunchPrediction(self):
+        """This function is not used in the gui, but it can be used to launch
+        the prediction of one picture, with no thresholding and no segmentation
+        """
+        if not(self.reader.TestPredExisting(self.Tindex, self.FOVindex)):
+            self.statusBar.showMessage('Running the neural network...')
+            self.Disable(self.button_cnn)
+            self.reader.LaunchPrediction(self.Tindex, self.FOVindex)
+
+            self.Enable(self.button_cnn)
+
+            self.button_cnn.setEnabled(False)
+            self.button_threshold.setEnabled(True)
+            self.button_segment.setEnabled(True)
+            self.button_cellcorespondance.setEnabled(True)
+            self.statusBar.clearMessage()
+
+    def ChangeOneValue(self):
+        """This function is called when the button Change cell value is
+        clicked. It displays the instructions on the status bar.
+        And if the user clicks in the graph where the current mask is displayed
+        it connects the event of the click (meaning that user has clicked on
+        one cell) to the function self.DialogBoxChangeOneValue.
+        This function will then replaces the cell selected by the user with
+        the click with a new value entered by the user.
+        """
+
+#        displaying the instructions on the statusbar
+        self.statusBar.showMessage('Select one cell using the left click and then enter the desired value in the dialog box')
+
+#       disables all the buttons
+        self.Disable(self.button_changecellvalue)
+
+#        connects the event "press mouse button" in the matplotlib plot
+#       (picture) to the function self.DialogBoxChangeOneValue
+        self.id = self.m.mpl_connect('button_press_event', self.DialogBoxChangeOneValue)
+
+
+
+    def DialogBoxChangeOneValue(self, event):
+        """This function is called when the user after the user has selected
+        the button Change cell value and clicked in the picture to select
+        the desired cell to change.
+
+        It first deconnects the mouse click event in matplotlib with this
+        function to not generate any other dialog window.
+
+        It then tests if the click is inside the matplotlib plot (if it is
+        outside it equals to None) and if it is the current and editable plot
+        (the one in the middle of the gui, self.m.ax)
+
+        If is true, then it sets the coordinates to int. and creates a dialog
+        window where the user is asked to type a value to set it to the cell.
+
+        If the user presses ok, it tests if the entry is valid (>0 and not
+        empty) and looks for the old cell value and replaces it. And then
+        it updates the plot such that the result of the change can be seen.
+        """
+
+#        the function is disconnected from the matplotlib event.
+        self.m.mpl_disconnect(self.id)
+
+#        test if the button is a left click and if the coordinates
+#        chosen by the user click is inside of the current matplotlib plot
+#        which is given by self.m.ax
+        if event.button == 1 and (event.xdata != None and event.ydata != None) and self.m.ax == event.inaxes:
+            newx = int(event.xdata)
+            newy = int(event.ydata)
+
+#            creates a dialog window
+            dlg = cocv.CustomDialog(self)
+
+#            if the user presses 'ok' in the dialog window it executes the code
+#           else it does nothing
+            if dlg.exec():
+#                it tests that the user has entered some value, that it is not
+#                empty and that it is equal or bigger to 0.
+                if dlg.entry1.text() != '' and int(dlg.entry1.text()) >= 0:
+#                    reads the new value to set and converts it from str to int
+                    value = int(dlg.entry1.text())
+
+#                    self.m.plotmask[newy, newx] the value selected by the user
+#                    self.m.plotmask == self.m.plotmask[newy, newx]
+#                    gives the coordinates where it is equal to the value
+#                    selected by the user. And it replaces it with the new
+#                    value.
+                    self.m.plotmask[self.m.plotmask == self.m.plotmask[newy,newx]] = value
+#                    updates the plot to see the modification.
+                    self.m.updatedata()
+
+#                   if the button to show cell values is checked, then it
+#                   replots the cell values
+
+                    if self.button_showval.isChecked():
+                        self.m.ShowCellNumbersCurr()
+                        self.m.ShowCellNumbersNext()
+                        self.m.ShowCellNumbersPrev()
+
+#       enables the button again
+        self.Enable(self.button_changecellvalue)
+
+#        clears the message in the status bar
+        self.statusBar.clearMessage()
+
+
+
+#        the button is a checkable and it has to be unchecked else it seems
+#        that the button is still in use, because it gets a blue color.
+        self.button_changecellvalue.setChecked(False)
+
+
+
+
+    def DialogBoxECV(self, s):
+        """This functions creates from the ExchangeCellValues.py file a
+        window which takes two integer entries and then swaps the cells having
+        the given integer values.
+        """
+#        creates a dialog window from the ExchangeCellValues.py file
+        dlg = ecv.CustomDialog(self)
+
+#        if the user presses 'ok', it executes the code
+        if dlg.exec_():
+
+#            it tests if both value to be swapped are not empty.
+            if dlg.entry1.text()!= '' and dlg.entry2.text() != '':
+
+#                reads out the values and converts it into integers.
+                value1 = int(dlg.entry1.text())
+                value2 = int(dlg.entry2.text())
+
+#                calls the function which does the swap
+                self.m.ExchangeCellValue(value1,value2)
+
+#                if the button to display the values of the cell is checked,
+#                the values are again displayed on the graph after the swap
+#                of cells.
+                if self.button_showval.isChecked():
+                    self.m.ShowCellNumbersCurr()
+                    self.m.ShowCellNumbersNext()
+                    self.m.ShowCellNumbersPrev()
+
+
+        else:
+            return
+
+
+
+    def SelectChannel(self, index):
+        """This function is called when the button to select different channels
+        is used. From the displayed list in the button, the chosen index
+        corresponnds to the same index in the list of channels from the reader.
+        So, it sets the default channel with the new index (called index below)
+        """
+
+#        This function attributes the FOV chosen by the user corresponding to
+#        the index in the list of options.
+        self.reader.default_channel = index
+#        update the pictures using the same function as the one used to
+#        change the fields of view.
+        self.ChangeFOV()
+
+
+
+
+    def SelectFov(self, index):
+        """This function is called when the button containing the list of
+        fields od view is used.
+        The index correspondds to the field of view selected in the list.
+
+        """
+
+#        This function attributes the FOV chosen by the user corresponding to
+#        the index in the list of options. First the mask is automatically
+#        saved.
+        self.reader.SaveMask(self.Tindex, self.FOVindex, self.m.plotmask)
+#        the new index is set.
+        self.FOVindex = index
+
+#        it updates the fov in the plot with the new index.
+        self.ChangeFOV()
+
+#        the flag of the fluorescence extraction is set to False (such that
+#        if the user extracts fluorescence data in the new field of  view,
+#        there is a dialog box asking to select the corresponding xls file
+#        for this field of view. IF there is no data sheet for this fov, the
+#        user can enter a new name to make a new file.)
+        self.FlagFluoExtraction = False
+
+    def ChangeFOV(self):
+
+#        it changes the fov or channel according to the choice of the user
+#        and it updates the plot shown and it initializes the new fov/channel
+#        at t=0 by default.
+
+#        set the time index to 0
+        self.Tindex = 0
+
+#        load the image and mask for the current plot
+        self.m.currpicture = self.reader.LoadOneImage(self.Tindex,self.FOVindex)
+        self.m.plotmask = self.reader.LoadMask(self.Tindex,self.FOVindex)
+
+#        sets the image and the mask to 0 for the previous plot
+        self.m.prevpicture = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
+        self.m.prevplotmask = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
+
+#        load the image and the mask for the next plot.
+        self.m.nextpicture = self.reader.LoadOneImage(self.Tindex+1, self.FOVindex)
+        self.m.nextplotmask = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
+
+
+#        once the images and masks are loaded into the variables, they are
+#        displaye in the gui.
+        self.m.UpdateBckgrndPicture()
+
+
+#       enables the next frame button in case it was disabled when the
+#        fov/channel was changed
+        self.button_nextframe.setEnabled(True)
+#        disables the previous frame button in case it was active before
+#        changing fov/channel.
+        self.button_previousframe.setEnabled(False)
+
+#        updates the title of the plots to display the right time indices
+#        aboves the plots.
+        self.UpdateTitleSubplots()
+
+#       if the button to show cell values is active, it shows the values again.
+        if self.button_showval.isChecked():
+            self.m.ShowCellNumbersCurr()
+            self.m.ShowCellNumbersNext()
+            self.m.ShowCellNumbersPrev()
+
+#       if the button to hide the mask was checked before changing fov/channel,
+#       it hides the mask again.
+        if self.button_hidemask.isChecked():
+            self.m.HideMask()
+
+#        the button to set the time index is also set to 0/default again.
+        self.button_timeindex.setText('')
+#        enables the neural network buttons if there is already an
+#        existing prediction for the current image.
+        self.EnableCNNButtons()
+
+    def ChangeTimeFrame(self):
+        """This funcion is called whenever the user gives an new time index,
+        to jump to the new given index, onces "enter" button is pressed.
+        """
+
+#        it reads out the text in the button and converts it to an int.
+        newtimeindex = int(self.button_timeindex.text())
+        if newtimeindex >= 0 and newtimeindex <= self.reader.sizet-1:
+            self.reader.SaveMask(self.Tindex, self.FOVindex, self.m.plotmask)
+
+            self.Tindex = newtimeindex
+
+            if self.Tindex == 0:
+                self.button_nextframe.setEnabled(True)
+                self.m.nextpicture = self.reader.LoadOneImage(self.Tindex+1,self.FOVindex)
+                self.m.nextplotmask = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
+
+                self.m.currpicture = self.reader.LoadOneImage(self.Tindex, self.FOVindex)
+                self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
+
+                self.m.prevpicture = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
+                self.m.prevplotmask = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
+
+
+                self.m.UpdateBckgrndPicture()
+                self.button_previousframe.setEnabled(False)
+
+
+            elif self.Tindex == self.reader.sizet-1:
+                self.button_previousframe.setEnabled(True)
+                self.m.prevpicture = self.reader.LoadOneImage(self.Tindex-1, self.FOVindex)
+                self.m.prevplotmask = self.reader.LoadMask(self.Tindex-1, self.FOVindex)
+
+                self.m.currpicture = self.reader.LoadOneImage(self.Tindex, self.FOVindex)
+                self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
+
+
+                self.m.nextpicture =  np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
+                self.m.nextplotmask =  np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
+
+                self.m.UpdateBckgrndPicture()
+                self.button_nextframe.setEnabled(False)
+
+
+            else:
+
+                self.button_nextframe.setEnabled(True)
+                self.button_previousframe.setEnabled(True)
+                self.m.prevpicture = self.reader.LoadOneImage(self.Tindex-1, self.FOVindex)
+                self.m.prevplotmask = self.reader.LoadMask(self.Tindex-1, self.FOVindex)
+
+                self.m.currpicture = self.reader.LoadOneImage(self.Tindex, self.FOVindex)
+                self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
+
+                self.m.nextpicture = self.reader.LoadOneImage(self.Tindex+1,self.FOVindex)
+                self.m.nextplotmask = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
+
+                self.m.UpdateBckgrndPicture()
+
+            self.UpdateTitleSubplots()
+            self.button_timeindex.clearFocus()
+
+            if self.button_showval.isChecked():
+                self.m.ShowCellNumbersCurr()
+                self.m.ShowCellNumbersNext()
+                self.m.ShowCellNumbersPrev()
+
+            if self.button_hidemask.isChecked():
+                self.m.HideMask()
+            self.EnableCNNButtons()
+
+        else:
+            self.button_timeindex.clearFocus()
+            return
+
+#    def keyPressEvent(self, event):
+##        print('keypressevengda211111')
+##        print(event.key())
+#        if not self.button_nextframe.isChecked() and event.key() == Qt.Key_Right:
+#            self.button_nextframe.setChecked(True)
+#            self.ForwardTime()
+#            self.button_nextframe.setChecked(False)
+#        else:
+#            print('inside keypressevent')
+#            event.ignore()
+
+    def CellCorrespActivation(self):
+            self.Disable(self.button_cellcorespondance)
+            self.statusBar.showMessage('Doing the cell correspondance')
+
+            if self.Tindex != 0:
+                self.m.plotmask,_ = self.reader.CellCorrespondance(self.Tindex, self.FOVindex)
+                self.m.updatedata()
+            else:
+                self.m.plotmask = self.reader.LoadSeg(self.Tindex, self.FOVindex)
+                self.m.updatedata()
+
+            self.Enable(self.button_cellcorespondance)
+            self.button_cellcorespondance.setChecked(False)
+            self.statusBar.clearMessage()
+
+    def SegmentBoxCheck(self):
+
+        if self.button_segment.isChecked():
+
+            self.Disable(self.button_segment)
+            self.EnableCorrectionsButtons()
+            self.m.SegmentedMask = self.reader.LoadSeg(self.Tindex, self.FOVindex)
+            self.m.tempplotmask = self.m.plotmask.copy()
+            self.m.plotmask = self.m.SegmentedMask.copy()
+            self.m.currmask.set_data((self.m.SegmentedMask%10 + 1)*(self.m.SegmentedMask != 0))
+            self.m.ax.draw_artist(self.m.currplot)
+            self.m.ax.draw_artist(self.m.currmask)
+            self.m.update()
+            self.m.flush_events()
+#            update the graph
+
+            self.button_SetSegmentation.setEnabled(True)
+            self.button_savesegmask.setEnabled(True)
+        else:
+            self.m.SegmentedMask = self.m.plotmask.copy()
+            self.m.plotmask = self.m.tempplotmask.copy()
+            self.m.updatedata()
+            self.button_SetSegmentation.setEnabled(False)
+            self.button_savesegmask.setEnabled(False)
+            self.Enable(self.button_segment)
+
+    def SegmentThresholdedPredMask(self):
+
+        segparamvalue = int(self.button_SetSegmentation.text())
+        self.m.plotmask = self.reader.Segment(segparamvalue, self.Tindex,self.FOVindex)
+        self.m.currmask.set_data((self.m.plotmask%10 + 1)*(self.m.plotmask != 0))
+        self.m.ax.draw_artist(self.m.currplot)
+        self.m.ax.draw_artist(self.m.currmask)
+        self.m.update()
+        self.m.flush_events()
+#        self.m.SegmentedMask = self.reader.Segment(segparamvalue, self.Tindex, self.FOVindex)
+#        update the plots to display the segmentation view
+
+    def ButtonSaveSegMask(self):
+        """saves the segmented mask
+        """
+        self.reader.SaveSegMask(self.Tindex, self.FOVindex, self.m.plotmask)
+
+
+
+
+    def ThresholdBoxCheck(self):
+        """if the buttons is checked it shows the thresholded version of the
+        prediction, if it is not available it justs displays a null array.
+        The buttons for the setting a threshold a value and to save it are then
+        activated once this button is enabled.
+        """
+        if self.button_threshold.isChecked():
+            self.Disable(self.button_threshold)
+            self.m.ThresholdMask = self.reader.LoadThreshold(self.Tindex, self.FOVindex)
+
+            self.m.currmask.set_data(self.m.ThresholdMask)
+            self.m.ax.draw_artist(self.m.currplot)
+            self.m.ax.draw_artist(self.m.currmask)
+            self.m.update()
+            self.m.flush_events()
+
+
+#            update the gra
+
+            self.button_SetThreshold.setEnabled(True)
+            self.button_savethresholdmask.setEnabled(True)
+        else:
+            self.m.updatedata()
+
+            self.button_SetThreshold.setEnabled(False)
+            self.button_savethresholdmask.setEnabled(False)
+            self.Enable(self.button_threshold)
+
+    def ThresholdPrediction(self):
+
+        thresholdvalue = float(self.button_SetThreshold.text())
+
+        self.m.ThresholdMask = self.reader.ThresholdPred(thresholdvalue, self.Tindex,self.FOVindex)
+        self.m.currmask.set_data(self.m.ThresholdMask)
+        self.m.ax.draw_artist(self.m.currplot)
+        self.m.ax.draw_artist(self.m.currmask)
+        self.m.update()
+        self.m.flush_events()
+#        self.m.ThresholdMask = self.reader.ThresholdPred(thresholdvalue, self.Tindex, self.FOVindex)
+#        update the plots to display the thresholded view
+
+    def ButtonSaveThresholdMask(self):
+        """saves the thresholed mask
+        """
+#        pass
+        self.reader.SaveThresholdMask(self.Tindex, self.FOVindex, self.m.ThresholdMask)
+
+
+    def ChangePreviousFrame(self):
+
+         """This function is called when the previous frame buttons is pressed
+         and it tests if the buttons is enabled and if so it calls the
+         BackwardTime() function. It should avoid the let the user do multiple
+         clicks and that the function is then called afterwards several times,
+         once the frames and masks of the current time index have been loaded.
+         """
+
+         if self.button_previousframe.isEnabled():
+            self.button_previousframe.setEnabled(False)
+
+#            self.button_nextframe.disconnect()
+#            self.button_nextframe.setShortcut('')
+
+#            self.button_nextframe.setEnabled(False)
+#            print(self.button_nextframe.isEnabled())
+#            self.button_nextframe.setChecked(False)
+#            self.Testbool = False
+            self.BackwardTime()
+#            self.button_nextframe.setShortcut(Qt.Key_Right)
+#            self.button_nextframe.pressed.connect(self.Test)
+#            self.button_nextframe.setChecked(False)
+            if self.Tindex >0:
+                self.button_previousframe.setEnabled(True)
+#            self.button_nextframe.pressed.connect(self.Test)
+
+#            self.button_nextframe.setChecked(False)
+
+#            self.Testbool = True
+         else:
+#            print('jamais la dedans?')
+             return
+
+
+    def ChangeNextFrame(self):
+
+        """This function is called when the next frame buttons is pressed
+        and it tests if the buttons is enabled and if so it calls the
+        ForwardTime() function. It should avoid the let the user do multiple
+        clicks and that the function is then called afterwards several times,
+        once the frames and masks of the current time index have been loaded.
+        """
+#        self.button_nextframe.setShortcutEnabled(False)
+        if self.button_nextframe.isEnabled():
+            self.button_nextframe.setEnabled(False)
+
+#            self.button_nextframe.disconnect()
+#            self.button_nextframe.setShortcut('')
+
+#            self.button_nextframe.setEnabled(False)
+#            print(self.button_nextframe.isEnabled())
+#            self.button_nextframe.setChecked(False)
+#            self.Testbool = False
+            self.ForwardTime()
+#            self.button_nextframe.setShortcut(Qt.Key_Right)
+#            self.button_nextframe.pressed.connect(self.Test)
+#            self.button_nextframe.setChecked(False)
+
+            self.button_nextframe.setEnabled(True)
+#            self.button_nextframe.pressed.connect(self.Test)
+
+#            self.button_nextframe.setChecked(False)
+
+#            self.Testbool = True
+        else:
+            return
+#            print('jamais la dedans?')
+#            if QKeyEvent.key() == Qt.Key_Right:
+#                QKeyEvent.ignore()
+
+
+    def ForwardTime(self):
+
+        """This function switches the frame in forward time index. And it tests
+        several conditions if t == lastTimeIndex-1, because then the next frame
+        button has to be disabled. It also tests if the show value of cells
+        button and hidemask are active in order to hide/show the mask or to
+        show the cell values.
+        """
+#        print(self.Tindex)
+#        the t frame is defined as the currently shown frame on the display.
+#        If the button "Next time frame" is pressed, this function is called
+        self.statusBar.showMessage('Loading the next frame...')
+#        self.button_nextframe.setEnabled(False)
+#        self.button_nextframe.disconnect()
+        self.Disable(self.button_nextframe)
+
+
+
+        if self.Tindex + 1 < self.reader.sizet - 1 :
+                self.reader.SaveMask(self.Tindex, self.FOVindex, self.m.plotmask)
+
+                self.m.prevpicture = self.m.currpicture.copy()
+                self.m.prevplotmask = self.m.plotmask.copy()
+
+                self.m.currpicture = self.m.nextpicture.copy()
+                self.m.plotmask = self.m.nextplotmask.copy()
+
+
+                self.m.nextpicture = self.reader.LoadOneImage(self.Tindex+2, self.FOVindex)
+                self.m.nextplotmask = self.reader.LoadMask(self.Tindex+2, self.FOVindex)
+                self.m.UpdateBckgrndPicture()
+
+                if self.Tindex + 1 == 1:
+                    self.button_previousframe.setEnabled(True)
+
+
+
+#
+        else:
+
+                self.reader.SaveMask(self.Tindex, self.FOVindex, self.m.plotmask)
+
+                self.m.prevpicture = self.m.currpicture.copy()
+                self.m.prevplotmask = self.m.plotmask.copy()
+                self.m.currpicture = self.m.nextpicture.copy()
+                self.m.plotmask = self.m.nextplotmask.copy()
+
+
+
+                self.m.nextpicture = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
+                self.m.nextplotmask = np.zeros([self.reader.sizey,self.reader.sizex], dtype = np.uint16)
+                self.m.UpdateBckgrndPicture()
+
+                self.button_nextframe.setEnabled(False)
+
+        if self.button_showval.isChecked():
+            self.m.ShowCellNumbersCurr()
+            self.m.ShowCellNumbersNext()
+            self.m.ShowCellNumbersPrev()
+
+
+
+
+
+        self.Tindex = self.Tindex+1
+        self.UpdateTitleSubplots()
+
+        if self.button_hidemask.isChecked():
+            self.m.HideMask()
+
+        self.Enable(self.button_nextframe)
+
+#        self.button_nextframe.setChecked(False)
+
+        self.statusBar.clearMessage()
+#        if self.Tindex < self.reader.sizet - 1 :
+#            self.button_nextframe.setEnabled(True)
+        self.button_timeindex.setText(str(self.Tindex))
+
+
+    def BackwardTime(self):
+
+        """This function switches the frame in backward time index. And it
+        several conditions if t == 1, because then the button previous frame has to
+        be disabled. It also tests if the show value of cells button and
+        hidemask are active in order to hide/show the mask or to show the cell
+        values.
+        """
+#        print(self.Tindex)
+#        the t frame is defined as the currently shown frame on the display.
+#        If the button "Previous time frame" is pressed, this function is called
+        self.statusBar.showMessage('Loading the previous frame...')
+#        self.button_previousframe.setEnabled(False)
+#        self.button_previousframe.disconnect()
+        self.Disable(self.button_previousframe)
+        if self.Tindex == 1:
+
+            self.reader.SaveMask(self.Tindex, self.FOVindex, self.m.plotmask)
+
+            self.m.nextpicture = self.m.currpicture.copy()
+            self.m.nextplotmask = self.m.plotmask.copy()
+
+            self.m.currpicture = self.m.prevpicture.copy()
+            self.m.plotmask = self.m.prevplotmask.copy()
+
+            self.m.prevpicture = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
+            self.m.prevplotmask = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
+
+
+            self.m.UpdateBckgrndPicture()
+
+
+            self.button_previousframe.setEnabled(False)
+
+
+
+        else:
+
+
+            self.reader.SaveMask(self.Tindex, self.FOVindex, self.m.plotmask)
+
+            self.m.nextpicture = self.m.currpicture.copy()
+            self.m.nextplotmask = self.m.plotmask.copy()
+
+            self.m.currpicture = self.m.prevpicture.copy()
+            self.m.plotmask = self.m.prevplotmask.copy()
+
+            self.m.prevpicture = self.reader.LoadOneImage(self.Tindex-2, self.FOVindex)
+            self.m.prevplotmask = self.reader.LoadMask(self.Tindex-2, self.FOVindex)
+
+            self.m.UpdateBckgrndPicture()
+            if self.Tindex-1 == self.reader.sizet-2:
+                self.button_nextframe.setEnabled(True)
+
+
+        if self.button_showval.isChecked():
+            self.m.ShowCellNumbersCurr()
+            self.m.ShowCellNumbersNext()
+            self.m.ShowCellNumbersPrev()
+
+
+
+
+#        self.button_previousframe.clicked.connect(self.BackwardTime)
+
+        self.Tindex = self.Tindex-1
+        self.UpdateTitleSubplots()
+
+        if self.button_hidemask.isChecked():
+            self.m.HideMask()
+
+        self.Enable(self.button_previousframe)
+
+
+        if self.Tindex > 0:
+            self.button_previousframe.setEnabled(True)
+
+#        self.button_previousframe.setChecked(False)
+        self.statusBar.clearMessage()
+        self.button_timeindex.setText(str(self.Tindex))
+
+    def MouseDraw(self):
+
+        """
+        This function is called whenever the brush or the eraser button is
+        pressed. On the first press event it calls the self.m.OneClick, which
+        tests whether it is a right click or a left click. If it a right click
+        it assigns the value of the pixel which has been right clicked
+        to self.cellval, meaning that the next drawn pixels will be set to this
+        value.
+        If it is left clicked, then it draws a 3x3 square with the current
+        value of self.cellval.
+        If after left clicking you drag the mouse, then you start drawing
+        using the mouse and it stops once you release the left click.
+
+        Same for the eraser button, it sets directly the value of self.cellval
+        to 0.
+        """
+
+
+        if self.button_drawmouse.isChecked():
+
+            self.statusBar.showMessage('Drawing using the brush, right click to set a value...')
+
+            self.Disable(self.button_drawmouse)
+            self.m.tempmask = self.m.plotmask.copy()
+
+            self.id2 = self.m.mpl_connect('button_press_event', self.m.OneClick)
+
+
+
+            self.id = self.m.mpl_connect('motion_notify_event', self.m.PaintBrush)
+
+            self.id3 = self.m.mpl_connect('button_release_event', self.m.ReleaseClick)
+
+
+            pixmap = QtGui.QPixmap('./icons/brush2.png')
+            cursor = QtGui.QCursor(pixmap, 1,1)
+            QApplication.setOverrideCursor(cursor)
+
+        elif self.button_eraser.isChecked():
+
+            self.statusBar.showMessage('Erasing by setting the values to 0...')
+            self.Disable(self.button_eraser)
+
+            self.m.tempmask = self.m.plotmask.copy()
+
+            self.m.cellval = 0
+            self.id2 = self.m.mpl_connect('button_press_event', self.m.OneClick)
+            self.id = self.m.mpl_connect('motion_notify_event', self.m.PaintBrush)
+
+            self.id3 = self.m.mpl_connect('button_release_event', self.m.ReleaseClick)
+
+
+            pixmap = QtGui.QPixmap('./icons/eraser.png')
+            cursor = QtGui.QCursor(pixmap, 1,1)
+            QApplication.setOverrideCursor(cursor)
+
+        else:
+            self.m.mpl_disconnect(self.id3)
+            self.m.mpl_disconnect(self.id2)
+            self.m.mpl_disconnect(self.id)
+            QApplication.restoreOverrideCursor()
+            self.Enable(self.button_drawmouse)
+            self.Enable(self.button_eraser)
+
+            if self.button_showval.isChecked():
+                self.m.ShowCellNumbersCurr()
+                self.m.ShowCellNumbersNext()
+                self.m.ShowCellNumbersPrev()
+            self.statusBar.clearMessage()
+
+
+    def UpdateTitleSubplots(self):
+        """This function updates the title of the plots according to the
+        current time index. So it called whenever a frame or a fov is changed.
+        """
+        if self.Tindex == 0:
+
+            self.m.titlecurr.set_text('Time index {}'.format(self.Tindex))
+            self.m.titleprev.set_text('No frame {}'.format(''))
+            self.m.titlenext.set_text('Next Time index {}'.format(self.Tindex+1))
+
+
+#            self.m.ax.set_title('Time index {}'.format(self.Tindex))
+#            self.m.ax2.set_title('No frame {}'.format(''))
+#            self.m.ax3.set_title('Next Time index {}'.format(self.Tindex+1))
+#            self.m.update()
+#            self.m.flush_events()
+            self.m.draw()
+        elif self.Tindex == self.reader.sizet-1:
+
+            self.m.titlecurr.set_text('Time index {}'.format(self.Tindex))
+            self.m.titleprev.set_text('Previous time index {}'.format(self.Tindex-1))
+            self.m.titlenext.set_text('No frame {}'.format(''))
+
+
+
+
+#            self.m.ax.set_title('Time index {}'.format(self.Tindex))
+#            self.m.ax2.set_title('Previous time index {}'.format(self.Tindex-1))
+#            self.m.ax3.set_title('No frame {}'.format(''))
+#            self.m.update()
+#            self.m.flush_events()
+            self.m.draw()
+        else:
+            self.m.titlecurr.set_text('Time index {}'.format(self.Tindex))
+            self.m.titleprev.set_text('Previous time index {}'.format(self.Tindex-1))
+            self.m.titlenext.set_text('Next Time index {}'.format(self.Tindex+1))
+
+
+#            self.m.ax.set_title('Time index {}'.format(self.Tindex))
+#            self.m.ax2.set_title('Previous time index {}'.format(self.Tindex-1))
+#            self.m.ax3.set_title('Next Time index {}'.format(self.Tindex+1))
+#            self.m.update()
+#            self.m.flush_events()
+            self.m.draw()
+
+    def ClickNewCell(self):
+        """
+        this method is called when the button New Cell is clicked. If the button
+        state corresponds to True (if is activated) then it connects the mouse
+        clicks on the pyqt window to the canvas (so to the matplolib figure).
+        The connection has an "id" which is given by the integer self.id
+        After the connections is made, it calls the Disable function with argument 0
+        which turns off the other button(s).
+
+        If the button is clicked but it is deactivated then it disconnects the
+        connection between the canvas and the window (the user can not interact
+        with the plot anymore).
+        Storemouseclicks is a list corresponding to the coordinates of all mouse
+        clicks between the activation and the deactivation of the button.
+        So if it is empty, it does not draw anything because no clicks
+        were registered.
+        But if it has some coordinates, it will draw a polygon where the vertices
+        are the coordinates of all the mouseclicks.
+        Once the figure has been updated with a new polygon, the other button(s)
+        are again enabled.
+
+        """
+        if self.button_newcell.isChecked():
+            self.statusBar.showMessage('Draw a new cell...')
+            self.m.tempmask = self.m.plotmask.copy()
+            self.id = self.m.mpl_connect('button_press_event', self.m.MouseClick)
+            self.Disable(self.button_newcell)
+
+
+
+        else:
+
+            self.m.mpl_disconnect(self.id)
+            if  self.m.storemouseclicks and self.TestSelectedPoints():
+                self.m.DrawRegion(True)
+            else:
+                self.m.updatedata()
+            self.Enable(self.button_newcell)
+            if self.button_showval.isChecked():
+                self.m.ShowCellNumbersCurr()
+                self.m.ShowCellNumbersNext()
+                self.m.ShowCellNumbersPrev()
+            self.statusBar.clearMessage()
+
+
+    def TestSelectedPoints(self):
+
+        """This function is just used to catch an exception, when the new cell
+        or the add region function is called. If all the dots drawn by the user
+        are located on one line (horizontal or vertical) the DrawRegion
+        function calls a method to create a polygon and
+        it can not make a polygon out of straight line so it gives an error.
+        In order to prevent this error, this function avoids to attempt to draw
+        by returning False if the square are all on one line.
+        """
+
+
+
+        allx = list(np.array(self.m.storemouseclicks)[:,0])
+        ally = list(np.array(self.m.storemouseclicks)[:,1])
+
+        resultx = all(elem == allx[0] for elem in allx)
+        resulty = all(elem == ally[0] for elem in ally)
+
+        if resultx or resulty:
+            return False
+        else:
+            return True
+
+
+
+
+    def clickmethod(self):
+        """
+        this method is called when the button Add region is clicked. If the button
+        state corresponds to True (if is activated) then it connects the mouse
+        clicks on the pyqt window to the canvas (so to the matplolib figure).
+        The connection has an "id" which is given by the integer self.id
+        After the connections is made, it calls the Disable function with argument 1
+        which turns off the other button(s).
+
+        If the button is clicked and it is deactivated then it disconnects the
+        connection between the canvas and the window (the user can not interact
+        with the plot anymore).
+        Storemouseclicks is a list corresponding to the coordinates of all mouse
+        clicks between the activation and the deactivation of the button.
+        So if it is empty, it does not draw anything because no clicks
+        were registered.
+        But if it has some coordinates, it will draw a polygon where the vertices
+        are the coordinates of all the mouseclicks.
+        Once the figure has been updated with a new polygon, the other button(s)
+        are again enabled.
+
+        """
+        if self.button_add_region.isChecked():
+            self.statusBar.showMessage('Adding a region to an existing cell...')
+            self.m.tempmask = self.m.plotmask.copy()
+            self.id = self.m.mpl_connect('button_press_event', self.m.MouseClick)
+            self.Disable(self.button_add_region)
+
+        else:
+
+            self.m.mpl_disconnect(self.id)
+
+#            test if the list is not empty and if the dots are not all in the same line
+            if  self.m.storemouseclicks and self.TestSelectedPoints():
+
+                self.m.DrawRegion(False)
+
+            else:
+                self.m.updatedata()
+            self.Enable(self.button_add_region)
+
+            if self.button_showval.isChecked():
+                self.m.ShowCellNumbersCurr()
+                self.m.ShowCellNumbersNext()
+                self.m.ShowCellNumbersPrev()
+
+            self.statusBar.clearMessage()
+
+
+
+
+
+    def Enable(self, button):
+
+         """
+         this functions turns on buttons all the buttons, depending on the time
+         index. (next and previous buttons should not be turned on if t = 0
+         or t = lasttimeindex)
+         """
+         if self.button_segment.isChecked():
+             self.EnableCorrectionsButtons()
+             self.button_home.setEnabled(True)
+             self.button_zoom.setEnabled(True)
+             self.button_pan.setEnabled(True)
+             self.button_back.setEnabled(True)
+             self.button_forward.setEnabled(True)
+         else:
+             for k in range(0, len(self.buttonlist)):
+                 if button != self.buttonlist[k]:
+                     self.buttonlist[k].setEnabled(True)
+
+         if self.Tindex == 0:
+             self.button_previousframe.setEnabled(False)
+
+         if self.Tindex == self.reader.sizet-1:
+             self.button_nextframe.setEnabled(False)
+
+         self.EnableCNNButtons()
+
+
+    def Disable(self, button):
+
+         """
+         this functions turns off all the buttons except the one given in
+         argument.
+         """
+         flag = False
+         if button == self.button_add_region or button == self.button_newcell or button == self.button_exval or button == self.button_changecellvalue or button == self.button_drawmouse or button == self.button_eraser:
+             if self.button_segment.isChecked():
+                 flag = True
+
+
+         for k in range(0,len(self.buttonlist)):
+             if button != self.buttonlist[k]:
+                 self.buttonlist[k].setEnabled(False)
+         if flag:
+             self.button_segment.setEnabled(True)
+
+         if button == self.button_segment or button == self.button_threshold:
+             self.button_home.setEnabled(True)
+             self.button_zoom.setEnabled(True)
+             self.button_pan.setEnabled(True)
+             self.button_back.setEnabled(True)
+             self.button_forward.setEnabled(True)
+
+    def EnableCNNButtons(self):
+
+        if self.reader.TestPredExisting(self.Tindex, self.FOVindex):
+#            self.button_cnn.setEnabled(False)
+            self.button_threshold.setEnabled(True)
+            self.button_segment.setEnabled(True)
+            self.button_cellcorespondance.setEnabled(True)
+            self.button_extractfluorescence.setEnabled(True)
+        else:
+#            self.button_cnn.setEnabled(True)
+            self.button_threshold.setEnabled(False)
+            self.button_segment.setEnabled(False)
+            self.button_cellcorespondance.setEnabled(False)
+            self.button_extractfluorescence.setEnabled(False)
+
+    def EnableCorrectionsButtons(self):
+        self.button_newcell.setEnabled(True)
+        self.button_add_region.setEnabled(True)
+        self.button_drawmouse.setEnabled(True)
+        self.button_eraser.setEnabled(True)
+        self.button_exval.setEnabled(True)
+        self.button_changecellvalue.setEnabled(True)
+        self.button_showval.setEnabled(True)
+
+    def DisableCorrectionsButtons(self):
+        self.button_newcell.setEnabled(False)
+        self.button_add_region.setEnabled(False)
+        self.button_drawmouse.setEnabled(False)
+        self.button_eraser.setEnabled(False)
+        self.button_exval.setEnabled(False)
+        self.button_changecellvalue.setEnabled(False)
+        self.button_showval.setEnabled(False)
+
+    def ButtonSaveMask(self):
+        """
+        When this function is called, it saves the current mask
+        (self.m.plotmask)
+        """
+
+        self.reader.SaveMask(self.Tindex, self.FOVindex, self.m.plotmask)
+
+
+
+class PlotCanvas(FigureCanvas):
+
+    def __init__(self, parent=None):
+        """this class defines the canvas. It initializes a figure, which is then
+        used to plot our data using imshow.
+
+        """
+
+
+#       define three subplots corresponding to the previous, current and next
+#       time index.
+        fig, (self.ax2, self.ax, self.ax3) = plt.subplots(1,3, sharex = True, sharey = True)
+
+        FigureCanvas.__init__(self, fig)
+        self.setParent(parent)
+
+#       this is some mambo jambo.
+        FigureCanvas.setSizePolicy(self,
+                QSizePolicy.Expanding,
+                QSizePolicy.Expanding)
+        FigureCanvas.updateGeometry(self)
+
+#       the self.currpicture attribute takes the original data and will then
+#       contain the updates drawn by the user.
+
+        self.currpicture = parent.currentframe
+
+        self.prevpicture = parent.previousframe
+
+        self.nextpicture = parent.nextframe
+
+        self.plotmask = parent.mask_curr
+
+        self.prevplotmask = parent.mask_previous
+
+        self.nextplotmask = parent.mask_next
+
+        self.tempmask = self.plotmask.copy()
+
+        self.tempplotmask = self.plotmask.copy()
+
+        self.ThresholdMask = np.zeros([parent.reader.sizey, parent.reader.sizex], dtype = np.uint16)
+        self.SegmentedMask = np.zeros([parent.reader.sizey, parent.reader.sizex], dtype = np.uint16)
+
+#        this line is just here to not attribute a zero value to the plot
+#        because if so, then it does not update the plot and it stays blank.
+#        (it is unclear why..if someone finds a better solution)
+        self.prevpicture = self.currpicture.copy()
+
+
+        self.currplot, self.currmask = self.plot(self.currpicture, self.plotmask, self.ax)
+
+        self.previousplot, self.previousmask = self.plot(self.prevpicture, self.prevplotmask, self.ax2)
+        self.prevpicture = np.zeros([parent.reader.sizey, parent.reader.sizex], dtype = np.uint16)
+        self.prevplotmask = np.zeros([parent.reader.sizey, parent.reader.sizex], dtype =np.uint16)
+
+#        print('set visible')
+#        self.ax2.set_visible(False)
+
+        self.nextplot, self.nextmask = self.plot(self.nextpicture, self.nextplotmask, self.ax3)
+
+        self.previousplot.set_data(self.prevpicture)
+        self.previousmask.set_data((self.prevplotmask%10+1)*(self.prevplotmask != 0))
+
+        self.ax2.draw_artist(self.previousplot)
+        self.ax2.draw_artist(self.previousmask)
+        self.update()
+        self.flush_events()
+
+
+        self.titlecurr = self.ax.set_title('Time index {}'.format(parent.Tindex))
+        self.titleprev = self.ax2.set_title('No frame {}'.format(''))
+        self.titlenext = self.ax3.set_title('Next Time index {}'.format(parent.Tindex+1))
+
+
+#        these variables are just set to test the states of the buttons
+#        (button turned on or  off, etc..) of the buttons in the methods
+#        used in this class.
+        self.button_showval_check = parent.button_showval
+        self.button_newcell_check = parent.button_newcell
+        self.button_add_region_check = parent.button_add_region
+        self.button_drawmouse_check = parent.button_drawmouse
+        self.button_eraser_check = parent.button_eraser
+        self.button_hidemask_check = parent.button_hidemask
+
+
+#       It will plot for the first time and return the imshow function
+
+        self.currmask.set_clim(0, 10)
+        self.previousmask.set_clim(0,10)
+        self.nextmask.set_clim(0,10)
+
+#       This attribute is a list which stores all the clicks of the mouse.
+        self.storemouseclicks = []
+
+#        This attribute is used to store the square where the mouse has been
+#        in order than to draw lines (Paintbrush function)
+        self.storebrushclicks = [[False,False]]
+
+#        self.cellval is the variable which sets the value to the pixel
+#        whenever something is drawn.
+        self.cellval = 0
+#        self.store_values = []
+
+#        These are the codes used to create a polygon in the new cell/addregion
+#        functions, which should be fed into the Path function
+        self.codes_drawoneline = [Path.MOVETO, Path.LINETO]
+
+#        These are lists storing all the annotations which are used to
+#        show the values of the cells on the plots.
+        self.ann_list = []
+        self.ann_list_prev = []
+        self.ann_list_next = []
+
+
+
+
+
+    def ExchangeCellValue(self, val1, val2):
+        """Swaps the values of the cell between two clusters each representing
+        one cell. This method is called after the user has entered
+        values in the ExchangeCellValues window.
+        """
+
+
+        if (val1 in self.plotmask) and (val2 in self.plotmask):
+            indices = np.where(self.plotmask == val1)
+            self.plotmask[self.plotmask == val2] = val1
+            for i in range(0,len(indices[0])):
+                self.plotmask[indices[0][i], indices[1][i]] = val2
+            self.updatedata()
+
+        else:
+#            print('No cell values found corresponding to the entered value')
+            return
+
+    def ReleaseClick(self, event):
+        """This method is called from the brush button when the mouse is
+        released such that the last coordinate saved when something is drawn
+        is set to zero. Because otherwise, if the user starts drawing somewhere
+        else, than a straight line is draw between the last point of the
+        previous mouse drawing/dragging and the new one which then starts.
+        """
+        if self.ax == event.inaxes:
+            self.storebrushclicks[0] = [False, False]
+
+    def OneClick(self, event):
+        """This method is called when the Brush button is activated. And
+        sets the value of self.cellval if the click is a right click, or draws
+        a square if the click is a left click. (so if the user does just left
+        click but does not drag, there will be only a square which is drawn )
+        """
+        if event.button == 3 and (event.xdata != None and event.ydata != None) and (not self.button_eraser_check.isChecked()) and self.ax == event.inaxes:
+            tempx = int(event.xdata)
+            tempy = int(event.ydata)
+            self.cellval = self.plotmask[tempy, tempx]
+            self.storebrushclicks[0] = [False, False]
+
+        elif event.button == 1 and (event.xdata != None and event.ydata != None) and self.ax == event.inaxes:
+            tempx = int(event.xdata)
+            tempy = int(event.ydata)
+            self.plotmask[tempy:tempy+3, tempx:tempx+3] = self.cellval
+            self.storebrushclicks[0] = [tempx,tempy]
+
+            self.updatedata()
+
+        else:
+            return
+
+
+    def PaintBrush(self, event):
+        """PantBrush is the method to paint using a "brush" and it is based
+        on the mouse event in matplotlib "motion notify event". However it can
+        not record every pixel that the mouse has hovered over (it is too fast).
+        So, in order to not only draw points (happens when the mouse is dragged
+        too quickly), these points are interpolated here with lines.
+        """
+
+        if event.button == 1 and (event.xdata != None and event.ydata != None) and self.ax == event.inaxes:
+
+            newx = int(event.xdata)
+            newy = int(event.ydata)
+#            when a new cell value is set, there is no point to interpolate, to
+#            draw a line between the points.
+            if self.storebrushclicks[0][0] == False :
+                self.plotmask[newy:newy+3,newx:newx+3] = self.cellval
+                self.storebrushclicks[0] = [newx,newy]
+            else:
+                oldx = self.storebrushclicks[0][0]
+                oldy = self.storebrushclicks[0][1]
+
+                if newx != oldx:
+
+                    slope = (oldy-newy)/(oldx-newx)
+                    offset = (newy*oldx-newx*oldy)/(oldx-newx)
+
+                    if newx > oldx:
+                        for xtemp in range(oldx+1, newx+1):
+                            ytemp = int(slope*xtemp + offset)
+                            self.plotmask[ytemp:ytemp + 3, xtemp:xtemp+3] = self.cellval
+                    else:
+                        for xtemp in range(oldx-1,newx-1,-1):
+                            ytemp = int(slope*xtemp + offset)
+                            self.plotmask[ytemp:ytemp+3, xtemp:xtemp+3] = self.cellval
+                else:
+                    if newy > oldy:
+                        for ytemp in range(oldy+1,newy+1):
+                            self.plotmask[ytemp:ytemp+3, newx:newx+3] = self.cellval
+                    else:
+                        for ytemp in range(oldy-1,newy-1,-1):
+                            self.plotmask[ytemp:ytemp+3, newx:newx+3] = self.cellval
+
+            self.storebrushclicks[0][0] = newx
+            self.storebrushclicks[0][1] = newy
+
+            self.updatedata()
+
+
+
+    def MouseClick(self,event):
+        """This function is called whenever, the add region or the new cell
+        buttons are active and the user clicks on the plot. For each
+        click on the plot, it records the coordinate of the click and stores
+        it. When the user deactivate the new cell or add region button,
+        all the coordinates are given to the DrawRegion function (if they
+        do not all lie on the same line) and out of the coordinates, it makes
+        a polygon. And then draws inside of this polygon by setting the pixels
+        to the self.cellval value.
+        """
+#        button == 1 corresponds to the left click.
+
+        if event.button == 1 and (event.xdata != None and event.ydata != None) and self.ax == event.inaxes:
+
+#           extract the coordinate of the click inside of the matplotlib figure
+#           and then takes the integer part
+
+            newx = int(event.xdata)
+            newy = int(event.ydata)
+
+#            print(newx,newy)m
+#                stores the coordinates of the click
+
+            self.storemouseclicks.append([newx, newy])
+#                draws in the figure a small square (4x4 pixels) to
+#                visualize where the user has clicked
+            self.updateplot(newx, newy)
+
+
+    def DefineColormap(self, Ncolors):
+       """Define a new colormap by assigning 10 values of the jet colormap
+        such that there are only colors for the values 0-10 and the values >10
+        will be treated with a modulo operation (updatedata function)
+       """
+       jet = cm.get_cmap('jet', Ncolors)
+       colors = []
+       for i in range(0,Ncolors):
+           if i==0 :
+#               set background transparency to 0
+               temp = list(jet(i))
+               temp[3]= 0.0
+               colors.append(tuple(temp))
+           else:
+               colors.append(jet(i))
+       colormap = ListedColormap(colors)
+       return colormap
+
+    def plot(self, picture, mask, ax):
+       """this function is called for the first time when all the subplots
+       are drawn.
+       """
+
+#       Define a new colormap with 20 colors.
+       newcmp = self.DefineColormap(21)
+       ax.axis("off")
+
+       self.draw()
+       return ax.imshow(picture, interpolation= 'None', origin = 'upper', cmap = 'gray_r'), ax.imshow((mask%10+1)*(mask != 0), origin = 'upper', interpolation = 'None', alpha = 0.2, cmap = newcmp)
+
+
+    def UpdateBckgrndPicture(self):
+        """this function can be called to redraw all the pictures and the mask,
+        so it is called whenever a time index is entered by the user and
+        the corresponding pictures and masks are updated. And then they are
+        drawn here.
+        When the user changes time frame using the next or previous time frame
+        buttons, it is also this function which is called.
+        When the user changes the field of view, it is also
+        this function which finally draws all the plots.
+
+        """
+
+        self.currplot.set_data(self.currpicture)
+        self.currplot.set_clim(np.amin(self.currpicture), np.amax(self.currpicture))
+        self.currmask.set_data((self.plotmask%10+1)*(self.plotmask!=0))
+        self.ax.draw_artist(self.currplot)
+        self.ax.draw_artist(self.currmask)
+
+
+        self.previousplot.set_data(self.prevpicture)
+        self.previousplot.set_clim(np.amin(self.prevpicture), np.amax(self.prevpicture))
+        self.previousmask.set_data((self.prevplotmask%10+1)*(self.prevplotmask != 0))
+
+
+        self.ax2.draw_artist(self.previousplot)
+        self.ax2.draw_artist(self.previousmask)
+
+        self.nextplot.set_data(self.nextpicture)
+        self.nextplot.set_clim(np.amin(self.nextpicture), np.amax(self.nextpicture))
+        self.nextmask.set_data((self.nextplotmask % 10 +1 )*(self.nextplotmask != 0))
+        self.ax3.draw_artist(self.nextplot)
+        self.ax3.draw_artist(self.nextmask)
+
+
+        self.update()
+        self.flush_events()
+
+
+    def updatedata(self, flag = True):
+
+
+       """
+       In order to just display the cells so regions with value > 0
+       and also to assign to each of the cell values one color,
+       the modulo 10 of the value is take and we add 1, to distinguish
+       the values of 10,20,30,... from the background (although the bckgrnd
+       gets with the addition the value 1) and the result of the
+       modulo is multiplied with a matrix containing a False value for the
+       background coordinates, setting the background to 0 again.
+       """
+       if flag:
+           self.currmask.set_data((self.plotmask%10+1)*(self.plotmask!=0))
+       else :
+           self.currmask.set_data((self.tempmask%10+1)*(self.tempmask!=0))
+
+
+
+#       show the updates by redrawing the array using draw_artist, it is faster
+#       to use as it only redraws the array itself, and not everything else.
+
+       self.ax.draw_artist(self.currplot)
+       self.ax.draw_artist(self.currmask)
+#       self.ax.text(500,500,'test')
+       self.update()
+       self.flush_events()
+#
+#       if self.button_showval_check.isChecked():
+#           self.ShowCellNumbersCurr()
+#           self.ShowCellNumbersNext()
+#           self.ShowCellNumbersPrev()
+
+    def Update3Plots(self):
+        """This function is just used to draw the update the masks on
+        the three subplots. It is only used by the Hidemask function.
+        To "show" the masks again when the button is unchecked.
+        """
+
+#        self.currmask.set_data((self.plotmask%10+1)*(self.plotmask!=0))
+        self.ax.draw_artist(self.currplot)
+        self.ax.draw_artist(self.currmask)
+
+        self.ax2.draw_artist(self.previousplot)
+        self.ax2.draw_artist(self.previousmask)
+
+        self.ax3.draw_artist(self.nextplot)
+        self.ax3.draw_artist(self.nextmask)
+
+        self.update()
+        self.flush_events()
+
+    def HideMask(self):
+
+        if self.button_hidemask_check.isChecked():
+            self.ax.draw_artist(self.currplot)
+            self.ax2.draw_artist(self.previousplot)
+            self.ax3.draw_artist(self.nextplot)
+            self.update()
+            self.flush_events()
+
+        else:
+            self.Update3Plots()
+
+
+    def ShowCellNumbersCurr(self):
+         """This function is called to display the cell values and it
+         takes 10 random points inside of the cell, computes the mean of these
+         points and this gives the coordinate where the number will be
+         displayed. The number to be displayed is just given by the value
+         in the mask of the cell.
+         This function is just used for the current time subplot.
+         """
+
+
+         for i,a in enumerate(self.ann_list):
+                 a.remove()
+         self.ann_list[:] = []
+
+
+         if self.button_showval_check.isChecked():
+
+             maxval = np.amax(self.plotmask)
+             minval =  1
+             xtemp = []
+             ytemp = []
+             val =[]
+             for k in range(minval,maxval + 1):
+                 if k in self.plotmask:
+                     indices = np.where(self.plotmask == k)
+                     sampley = random.choices(list(indices[0]), k = 10)
+                     samplex = random.choices(list(indices[1]), k = 10)
+                     meanx = np.mean(samplex)
+                     meany = np.mean(sampley)
+                     xtemp.append(int(round(meanx)))
+                     ytemp.append(int(round(meany)))
+                     val.append(k)
+             if xtemp:
+                 for i in range(0,len(xtemp)):
+                      ann = self.ax.annotate(str(val[i]), (xtemp[i], ytemp[i]))
+                      self.ann_list.append(ann)
+
+
+             self.draw()
+#             val, ct = np.unique(self.plotmask, return_counts = True)
+#             print(val)
+#             print(ct)
+
+         else:
+
+             for i,a in enumerate(self.ann_list):
+                 a.remove()
+             self.ann_list[:] = []
+
+#             self.txt.remove()
+             self.updatedata()
+
+    def ShowCellNumbersPrev(self):
+         """This function is called to display the cell values and it
+         takes 10 random points inside of the cell, computes the mean of these
+         points and this gives the coordinate where the number will be
+         displayed. The number to be displayed is just given by the value
+         in the mask of the cell.
+         This function is just used for the previous time subplot.
+         """
+
+         for i,a in enumerate(self.ann_list_prev):
+                 a.remove()
+         self.ann_list_prev[:] = []
+
+
+         if self.button_showval_check.isChecked():
+
+             maxval = np.amax(self.prevplotmask)
+             minval =  1
+             xtemp = []
+             ytemp = []
+             val = []
+
+             for k in range(minval,maxval + 1):
+                 if k in self.prevplotmask:
+                     indices = np.where(self.prevplotmask == k)
+                     sampley = random.choices(list(indices[0]), k = 10)
+                     samplex = random.choices(list(indices[1]), k = 10)
+                     meanx = np.mean(samplex)
+                     meany = np.mean(sampley)
+                     xtemp.append(int(round(meanx)))
+                     ytemp.append(int(round(meany)))
+                     val.append(k)
+             if xtemp:
+                 for i in range(0,len(xtemp)):
+                      ann = self.ax2.annotate(str(val[i]), (xtemp[i], ytemp[i]))
+                      self.ann_list_prev.append(ann)
+
+             self.draw()
+
+         else:
+
+             for i,a in enumerate(self.ann_list_prev):
+                 a.remove()
+             self.ann_list_prev[:] = []
+
+
+             self.previousmask.set_data((self.prevplotmask%10+1)*(self.prevplotmask!=0))
+
+             self.ax2.draw_artist(self.previousplot)
+             self.ax2.draw_artist(self.previousmask)
+             self.update()
+             self.flush_events()
+
+
+    def ShowCellNumbersNext(self):
+
+         """This function is called to display the cell values and it
+         takes 10 random points inside of the cell, computes the mean of these
+         points and this gives the coordinate where the number will be
+         displayed. The number to be displayed is just given by the value
+         in the mask of the cell.
+         This function is just used for the next time subplot.
+         """
+
+         for i,a in enumerate(self.ann_list_next):
+                 a.remove()
+         self.ann_list_next[:] = []
+
+
+
+
+         if self.button_showval_check.isChecked():
+
+             maxval = np.amax(self.nextplotmask)
+             minval =  1
+             xtemp = []
+             ytemp = []
+             val = []
+             for k in range(minval,maxval + 1):
+                 if k in self.nextplotmask:
+                     indices = np.where(self.nextplotmask == k)
+                     sampley = random.choices(list(indices[0]), k = 10)
+                     samplex = random.choices(list(indices[1]), k = 10)
+                     meanx = np.mean(samplex)
+                     meany = np.mean(sampley)
+                     xtemp.append(int(round(meanx)))
+                     ytemp.append(int(round(meany)))
+                     val.append(k)
+             if xtemp:
+                 for i in range(0,len(xtemp)):
+                      ann = self.ax3.annotate(str(val[i]), (xtemp[i], ytemp[i]))
+                      self.ann_list_next.append(ann)
+
+             self.draw()
+
+         else:
+
+             for i,a in enumerate(self.ann_list_next):
+                 a.remove()
+             self.ann_list_next[:] = []
+
+
+             self.nextmask.set_data((self.nextplotmask%10+1)*(self.nextplotmask!=0))
+
+             self.ax3.draw_artist(self.nextplot)
+             self.ax3.draw_artist(self.nextmask)
+             self.update()
+             self.flush_events()
+
+
+
+    def updateplot(self, posx, posy):
+
+
+
+
+# it updates the plot once the user clicks on the plot and draws a 4x4 pixel dot
+# at the coordinate of the click
+#          self.modulomask = self.plotmask.copy()
+          xtemp, ytemp = self.storemouseclicks[0]
+#         remove the first coordinate as it should only coorespond
+#         to the value that the user wants to attribute to the drawn region
+
+#          here we initialize the value attributed to the pixels.
+#          it means that the first click selects the value that will be attributed to
+#          the pixels inside the polygon (drawn by the following mouse clicks of the user)
+
+          self.cellval = self.plotmask[ytemp, xtemp]
+
+
+
+
+#          drawing the 2x2 square ot of the mouse click
+
+
+          if (self.button_newcell_check.isChecked() or self.button_drawmouse_check.isChecked()) and self.cellval == 0:
+              self.tempmask[posy:posy+2, posx:posx+2] = 9
+          else:
+              self.tempmask[posy:posy+2,posx:posx+2] = self.cellval
+
+#          plot the mouseclick
+
+          self.updatedata(False)
+
+
+
+    def DrawRegion(self, flag):
+        """
+        this method is used to draw either a new cell (flag = true) or to add a region to
+        an existing cell (flag = false). The flag will just be used to set the
+        value of pixels (= self.cellval) in the drawn region.
+        If flag = true, then the value will be the maximal value plus 1. Such
+        that it attributes a new value to the new cell.
+        If flag = false, then it will use the value of the first click to set
+        the value of the pixels in the new added region.
+        """
+
+
+
+#        here the values that have been changed to mark the mouse clicks are
+#        restored such that they don't appear when the region/new cell is
+#        drawn.
+
+
+
+        if flag:
+#            if new cell is added, it sets the value of the drawn pixels to a new value
+#            corresponding to the new cell
+            self.cellval = np.amax(self.plotmask) + 1
+        else:
+#            The first value is taken out as it is just used to set the value
+#            to the new region.
+#            self.store_values.pop(0)
+            self.storemouseclicks.pop(0)
+
+
+        if len(self.storemouseclicks) <= 2:
+#            if only two points or less have been click, it cannot make a area
+#            so it justs discards these values and returns.
+            self.storemouseclicks = list(self.storemouseclicks)
+
+            self.storemouseclicks.clear()
+
+            self.updatedata(True)
+#            self.store_values.clear()
+            return
+
+        else:
+#            add the first point because to use the path function, one has to close
+#            the path by returning to the initial point.
+            self.storemouseclicks.append(self.storemouseclicks[0])
+
+#            codes are requested by the path function in order to make a polygon
+#            out of the points that have been selected.
+
+            codes = np.zeros(len(self.storemouseclicks))
+            codes[0] = Path.MOVETO
+            codes[len(codes)-1]= Path.CLOSEPOLY
+            codes[1:len(codes)-1] = Path.LINETO
+            codes = list(codes)
+
+#            out of the coordinates of the mouse clicks and of the code, it makes
+#            a path/contour which corresponds to the added region/new cell.
+            path = Path(self.storemouseclicks, codes)
+
+
+
+            self.storemouseclicks = np.array(self.storemouseclicks)
+
+#          Take a square around the drawn region, where the drawn region fits inside.
+            minx = min(self.storemouseclicks[:,0])
+            maxx = max(self.storemouseclicks[:,0])
+
+            miny = min(self.storemouseclicks[:,1])
+            maxy= max(self.storemouseclicks[:,1])
+
+#            creates arrays of coordinates of the whole square surrounding
+#            the drawn region
+            array_x = np.arange(minx, maxx, 1)
+            array_y = np.arange(miny, maxy, 1)
+#
+            array_coord = []
+#          takes all the coordinates to couple them and store them in array_coord
+            for xi in range(0,len(array_x)):
+               for yi in range(0,len(array_y)):
+
+                  array_coord.append((array_x[xi], array_y[yi]))
+
+#          path_contains_points returns an array of bool values
+#          where for each coordinates it tests if it is inside the path
+
+            pix_inside_path = path.contains_points(array_coord)
+
+#            for each coordinate where the contains_points method returned true
+#            the value of the self.currpicture matrix is changed, it draws the region
+#            defined by the user
+
+            for j in range(0,len(pix_inside_path)):
+              if pix_inside_path[j]:
+                  x,y = array_coord[j]
+                  self.plotmask[y,x]= self.cellval
+
+
+#           once the self.currpicture has been updated it is drawn by callinf the
+#           updatedata method.
+
+            self.updatedata()
+
+
+        self.storemouseclicks = list(self.storemouseclicks)
+
+#       empty the lists ready for the next region to be drawn.
+        self.storemouseclicks.clear()
+#        self.store_values.clear()
+
+
+
+if __name__ == '__main__':
+    app = QApplication(sys.argv)
+    wind = dfb.FileBrowser()
+    if wind.exec_():
+        nd2name1 = wind.nd2name
+        hdfname1 = wind.hdfname
+        hdfnewname = wind.newhdfentry.text()
+        ex = App(nd2name1, hdfname1, hdfnewname)
+        sys.exit(app.exec_())
+    else:
+        app.exit()
diff --git a/InteractionDisk_temp.py b/InteractionDisk_temp.py
new file mode 100644
index 0000000000000000000000000000000000000000..c5c41a6ffae7111aae841926b0a27cf05d270788
--- /dev/null
+++ b/InteractionDisk_temp.py
@@ -0,0 +1,468 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Oct 15 15:00:29 2019
+
+This program reads out the images from the nd2 file and creates or
+reads the hdf file containing the segmentation.
+"""
+from nd2reader import ND2Reader
+#import matplotlib.pyplot as plt
+import numpy as np
+
+import h5py
+import os.path
+import skimage.io
+#import segment as seg
+import neural_network as nn
+
+
+
+import matplotlib.pyplot as plt
+import CellCorrespondance as cc
+import matplotlib.pyplot as plt
+
+
+class Reader:
+
+    def __init__(self, hdfpathname, newhdfname, nd2pathname):
+
+
+#        Initializes the data corresponding to the sizes of the pictures,
+#        the number of different fields of views(Npos) taken in the experiment.
+#        And it also sets the number of time frames per field of view.
+        self.nd2path = nd2pathname
+        self.hdfpath = hdfpathname
+        self.newhdfname = newhdfname
+
+        with ND2Reader(self.nd2path) as images:
+            self.sizex = images.sizes['x']
+            self.sizey = images.sizes['y']
+            self.sizec = images.sizes['c']
+            self.sizet = images.sizes['t']
+            self.Npos  = images.sizes['v']
+            self.channel_names = images.metadata['channels']
+
+        #create the labels which index the masks with respect to time and
+        #fov indices in the hdf5 file
+        self.fovlabels = []
+        self.tlabels = []
+        self.InitLabels()
+
+        self.default_channel = 0
+
+        self.name = self.hdfpath
+
+        self.predictname = ''
+        self.thresholdname = ''
+        self.segmentname = ''
+
+#        self.channelwindow = chch.CustomDialog(self)
+#
+#        if self.channelwindow.exec_():
+#
+#             self.default_channel = self.channelwindow.button_channel.currentIndex()
+
+
+
+
+
+
+#        create an new hfd5 file if no one existing already
+        self.Inithdf()
+
+
+
+
+    def InitLabels(self):
+        """Create two lists containing all the possible fields of view and time
+        labels, in order to access the arrays in the hdf5 file.
+        """
+
+        for i in range(0, self.Npos):
+            self.fovlabels.append('FOV' + str(i))
+
+        for j in range(0, self.sizet):
+            self.tlabels.append('T'+ str(j))
+
+
+
+    def Inithdf(self):
+        """If the file already exists then it is loaded else
+        a new hdf5 file is created and for every fields of view
+        a new group is created in the createhdf method
+        """
+
+        if not self.hdfpath:
+            return self.Createhdf()
+        else:
+#
+            temp = self.hdfpath[:-3]
+
+            self.thresholdname = temp + '_thresholded' + '.h5'
+            self.segmentname = temp + '_segmented' + '.h5'
+            self.predictname = temp + '_predicted' + '.h5'
+
+#
+
+    def Createhdf(self):
+
+        """In this method, for each field of view one group is created. And
+        in each one of these group, there will be for each time frame a
+        corresponding dataset equivalent to a 2d array containing the
+        corresponding masks data (segmented/thresholded/predicted).
+        """
+#        print('createhdf')
+
+        self.hdfpath = ''
+        templist = self.nd2path.split('/')
+        for k in range(0, len(templist)-1):
+            self.hdfpath = self.hdfpath+templist[k]+'/'
+
+        self.hdfpath = self.hdfpath + self.newhdfname + '.h5'
+
+        hf = h5py.File(self.hdfpath, 'w')
+
+        for i in range(0, self.Npos):
+
+            grpname = self.fovlabels[i]
+            hf.create_group(grpname)
+
+        hf.close()
+
+
+
+
+        for k in range(0, len(templist)-1):
+            self.thresholdname = self.thresholdname+templist[k]+'/'
+        self.thresholdname = self.thresholdname + self.newhdfname + '_thresholded' + '.h5'
+
+        hf = h5py.File(self.thresholdname,'w')
+
+        for i in range(0, self.Npos):
+
+            grpname = self.fovlabels[i]
+            hf.create_group(grpname)
+
+        hf.close()
+
+        for k in range(0, len(templist)-1):
+            self.segmentname = self.segmentname+templist[k]+'/'
+        self.segmentname = self.segmentname + self.newhdfname + '_segmented' + '.h5'
+
+        hf = h5py.File(self.segmentname,'w')
+
+        for i in range(0, self.Npos):
+
+            grpname = self.fovlabels[i]
+            hf.create_group(grpname)
+
+        hf.close()
+
+        for k in range(0, len(templist)-1):
+            self.predictname = self.predictname+templist[k]+'/'
+        self.predictname = self.predictname + self.newhdfname + '_predicted' + '.h5'
+
+        hf = h5py.File(self.predictname,'w')
+
+        for i in range(0, self.Npos):
+
+            grpname = self.fovlabels[i]
+            hf.create_group(grpname)
+
+        hf.close()
+
+    def LoadMask(self, currentT, currentFOV):
+        """this method is called when one mask should be loaded from the file
+        on the disk to the user's buffer. If there is no mask corresponding
+        in the file, it creates the mask corresponding to the given time and
+        field of view index and returns an array filled with zeros.
+        """
+
+        file = h5py.File(self.hdfpath,'r+')
+        if self.TestTimeExist(currentT,currentFOV,file):
+            mask = np.array(file['/{}/{}'.format(self.fovlabels[currentFOV], self.tlabels[currentT])], dtype = np.uint16)
+            file.close()
+
+
+            return mask
+
+
+        else:
+
+#            change with Matthias code!
+
+            zeroarray = np.zeros([self.sizey, self.sizex],dtype = np.uint16)
+            file.create_dataset('/{}/{}'.format(self.fovlabels[currentFOV], self.tlabels[currentT]), data = zeroarray, compression = 'gzip')
+            file.close()
+            return zeroarray
+
+
+    def TestTimeExist(self,currentT, currentFOV, file):
+        """This method tests if the array which is requested by LoadMask
+        already exists or not in the hdf file.
+        """
+
+        for t in file['/{}'.format(self.fovlabels[currentFOV])].keys():
+
+            if t == self.tlabels[currentT]:
+
+
+                return True
+
+        return False
+
+
+
+    def SaveMask(self, currentT, currentFOV, mask):
+        """This function is called when the user wants to save the mask in the
+        hdf5 file on the disk. It overwrites the existing array with the new
+        one given in argument.
+        If it is a new mask, there should already
+        be an existing null array which has been created by the LoadMask method
+        when the new array has been loaded/created in the main before calling
+        this save method.
+        """
+
+        file = h5py.File(self.hdfpath, 'r+')
+
+        if self.TestTimeExist(currentT,currentFOV,file):
+            dataset= file['/{}/{}'.format(self.fovlabels[currentFOV], self.tlabels[currentT])]
+            dataset[:] = mask
+            file.close()
+
+        else:
+
+            file.create_dataset('/{}/{}'.format(self.fovlabels[currentFOV], self.tlabels[currentT]), data = mask, compression = 'gzip')
+            file.close()
+
+
+    def SaveThresholdMask(self, currentT, currentFOV, mask):
+        """This function is called when the user wants to save the mask in the
+        hdf5 file on the disk. It overwrites the existing array with the new
+        one given in argument.
+        If it is a new mask, there should already
+        be an existing null array which has been created by the LoadMask method
+        when the new array has been loaded/created in the main before calling
+        this save method.
+        """
+
+        file = h5py.File(self.thresholdname, 'r+')
+
+        if self.TestTimeExist(currentT,currentFOV,file):
+            dataset = file['/{}/{}'.format(self.fovlabels[currentFOV], self.tlabels[currentT])]
+            dataset[:] = mask
+            file.close()
+        else:
+            file.create_dataset('/{}/{}'.format(self.fovlabels[currentFOV], self.tlabels[currentT]), data = mask, compression = 'gzip')
+            file.close()
+
+    def SaveSegMask(self, currentT, currentFOV, mask):
+        """This function is called when the user wants to save the mask in the
+        hdf5 file on the disk. It overwrites the existing array with the new
+        one given in argument.
+        If it is a new mask, there should already
+        be an existing null array which has been created by the LoadMask method
+        when the new array has been loaded/created in the main before calling
+        this save method.
+        """
+
+        file = h5py.File(self.segmentname, 'r+')
+
+        if self.TestTimeExist(currentT,currentFOV,file):
+
+            dataset = file['/{}/{}'.format(self.fovlabels[currentFOV], self.tlabels[currentT])]
+            dataset[:] = mask
+            file.close()
+        else:
+            file.create_dataset('/{}/{}'.format(self.fovlabels[currentFOV], self.tlabels[currentT]), data = mask, compression = 'gzip')
+            file.close()
+
+
+
+    def TestIndexRange(self,currentT, currentfov):
+        """this method receives the time and the fov index and checks
+        if it is present in the images data.
+        """
+
+        if currentT < (self.sizet-1) and currentfov < self.Npos:
+            return True
+        if currentT == self.sizet - 1 and currentfov < self.Npos:
+            return False
+#
+    def LoadOneImage(self,currentT, currentfov):
+        """This method returns from the nd2 file, the picture requested by the
+        main program as an array. It fixes the fov index and iterates over the
+        time index.
+        """
+
+        with ND2Reader(self.nd2path) as images:
+            images.default_coords['v'] = currentfov
+            images.default_coords['c'] = self.default_channel
+            images.iter_axes = 't'
+
+            if currentT < self.sizet and currentfov < self.Npos:
+                im = images[currentT]
+                return np.array(im, dtype = np.uint16)
+            else:
+                return None
+
+    def LoadSeg(self, currentT, currentFOV):
+
+
+        file = h5py.File(self.segmentname, 'r+')
+
+        if self.TestTimeExist(currentT,currentFOV,file):
+            mask = np.array(file['/{}/{}'.format(self.fovlabels[currentFOV], self.tlabels[currentT])], dtype = np.uint16)
+            file.close()
+
+            return mask
+
+
+        else:
+
+            zeroarray = np.zeros([self.sizey, self.sizex],dtype = np.uint16)
+            file.create_dataset('/{}/{}'.format(self.fovlabels[currentFOV], self.tlabels[currentT]), data = zeroarray, compression = 'gzip', compression_opts = 7)
+
+            file.close()
+            return zeroarray
+
+
+
+    def LoadThreshold(self, currentT, currentFOV):
+
+
+        file = h5py.File(self.thresholdname, 'r+')
+
+        if self.TestTimeExist(currentT,currentFOV,file):
+
+            mask = np.array(file['/{}/{}'.format(self.fovlabels[currentFOV], self.tlabels[currentT])], dtype = np.uint16)
+            file.close()
+
+            return mask
+
+
+        else:
+
+            zeroarray = np.zeros([self.sizey, self.sizex],dtype = np.uint16)
+            file.create_dataset('/{}/{}'.format(self.fovlabels[currentFOV], self.tlabels[currentT]), data = zeroarray, compression = 'gzip', compression_opts = 7)
+
+            file.close()
+            return zeroarray
+
+    def Segment(self, segparamvalue, currentT, currentFOV):
+        print(segparamvalue)
+
+#        Check if thresholded version exists
+        filethr = h5py.File(self.thresholdname, 'r+')
+
+        if self.TestTimeExist(currentT, currentFOV, filethr):
+
+            tmpthrmask = np.array(filethr['/{}/{}'.format(self.fovlabels[currentFOV], self.tlabels[currentT])])
+
+            segmentedmask = nn.segment(tmpthrmask, segparamvalue)
+            filethr.close()
+
+            return segmentedmask
+
+
+        else:
+
+            filethr.close()
+            return np.zeros([self.sizey,self.sizex], dtype = np.uint16)
+
+
+    def ThresholdPred(self, thvalue, currentT, currentFOV):
+        print(thvalue)
+
+        fileprediction = h5py.File(self.predictname,'r+')
+        if self.TestTimeExist(currentT, currentFOV, fileprediction):
+
+            pred = np.array(fileprediction['/{}/{}'.format(self.fovlabels[currentFOV], self.tlabels[currentT])])
+            fileprediction.close()
+            if thvalue == None:
+                thresholdedmask = nn.threshold(pred)
+            else:
+                thresholdedmask = nn.threshold(pred,thvalue)
+
+            return thresholdedmask
+        else:
+            fileprediction.close()
+            return np.zeros([self.sizey, self.sizex], dtype = np.uint16)
+
+#    def LaunchPrediction(self, currentT, currentFOV):
+
+
+    def TestPredExisting(self, currentT, currentFOV):
+
+        file = h5py.File(self.predictname, 'r+')
+        if self.TestTimeExist(currentT, currentFOV, file):
+            file.close()
+            return True
+        else:
+            file.close()
+            return False
+
+
+
+
+
+    def LaunchPrediction(self, currentT, currentFOV):
+
+        """It launches the neural neutwork on the current image and creates
+        an hdf file with the prediction for the time T and corresponding FOV.
+        """
+
+        file = h5py.File(self.predictname, 'r+')
+
+        with ND2Reader(self.nd2path) as images:
+            images.default_coords['v'] = currentFOV
+            images.default_coords['c'] = self.default_channel
+            images.iter_axes = 't'
+            temp = images[currentT]
+            #temp = np.array(temp, dtype = np.uint16)
+            temp = np.array(temp)
+            pred = nn.prediction(temp)
+            file.create_dataset('/{}/{}'.format(self.fovlabels[currentFOV], self.tlabels[currentT]), data = pred, compression = 'gzip', compression_opts = 7)
+
+        file.close()
+
+
+
+
+    def CellCorrespondance(self, currentT, currentFOV):
+        print('in cell Correspondance')
+        filemasks = h5py.File(self.hdfpath, 'r+')
+        fileseg = h5py.File(self.segmentname,'r+')
+        if self.TestTimeExist(currentT-1, currentFOV, filemasks):
+
+            if self.TestTimeExist(currentT, currentFOV, fileseg):
+                print('inside cellcorerspoindacefunction')
+                prevmask = np.array(filemasks['/{}/{}'.format(self.fovlabels[currentFOV], self.tlabels[currentT-1])])
+                nextmask = np.array(fileseg['/{}/{}'.format(self.fovlabels[currentFOV], self.tlabels[currentT])])
+                newmask, notifymask = cc.CellCorrespondancePlusTheReturn(nextmask, prevmask)
+                filemasks.close()
+                fileseg.close()
+                return newmask, notifymask
+
+            else:
+                filemasks.close()
+                fileseg.close()
+                null = np.zeros([self.sizey, self.sizex])
+
+                return null, null
+        else:
+
+            filemasks.close()
+            fileseg.close()
+            null = np.zeros([self.sizey, self.sizex])
+            return null, null
+
+    def LoadImageChannel(self,currentT, currentFOV, ch):
+
+        with ND2Reader(self.nd2path) as images:
+            images.default_coords['v'] = currentFOV
+            images.default_coords['t'] = currentT
+            images.iter_axes = 'c'
+            im = images[ch]
+            return np.array(im)