diff --git a/Launch_NN_command_line.py b/Launch_NN_command_line.py index 3cbcbd4788c33088b595d8f7ef3b2e108321487b..857ffb93d1657f08cc687a167e04853bcd289864 100644 --- a/Launch_NN_command_line.py +++ b/Launch_NN_command_line.py @@ -68,13 +68,13 @@ def LaunchInstanceSegmentation(reader, image_type, fov_indices=[0], time_value1= #iterates over the time indices in the range for t in range(time_value1, time_value2+1): - log.debug('--------- Segmenting field of view:',fov_ind,'Time point:',t) + # print('--------- Segmenting field of view:',fov_ind,'Time point:',t) #calls the neural network for time t and selected fov im = reader.LoadOneImage(t, fov_ind) try: - pred = LaunchPrediction(im, mic_type, pretrained_weights=path_to_weights) + pred = LaunchPrediction(im, image_type, pretrained_weights=path_to_weights) except ValueError: print('Error! ', 'The neural network weight files could not ' @@ -97,7 +97,7 @@ def main(args): if '.h5' in args.mask_path: args.mask_path = args.mask_path.replace('.h5','') - reader = nd.Reader("", args.mask_path, args.image_path) + reader = nd.Reader("", args.mask_path+'.h5', args.image_path) LaunchInstanceSegmentation(reader, args.image_type, args.fov, args.range_of_frames[0], args.range_of_frames[1], args.threshold, args.min_seed_dist, args.path_to_weights)